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We propose a quantum information based scheme to reduce the temperature of quantum many-
body systems, and access regimes beyond the current capability of conventional cooling techniques.
We show that collective measurements on multiple copies of a system at finite temperature can
simulate measurements of the same system at a lower temperature. This idea is illustrated for the
example of ultracold atoms in optical lattices, where controlled tunnel coupling and quantum gas
microscopy can be naturally combined to realize the required collective measurements to access

a lower, virtual temperature.

Our protocol is experimentally implemented for a Bose-Hubbard

model on up to 12 sites, and we successfully extract expectation values of observables at half the
temperature of the physical system. Additionally, we present related techniques that enable the

extraction of zero-temperature states directly.

PACS numbers: 03.67.a, 03.65.Ud, 03.67.Bg, 03.75.Dg, 05.30.Jp, 05.30.Fk

INTRODUCTION

Quantum simulators have been proposed to under-
stand the complex properties of strongly correlated quan-
tum many-body systems [1-3]. Significant progress has
been made in building both analog and digital quantum
simulators with a variety of quantum optical systems [4—
11]. A particularly successful approach is to use cold neu-
tral atoms in optical lattices to emulate the physics of in-
teracting electrons in solid state systems [2, 12-19]. This
is exemplified by recent experimental advances that en-
able the exploration of quantum magnetism [20-26], mea-
surement of many-body entanglement [27-29], and study
of quantum dynamics out of equilibrium with bosonic
and fermionic atoms [28, 30-32, 34]. One of the cen-
tral, outstanding challenges in these experiments is to
reach temperatures that are low enough to observe many
stipulated quantum phases [2]. Even though there has
been much recent progress, e.g., via entropy redistribu-
tion techniques [26, 35-37], the observation of extremely
low temperature phenomena such as d-wave supercon-
ductivity or fractional quantum Hall physics remains elu-
sive.

In this work, we develop a novel approach to address
this issue by introducing a measurement scheme that
enables to access system properties at fractions of its
temperature 7. This “virtual” cooling to a temperature
Tvirtual = T/n (n = 2,3,...) is facilitated by joint mea-
surements on n copies of the system. A schematic is given
in Fig. 1(a). Further, we detail implementations tailored
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FIG. 1: (a) Schematic representation of the virtual cooling
protocol. Collective measurements on two copies of a thermal
state pg at temperature T'= 1/(kg ) correspond to standard
measurements at half the temperature, 7'/2. (b) Diagram-
matic representation. Two copies are evolved with the uni-
tary JF2, and a subsequent measurement of X> is performed.
In combination this gives the expectation value tr{p23 X} cor-
responding to half the original temperature.

to cold-atom systems in optical lattices, and illustrate our
protocol in an experimental quantum simulation of the
Bose-Hubbard model. Finally, we show how these ideas
can be generalized and discuss protocols to distill the
many-body ground state from multiple copies of thermal
many-body states.

We are interested in quantum many-body systems de-
scribed by a thermal state p(T') = e ## /Z, where H is
the Hamiltonian of the system and Z(T) = tr{e #H}
is the partition function at inverse temperature § =
1/(kpT). The measurement of an observable X in the
state p gives the expectation value (X)r = tr {Xp}. Be-



low we will discuss a protocol that allows us to effectively
measure (X)r/,. The central idea is based on the ability
to express the thermal density operator at T/n by the
n-th power of p(T")

p(T/n) = p(T)" /tr{p(T)"}. (1)

In order to access the higher powers of the thermal state,
we require n copies of the state p(T) prepared in par-
allel as well as the capability to implement operations
that exchange the n copies. More specifically, we have
tr {Xp"} = tr {XS,p®"}, where S, cyclically permutes
quantum states in the n copies, i.e. Sp|h1) @ [1h2) ®
© @ [Yn) = [Y2) @ths) @ @ [¢y), and X is the sym-
metrized embedding of X on the n-fold replicated Hilbert
space Xy = 23" | Sm(X @ 18(=D)Smi Therefore,
the virtual measurement of (X)r/,, at temperature T'/n
via Eqn. (1) can be reduced to determining the expecta-
tion values (X;S,) and (S,) on the n copies of the state
at temperature T. This is illustrated in Fig. 1(b). Mea-
surements of expectation values of S, can be achieved
with auxiliary qubits [38, 39], or directly via many-body
state interferometry [40-42], as recently demonstrated
with cold atoms [27]. We also note that our protocols
apply to subsystems which are locally thermally, even if
the global system is not thermal. In our experiments
below, we leverage ‘eigenstate thermalization’ [43-47] to
obtain thermal reduced density matrices from globally
pure states of finite energy density in a chaotic system.
Earlier theoretical work provided numerical evidence that
a chaotic eigenstate or a reduced density matrix of a
thermal state encodes correlations at all temperatures
[48, 49].

