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Neural cell instance segmentation, which aims at joint detection and segmentation of every neural cell
in a microscopic image, is essential to many neuroscience applications. The challenge of this task in-
volves cell adhesion, cell distortion, unclear cell contours, low-contrast cell protrusion structures, and
background impurities. Consequently, current instance segmentation methods generally fall short of pre-
cision. In this paper, we propose an attentive instance segmentation method that accurately predicts the
bounding box of each cell as well as its segmentation mask simultaneously. In particular, our method
builds on a joint network that combines a single shot multi-box detector (S5D) and a U-net. Furthermore,
we employ the attention mechanism in both detection and segmentation modules to focus the model on
the useful features. The proposed method is validated on a dataset of neural cell microscopic images.
Experimental results demonstrate that our approach can accurately detect and segment neural cell in-
stances at a fast speed, comparing favorably with the state-of-the-art methods. Our code is released on
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1. Introduction

The cellular mechanism involved in the lineage path from a sin-
gle neural stem cell remains mysterious in neuroscience. With the
aid of real-time microscopy imaging system (Ravin et al., 2008),
the specification of neurons, astrocytes, and oligodendrocytes from
a neural stem cell could be recorded as a time-lapse video. Neu-
ral cell instance segmentation, which aims to detect and segment
every cell in a microscopic image simultaneously, lays the founda-
tion for many important neuroscience applications, such as explor-
ing fate specification in neural stem cells. An accurate and fast in-
stance segmentation tool can be applied to large microscopic video
datasets and is thus crucial to the analysis of neural cell behav-
ior. Nevertheless, there are many difficulties in neural cell instance
segmentation. First, neural cells vary in shape and size. Second,
many neural cells have tiny and slender structures, such as filopo-
dia and lamellipodia, which are essential to neural cell behavior
analysis but quite difficult to segment. Third, neural cells tend to
adhere to each other due to cell interaction. Last but not least, neu-
ral cells may have obscure contours, and microscopic images usu-
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ally have low contrast and background impurities. These challenges
are illustrated in Fig. 1. The aim of the current study is to pro-
vide a solution to segmentation of fine processes associated with
filopodia and lamellipodia, which would help pinpoint the physi-
cal interaction points between neural stem cells during this critical
period of development when cell type is being defined.

Detection and segmentation of cells in microscopic images have
been extensively studied. However, most existing methods exclu-
sively focus on either cell detection or segmentation. Although a
few of them attempt to address both the two tasks, they gener-
ally treat the detection and segmentation separately with multiple
stages. To name a few, Althoff et al. (2005) detect the neural stem
cells with a multi-scale Laplacian of Gaussian (LoG) filter, and then
segment each cell via dynamic programming. Peng et al. (2009) lo-
calize the stem cells using multi-scale blob and curvilinear struc-
ture detectors, and then delineate each cell with multi-level sets.
Wu et al. (2015) detect cells via greedy search and then obtain the
boundary of each cell using active contour. The above-mentioned
unsupervised methods are sensitive to intensity variations, and
many efforts would be required to adjust their parameters for each
dataset.

Instance segmentation is a task combining both object detec-
tion and segmentation. Recently, this topic has received much at-
tention along with the development of supervised deep neural net-
work (DNN) techniques. DNN methods have achieved remarkable
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Fig. 1. Illustration of challenges in neural cell instance segmentation. Neural cells
often have variant shapes and appearances, tiny and slender structures, occlusion,
and obscure contours. Microscopic images usually have low contrast and back-
ground impurities.

performance in many computer vision problems, such as object
detection (Girshick et al., 2014; Girshick, 2015; Ren et al., 2015;
Redmon et al,, 2016; Liu et al., 2016; Fu et al,, 2017) and seman-
tic segmentation (Long et al, 2015; Noh et al, 2015; Yang et al.,
2018). Based on these single-task networks, several DNN models
were proposed for instance segmentation, such as MNC (Dai et al.,
2016), FCIS (Li et al., 2017), Mask R-CNN (He et al,, 2017), and
MaskLab (Chen et al., 2018). Existing instance segmentation meth-
ods are mainly based on two-stage object detector, at the core of
which is a region proposal network (RPN) (Ren et al, 2015). To
perform segmentation, they generally adopt the deep feature maps
that contain high-level semantics, while ignoring the shallow ones
which are rich in low-level shape and texture information of the
objects. Consequently, these methods are insufficient for capturing
details, such as the tiny and slender structures of neural cells.

