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ABSTRACT

We consider an MRI reconstruction problem with input of
k-space data at a very low undersampled rate. This can prac-
tically benefit patient due to reduced time of MRI scan, but
it is also challenging since quality of reconstruction may be
compromised. Currently, deep learning based methods dom-
inate MRI reconstruction over traditional approaches such
as Compressed Sensing, but they rarely show satisfactory
performance in the case of low undersampled k-space data.
One explanation is that these methods treat channel-wise fea-
tures equally, which results in degraded representation ability
of the neural network. To solve this problem, we propose
a new model called MRI Cascaded Channel-wise Attention
Network (MICCAN), highlighted by three components: (i)
a variant of U-net with Channel-wise Attention (UCA) mod-
ule, (ii) a long skip connection and (iii) a combined loss.
Our model is able to attend to salient information by filtering
irrelevant features and also concentrate on high-frequency in-
formation by enforcing low-frequency information bypassed
to the final output. We conduct both quantitative evaluation
and qualitative analysis of our method on a cardiac dataset.
The experiment shows that our method achieves very promis-
ing results in terms of three common metrics on the MRI
reconstruction with low undersampled k-space data. Code is
public available1.

Index Terms— reconstruction, attention, skip connection

1. INTRODUCTION

Magnetic resonance imaging (MRI) is widely used due to
its high resolution and low radiation, but fully-sampled MRI
scan requires lots of time for patients. Therefore, MRI data
is usually undersampled in the Fourier domain to improve the
scan efficiency. According to Compressed Sensing (CS) the-
ory that assumes signal is sparse in a transform domain, re-
construction is possible even if signal is undersampling below
the Nyquist rate [1, 2]. Naturally, undersampling in the trans-
form domain introduces artifacts and significant coefficients
are required to infer a de-noised image. Such interference can
be formalized as a nonlinear optimization problem, recover-
ing the sparse coefficients and the image itself effectively.

1https://github.com/charwing10/isbi2019miccan

Lustig et al. proposed to minimize the `1 norm of a trans-
formed image, subject to data consistent constraints [3]. An-
other variant is to replace `1 with total variation (TV) penalty
[4]. RecPF [5] employed the alternating direction method to
minimize a linear combination of `1 and TV norm regulariza-
tion. FCSA [6] further improved the quality of reconstructed
images by weighting solutions from `1 and TV norm sub-
problems in an iterative framework. These works concentrate
on designing new objective functions and optimization algo-
rithms, but they omit the fact that reconstruction procedure
is computationally inefficient and requires thousands of itera-
tions until convergence. Moreover, objective function largely
depends on prior information of data, which is usually un-
known in practical problem.

Recently, deep learning based MRI reconstruction meth-
ods are widely investigated to overcome such drawbacks due
to its strong ability of feature representation. Sun et al. [7]
first proposed to use neural network in MRI reconstruction
problem, where the network was derived from the iterative
procedures in Alternating Direction Method of Multipliers
(ADMM) algorithm [8] to optimize a general CS-based MRI
model. Schlemper et al. proposed a deep cascaded convolu-
tion neural network with a data consistency unit (DC-CNN)
which improves the performance of MRI reconstruction [9].
Recent work proposed a deep cascading of the U-net struc-
ture, which further decreases the reconstruction error [10].

One common limitation of existing deep learning methods
is that they barely show promising performance on k-space
data at a very low undersampled rate. One reason is that these
methods treat channel-wise features equally, which degrades
representation ability of neural network. To resolve the prob-
lem, we propose a new model called MRI Cascaded Channel-
wise Attention Network (MICCAN). It is featured by three
components: (i) a variant of U-net with Channel-wise At-
tention (UCA) module, (ii) a long skip connection and (iii)
a combined loss. The UCA module exploits channel-wise
attention mechanism [11, 12, 13] and aims to attend to im-
portant features related to the final goal by filtering irrelevant
and noisy features. The long skip connection allows abun-
dant low-frequency information bypassed to the final output
which enforces the model to focus on learning high-frequency
information. By adaptively reweighing features according to
their inter-dependencies among feature channels, representa-
tion ability of deep network is further improved. To the best
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of our knowledge, this is the first work to employ the channel-
wise attention mechanism in MRI reconstruction problem.