Below, we discuss protocols to measure (X,S,,) for ar-
bitrary n and detail the procedure for the simplest ex-
ample n = 2. We first focus on an interferometric mea-
surement scheme and demonstrate that it can be imple-
mented in current experiments with cold atoms. Alter-
native virtual cooling schemes using ancillary atoms are
discussed in the Supplementary Materials. Finally, we
show that schemes with ancillary atoms can be general-
ized to not only virtually cool a many-body system, but
directly distill and prepare the many-body ground state
from a thermal state. Importantly, all of the discussed
protocols are agnostic to the temperature T' of the phys-
ical system, and thus can be used to obtain additional,
virtual cooling even after all available physical cooling
methods have been deployed.

INTERFEROMETRIC MEASUREMENT

To simplify the presentation we first discuss a virtual
cooling scheme for bosonic atoms in optical lattices. The
key idea is to represent the permutation operator S, in
the bosonic Hilbert space as S, = F,R,F, t  where the

n

unitary JF,, denotes the discrete Fourier transformation
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and R,, = [[; e /M2 P [56]. Here a,; denotes
the bosonic annihilation operator on site j in copy p,
and ny; = a;) ;jap,j is the corresponding number opera-
tor. Note that F,, can be realized by simply introducing
tunnel coupling between neighboring copies [41], and R,
can be directly measured with a number-resolving quan-
tum gas microscope. This representation of the permu-
tation operator suggests that we introduce an operator
X, = ans}"jL, which is the discrete Fourier transform
of the observable X that we want to measure. With this
definition we can express

(X)1/n = tr { X R (Frup® " F) } [tr {Rn(Frp®" Fi)} .
(3)

A measurement of X at the virtually reduced tempera-
ture T'/n thus consists of a measurement of X, R, and
R, after application of the discrete Fourier transform
across the copies. For many interesting observables one
finds [X,,, R,] = 0 so that R,, and X,, can be measured
independently.

As a specific example, we consider the experimen-
tally simplest case n = 2 and the measurement of the
on-site density by choosing X = n;. The correspond-
ing protocol consists of three steps. (i) We prepare
n = 2 identical instances of the thermal many-body state
p(T). This can be achieved, for example, by prepar-
ing two identical states in neighboring 1D tubes, or 2D
planes. It is essential that the copies are decoupled at
this stage, which can be achieved by using a large op-
tical potential between the tubes or planes to suppress
any inter-copy tunneling. (ii) We then freeze the dynam-
ics within each copy, and lower the potential between
the two copies, e.g. using an optical superlattice. This
induces tunneling between the two copies via the Hamil-
tonian Hpg = —Jpg Zj (aljag,j + h.c.), which allows us
to realize the so-called beamsplitter operation JF5 that
maps p®2 — Fop®2FJ. Interactions between the atoms
need to be turned off (e.g. via a Feshbach resonance)
or made negligible as compared to Jpg during this step.
(iii) Finally, we measure the on-site occupation number
on all sites in both copies using a number-resolving quan-
tum gas microscope. This gives direct access to Ro =
(—I)Ej ".iand Xy = fg%(nl,j—kng,j)]—g = %(n17j+n27j).
Averaging the results over multiple experiments gives the
expectation value of the local density at T'/2 via Eqn. (3)
(for a schematic of a single measurement trial, see Fig.
2(a) below). Remarkably, this experimental procedure
parallels the one employed to determine the second or-
der Rényi entropy of cold atoms, with atom number-
resolved measurements being the only additional require-
ment. Such measurements were first demonstrated for



one-dimensional systems using full-atom-number-resoved
imaging in quantum gas microscope [28].

EXPERIMENTAL DEMONSTRATION

In order to demonstrate our protocol, we experimen-
tally realize it in a one-dimensional Bose-Hubbard model.
In the experiment, a Bose-Einstein condensate of 8"Rb
atoms is loaded into a two-dimensional optical lattice
positioned at the focus of a high-resolution imaging sys-
tem. The dynamics of the atoms is well-described by
a Bose-Hubbard Hamiltonian parametrized by tunneling
strength J and on-site interaction energy U (see Ref. [28]
for details).