To overcome the drawbacks mentioned above, we propose an
attentive instance segmentation model that is able to accurately
capture the neural cell instances at a fast speed. The overview of
our approach is shown in Fig. 2. In particular, our method employs
a single shot multi-box detector (SSD) (Liu et al., 2016) to detect
neural cells in the input image. To improve detection accuracy and
speed, we propose two strategies. First, we employ a feature fu-
sion module, which consolidates shallow (fine) and deep (coarse)

Input Image Fusion

Table 1

Specific parameters of the proposed network. Residual mapping (He et al., 2016)
is performed in conv2 to conv4. n is 6 and 23 for ResNet50 and ResNet101,
respectively. ReLU (Nair and Hinton, 2010) and batch normalization (loffe and
Szegedy, 2015) are used in hidden layers.

Layer Output size ResNet-based SSD
convl 256 x 256 7 x 7, 64, stride 2
1x1, 64
conv2_x 128 x 128 3x3,64 3 x3
1x1, 256
1x1, 128
conv3_x 64 x 64 3x3,128) x4
1x1, 512
1x1,256
conv4_x 32 x 32 3x3,256 3 xn
1x1, 1024
1x1, 256
conv5_x 16 x 16 3%3 512
1x1, 128
conv6_x 8x8 3x3, 256

feature maps to facilitate the detection of small cells. Second, we
incorporate an attention module in SSD to help it focus on use-
ful image regions while suppressing the irrelevant background in-
formation. With the bounding box predictions from SSD, we then
crop the cell instance regions accordingly from multi-scale feature
maps and pass them into the mask prediction module. To perform
the cell segmentation, we build a U-net (Ronneberger et al., 2015)
that shares the backbone layers with SSD. The U-net propagates
semantics from the deep layers to the shallow ones through a skip
connection. To highlight useful regions and suppress the noisy in-
formation, we design and incorporate an attention module to the
skip connection.

The proposed model is fast and accurate. It is capable of cap-
turing the tiny and slender structures of neural cells. This paper
makes several contributions. (1) Different from the state-of-the-art
instance segmentation networks, the proposed model builds upon
a one-stage object detector SSD and inherits its fast speed. (2)
Existing CNN-based instance segmentation networks rely on ROI
pooling or ROI aligning strategy, which samples a cropped region
to a small fixed size from a particular deep feature map. This strat-
egy loses details of neural cells. In contrast, our segmentation net-
work combines multi-scale feature maps and therefore is able to
capture the tiny and slender structures of neural cells. (3) We de-
sign two different attention units to respectively improve the ac-
curacy of neural cell detection and segmentation.

3x512x512

1 64x256%256

convs x conv 67){
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Fig. 2. Overview of the proposed model. The input image is resized to 512 x 512 before being fed into the network. Sizes of the input image and feature maps are displayed
in the format of “number of channels x height x width". Note that the input images are in grayscale. The reason that we use three-channel inputs is to take advantage of the
pre-trained weights of the backbone networks. The symbol “_x" represents multiple convolutional layers. The specific settings of the convolutional layers can be found in
Table 1.
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This paper is an extension of our preliminary works (Yi et al.,
2018a, 2018b) with several modifications. First, we introduced two
kinds of attention mechanisms to enhance the accuracy of both de-
tection and segmentation. Second, we added ablation studies, more
comparison experiments and mathematical formulations.

