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ABSTRACT

Nuclei segmentation and classification are two important
tasks in the histopathology image analysis, because the mor-
phological features of nuclei and spatial distributions of dif-
ferent types of nuclei are highly related to cancer diagnosis
and prognosis. Existing methods handle the two problems
independently, which are not able to obtain the features and
spatial heterogeneity of different types of nuclei at the same
time. In this paper, we propose a novel deep learning based
method which solves both tasks in a unified framework. It
can segment individual nuclei and classify them into tumor,
lymphocyte and stroma nuclei. Perceptual loss is utilized to
enhance the segmentation of details. We also take advantages
of transfer learning to promote the training of deep neural net-
works on a relatively small lung cancer dataset. Experimental
results prove the effectiveness of the proposed method. The
code is publicly available'.

Index Terms— Nuclei segmentation, nuclei classifica-
tion, deep learning, histopathology image analysis

1. INTRODUCTION

Histopathological assessment remains a cornerstone of clini-
cal diagnosis and classification of cancer. The underlying tis-
sue architectures in histopathological images provide wealth
information about the nature of disease, cytogenetic abnor-
malities, and characteristics of the microenvironment [1]. For
example, malignant tumor cells can be distinguished from
benign cells by the features of their nuclei [1]. Besides, phe-
notypic variations among tumor cells, which are indicative of
intra-tumor heterogeneity have consequences for treatment
strategies for cancer patients [2]. Therefore, development
of software for refined segmentation and classification of
histopathological structures such as lymphocytes and cancer
nuclei can help improve the clinical management of cancer.
Nuclei segmentation and classification are both challeng-
ing tasks. The nuclear size is much smaller compared to
glands or organs, and nuclei are often close to each other,
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making it hard to segment individual nuclei accurately. The
fine-grained classification of nuclei is also difficult due to the
large inter-class and intra-class variances in nuclear shapes
and textures. Traditional methods like thresholding, water-
shed, clustering, region growing [3] are not able to cope with
these challenges well. Early learning-based methods [4, 5,
6] learn to segment or classify nuclei using low-level hand-
crafted features such as color, texture, gradients geometric
features, which have limited representation capability.

Recently, deep convolutional neural networks (CNN)
have achieved great success for image classification and seg-
mentation [7, 8, 9, 10]. Many deep learning based methods
have been proposed for nuclei segmentation or classification.
Xing et al. [11] utilized CNN to obtain an initial shape of
nuclei and then separate individual nuclei using a deformable
model. In [12, 13], nuclei segmentation is performed by clas-
sifying each pixel into different classes using a patch around
the pixel as the input to an image classification network.
The computational cost is large because each patch only pre-
dicts one pixel. Fully convolutional neural networks (FCNs)
[9, 10], which directly output the same size segmentation
map for the input image, are more efficient and effective
for image segmentation tasks, and have been used in nuclei
segmentation [14]. Compared to nuclei segmentation, there
are fewer works about nuclei fine-grained classification using
deep learning. Sirinukunwattana et al. [15] built two CNNs
to detect nuclei and then classify them into sub-categories.
Zhou et al. [16] proposed a sibling CNN with objectiveness
prior to detect and classify nuclei simultaneously.

Although the current methods have achieved good accu-
racy, they are not able to produce the pixel-wise masks of
different types of nuclei at the same time, thus cannot gener-
ate both nucleus features and spatial distributions, which are
essential for histopathology image analysis. Actually, the net-
work structures for two tasks are similar, both need to extract
feature representations from the input image. In this paper we
propose a framework to solve the two tasks jointly. Different
from previous methods, our model outputs the segmentation
map for every type of nuclei and the background, which can
segment individual nuclei, as well as classify them into tu-
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Fig. 1. System overview. Our framework consists of the prediction network and perceptual loss network. The prediction
network takes the feature extraction part of ResNet34 as the encoder and outputs the segmentation map of different types of
nuclei. The loss network uses the fixed pretrained VGG 16 model as a feature extractor and computes the perceptual loss.

mor, lymphocytes and stroma sub-categories. Besides, one
more channel is used to predict the contours of nuclei, aiming
at separating touching nuclei. To further improve the segmen-
tation accuracy, we take advantage of the perceptual loss [17]
that can measure small differences in two images. In addition,
transfer learning is utilized to promote the training due to the
small size of the annotated dataset.