The experimental protocol consists of four steps: ini-
tialization, quenched thermalization dynamics, beam-
splitter operations, and measurements. During initial-
ization, optical potentials are sequentially manipulated
in order to isolate an initial product state, |1g), with a
single atom on the central 2 x 6 sites of a 2 x L plaquette
in the deep 45E, lattice where the tunneling between the
sites is negligible [28]. Each 1 x L tube represents an
identical copy of the system. Next, the lattice potential
along the chains is suddenly lowered, allowing particles to
tunnel and interact within each chain. It has been pre-
viously shown [28] that this quenched dynamics drives
the thermalization of small subsystems within the chain.
Hence, after sufficiently long time evolution, the state of
the subsystem can be described by an effective temper-
ature T and chemical potential p, which are determined
by the total energy and particle number density of |i)g).
(See also [49].) After the desired time evolution the dy-
namics of the system is frozen by suddenly increasing the
lattice depth along the chains, and a beamsplitter opera-
tion Fo is implemented by lowering the potential barrier
between the two chains, such that particles can tunnel (in
the transverse direction) for a prescribed time. Finally,
the number of particles on each individual lattice site is
measured. This procedure is repeated multiple times in
order to obtain sufficient statistics.

We apply our virtual cooling protocol in three regimes
(A, B, and C), with differing initial states |¢)p), system
size L, and Hamiltonian parameters U/J. For the data
sets A and B, each of L = 6 sites is initially occupied by
one particle, whereas for the data set C, only the mid-
dle six out of the total L = 12 sites are occupied by
one particle per site. The tunneling rates are set such
that U/J ~ 1.56 (data set A) or 0.33 (data sets B and
C). These combinations lead to the effective tempera-
tures and chemical potentials (T'/J, u/J) ~ (3.5, —1.0),
(11.5,—6.3), and (18.3, —17.7) of subsystems for data sets
A, B, and C, respectively. Based on our protocol, we ex-
tract the average particle number density (n;) for thermal
ensembles at reduced temperature.

Fig. 2(b) shows the resulting single-site particle density
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FIG. 2: (a) Schematic for a single measurement trial of

X, = %(n1,i + n2,) and Ry restricted to the ith site, after
F> has been applied to the two copies. (b) Measured single-
site density, averaged over all but the edge sites of the chain,
after virtual cooling has been applied to the system (blue cir-
cles with vertical error bars). Red discs show the single-site
density of the state before our protocols are utilized (the ac-
tual density of particles in each experiment), whereas light
blue discs correspond to the prediction of the effective ther-
mal ensemble (see text) at half the temperature. Agreement
of the data with the reduced-temperature ensemble validates
the applicability of our method in the experimental system.
Error bars denote the standard error of the mean.

after virtual cooling for all three cases. We compare these
results with the initial single-site density at the original
temperatures as well as theoretical predictions from an
ideal thermal ensemble pgg at half of the original temper-
atures. All data points are in good agreement with the
reduced temperature ensemble indicating that our virtual
cooling scheme works in the experimental system.

OBSERVABLES

In our experiment, we measured the single-site den-
sity of bosons in an optical lattice at half the physical
temperature. If we measure the single-site density on
the jth site, we have X = n;, X, = %(m,j + naj),
and Xy = ]:2%(77,17]‘ + ng’j)]‘g = %(nl,j + ng’j). Notice
that X, = A%, since each operator is invariant under the
many-body Fourier transform F, between the two sys-
tem copies. Here, X5 is easily measured by averaging the
number of atoms on the jth site in the two copies. Fur-
thermore, X5 commutes with Ry, and so we can measure



the observables in either order. In fact, X5 and Rs com-
mute with all single-site densities ny j, 1o, and so we
can simply measure the individual particle numbers and
combine them to compute the expectation values of X
and Rs.

For more complicated observables such as density-
density correlators X = n;ny, the situation is more sub-
tle. A direct application of the procedure outlined above
requires a measurement of

1
Xy = f2§(n1,j”1,e +n2,j12,0) F

1
=1 (n1,j +mn2,5) (n1e +n2y) (4)

Loy t t t
+ Z <1117ja27j + az)jam) <a1,ea273 + a27la17g) .

While the first term in Eqn. (4) (i.e., the final equal-
ity) is easily measurable with standard quantum gas mi-
croscopy, the second term requires additional interfero-
metric apparatus.