The rest of this paper is organized as follows. Section 2 reviews
relevant works of detection, segmentation, and instance segmen-
tation. Section 3 describes the proposed attentive neural cell in-
stance segmentation approach. Section 4 presents the experimen-
tal results, including the ablation study, comparison experiments.
Finally, Section 5 concludes this paper.

2. Related work

In this section, we first summarize some current cell detection
and segmentation methods. We also review the state-of-the-art
deep learning based detection and segmentation methods. Then,
we review the development of instance segmentation techniques.
Finally, we briefly introduce the attention models.

2.1. Cell detection

There are numerous works in literature studying cell detection
in microscopic images. Blob detection (Althoff et al., 2005; Peng
et al.,, 2009; Al-Kofahi et al., 2010), seeded watershed (Vincent and
Soille, 1991; Pinidiyaarachchi and Wahlby, 2005), graph partition
(Boykov and Jolly, 2001; Yang et al., 2008; Bernardis and Yu, 2010;
Zhang et al,, 2014) are frequently used to locate the cells. Blob
detection uses filters such as Laplacian of Gaussian (LoG) to find
the locations of the cells, and the parameters and scales of the
filters need to be carefully tuned in order to achieve good per-
formance. Seeded watershed detects cell boundaries according to
the local maxima intensities (gradients). Graph partition methods
are sensitive to intensity variation between cells and are compu-
tationally expensive. The above-mentioned unsupervised methods
rely on heuristics, and thus fail to generalize well to different mi-
croscopic images. Early supervised cell detection methods often
employ hand-crafted features, including SIFT (Lowe, 2004), HOG
(Dalal and Triggs, 2005), Haar feature (Lienhart and Maydt, 2002),
in conjunction with traditional classifiers, such as support vec-
tor machine (SVM) (Cortes and Vapnik, 1995; Wang et al., 2008),
random forest (Breiman, 2001; Kainz et al., 2015), and AdaBoost
(Freund and Schapire, 1997; Vink et al., 2013). However, these
hand-crafted features, which characterize color, intensity, texture,
or shape, are not sufficient to describe the appearance of neural
cells.

In recent years, methods based on convolutional neural net-
works (CNNs) have exhibited remarkable performance in object
detection. The pioneering works, including R-CNN (Girshick et al.,
2014), fast R-CNN (Girshick, 2015), and faster R-CNN (Ren et al,,
2015) have achieved significant success and become the most pop-
ular two-stage object detectors. Specifically, the first stage of these
methods is to extract the region proposals, and the second stage is
to use ROI pooling or ROI alignment to up-sample the proposal re-
gions into fixed size (e.g., 7 x 7). These methods have been applied
to cell-related tasks, such as mitosis detection (Li et al., 2018) and
lymphocyte detection (Garcia et al.,, 2017). While being effective,
the two-stage object detection methods are quite computationally
expensive. To address this issue, the one-stage object detectors, in-
cluding YOLO (Redmon et al., 2016), SSD (Liu et al., 2016; Yi et al.,
2017), DSSD (Fu et al., 2017), are developed. The one-stage detec-
tors discard the region proposal stage, and integrate the box re-
gression and class prediction into the same feedforward network.
Among these methods, SSD achieves a good tradeoff between ac-
curacy and speed. However, since SSD is built upon the heavy

VGG networlk, it is still not sufficiently efficient for processing large
video datasets.

2.2. Cell segmentation

Traditional cell segmentation methods generally rely on mod-
els whose parameters need to be carefully tuned. Examples in-
clude simple thresholding (Otsu, 1979; Sahoo et al., 1988; Sankaran
and Asari, 2006), watershed (Vincent and Soille, 1991; Vincent,
1993; Koyuncu et al, 2012), graph cut (Boykov and Jolly, 2001;
Bensch and Ronneberger, 2015), and active contour (Kass et al.,
1988; Wu et al.,, 2015). In particular, simple thresholding may fail
when foreground and background have diffuse transition. Besides,
it is unable to separate attached cells, and typically requires post-
processing to remove false positive noise. Region growing-based
methods, such as watershed, are sensitive to intensity variation
and therefore suffer from over-segmentation. Graph cut models
segment cells that are different in appearance from their neigh-
bors; however, such property makes them less robust to the inten-
sity variation. Active contour is sensitive to the initial segmenta-
tion and model parameters, and usually suffers from early bound-
ary stop and boundary leakage.

