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ABSTRACT

The segmentation of the ventricular wall and the blood pool

in cardiac magnetic resonance imaging (MRI) has been inves-

tigated for decades, given its important role for delineation of

cardiac functioning and diagnosis of heart diseases. One of

the major challenges is that the inner epicardium boundary

is not always visible in the image domain, due to the mix-

ture of blood and muscle structures, especially at the end of

contraction, or systole. To address it, we propose a novel ap-

proach for the cardiac segmentation in the short-axis (SAX)

MRI: coupled deep neural networks and deformable models.

First, a 2D U-Net is adopted for each magnetic resonance

(MR) slice, and a 3D U-Net refines the segmentation results

along the temporal dimension. Then, we propose a multi-

component deformable model to extract accurate contours for

both endo- and epicardium with global and local constraints.

Finally, a partial blood classification is explored to estimate

the presence of boundary pixels near the trabeculae and solid

wall, and to avoid moving the endocardium boundary inward.

Quantitative evaluation demonstrates the high accuracy, ro-

bustness, and efficiency of our approach for the slices ac-

quired at different locations and different cardiac phases.

Index Terms— Cardiac MRI, ventricular wall segmen-

tation, U-Net, multi-component deformable model, partial

blood classification

1. INTRODUCTION

Cardiovascular disease, such as cardiac dyssynchrony, hyper-

trophic cardiomyopathy and myocardial infarction, is one of

the major causes of human death. It is vitally important to

understand cardiac function comprehensively for disease pre-

vention, diagnosis and treatment. In order to analyze car-

diac motion, one of the most essential clinical tasks is ex-

tracting left ventricle (LV) contours for myocardium muscle

layers at both end-diastolic volume (EDV) and end-systolic

volume (ESV) in cardiac magnetic resonance imaging (MRI).

The contour extraction, used for computing ventricular global
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functions, is equivalent to the heart wall segmentation. In the

conventional wall segmentation, the task is done either manu-

ally, interactively placing a contour at the best visual estimate

of the boundaries of the solid wall, or more automatically,

using mathematical optimization and learning-based methods

with some smooth outer hull being placed around the “blood”

and “muscle” pixels. There are effectively three concentric

“zones” in the ventricle: 1) solid muscle zone consisting of
the outer wall and the endocardium wall, 2) transitional zone
with mixed blood and muscle structures, and 3) mostly blood
zone (with possibly a few muscle bundles running through

it). The principal challenge associated with the conventional

segmentation methods [1] is the difficulty in reliably distin-

guishing the trabeculae (and papillary muscles) from the un-

derlying solid muscle wall, especially in cardiac phases near

end-systole, when the blood is largely squeezed out from be-

tween the trabeculae, making them blend with each other and

the wall. This causes conventional approaches to tend to fail

for the end-systole determination in many cases, especially

when there is hypertrophy of the wall and trabecular struc-

tures, with a resulting under-estimation for the end-systolic

cavity volume and an associated over-estimation of the ejec-

tion fraction (EF).

Fig. 1. The flowchart of the proposed approach.

We propose an automatic heart wall (myocardial muscle)

segmentation approach using the deep neural networks cou-

pled with a new multi-component deformable model. First,

the 2D-3D neural network model provides fine segmentation

masks of muscle layers with temporal continuity. Then, the

multi-component deformable model is adapted to extract con-

tours dynamically along the cardiac cycle, for both inner and

outer heart walls, from the segmentation masks. The neu-

ral networks provide external force for the deformable mod-

els. The global and local constraints in the deformable model

help avoid having the apparent detected boundary move arti-
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factually inward, especially for epicardium/inner wall. Fur-

thermore, we explore the “partial blood content” approach to

estimate the presence of boundary pixels near the trabeculae

(and papillary muscles) as well as the solid wall. Adaptively

adjusting the associated threshold according to the cardiac cy-

cle phase, we should be able to improve our sensitivity to the

smaller bits of blood between the trabeculae near end-systole.

2. RELATEDWORK

The LV myocardium segmentation has been addressed by

many researchers in the past decades, in order to alleviate the

human effort for the time compsuming annotation procedure.

For example, Paragios developed a segmentation pipeline us-

ing level-set optimization and gradient vector flow (geodesic

active contour) [2]. Jolly proposed a multi-stage graph-cut

method for cardiac segmentation in both MRI and CT [3].

These methods rely on the image appearance, and they would

probably fail when the image contrast is changed. Zhu et al.