However, the first term of Eqn. (4) by itself contains
interesting information about the system at half of its
temperature. This first term of Eqn. (4) is easy to mea-
sure, since it commutes with R, and all of the number
operators. Doing so would output the unconventional
correlator

1 tr{n; p(T) ne p(T)}
2 tw{p(T)?}

The term on the left here is the desired equal-time
density-density correlator at half the system tempera-
ture, whereas the term on the right is peculiar. In fact,
this peculiar term is equal to the unequal imaginary-
time correlator i tr{n;(1/T)nep(T/2)} where n;(t) =
efl Tnje_H 7 is the number density evolved in imaginary
time. If our system is translation invariant and at suf-
ficiently low temperature, we expect tr{n;n, p(T/2)} to
depend on |j — ¢|, whereas the peculiar term should not
strongly depend on |j — £|. This is because at low tem-
peratures, the large imaginary time evolution of the op-
erator n; scrambles it strongly, destroying the memory
of its initial position j. Indeed, in the limit of T — 0,
the peculiar term is just (¥o|n;|to)(¥o|ne|tbo) which is
clearly independent of |j — ¢|. At high temperature and
small [j — ¢, both terms in Eqn. (5) have a nontrivial
dependence on |j — ] and so we are unable to extract
each term separately. Nevertheless, it is interesting to
note that our protocol yields some information about the
unequal imaginary-time correlator in this regime. We
note also that when |j — £| is much larger than the ther-
mal correlation length, both terms in Eqn. (5) approach
2 tr{n; p(T/2)} tr{ng p(T/2)}. We explore the depen-
dence of tr{n; p(T) n; p(T)} on |j — £| as a function of T
in the Supplementary Materials, and confirm that there
is essentially no dependence at sufficiently low tempera-
tures.

(5)

& tr{nne o(T/2)) +

Another approach to measuring density-density corre-
lators is to use a different protocol involving an ancil-
lary qubit to implement a controlled swap operation (see
Supplementary Materials). In this protocol, one does not
need to measure Ry by observing the particle number dis-
tribution with a quantum gas microscope, and so we have
more flexibility in our ability to measure X5. Another in-
teresting observable which is easy to measure in the ancil-
lary qubit setting is the hopping operator X = a; aZ—l—h.c.,
and accordingly X, = %(alyjah + agyja;é) + h.c. which
satisfies Xy = X.

We are often interested in local observables X, which
in turn correspond to the local observables X;. Sup-
pose that X is supported on a subregion R. Then X is
supported on the joint region R; U Ry of the two corre-
sponding system copies. For concreteness, suppose our
system is one-dimensional. We desire to measure

tr{X p(T/2)} = trr{X pr(T/2)},

where pr(T/2) = trg{p(T/2)} is the reduced density ma-
trix of p(T'/2) on R. Naively, it seems that we only need
to perform our procedure on the subsystem R; U Ry of
the two copies. However, this is not correct, since

R S S G
trR{p%} #t R{tr{pz}} = trg{p(T/2)}.

Nonetheless, suppose we extend R by buffering each of
its boundaries by a number of sites corresponding to the
correlation length of the system at temperature T'/2. Let
us denote this extended region by B. Here, R C B, but
B is smaller than the whole system. The corresponding
joint region of the two system copies is B; U By. If we
perform our procedure on the subsystem B; U By of the
two copies, we can access the state op = p%/tre{p%},
which satisfies op ~ trz{p(7/2)}, and therefore

trp{Xop} = tr{X p(T/2)}.

So if we choose B large enough (but in most cases, smaller
than the size of the entire system), we can still approxi-
mately measure our desired observable.

In an experiment, the performance of a measurement
protocol is limited by the number of repetitions required
to achieve sufficiently high precision. In our setting, the
measurement statistics required to precisely measure the
denominator Z, = tr{p(T)"} in Eqn. (1) may be a lim-
iting factor. In a many-body system, Z, is directly re-
lated to the Rényi-n entropy S, = ﬁ log(Z,,), which
scales with volume for local systems. Z,, is therefore of-
ten exponentially small in the system size. Hence, one
would generally need a large number of measurements
Ny ~ 1/Z% ~ exp{2s(T)|R|}, where s(T) is the en-
tropy density at temperature 7" and |R| is the size of
the subregion on which p(T") is supported. In the limit
of low temperature, this scaling becomes favorable since



s(T') generally decreases. However, the thermal correla-
tion length £(7'/n) can increase as T is lowered, requir-
ing a larger subregion size |R| > £(T/n). Together, the
number of measurements required to achieve some fixed
precision scales as N,,, ~ exp{2s(T")&(T/n)}.