2. METHODOLOGY

In CS-based MRI reconstruction problem, the goal is to find a
reconstructed image x̃ such that it minimizes the reconstruc-
tion error between original k-space data y and Fourier trans-
form of x:

x̃ = argmin
x

‖Fu(x)− y‖22 +R(x). (1)

Here Fu is an operator that transforms x into Fourier domain
with undersampling. R(·) is a regularization term that de-
pends on the prior information of data and general choices
are `1 or `0.

2.1. Preliminary

Traditionally, the objective function of Equation 1 is solved in
an iterative manner that requires thousands of iteration steps
until convergence. A more efficient way is to approximate the
optimal reconstructed image from undersampled k-space data
via deep neural network. One issue is that as the network goes
deeper, the original information may be degraded. Schlemper
et al. [9] proposed a Data Consistency (DC) layer to avoid
loss of information. Basically, DC layer takes as input the
reconstructed image xn from the n-th reconstruction block
and outputs an updated “reconstructed” image xdc

n . Formally,
DC layer is defined as

xdc
n = DC(xn) = FH(τ(F (xn))). (2)

Here F (x) is Fourier transform that takes image x as input
and outputs x̂ in Fourier domain and FH(x̂) is inverse Fourier
transform. τ(x̂) is the data fidelity operation whose output has
the same dimension as x̂:

τ(x̂)[i, j] =

{
x̂[i, j], (i, j) 6∈ Ω
x̂[i,j]+vy[i,j]

1+v , (i, j) ∈ Ω
(3)

where [i, j] is the matrix indexing operation, Ω is the set of
sampled positions of k-space data and v ∈ [0,∞) is the noise
level. In the noiseless case (v → ∞), we have x̂[i, j] = y[i, j]
if (i, j) ∈ Ω, i.e. filling x̂ with the original values of k-space
data y at position (i, j).

2.2. MRI Cascaded Channel-wise Attention Network

In this section, we propose a new network called MRI
Cascaded Channel-wise Attention Network (MICCAN). As
shown in Figure 1, MICCAN mainly consists of two parts:
U-net with Channel-wise Attention (UCA) module and DC
layer. These components are cascadedly coupled together and
repeat for N times. Formally, denote the n-th UCA module

and the n-th DC layer respectively by UCAn and DCn. The
starting point of MICCAN is undersampled k-space data y,
which is later converted into a zero-filling image x0 = FH(y)
through inverse Fourier transform FH and fed to a UCA mod-
ule. Our cascaded model can be simply formalized as{

xn = UCAn(x
dc
n−1) + xdc

n−1

xdc
n = DCn(xn)

(n = 1, . . . , N) (4)

where xdc
0 is initialized as x0. The final reconstructed image

of MICCAN, namely xdc
N , is produced by the last DC layer

(DCN ).

2.2.1. U-net with Channel-wise Attention

In the previous work on reconstruction problem, deep learn-
ing based methods have two major issues. First, they treat
each channel-wise feature equally, but contributions to the
reconstruction task vary from different feature maps. Sec-
ond, receptive field in convolutional layer may cause to lose
contextual information from original images, especially high-
frequency components that contain valuable detailed infor-
mation such as edges and texture. Therefore, inspired by
[13], we develop the UCA module by introducing an attention
mechanism that filters the useless features and enhance the in-
formative ones. The attention technique is only applied in the
decoder part. The intuition is that features of the decoder are
extracted from coarse to fine feature-maps of multiple scales
via skip connection. The attention module filters salient and
prunes irrelevant and noisy features such that allows model
parameters in shallower layers to be updated mostly that are
relevant to a given task. To the best of our knowledge, this
is the first work to employ channel-wise attention to MRI re-
construction problem.