[4] introduced a subject-specific dynamic model to delineate

the ventricular shape variance. However, their results tend

to move a bit inward to the blood pool, which may intro-

duce errors for the global function estimation. Recently, the

cardiac segmentation has been addressed using deep neural

networks [5, 6, 7, 8], benefiting from its advanced feature

learning capacities. However, most of these learning models

are trained and used to infer the boundaries for individual

images, which tend to lead to lack of temporal continuity in

the segmentation.

As an alternative, Codella et al. tried to get the best es-

timate of the total “true” blood volume in the chamber, by

weighting each candidate voxel by its fractional blood con-

tent and then summing them [9, 10]. This would then be used

for calculation of the conventional global function measures

(based on differences in the blood in the ventricle between

end-diastole and end-systole), including stroke volume and

ejection fraction (EF). It was presented as an alternative to

the conventional method of defining the “cavity,” the trabec-

ulae, and the papillary muscles, in order to segment out the

“solid” wall only. In their approach, the voxel probability

distribution was computed directly from the intensity scale,

which may cause errors when the imaging quality is compro-

mised. Our approach addresses previous limitations and cor-

rectly segments the 3 zones based on the coupled U-Net and

the multi-component deformable model.

3. METHODOLOGY

Figure 1 shows the flowchart of our proposed approach for

myocardium segmentation in cardiac MRI. Initially, coarse

segmentation results are generated from the 2D U-Net for in-

dividual images. Then, the previous results are stacked into

3D volumes according to their order of cardiac phases and

cropped into a centralized region-of-interest (ROI) according

to the coarse segmentation for segmentation refinement with a

3D U-Net. Finally, we utilize a multi-component deformable

model to determine the myocardium boundaries with global

and local constraints. We also compute the probability of pix-

els belonging to blood, based on the features learned from

deep neural networks.

3.1. 2D-3D U-Net Model

Fig. 2. The flowchart of the proposed 2D-3D U-Net method.
The 2D U-Net is used for generating segmentation priors at

each individual cardiac phase, and the 3D one further refines

the segmentation results along the temporal dimension with a

small cropping region.

The concept of U-Net, first proposed in [11] has been suc-

cessfully applied in many applications of medical image anal-

ysis. It has been validated to possess good generalization ca-

pacity with few annotated samples. The network consists of a

convolutional encoder and decoder, and its U-shape generates

multi-scale features and computes them with multi-step con-

volution and up-sampling. The output of the U-Net shares the

same size as input. There are skip connections in between the

encoder and decoder to concatenate multi-level feature maps,

allowing the decoder to store back the relative features that

are lost in the prior stage.

Our 2D-3D U-Net model is described in the Fig. 2. For

individual phases of MR sequences, we adopt two 2D U-Nets

[11] to segment epicardium and endocaridium masks, respec-

tively. Direct predicting myocadium muscle using only one

network is also possible. However, in that scenario, the posi-

tive samples in the gold standard are generally much less than

the negative samples, which makes the learning procedure bi-

ased and affects the performance later. After achieving pre-

liminary segmentation using 2D U-Nets, we crop the region-

of-interest (ROI) according to the center of segmentation for
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both image and segmentation. The same cropping region is

applied for all phases in one MR sequence. Then, we stack

all the cropped images at the same location, and segment

them along the temporal dimension into 3D volumes as in-

put, and adopt 3D U-Nets [12] to refine the previous segmen-

tation. The 3D U-Nets would enforce the smooth prediction

in-between consecutive cardiac phases. It may not be easy to

directly apply 3D U-Net to the entire image and segmenta-

tion regions, since the input with the original size would have

large memory consumption and become a bottleneck during

computation with GPUs.

Our key point here is to use a convolutional model instead

of a recurrent model to handle the temporal data. Although

the recurrent model is well established for time-series prob-

lems, recent research shows that a fully convolutional model

could outperform a recurrent model in some sequential prob-

lems, for instance, language translation [13],and video seg-

mentation [14]. Furthermore, similar 2D-3D network models

have been adopted for a few medical image segmentation ap-

plications and achieved excellent results [15].

3.2. Multi-Component Deformable Model

In clinical practice, doctors and physicians often manually

correct overestimated regions of the inner wall contour, re-

lying on playing the serial frames of the cardiac cycle as a

movie of the imaged slice to locate trabeculae pretty reliably

at end-systole. Then their associated motion can be estimated

over the cardiac cycle from the moving animated display, in-

cluding when they are too close together to reliably detect in

an isolated frame. Similarly, we propose a multi-component

deformable model to finalize the contours of endo- and epi-

cardium, to simulate the manual correction. At each cardiac

phase, the energy function of the deformable model for epi-

cardium can be written as follows.