Of course, if p is only approximately thermal, then
expectation values of p™/tr{p"} for larger values of n
can have amplified deviations from thermality. However,
if we are interested in the physics of the ground state
[tho), then p™ /tr{p™} ~ |1bo) (1o| for larger values of n so
long as |1)) is the dominant eigenstate of p. We discuss a
related idea for ground state distillation in the following
section.

GROUND STATE DISTILLATION

The above ideas can be generalized to schemes that not
only allow us to measure a system at reduced tempera-
tures, but further enable the distillation of the ground
state from multiple copies of a thermal ensemble. This
is akin to entanglement purification proposals for quan-
tum communication over noisy channels [50]. Consider a
non-destructive measurement of the swap operator, Ss,
on two systems which are each prepared in the state
p. Since S5 is unitary and hermitian, the two pos-
sible measurement outcomes are +1, corresponding to
projections into the symmetric or anti-symmetric sub-
space with respect to the exchange of the two copies.
The state after such a measurement is thus given by
P+ (p@p)Px/tr{P+(p®p)}, with Py = (14 53)/2. If
the measurement outcome is —1, we discard both sys-
tems. But for those instances that yield a measurement
+1 we retain one of the systems, and discard only the
other one. The resulting state of this first system p; is
obtained by tracing out the degrees of freedom of the
second system,

oy = tro{P+(p@p)P+}
T (P (@)}

For an initial thermal state p(T'), the new state p; corre-
sponds to a mixture of p(T') and p(T'/2). Clearly, p; has
the same eigenvectors as p, but with different eigenval-
ues. In particular, p; is purer than p, and the eigen-
value of the largest eigenvector (i.e. the ground state
for thermal p) is larger. This purification is of course
probabilistic, as its success is conditioned on the proper
measurement outcome for S;. Remarkably, the success
probability py = (1 + tr {pz}) /2 is always larger than
1/2 and approaches 1 as the system is purified. Starting
with multiple copies one can iterate the above process,
which will ultimately converge to a system in the largest
eigenstate of p. For thermal states, the procedure distills
the many-body ground state, i.e. the zero-temperature
state.
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FIG. 3: (a) Quantum circuit representation of ground state
distillation protocol. Following the controlled swap of two
copies of a quantum state, the control ancilla qubit is mea-
sured. This protocol can be parallelized and nested, as shown
in the diagram. (b) The controlled swap operation can be
implemented for ultra-cold atoms on an optical lattice by
the combination of photon-assisted hopping and the Rydberg
blockade mechanism; excitation of the control atom in a Ry-
dberg state conditionally prevents photon-assisted hopping.

In a cold atom setup, non-destructive measurements
of the swap operator are typically more challenging to
implement than the direct measurements which form the
basis of the virtual cooling scheme discussed earlier. One
way to realize such measurements is to use ancillary
qubits [51]. For example, one can envision encoding a
qubit in two internal states of an ancillary atom. Em-
ploying the Rydberg blockade mechanism, one can then
use this qubit, e.g. to control the tunneling amplitude
between two copies in optical lattices and so realize a
controlled exchange operation (see Fig. 3 and [51]).

DISCUSSION

Reaching low temperatures is paramount for study-
ing interesting quantum many-body phases with quan-
tum simulators. In particular, the small energy scales
in cold atom systems pose a major challenge for access-
ing the required temperature regimes. In this work, we
proposed and demonstrated novel techniques that enable
access to properties of a system at a fraction of its actual
temperature. This virtual cooling is enabled by collective
measurements on multiple copies of the system.

More generally, our schemes illustrate a connection be-
tween thermal physics and entanglement. In particular,
the temperature of a system is intimately connected to
its entanglement with its surroundings [28, 44, 45, 49,
52, 53]. Accordingly, measuring correlations of a ther-
mal system at virtually lower temperatures involves ma-
nipulating and probing entanglement. This is why the
tools for measuring a system at virtually lower temper-
atures resemble those that allow access to entanglement
entropies [27, 40, 41].