In recent years, CNN-based object segmentation methods have
gained increased popularity. Long et al. (2015) introduce a pioneer-
ing fully convolutional network (FCN) that achieves an end-to-end
and pixel-wise semantic segmentation. In particular, they propose
a skip connection that combines the deep coarse feature maps
with the shallow fine ones through bilinear interpolation, which
largely improves the precision and robustness of semantic segmen-
tation. Instead of using bilinear interpolation, Noh et al. (2015) pro-
pose to learn a deconvolutional layer for semantic segmentation.
Ronneberger et al. (2015) take a step further and combine the de-
convolutional layer with the skip connection to build a “U” shaped
network (termed U-net), which improves the segmentation perfor-
mance to a large extent. These CNN-based segmentation methods
demonstrate outstanding performance compared with traditional
unsupervised methods, and have been extensively applied to med-
ical and biological image processing, such as histological cell seg-
mentation (Chen et al., 2017) and abdominal aortic thrombus seg-
mentation (Lopez-Linares et al., 2018). In this paper, we adopt the
U-net to perform accurate cell segmentation.

2.3. Instance segmentation

Inspired by the success of DNN techniques in both object de-
tection and segmentation, researchers have recently proposed the
task of instance segmentation, which aims at joint object detec-
tion and segmentation. The state-of-the-art instance segmentation
methods, such as MNC (Dai et al., 2016), FCIS (Li et al., 2017) and
Mask R-CNN (He et al., 2017) have achieved impressive results in
natural image instance segmentation. However, these methods are
based on two-stage detectors, and thus are computationally ineffi-
cient. Besides, they predict the object segmentation map based on
the last feature map and ignore the rich low-level details of the ob-
jects contained within shallow layers. Another different approach,
DCAN (Chen et al., 2017), discards the object detector completely,
and predicts the cell segmentation masks and contours jointly via
a single unified CNN. The two prediction results are then combined
to produce a contour-aware cell instance segmentation. However,
DCAN also fails to consider the low-level details from the shallow
layers, and its performance heavily depends on the quality of the
predicted cell boundaries. As a result, DCAN would fail to separate
attached cells when the boundary is fuzzy.

Due to the inherent design, the above-mentioned methods are
not suitable for predicting the fine details of objects. To improve
the detection and segmentation of the tiny and slender structures
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of neural cells, we propose to combine the shallow and deep fea-
tures. We verify that our method is efficient and accurate com-
pared to existing neural cell detection and segmentation methods.

2.4. Attention mechanism

Attention mechanism is motivated by human visual systems
and has been applied to DNN for helping the model focus on useful
information while suppressing the irrelevant information. In par-
ticular, attention models have been extensively studied and uti-
lized in language translation (Vaswani et al.,, 2017), object detec-
tion (Hu et al., 2018), video classification (Wang et al., 2018), and
semantic segmentation (Chen et al., 2016; Zhang et al,, 2018a). It
has been demonstrated that the attention models are quite power-
ful in relating long-range dependencies across channels and spatial
positions. In this work, we propose two kinds of attention units.
The first one is used to help the network focus on important re-
gions during cell detection, and the other one is employed to sup-
press false segmentation results. Both units carry a global context
of the feature maps, and thus is able to guide the detection and
segmentation effectively.

3. Methods

An overview of the proposed network is given in Fig. 2. The
proposed model is a unified and end-to-end trainable network that
simultaneously performs cell detection and segmentation. The in-
put image is resized to 512 x 512 before being fed into the net-
work. The convolutional layers, from conv2 to conv4, are residual
networks (He et al., 2016). The specific settings of the convolu-
tional layers are listed in Table 1. Below we introduce our neural
cell detection and segmentation modules in details.

