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ABSTRACT

Accurate cell instance segmentation plays an important role in

the study of neural cell interactions, which are critical for un-

derstanding the development of brain. These interactions are

performed through the filopodia and lamellipodia of neural

cells, which are extremely tiny structures and as a result ren-

der most existing instance segmentation methods powerless to

precisely capture them. To solve this issue, in this paper we

present a novel hierarchical neural network comprising object

detection and segmentation modules. Compared to previous

work, our model is able to efficiently share and make full use

of the information at different levels between the two mod-

ules. Our method is simple yet powerful, and experimental

results show that it captures the contours of neural cells, es-

pecially the filopodia and lamellipodia, with high accuracy,

and outperforms recent state of the art by a large margin.

Index Terms— Neural cell, instance segmentation, deep

learning, cell segmentation, transpose convolution

1. INTRODUCTION

The cellular mechanisms engaged during the standard speci-

fication of neurons, astrocytes, and oligodendrocytes from a

single neural stem cell are among the vital mysteries in neu-

ral science [1]. In the lineage history, the neural cells contact

each other frequently through their filopodia and lamellipo-

dia, while undergoing mitosis, movement, and morphology

changes. Thus, accurate capture of the cell interactions is crit-

ical to the understanding of neural cell behavior and normal

brain development [1]. With the help of real-time imaging

system, it is highly possible to study such interactions through

vision techniques, such as segmentation, tracking and detec-

tion [2], among which accurate segmentation is crucial for

pinpointing the time when cells communicate.

Recent years have witnessed the significant improvement

of semantic image segmentation due to deep neural networks

[3, 4, 5]. In [3], Long et al. introduced the groundbreaking

fully convolutional networks (FCN) which greatly advanced

the accuracy of semantic segmentation. However, the decon-

volution operation of FCN simply employs fixed bilinear in-

terpolation, making it difficult to obtain accurate boundaries

for highly non-linear objects [5]. To mitigate the limitations

of FCN, Noh et al. [5] proposed to learn a deep deconvolution

network featured with learnable deconvolution and unpooling

layers, which are able to generate dense and precise object

segmentation masks. In a similar fashion, Ronneberger et al.
[4] combined the features on the lower layers with the upsam-

pled features on the higher layers, and thereby increased the

segmentation precision a lot.

However, semantic segmentation is unaware of the indi-

vidual object instance [6]. To understand the interactions be-

tween neural cells, identifying the cell instances so as to sep-

arate them is of great importance. Therefore, the goal of this

paper is to develop a framework that enables accurate instance

segmentation for neural cells.

Instance segmentation is a challenging task as it requires

precise detection of objects along with correct segmentation

masks. In [6], Dai et al. proposed a multi-task network cas-

cades (MNC) approach that segments the objects from the

bounding-box proposals, followed by object classification.

However, the feature warping and resizing in the ROI pooling

step make it lose the important spatial details, thus hurting the

segmentation performance. In [7], Li et al. further developed

the idea of MNC and presented a fully convolutional instance-

aware semantic segmentation (FCIS) framework that detects

and segments the object instances jointly. However, FCIS

tends to create spurious edges and exhibit systematic artifacts

on overlapping objects, and is unable to accurately delineate

the contours of objects with fine boundary details, which are

just the case for neural cells (see Fig. 2).

In this paper, we propose a novel pixel-wise instance seg-

mentation method that jointly performs object detection and

segmentation. However, different from previous approaches,

our model does not fix the ROI size and thus gets rid of the

ROI misalignment issue caused by warping, as is the case

for [6]. Furthermore, unlike [6] and [7], to achieve pixel-

accurate segmentation, the feature maps of upstream convo-

lutional layers are fully shared for detection and segmenta-

tion subtasks in a fashion similar to [4], but without suffering

from the cropping issues. Our object detection is based on

a light-weight SSD detector [2, 8], which is simple, fast and

powerful. Experimental results demonstrate that our method

outperforms MNC and FCIS by a large margin for the neural

cell instance segmentation task.
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Fig. 1. Schema of our pixel-wise instance segmentation framework. The architecture consists of two parts: object detection and

segmentation, of which the object detector streams down confidence and bounding box offsets to the higher layers for object

mask prediction. The feature maps of the upstream layers are shared for both the detection and segmentation subtasks.

2. METHODS

Our pixel-wise instance segmentation network (as shown in

Fig. 1) comprises two parts: object detection and segmenta-

tion, which are trained jointly. The outputs of object detec-

tor are confidence scores and bounding box offsets, based on

which object instance masks are predicted.