A natural future direction is to experimentally per-
form quantum virtual cooling for more complicated ob-
servables. A particularly interesting application would
be to experimentally study a quantum many-body sys-
tem with a finite-temperature phase transition at some
temperature T,.. One could prepare the system at some
temperature T > T, and use virtual cooling to probe
features at or below the phase transition. (For related
theoretical work, see [55].) Understanding the range of
applicability of quantum virtual cooling is an exciting
theoretical and experimental program, which will require
new insights in subsystem ETH and thermalization.
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SUPPLEMENTARY MATERIALS

I. Additional Methods for Quantum Virtual Cooling

Here we present detailed quantum virtual cooling schemes, including alternative ones that do not appear in the
main text. We analyze the case of two system copies, so that quantum virtual cooling allows us to probe observables at
half of the physical temperature. We start with a more general method involving an ancilla qubit, and then specialize
to bosons and fermions in optical lattices.

Using an ancilla qubit

Suppose we have two identical systems, each in the same state p and with Hilbert spaces H, and an ancilla qubit
with Hilbert space C2. The joint Hilbert space of the entire system is C? ® H; ® Hy with H ~ H; ~ Hy. We define
the ancilla states

1 1
() +1) )=

Lo LI
L) r=ﬁ(|0>—lll>), |R) == ﬂ(\0>+ 1)

By jointly manipulating the ancillas and two identical systems, we will show how to measure tr{X p?}/tr{p?} for any
observable X.

The basic mathematical trick is that tr{Ss p®2} = tr{p?}, and similarly tr{(X ®1)Ss p®?} = tr{X p?}. As explained
in the main text, Sy is an operator which swaps H; and Ha by Sa|t1) ® |[th2) = |th2) ® |11). In our protocol, the
ancilla qubit simply provides a tool to apply the swap operator via a post-selected measurement of the state of the
ancilla. We require the non-unitary ingredient of post-selection because the mapping p®2? — Sy p®? is non-unitary
(e.g., in contrast with p®2 — Sy p®2 S7).

The procedure is as follows:

+) = (10) = 1))

S
S

1. Start with the initial state |+)(+| ® p ® p.
2. Apply to the joint system a controlled-(U ® 1) gate
00 @11+ |1){1leU®1, (7)
for some unitary U on the first system copy, followed by a controlled-Ss gate
0)(0]®@1®1+[1){(1|®Ss, (8)
where the control qubit is the ancilla.

3. Measure the ancilla qubit in the {|+),|—)} and {|L), |R)} bases, respectively, to obtain the measurement prob-
abilities:

Prob(%) = = (1 £ Re[tr{U p*}]) (9)

| = Do =

Prob(L/R) = = (1 £ Im[tr{U p*}]) . (10)

2

These probabilities can be used to reconstruct tr{U p?} for any chosen unitary U.

4. Let {U;} be an orthogonal basis (i.e., tr{UiTUj} = dim(Hz) - d;5) for B(H2). For instance, if the two system
copies are comprised of qubits or qudits, one could use strings of Pauli operators or generalized Pauli operators.
Then using the first three steps above, for any operator X € B(Hz), one can compute tr{X p?}/tr{p?} using
the relation

dim B(H2)
tr{ X p? 1 tr{U, p?
{Xp} Z tr{UiTX} r{U; p”}

tr{p?}  dimH, P tr{p?} (11)




The last step may seems daunting, since the sum in Eqn. (11) contains dim B(Hs) = (dim Hz)? terms. However,
a good choice of {U;} renders only a few terms in the sum non-zero. For instance, suppose that the two identical
systems are each spin chains of qubits, and that X is a product two Pauli operators, each on a separate site. If {U;}
is chosen to be products of Pauli operators, then only one term in the sum would be non-zero (namely the term for
which U] = X).

Boson interferometry

If our two identical systems are bosonic, then we can perform quantum virtual cooling along the lines of the main
text. In particular, we do not need an ancilla qubit to facilitate the application of the swap operator. Consider the
bosonic Hilbert space Sym(H; ® Hs), comprising of two systems with N sites each. A basis for Sym(H; ® Hs) is

N

{pi}{ai}) = [T (abi = al )™ (ad; + al ;)" vac) (12)

for {p;},{q;} € Z;év. From Eqn. (2), F2 is a unitary which maps

Fo—=(a},; +a] ) F} = al, (13)

1
Fo Zslab;—al ) F =l (14)

Furthermore, Ry = (—1)Zi ™3 is the total parity operator for the first of the two identical systems. It is easy to
check that