Eepi = αEexternal + βEcontinuity + γEsmooth (1)

The energy function of the deformable model for endo-

cardium is different from Eq. 1, as follows.

Eendo = αEexternal + βEcontinuity + γEsmooth + φEΔarea (2)

The external energy is Eexternal =
∫ ‖vs − v′s‖22 ds. vs and

v′s are the corresponding points of the current deformable
model and targeting contour from previous deep neural net-

works. The continuity term Econtinuity =
∫ ∥
∥dvs

ds

∥
∥2
2
ds en-

sures that the neighboring points are close. The smoothness

term Esmooth =
∫ ∥
∥
∥d2vs

ds2

∥
∥
∥
2

2
ds guarantees that the model is

always a convex smooth shape. Here, α, β, γ, φ are all pos-
itive constants. In practice α = 1.0, β = γ = φ = 0.2.
The epicardium deformable model has an extra energy term

EΔarea =
∣
∣
∣
∫ ‖vs − ws‖22 ds−

∫ ‖v′′s − w′′
s ‖22 ds

∣
∣
∣. ws are the

points of the fixed epicardium contour in the current phase.

v′′s and w′′
s are the corresponding points from the previous

endo- and epicardium deformable models.
∫ ‖v′′s − w′′

s ‖22 ds
is equivalent to the myocardium area in the previous phase.

The assumption is that the area of myocardium muscle can

only change within a limit range among neighboring cardiac

phases because the muscle volume is almost unchanged dur-

ing the cardiac cycle. At inference, we start from the contours

of the first phase (normally EDV). The epicardium contour of

the next phase is computed by solving Eq. 1 and moving con-

tour points along their normal directions, till reaching a min-

imum status. Then the endocardium contour is computed by

minimizing Eq. 2 together with the updated epicardium con-

tour. The myocardium contours are derived phase-by-phase

in sequence; and the sample results are shown in Fig. 3.

Fig. 3. The contours before and after applying deformable
models. Left: the contours from previous frame, right: the

updated contours. The yellow arrows indicate the updating

direction of contours.

In order to calculate the probability of being blood for pix-

els inside myocardium wall, we apply extra 2D U-Nets to seg-

ment pure muscle and blood regions, respectively, and extract

the features (length 64) from the second last layers of net-

works. A logistic regression model is learned with pixels from

regions of pure muscle/blood and their extracted features. The

pixels of pure blood are labeled as 0, and those of pure muscle

are labeled as 1. The probabilities of the other pixels inside

the ventricle would be computed using the learned model. For

cases where the apparent blood spaces in the transitional zone

seem to entirely disappear, we are able to estimate where the

corresponding transitional zone was moving to at the times (in

earlier systole and later diastole) when we could more reliably

see and track it. While this is inherently uncertain, it should

still be better than purely relying on image intensity, which

can result in significant errors in the estimation of the end-

systolic volumes, due to the effective initial assignment of the

“wall” contour to the solid wall-transitional zone boundary

at end-diastole, but then moving it inward toward the transi-

tional zone-blood boundary at end-systole.

4. EXPERIMENTS

4.1. Dataset and Myocardium Segmentation

We adopted a cardiac MRI dataset consisting of 22 normal

volunteers and 3 patients with cardiac dyssynchrony disease.

All LV contours of these SAX images over different spatial

locations and different cardiac phases are manually annotated

by experts. In-plane resolution of images ranged from 1.17

mm to 1.43 mm, and size varied from 224 × 204 pixels to
240× 198 pixels. Each cardiac cycle contains 25 phases. As
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for [16, 17], we conducted our evaluation procedure in the fol-

lowing way. We run the 5-fold cross validation, and make sure

that each of the 25 subjects (containing both normal subjects

and patient, around 4000 2D slices with manual annotation)

in the test set exactly once.

In order to boost the robustness of our model, we used

data augmentation by 90 degree rotations and mirroring. All

the images were scaled to resolution of 1.25mm and padded

with 0s to gain the same image size. The filter numbers of 3D

U-Nets was reduced by half in order to fit the data and reduce

GPU memory consumption. We adopted the soft Dice loss

[18] during training models. For both tasks, we used ADAM

optimizer with a fixed learning rate of 0.001 and weight decay

of 2.0−5. The results reported below were gained after train-
ing for 30 epochs with batch size 32 for 2D U-Net and 15

epochs with batch size 16 for 3D U-Net. Training one model

takes 12 hours on a single NVIDIA K80 GPU, and inference

takes about 1 second for a complete cardiac cycle.