3.1, Cell detection

We demonstrate the cell detection module in Fig. 2. The feature
maps from conv3, conv4, and conv5 are sent into a fusion module.
The fusion module combines the shallow and deep semantics and
outputs a feature map that replaces the feature map from conv3,
with a desire to improve the detection accuracy of small cells.
Then the detection attention module is applied to feature maps
from conv3-6 to recalibrate the features and highlight the useful
regions on the feature map. These feature maps are then gathered
for bounding box and confidence prediction. In particular, the shal-
low and deep layers are responsible for the detection of small and
large cells, respectively.

3.1.1. Feature fusion module

To integrate the complementary descriptive power of shallow
and deep layers, we fuse the feature maps of conv3, conv4, and
conv5, and use the fused feature map to replace the output of
conv3. In this way, our method could recognize small neural cells
more precisely (see Table 2). The structure of our feature fusion
module is shown in Fig. 3. In particular, we first transfer the three
feature maps to the same channel size (we use 256 in this paper)
through a single 1 x 1 convolutional layer. The feature maps from
conv4 and conv5 are then resized using bilinear interpolation so
that they have the same size of 64 x 64 as feature map from conv3.
Next, the feature maps from conv3-5 are concatenated. Finally, the
concatenated feature map is transformed to the same channel size
of conv3 through a 1 x 1 convolutional layer.

3.1.2. Detection attention module
We introduce the attention mechanism (Vaswani et al., 2017;
Zhang et al., 2018b; Wang et al., 2018) to the detection module to

Table 2

Effects of backbone networks, feature fusion module, and detection attention mod-
ule. APy, is evaluated using PASCAL VOC 2007 metric. Time (seconds) is calculated
on a single NVIDIA K40 GPU.

BaseNet AP, @0.5 AP,,,,@0.7 Time
VGG16 67.99 23.02 0.1481
VGG16-Fusion 69.06 30.92 0.1537
VGG16-Fusion-Attn 76.10 30.98 01721
ResNet50 7759 32.59 0.0563
ResNet50-Fusion 78.22 33.98 0.0612
ResNet50-Fusion-Attn 79.55 35.92 0.0807
ResNet101 67.57 25.16 0.0968
ResNet101-Fusion 7754 34.65 0.1018
ResNet101-Fusion-Attn 77.86 33.91 0.1220
Feature Fusion Module
4 N\

Concatenate

o909

256x64%x64 256%x64x64 256x64x64 T68x64%64 512x64%64
¢ A A
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1
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Fig. 3. The feature fusion module. Sizes of the feature maps are displayed in the
format of “number of channels x height x width”.

refine the feature maps and make the model pay attention to use-
ful regions. The attention mechanism calculates the responses of
a position as a weighted sum of the features at all the positions.
We employ the detection attention module to highlight the cell re-
gions on feature maps from conv3-6 with a desire to make further
improvement of cell detection accuracy.

The detection attention module is shown in Fig. 4. Suppose X, €
RG*N is an input feature map, where [<{3, 4, 5, 6} indicates the
layer of feature map, C is the channel numbers, N =W x H is the
total number of spatial pixels at each channel. We first transfer the
input feature map x € RE*N to feature spaces q, Kk, v through

q(x) = Wyx, W, e R“*C, (1)
K(x) = Wix, W, € R°*C, )
v(x) = Wyx, W, € R&C, (3)

where ' = (/8. The feature q(x), k(x), v(x) play the role of query,
key and value in language transformer (Vaswani et al., 2017). Note
that we squeeze the channels of q(x) and k(x) in order to save
the computation time. The q(x) and k(x) are from x itself, so we
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Fig. 4. Detection attention module. MatMul represents matrix multiplication.

also call the attention mechanism as self-attention. Now we can
create an attention map by applying matrix multiplication of q(x)
and k(x), and we normalize it with a softmax operation:

exp(z;;)