Specifically, we use global average pooling to extract the
channel-wise global spatial information to vector z ∈ RC ,
whose c dimension is defined as

zc =
1

H ×W

H∑
i=1

W∑
j=1

fc[i, j] (c = 1, . . . , C) (5)

where fc ∈ RW×H is the feature map in the c-th channel.
Such operation squeezes the spatial information of the whole
image into a vector length of C. To further extract feature re-
lated to the final task, we introduce another gating mechanism
as follows:

x̂c = σ(δ(z ∗W1) ∗W2)� fc, (6)

where “∗” is convolutioj operator and δ(·) is ReLU activa-
tion function to encode the channel-wise dependencies. W1

is a kernel in the first convolutional layer that reduces the C-
dimentional feature vector into C/r. On the contrary, kernel
W2 increases feature size back to C. Sigmoid function σ(·)
is used to compute weighted attention map, which is later
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Fig. 1. The framework of the proposed MICCAN network. The end-to-end network consists of UCA blocks, Data Consistency
blocks and Channel-wise Attention units. It takes as input the undersampled k-space data and the undersampled mask (left-
most) and outputs the reconstructed MRI (right-most image). The zero-filled reconstruction (second-left image) works as the
start point for reconstruction. The Data Consistency unit employs the original k-space data for further refinement.

applied to rescaling the input feature fc. Based on this at-
tention mechanism in the UCA module, our model MICCAN
achieves very promising results and outperforms several state-
of-the-art methods.

2.2.2. Learn Global Residual by Long Skip Connection

To address the problem of vanishing low frequency in deep
learning based MRI reconstruction, we utilize a long skip con-
nection from the zero-filling image to the final reconstruction
block. Specifically, we replace the residual in the last UCA
module, namely xN = UCAN (xdc

N−1) + xdc
N−1, with a long

skip connection:

xN = UCAN (xdc
N−1) + x0 (7)

This simple modification is used to learn the global residual
and to stabilize the gradient flow in deep residual network.

2.2.3. Combined Loss Function

Common choice of loss function for reconstruction problem is
`2, but the resulting reconstructed image is of low quality and
lacks high frequency detail. Therefore, we propose to use a
combination of loss functions including `1 loss and perceptual
loss `p[14]. Given target image xs and reconstructed image
x

.
= xdc

N of MICCAN parameterized by θ, the combined loss
is defined as

`θ(x, xs) = λ1`
θ
1(x, xs) + λp`

θ
p(x, xs) (8)

where
`θ1(x, xs) = ‖x− xs‖1 (9)

`θp(x, xs) =

K∑
k=1

‖φk
V GG(x)− φk

V GG(xs)‖22 (10)

where λ1 and λp are weighing factors for two losses, φk
V GG(·)

represents features of the k-th activation layer in VGG net-
work. Note that perceptual loss `p minimizes the `2 distance
between reconstruction image and target image in K differ-
ent feature spaces, or equivalently it encourages the predicted
image to be perceptually similar to the target image.

3. EXPERIMENTS

To evaluate the effectiveness of our proposed model, we com-
pare it with several state-of-the-art approaches on a simulated
cardiac k-space dataset.

Methods We evaluate following methods in the experi-
ment. Two traditional CS-MRI methods include `1-wavelet
[3] and TV norm [4], which are implemented in the BART
toolbox [15]. Two deep learning based models include DC-
CNN[9] and MRN5[10]. The only difference between our
proposed MICCAN and MRN5 is that MRN5 does not used
attention module and long skip connection. We also con-
sider three variants of our methods: MICCAN with `2 loss
(MICCAN-A), MICCAN with combined loss proposed in
Section 2.2.3 (MICCAN-B) and MICCAN with both long
skip connection and combined loss (MICCAN-C). The same
as [11, 13], we set the reduction ratio r that is mentioned
in Section 2.2.1 as 8 for all our MICCAN models. For the
combined loss, we set λ1 as 10 and λp as 0.5. As the shallow
features encode details of images, we compute the perceptual
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(a) Fullysampled (b) Samplingmask (c) Zerofilled (c) Total variation (d) L1wavelet (e) DCCNN (f) MRN5 (g) MICCANA (h) MICCANB (i) MICCANC

(c) Total variation (d) L1wavelet (e) DCCNN (f) MRN5 (g) MICCANA (h) MICCANB (i) MICCANC

Fig. 2. Visualization of reconstructed images and reconstruction errors with k-space data at undersampled rate 12.5%

Table 1. Reconstruction results of the proposed MICCAN
models and other methods.