2. METHOD

2.1. Dataset and preprocessing

In order to evaluate the performance of joint nuclei segmenta-
tion and classification algorithms, we annotated a dataset that
consists of 40 H&E stained tissue images from 8 different
lung adenocarcinoma or lung squamous cell carcinoma cases,
and each case has 5 images of size about 900x900. There are
around 24000 annotated nuclei in the dataset and each nucleus
is marked as one of the following three types: tumor nucleus,
lymphocytes nucleus, stroma (fibroblasts, macrophages, neu-
trophils, endothelial cells, etc.) nucleus. For each image, we
use one label image to encode the segmentation mask and
classification class information of each nucleus. In a ground
truth label, pixels of value 0 are background. Pixels that have
a same positive integer belong to an individual nucleus. The
integer value id also indicates the class of the nucleus: (1)
tumor nucleus if mod(id,3) = 0, (2) lymphocyte nucleus if
mod(id,3) = 1, (3) stroma nucleus if mod(id, 3) = 2, where
mod is the modular operation. It is easy to extract both the
class information and the segmentation mask of every nucleus
from this encoding, even if the classes are imbalanced. Fig. 2
shows an example of original image and its labels.
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The dataset is split into three parts: 24 images for train-
ing, 8 for validation and the remaining 8 for test. Each set
contains at least one image of each case. Color normaliza-
tion [18] is performed on all images to remove the color vari-
ations. Data augmentation is crucial for training deep neu-
ral networks when only a few training images are available,
which is exactly the case in our task. We extract 16 image
patches of size 250250 uniformly from each training im-
age with overlap, resulting in 384 small image patches. For
each patch, a 224224 image is randomly cropped as the
network input. Other augmentations include random scale,
random horizontal and vertical flip, random affine transfor-
mation, random elastic transformation, random rotation, nor-
malization with mean and standard deviation by channel.

2.2. Network structure

The proposed framework is shown in Fig. 1. It consists of two
parts: the prediction network that generates the segmentation
mask of each type of nuclei, and the perceptual loss network
that computes the perceptual loss between the predicted label
and ground-truth label.

The prediction network is the routine encoder-decoder
structure based on U-net [10]. We utilize the powerful repre-
sentation ability of residual networks [8] to extract features.
The encoder is from ResNet34 [8], without the average pool-
ing and fully connected layers, and is initialized with the
pretrained parameters from image classification tasks. There
are skip connections between encoder and decoder, which
helps to recover high resolution feature maps. The network
outputs five probability maps: background, inner part of tu-
mor nuclei, inner part of lymphocytes nuclei, inner part of
stroma nuclei and contours of all nuclei. The contour map
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Fig. 2. Example of an image and its labels. (a) Original im-
age, (b) Ground-truth label, (c) Classification label, red, green
and blue colors represent tumor, lymphocytes and stroma nu-
clei, respectively. (d) Segmentation label, distinct colors are
different nuclei.

mainly aims to capture the contours of crowded and touching
nuclei. As a result, the predicted inner parts of each nucleus
are not connected. The final nuclei mask is generated by a
simple morphological dilation operation. In this way, we can
obtain each individual nucleus without much extra effort.

The perceptual loss network is utilized to improve the
segmentation accuracy of details in the image. It originates
from Johnson et al.’s work [17], in which the authors com-
pute loss between high-level features of the transformed im-
age and the original image. The pretrained VGG16 model
is a feature extractor and is fixed during training and test.
Four levels of features are extracted using this network for
the output of the prediction network and the ground-truth la-
bel, i.e., feature maps after the last ReLU layer of the first,
second, third and fourth blocks of VGG16 model, denoted as
relul 2, relu2_2, relu3_3, relu4_3. The mean square loss is
then computed between the feature sets of two inputs.

2.3. Loss function

The loss function of the method consists of two parts. The
first part is the cross entropy loss for five classes, i.e. back-
ground, inside tumor, inside lymphocyte, inside stroma and
contour. It is defined as
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where N is the number of all pixels, yl(m) is the probability of
pixel ¢ belonging to class m, tgm) € {0,1} is the correspond-
ing ground-truth label of class m, w; is the optional weight
for pixel 7 and the default value is 1 for all pixels. In order
to alleviate the problem of class imbalance, we assign larger
weights for low frequent class pixels. The weight is calcu-

lated using a similar method in [10]:
) 2
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where dq, ds are the distances to the nearest and the second

nearest nuclei. We set 0 = 5 pixels and wg = 10.

The second part is the perceptual loss. Let’s denote the
trained VGG16 model as a function f. The features after the
ReLU layer of the k-th block can be written as fx(x), where
x is the input of VGG16. The size of k-th level features is
denoted as C}, x Hj, x Wy. The perceptual loss is
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where ¢ = arg max y is the prediction map obtained from the

output probability map y. The final loss function is
L =1L+ 5Lper 4)

where [ is a parameter that adjusts the weight of the percep-
tual loss, and is set to 0.1 in the experiments.