=" jji=1,2,---,N, (4)
Z?[:‘l exp(z;;)

a,’j

z=qX)k(x), zec RNV, (5)

The element a; of the attention map a € R¥*N describes the ex-
tent the model considers position j when position i of a feature
map is queried. Next, for each channel c, the attention map a is
used as a weight map that weighted-sums the values at every spa-
tial position of v(x) to represent the cell properties at that po-
sition. ve R“*N is a variant of the input feature map x e RE*N,
Then the output feature map o € ROV of the detection attention

map is

o=x+vxa'. (6)

3.1.3. Bounding box regression and confidence prediction

The output feature maps from the attention module conv3-6
are input into the cell detection module for bounding box regres-
sion and confidence prediction. The detection strategy is the same
as SSD (Liu et al., 2016). First, SSD spreads the anchor boxes to
multi-scale feature maps densely. Then, SSD encodes the ground-
truth boxes and labels to the anchors and create the encoded an-
chors and their corresponding labels. Finally, the predictions and
the encoded anchors and labels are used by loss function to opti-
mize the model weights.

Anchor box assignment: To assign the anchor boxes, SSD dis-
cretizes the input feature maps, namely conv3-6, into 1 x 1 grids
(see Fig. 5). Each grid is regarded as the center of the anchor boxes,
with different aspect ratio and scale for different feature maps. In
particular, the lower feature map is responsible for detecting cells
with a smaller scale as the lower feature maps have more fine de-
tails than higher feature maps. Therefore, the scales of the anchor
boxes are increasing from conv3 to conv6. Specifically, we use as-
pect ratios (0.5,2), (0.5, 2, 1/3, 3), (0.5, 2, 1/3, 3), (0.5, 2, 1/3, 3)
and scales 0.04, 0.1, 0.26, 0.42 for conv3, conv4, conv5, and conv6,
respectively.

Encoding ground-truth: Next, the ground-truth bounding box
of each cell is encoded to the anchors. The encoding process is
as follows: suppose the locations of the anchors are (cXq, CYa, Wa,
hq) and the ground-truth locations are (cXg Vg, Wg hg), where
cx and cy are the center of the box, w and h refer to the width
and height of the box. The intersection of union (loU) is used to
pair each anchor box and ground-truth box. We assign the positive

4kxN Boxes

1

k=N Scores

Anchor

Fig. 5. Detection module. Input feature maps are transferred to two branches by
3 x 3 convolutional layers. One branch is for box regression. The other branch is for
box confidence prediction. k denotes the number of anchor boxes at each grid, N is
the total number of grids.

labels to anchors that have IoU greater than 0.5, and assign the
negative labels to the remaining anchors. The locations of the en-
coded anchors (g = (CXayen s CYanew s Wanew Nlanew)) are updated with
the offsets between the anchors and their best-matched ground-
truth boxes (Girshick et al,, 2014; Ren et al., 2015):

CXgpe = (CXg — CXg) /Wy

Yo = (Ya — Yg)/ha
wanew = log (WQ/Wg)

hanew = log (ha/hg)

Predicted features: As shown in Fig. 5, the input feature maps
(conv3-6) are transferred to the box regression and confidence pre-
diction branches through two 3 x 3 convolutional layers. Suppose
an input feature map is X € RN, where C is the feature chan-
nel number, N=W x H is the total number of spatial pixels at
each channel. The two branch output features are X, € R*>N and
Xeonf € RN, where k is the number of anchors we assign to each
grid.