2.1. Light-weight SSD detector

The upstream part of our network is a light-weight SSD de-

tector [2, 8], which eliminates the widely-used proposal gen-

eration and subsequent feature resampling [6, 9, 10]. In this

way, the detector encapsulates all the computation in a single

network, making it easier to train and more flexible to apply

to instance segmentation.

As shown in Figure 1, the base model of the light-weight

SSD detector [2] is the VGG-16 [11] deep convolutional net-

works. In the forward pass, the size of feature maps shrinks

gradually, thereby capturing object features at different scales.

Considering that the cell shapes vary significantly across dif-

ferent neural cells, we choose to utilize feature maps at dif-

ferent levels to better locate cells. In particular, two feature

maps (feat4 and feat5) are selected and combined to handle

cells of various sizes.

Default boxes. Instead of generating proposals, the SSD

detector discretizes the feature maps (feat4 and feat5) and

generates fixed-size default boxes with different aspect ra-

tios and scales. In obtaining the default boxes, an m × m
feature map is divided into 1 × 1 cells, and the normalized

cell centers are set as the centers of the default boxes, i.e.,

(cxd, cyd) = ( i+0.5m , j+0.5m ), i, j = 0, 1, · · · ,m − 1. By this

design, default boxes are quite powerful to match objects of

various sizes at different locations. In practice, the aspect ra-

tios are ar ∈ { 12 , 13 , 14 , 2, 3, 4} for both feat4 and feat5, and

the scales are set to be sfeat4 ∈ {0.04, 0.07,
√
0.072 + 0.152}

for feat4 and sfeat5 ∈ {0.15, 0.29,
√
0.292 + 0.332} for feat5.

Then the width and height of default boxes are calculated as

w = s
√
ar, h = s/

√
ar, respectively.

Encoding ground-truth boxes. After obtaining the de-

fault boxes, we encode the object localization information

into the default boxes and generate the encoded ground truth.

The encoding steps are as follows. First, we match each

default box to all the ground truth boxes. If the Jaccard value

is higher than 0.5, we set the label of this default box as 1,

otherwise 0. Then the offset between this default box and the

best-matched ground truth box is saved as the offset box. The

ground truth vector is then encoded with the offset box and

the box label. The offset box g = (cx, cy, w, h) is computed

as follows [8]:

cx = (cxg − cxd)/wd (1)

cy = (cyg − cyd)/hd (2)

w = log(wg/wd) (3)

h = log(hg/hd), (4)

where (cx, cy) is the center of the encoded offset box, and

The subscript index g and d refer to the encoded offset box

and the default box, respectively.

ROI prediction. After training with encoded ground truth

vectors, in the forward inference SSD detector predicts the

offset boxes for each object. These predicted offset boxes are

then decoded to obtain the real bounding boxes of objects.

2.2. Pixel-wise segmentation

In the detection process, max pooling operation is utilized to

sequentially abstract the neuron activations with fewer rep-
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resentative value. In this way, the higher layers only retain

robust activations, which are helpful for detection and classi-

fication [5]. However, one deficiency associated with higher

layers is that they lose the spatial details, which play a signif-

icantly important role in pixel-accurate segmentation.

To remedy the loss of spatial details, we unpool the fea-

ture maps and employ transposed convolution arithmetic [12]

to transform them to have the same size with the input im-

age, as shown in Fig. 1. Besides, the feature maps of SSD

detector at different levels are propagated to the transposed

convolutional layers, and in this way the contexts of objects

at different scales could be fully reused to predict the lost spa-

tial information. Note that this layer linking strategy is similar

to [4], but does not suffer from the cropping issues since the

contracting and unpooling parts are exactly symmetric.

For each generated ROI, we predict the object mask

within it, using the features bounded by the counterparts

of the given ROI at each layer. However, since the max

pooling operation used in our network always contracts the

feature map twice, there would be misalignment between the

floating-number ROIs from different layers. For instance,

given ROI of size 15 × 15, then after max pooling it reduces

to 7.5×7.5, which can be naturally rounded up to 8×8; how-

ever, in the unpooling process this 8 × 8 ROI will be scaled

up twice to 16 × 16, which is inconsistent with the original

ROI. To solve this issue, for the unpooled 16 × 16 ROI, we

just simply remove its last row and column corresponding to

the extra 0.5 × 0.5 floating-point parts due to rounding up to

convert the ROI to 15 × 15. With this simple strategy, our

network is able to precisely align the predicted instance mask

with the input image, as demonstrated in Fig. 2.