3. EXPERIMENTS

We test the proposed method on the lung cancer dataset
mentioned in Section 2.1, and compare it to two popular
approaches for segmentation. One is the fully convolutional
network proposed by Long et al.[9], which is the first FCN
used for segmentation task. The other is U-net [10], which
has been widely used in medical image segmentation. Both
networks output five probability maps as ours. For all models,
we trained 300 epochs for convergence with Adam optimizer.
The learning rate, batch size and weight decay are 0.0001, 8,
and 0.0001, respectively.

3.1. Evaluation metrics

For nuclei segmentation, we use F1-score to measure the de-
tection accuracy. A segmented nucleus is considered as true
positive if it overlaps with a ground-truth nucleus more than
50% of the area of the true nucleus. Otherwise it is a false
positive. All ground-truth nuclei that have no corresponding
segmented nuclei are treated as false negative. Object-level
dice coefficient and hausdorff distance are used to measure
the segmentation accuracy. Dice coefficient measures how
well the ground-truth and predicted nuclei overlap with each
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Fig. 3. Some images results of ground-truth labels, FCN8s, U-net and the proposed method.
Table 1. Nuclei segmentation results on the test set.

Method All Tumor Lymphocyte Stroma
Fl1 Dice Haus | Fl Dice Haus | Fl Dice  Haus Fl1 Dice  Haus
FCN-8s [9] 0.863 0.842 5.17 | 0.778 0.807 8.52 | 0.527 0.565 41.52 | 0.562 0.528 17.88
U-net [10] 0.874 0.865 4.68 | 0.802 0.831 7.58 | 0.620 0.622 36.99 | 0.593 0.566 15.93
Ours w.o. Ly, | 0.874 0.870 440 | 0.806 0.839 693 | 0.620 0.637 28.13 | 0.619 0.599 14.36
Ours no-pretrain | 0.865 0.863 4.67 | 0.797 0.831 7.43 | 0.635 0.626 31.75 | 0.585 0.566 15.88
Ours 0.886 0876 4.14 | 0.826 0.846 6.66 | 0.671 0.668 27.26 | 0.622 0.589 14.99

Table 2. Nuclei fine-grained classification accuracies (%) on
the test set.

racies in Table 2, our method also outperforms FCN-8s and
U-net on the fine-grained classification.
To illustrate the effects of transfer learning and perceptual

Method All Tumor Lym  Stroma ;

FCN-8s [9] 3096 8514 8143 7264 loss, we also report the results for our model without percep-
U-net [10] 83.00 8872 7585 7620 tual loss or pretrained weights of the encoder part. It’s evident
Ours w.0. Lye, 83.86 8956 80.00 75.90 that both techniques can promote the performance of segmen-
Ours no-pretréin 83.19 90.66 7273 76.32 tation and classification. The results without pretrained are
Ours 8475 9029 7544 79.94 worse than that without the perceptual loss, because the pre-

other and hausdorff distance is for shape similarity. Formal
definitions can be found in [19].

For fine-grained classification, we only consider the ac-
curacy in true positives instead of all ground-truth nuclei, be-
cause not all nuclei have corresponding predicted ones.

3.2. Results and comparison

The quantitative results of different methods are shown in
Table 1 and 2. It can be observed that all three models
have achieved relatively good segmentation and fine-grained
classification results, showing that our idea of combing the
two tasks are feasible. Compared to FCN-8s and U-net, our
method has improvements on the segmentation of all types
of nuclei, especially on lymphocytes. The improvements on
sub-category nuclei are larger than those on all nuclei because
the classification results also affect the sub-class metrics, i.e
wrongly classified nuclei have no corresponding ground-truth
ones, thus reducing the F1 and dice scores and increasing
hausdorff distance. Combined with the classification accu-
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trained weights are more important than perceptual loss for
this dataset due to its small size.

For the sub-category results of both tasks, the perfor-
mance on tumor nuclei is the best because it is easier to be
distinguished. The shape and size of some lymphocytes and
stroma nuclei are very similar, resulting in relatively lower
segmentation and classification accuracies. Some image re-
sults are shown in Fig. 3.

4. CONCLUSION

In this paper we proposed a framework that jointly segments
and classifies different types of nuclei from histopathology
images. We combine the cross entropy loss and perceptual
loss to enhance the segmentation of details in the image. We
also make use of transfer learning to better train the model
on a small dataset. Experiments show that our method is able
to achieve good segmentation and fine-grained classification
results simultaneously. The segmentation maps of different
types of nuclei generated by our method can be used to ana-
lyze the nuclear features and their spatial distributions, which
is crucial for cancer diagnosis and prognosis.
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