Methods NRMSE PSNR SSIM
TV 0.1087±0.0346 19.7388±2.8942 0.5923±0.0898

`1-wavelet 0.0753±0.0185 22.7054±2.0255 0.6333±0.0553

DC-CNN 0.0587±0.0118 24.7993±1.7612 0.6612±0.0582

MRN5 0.0427±0.0076 27.5373±1.5971 0.7851±0.0297

MICCAN-A 0.0402±0.0072 28.0664±1.6231 0.8005±0.0301

MICCAN-B 0.0391±0.0074 28.3283±1.7080 0.8214±0.0327

MICCAN-C 0.0385±0.0073 28.4489±1.6953 0.8198±0.0302

loss of layer relu1-2, relu2-1, relu2-2 and relu3-1 of the
VGG-16 network. All deep learning models are implemented
using PyTorch and trained on NVIDIA K80. Learning rate
is initialized as 10−4 with decreasing rate of 0.5 for every 15
epochs. The training batch is 8 and the maximum number
of epochs is 50. For fair comparison, we follow [9, 10] by
setting the number of reconstruction blocks N as 5.

Dataset A cardiac MRI dataset with 15 subjects is adopted
in our experiments. We randomly choose 10 subjects as train-
ing set, 2 subjects as validation set and the rest 3 subjects
as test set. We follow the k-space data simulation method
proposed in [16] . It assumes the sampled mask follows a
zero-mean Gaussian distribution and the Cartesian undersam-
pling method is adopted, also keeps the eight lowest spatial
frequencies. Our model is evaluated on data with undersam-
pled rate at 12.5%(acceleration rate 8×).

3.1. Quantitative Evaluation

In this experiment, we quantitatively evaluate all models with
three widely used measurements: normalized root square
mean error (NRMSE), peak signal-to-noise ration (PSNR)
and the structural similarity index measure (SSIM). The re-
sults are shown in Table 1 and we basically observe following
three trends. First, all our MICCAN variants outperform
other baseline models. This mainly attributes to the attention
mechanism proposed in Section 2.2.1. Even trained with
`2 loss, MICCAN-A achieves NRMSE of 0.0402, PSNR of

28.0664 and SSIM of 0.8005 that beats MRN5 model. Sec-
ond, MICCAN-B model that is trained with combined loss
gains better result than MICCAN-A. For example, MICCAN-
B has 2.7% decrease in NRMSE compared with MICCAN-A
and also achieves the best SSIM value of 0.8214. This indi-
cates that our combined loss is better than the `2 loss, making
image less blur and keeping the perceptual details. Third,
with long skip connection, MICCAN-C further improves re-
construction performance with the lowest NRMSE of 0.0385
and the highest PSNR value of 28.4489. Overall, all these
results demonstrate the effectiveness of the channel-wise
attention modules and the proposed combined loss.

3.2. Qualitative Analysis

In this experiment, we visualize the reconstructed image and
reconstruction errors on a test sample and qualitatively ana-
lyze the results of all methods. As shown in Figure 2, most
of the baseline methods cannot completely recover detail of
the image and suffer from severe blurring artifacts. In con-
trast, our three MICCAN methods eliminate most blurring
artifacts and recover more details from low undersampled k-
space data. Furthermore, for the transitional methods such
as `1-wavelet and TV, the reconstructed images are similar to
the zero-filling image and suffer from heavy blurring artifacts.
We highlight that our MICCAN achieves best results and with
much fewer reconstruction errors.

4. CONCLUSION

In this paper, we propose a robust and effective model called
MICCAN for MRI reconstruction from very low undersam-
pled k-space data. We devise a variant of U-net with channel-
wise attention as reconstruction block together with long skip
connection technique and a combined loss function. We eval-
uate our method and current state-of-the-art approaches on
a cardiac benchmark. The experimental results show that our
method outperforms all other compared methods and achieves
very promising results under the condition of low undersam-
pled rate.
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