2.3. Loss function

The loss function for network training is composed of three

parts: confidence scores, object locations, and segmentation

masks

L =
1

Npos

(Lconf + αLlocs) + Lmasks, (5)

where α is the weight. The object location offset loss is de-

fined as [8, 13]:

Llocs =
∑

i∈pos

∑

m∈{cx,cy,w,h}
smoothL1

(lmi − gmi ), (6)

smoothL1
(z) =

{
0.5z2 if |z| < 1

|z| − 0.5 otherwise
, (7)

where i ∈ pos denotes the set of positive predicted boxes

(whose encoded labels are positive), and lmi and gmi re-

fer to the predicted and encoded offset boxes, respectively.

The confidence score loss is calculated as the binary cross-

entropy:

Lconf = −
∑

i

(xi log pi + (1− xi) log(1− pi)) (8)

where xi is the encoded ground truth label, and pi is the pre-

dicted confidence score. The segmentation mask loss is also

modeled as a binary cross-entropy:

Lmasks = − 1

N

N∑

j

∑

i

(tij log pij + (1− tij) log(1− pij))

(9)

where pij and tij are respectively the predicted and ground

truth mask values at position i for the jth positive predicted

bounding box (whose overlap with the ground truth box ex-

ceeds a certain threshold), and N is the total number of posi-

tive predicted bounding boxes.

3. EXPERIMENTS AND RESULTS

The neural cell images used in our experiment came from a

series of time-lapse microscopy videos, from which we sam-

pled 386 images for training, 129 for validation, and 129 for

testing. The size of the cell images is 640 × 512, and the

ground truths of the cell instance masks were labeled by ex-

perts. As for training, the parameters of the contracting part

of the network were fine-tuned with the VGG-16 pretrained

weights on ImageNet [14], while the remaining part was ini-

tialized with random weights sampled from standard Gaus-

sian distribution. We flipped the images horizontally and ver-

tically to augment the training set. The network was imple-

mented with Pytorch [15], and was trained and tested on a

single Nvidia K40 GPU. The average inference time of the

trained model is 0.6s per image.

The predicted object masks will be evaluated by AP (av-

erage precision [16]) at mask-level IoU (intersection-over-

union) thresholds of 0.5 and 0.7. When the mask-level IoU

between a single predicted object mask and the ground-truth

mask is greater than 0.5 or 0.7, the detection of the corre-

sponding object will be considered as true positive, otherwise

considered as false positive. In the former case, the ground-

truth object will be recorded as “detected”, which means the

other predicted results for this same object will be considered

as false positive. Finally, with the above statistics we com-

pute the precision/recall curve, and utilize AP [16] metric to

summarize the shape of this curve, giving an evaluation which

measures both instance detection and segmentation accuracy,

as with [6] and [7]. Besides, we also measure the average

mask IoU at thresholds 0.5 and 0.7. The results are reported

in Table 1, which shows that our method outperforms MNC

and FCIS by a large margin, especially for AP at mask-level

IoU 0.7. We also demonstrate the segmentation results quali-

tatively in Fig. 2, and observe that both MNC and FCIS failed
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(a) Neural cell image (b) Ground truth (c) MNC [6] (d) FCIS [7] (e) Ours

Fig. 2. Instance segmentation results of MNC [6], FCIS [7] and our model, where the cell instances are denoted by different

colors. Compared to MNC and FCIS, our method is more accurate and is able to capture the tiny structures, particularly the

filopodia and lamellipodia, of neural cells.

to capture fine boundary details (particularly the filopodia and

lamellipodia), while our model was able to delineate them

precisely. As our goal is to study the interactions of the neu-

ral cells, accurate segmentation of filopodia and lamellipodia

is extremely important, indicating the potential value of our

method to neuroscience research.

4. CONCLUSION

In this paper, we present a novel method for pixel-wise in-

stance segmentation of neural cells. Compared to recent state

of the arts, our method achieves better accuracy and is able to

capture the tiny boundary structures, particularly the filopodia

Model AP@0.5 AP@0.7 IoU@0.5 IoU@0.7

MNC [6] 48.72 11.37 62.71 75.47

FCIS [7] 66.02 7.13 64.85 75.07

Ours 85.7 70.94 78.84 81.22

Table 1. Quantitative comparisons of MNC [6], FCIS [7] and

our method. Amongst them, our method achieves the best

results and outperforms the other two by a large margin.

and lamellipodia, of neural cells. This characteristic reveals

that our method is of great potential value to the study of neu-

ral cells and the neuroscience research.
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