Table 1. Evaluation of endo- and epicardium segmentation,

A, B, C represents 2D U-Net, 2D-3D U-Net (Ours), and 2D-

3D U-Net + Deformable Model (Ours), respectively.
Method Dice Jaccard APD (mm)

FCN8 0.855± 0.218 0.759± 0.195 3.845± 4.950
FCN16 0.848± 0.212 0.738± 0.214 3.134± 5.595
FCN32 0.639± 0.274 0.475± 0.238 8.094± 7.534

Endo. [6] 0.850± 0.204 0.742± 0.219 6.278± 17.801
[8] 0.859± 0.203 0.758± 0.213 2.470± 3.967
A 0.864± 0.180 0.764± 0.196 3.799± 8.930
B 0.886± 0.035 0.821± 0.038 2.768± 1.946
C 0.902 ± 0.035 0.847 ± 0.037 1.647 ± 0.609

FCN8 0.877± 0.177 0.731± 0.276 1.964± 4.986
FCN16 0.883± 0.244 0.763± 0.2553 2.994± 4.213
FCN32 0.833± 0.165 0.716± 0.172 4.318± 3.619

Epi. [6] 0.857± 0.194 0.746± 0.204 3.050± 7.291
[8] 0.821± 0.231 0.712± 0.243 4.071± 4.976
A 0.886± 0.168 0.797± 0.187 2.821± 4.922
B 0.895± 0.327 0.839± 0.035 2.387± 0.839
C 0.905 ± 0.037 0.855 ± 0.039 2.094 ± 0.535

In order to make the fair comparison, we re-implemented

the state-of-the-art methods[6, 6], and ran them on the same

dataset with our proposed method. For endocardium, the av-

erage Dice’ score of the original 2D U-Net is 0.864 better

than the FCN8 (0.855), FCN16 (0.848) and FCN32 (0.639).

Our proposed method gains much better results, i.e., 2D-3D

U-Net is 0.886 and 2D-3D U-Net + Deformable Model is

0.902 which is the highest one to date. In addition, our pro-

posed methods outperform others in terms of the Jaccard in-

dex and APD. To further evaluate our method, we also cal-

culated the percentage of good contours (a perentage of the

predicted contours, out of all contours, that have APD less

than 5 mm from the gold standard [17]). Among all the

segmentation results, Our best model 2D-3D U-Net + De-

formable had 97.5% good contours. In the epicardium experi-

ment, both our proposed model 2D-3DU-Net (0.895) and 2D-

3D U-Net + Deformable Model (0.905) achieved very high

Dice’s score as well. Also, it’s obvious that the average Jac-

card index of the 2D-3D U-Net + Deformable Model (0.855)

is higher than that of both 2D U-Net (0.797) and 2D-3D U-

Net (0.839), and the good contour percentage of the 2D-3D

U-Net + Deformable Model is 93.3%. Some good segmenta-

tion examples of our 2D-3D U-Net + Deformable Model are

shown in Fig. 4. As the 2D-3D U-Net utilizes three dimen-

sional information, it outperforms the traditional 2D U-Net in

all three evaluation metrics. Moreover, the 2D-3D U-Net +

Deformable Model uses the temporal information to further

refine the result. Overall, our methods generate results very

close to the gold standard compared with other methods for

both endo- and epicardium.

Fig. 4. Sample results of proposed methods. Green contours
are the gold standard, and red contours are the prediction.

4.2. Partial Blood Estimation

Since it is hard to define a gold standard for the probability

maps of partial blood estimation, we only evaluated our re-

sults visually, as shown in Fig. 5. We can see that the region

where muscle and blood mix are assigned with a probability

value between 0 and 1, not purely affected by the local ap-

pearance.

Fig. 5. Sample results of partial blood segmentation. Left:
original image, right: probability map of blood. The yellow

circles denote the transition zone.

5. CONCLUSIONS

We have proposed a robust and efficient method for short-axis

cardiac MRI segmentation, using both deep neural networks

and multi-component deformable models. The evaluation re-

sults demonstrated that our method outperforms other meth-

ods. Future directions could include applying the proposed

approach for the long-axis cardiac MRI or the segmentation

of other heart chambers.
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