Sal{pi} {a;}) = FARoFal{pi} {as}) s (15)
and so
tr{Ry Fo p®2 FI} = tr{Ss p©?} = tr{p?}. (16)

Then if we have an operator X that we wish to measure, the idea is to instead measure X5 = fg%(X ®R1+1® X)]:;r
so that, in essence,

1 1
tr{Ry Xo Fo p®2 Fit} = 5tr{Rng(X®1+1<§<>X)p@<>2f§} = 5 tr{S2 (X®1+1®X)p%% =t{Xp?}. (17)

Of course, there is a detailed measurement procedure which realizes the above equations.
To measure tr{X p?}/tr{p?}, we use the following procedure:

1. Start with the initial state p®2.

2. Apply F3 to obtain

> Fap®? A (18)

3. Measure the operator X5, given by
X = (£ X({avsal )+ 2 X({ass b)) ) F 19
s =5 (5 X(arsal )+ 5 X({azial b)) F. (19)

Here, X ({a1,, a}i}) denotes that the operator is written in terms of sums of products of creation and annihi-

lation operators in the set {a1 ;, aiyi}iesites, and similarly for X ({a2,, agl}) The operator X5 has the property
[X2, R2] = 0, which will be utilized shortly. Suppose X =) . A\; P; where the {P;} are orthogonal projectors.
Then after measurement one is left with

> P Fp®* FI P (20)
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4. Measure Ro = II; — II_ (where I is the projector onto the + eigenspace) to obtain

S Uy P Fp®? FYPIL + Y T Fp P p® P FYTL (21)

5. The probability that one measures R as +1, after having measured p®? to be in the subspace corresponding to
P;, is denoted by Prob(+ |i). Similarly, the probability that one measures Ro as —1, after having measured p®?
to be in the subspace corresponding to P;, is denoted by Prob(— |4). After obtaining Prob(+ |4) and Prob(— | i),
one can compute

SN (Prob(+ i) — Prob(— | i)) =3 aitr {H+ P Fy p®2 Fl P, — 11 Fy P, p®2 P, fgn,}
= Z)\z tr {Rg Pz’ ]:2 p®2 .7:; Pi }

= tr{Rqy Xo F p®2 ]:'21'}
= tr{X p°}, (22)

where we have used [X3,R2] = 0 to go from the second line to the third line, and Eqn. (17) to go from the
third line to the last line. A similar procedure can be used to determine tr{p?}, and then one can compute the
quotient tr{X p?}/tr{p?}.

In an actual experiment, one does not directly measure the parity operator R, but instead measures the number
operator on every site. Since the common refinement of the eigenspaces of all of the number operators is a refinement
of the eigenspaces of Ry, one can measure Ro via the number operators and obtain the same result as above.

Fermion interferometry

It is straightforward to adapt the boson interferometry techniques to fermions, although a few modifications to the
protocol are required. Our protocol is inspired by the work of [42]. Suppose we have two systems of fermions, and
require that states of different fermion number lie in different superselection sectors. Technically, the superselection
rule means that for all observables X, we have (11| X|¢2) = 0 if |¢)1) and [¢9) are states of definite, but distinct
fermion number.

For fermions, it is not true that tr {RQ Fo p®2 }";f} = tr{p?}. Instead, we have

tr {vB p®2 f;} = tr{p?} (23)

where V has eigenvalues +1 which depend on the total number of fermions N, the floor of half of the total number
of fermions | Niot /2], and the number of fermions N» in the second copy of the subsystem. (There are, in fact, many
choices of V which satisfy Eqn. (23), and so we choose a convenient one for our purposes.) The measurement outcomes
for V are given in the table below:

Niot | [ Ntot/2]| N2 |Result
Even| Even |Even| +1
Even| Even |[Odd| -1
Even| Odd |Even| -1
Even| Odd [Odd| +1
Odd| Even |Even| +1
Odd| Even [Odd| -1
Odd| Odd |Even| -1
Odd| Odd [0Odd| +1

TABLE I: Characterization of measurement outcomes for V.
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The procedure for measuring tr{Xs p?}/tr{p?} is the same as in the bosonic case above, except that now we need
1 i 1 i i
Xy = Fo §X({fi,17fi71}) + 9 X({fi72’fi,2}) Fa,

(where here the f, fT operators are fermionic) to additionally satisfy
[X2,V]=0. (24)

So first let us find which operators, in general, commute with V. Suppose we have an operator of the form

B o fi Frg fhae Lo frio e fouy o (25)
—_—
my of these mg of these ny of these ny of these

where {41, ..oy bmy by {J1y ooy Gma by 1K1y vy Kny by {01, o, £y | are all sets with non-repeating elements. All of these opera-
tors transform multiplicatively by either +1 or —1 after conjugation by V. Letting m = |m; —ms| and n = |ny — na|,
the possibilities are tabulated below:

mod 2)|m +n (mod4)|n (mod2)|Result
-1
+1
+1
-1
—1
+1
+1
—1

= O = O = O = O

TABLE II: Transformation of products of fermion operators under conjugation by V.

(’IliJ -+ 77,1'72)7 we have [XQ,V} = 0 If instead Xg = fg(%(ni’lnj’l + ’Iliygnjyg)‘/.'g, we

For example, letting X = 3

likewise have [Xa, V] = 0.

II. Extracting two point correlations in the low temperature limit

In this section, we numerically study the effect of the second term in Eqn. (5) in the main text. More specifically,
we have argued that one can extract a density-density correlation from a more experimentally accessible quantity:

1tr {n; p(T) ne p(T)}
2 u{p(?)?}

While the first term is the desired density-density correlation, the second term arises as a consequence of the Fourier
transform of local operators m; and n,. As described in the main text, however, we expect that at sufficiently
low temperatures the second term does not exhibit any systematic dependence on the distance between two points
d = |j — ¢, allowing us to extract physically meaningful quantities such as correlations lengths from fitting C(j,¢) as
a function of d.

In order to confirm this expectation, we consider a 1D Bose-Hubbard Hamiltonian with nearest-neighbor hopping
rate J and on-site repulsive interaction U = 3J. We numerically compute thermal density matrices for N = 4
particles on L = 16 lattice sites with periodic boundary condition at various temperature T'/J € {1—10, %, %, %, 1}. For
each temperature T, we compute each term in C(j,¢) as well as their sum as a function of the distance d € {1,...,8}.
Fig. 4 below summarizes our numerical results, from which it can be checked that the density-density correlation (the
first term in C(7j, ¢)) displays strong anti-bunching (Fig. 4a) at low temperature. By contrast, the second term exhibits
diminishing distance-dependence as the temperature decreases (Fig. 4b). We find that the distance dependence of the
total value C(j, ) is indeed dominated by the density-density correlation (Fig. 4c) at sufficiently low temperatures.

(26)

CGG,0) = 3t {mg e p(T/2)} +
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FIG. 4: Extracting the density-density correlation from Eqn. (5) in the main text. (a) Density-density correlations in a 1D Bose-
Hubbard model at various temperatures. This quantity corresponds to the first term in C(j,£). (b) Additional contribution to
C(3, ) arising from the second term. Crucially, this contribution exhibits decreasing distance-dependence in the low temperature
limit. (c) The position dependence of the total value C(j,¢) is dominated by the first term in low temperature limit.

ITII. Experimental methods

Our experiments start from a high fidelity Mott insulator with a single particle per lattice site. Using high-precision,
site-resolved optical potentials, created by a digital micro-mirror device (DMD), we isolate two neighboring six-site
long chains of atoms with exactly one atom on each site. In order to ensure the high fidelity of the initial state we hold
it in the 45E, deep optical lattice in both directions. To obtain a locally thermal state we suddenly drop the lattice
depth along the chains, allowing atoms to tunnel, while keeping the lattice high between the chains. We use a pair of
DMD beams to offset the sites right outside the region of interest, thereby defining the overall length of the system.
After variable evolution time, we freeze the dynamics along the chains by suddenly ramping up the lattice back to
45E,. In order to make sure that the state has thermalized, we pick evolution times for which the entanglement
entropy of the region of interest has reached its saturation value. Table IIT shows the times used in Fig. 2 in the main
text for each case studied.

Case Times (h/J)
A [1.0,1.4,22, 43, 51,64, 8.4
B 12.2, 24.0, 59.4
C 22.4, 41.3

TABLE III: Evolution times used for each case in Fig. 2 of main text.

In order to implement the beamsplitter operation, we drop the lattice depth between the chains and let the atoms
evolve for a certain time duration. During this process the lattice depth along the chains stays high, preventing
wavefunction evolution in that direction. At the end of this sequence, we read out the state of the system in the
particle number basis with single-site and full atom-number resolution. For more details see [28].
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