(7)

3.14. Detection loss

The loss function of the detection module includes two parts:
bounding box and confidence. Therefore, the total detection loss
function is a weighted combination form:

1
Lyer = N— (Llocs + aLconf)- {8)
pos

where o is a weight factor, Npos is the number of positive anchors,
Lioes and Loy are bounding box loss and confidence loss, respec-
tively. The form of L, is a smooth L; loss (Girshick et al., 2014;
Liu et al., 2016):

Los=2. 2.

iepos me{cx,cy,w,h}

smooth;, (I" —g™), (9)

0.522 if |z] <1

|z| — 0.5 otherwise’ (10

smooth;, (z) = [
where [T* and gI" refer to the predicted boxes and encoded anchor
boxes, respectively, m indicates the coordinate parameters. L.qy¢ is

a binary cross entropy loss between the ground-truth confidence
and the predicted box confidence:

Leont = — 3 _ (% log pi + (1 —x;) log(1 - p;)) (11)

where x; is the labeled confidence, and p; is the predicted confi-
dence, i refers to each position in a segmentation mask.
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Fig. 6. Segmentation module. Skip connection integrates a shallow (fine) layer with a deep (coarse) layer. Segmentation attention unit is used to suppress noise features.

3.2. Cell segmentation

The cell segmentation module is illustrated in Fig. 6. According
to the bounding box prediction results, we crop the instance cell
regions from feature maps from convl to conv4 and utilize these
cropped regions for instance cell segmentation. We term these re-
gions as ROI regions. Different from the existing state-of-the-art
instance segmentation methods (Dai et al., 2016; Li et al., 2017;
He et al., 2017) that only employ the instance ROI regions from
a fix-scale feature map, the proposed model combines multi-scale
feature maps with a desire to make a precise segmentation predic-
tion.

The segmentation module utilizes a similar strategy as FCN
(Long et al.,, 2015) and U-net (Ronneberger et al., 2015), where a
skip connection combines a shallow layer with a deep layer. How-
ever, we find such a connection is weak in suppressing the back-
ground noises (see Fig. 9). Therefore, we introduce a segmentation
attention unit in the skip connection to reduce the false predic-
tions.

3.3. Skip connection

As illustrated in Fig. 6, the skip connection takes in a deep
feature map x; e R%*WexHi and a shallow feature map X; e
RG*WsxHs where C, W, H is the channel size, height and width
of a feature map. There are two branches in the skip connection
module. One is concatenation branch, another one is the segmen-
tation attention unit branch. First, the deep feature map x; is up-
sampled to x4 € RC*%WsxFs through a bilinear interpolation, where
X4, has the same size as the shallow feature map x;. Then x; is
passed into the segmentation attention unit and the concatenation
branch. The output feature of the skip connection xs, is generated
from the concatenation branch.

3.3.1. Segmentation attention unit
The segmentation attention unit first transfers x; to Xy, €

RC>WsxHs through a 1x 1 convolutional layer, where X4, has the
same channel size as X;. Then we calculate the summation of Xg,
and X; by s = X4, +Xs. The feature s contains semantics from both
the deep feature map and the shallow feature map. As a deep fea-
ture map contains high-level semantics, it would be helpful for
suppressing the background noises in the shallow feature map.
Next, we normalize s through a Sigmoid operation to generate the

attention map a € RGxWsxHs,

1

=——~,¢=12,---G,i=12,---W, j=1,2,.--H,
1+ exp(—s;;) ¢ o ! s ] s

Qci,j
(12)

where q.;; indicates the possibility that this pixel should be con-
sidered. Finally, we use the feature map a as a weight map that
highlights the useful pixels in the shallow layer. The output of the
segmentation attention unit is Xo:

Xo = Ws(a - Xs) + b (13)

where Wi € R&*G bs; ¢ RG. The linear transformation is imple-
mented through a 1 x 1 convolutional layer.

3.3.2. Concatenation

The concatenation branch takes in x,, and X,. First, x;, is trans-
ferred to x; e R&*WsxBs through a 3 x 3 convolutional layer. Now
x:jz has the same channel size as x,. Next, we concatenate x&z and

X,, and we transfer the concatenated feature to the output feature
Xs, € R&*WsxHs with a 1 x 1 convolutional layer.

3.4. Segmentation loss

The objective loss of the segmentation is a binary-cross entropy
loss:

11 &
N 3 M > (tijlog pi; + (1 — tij) log(1 — py)), (14)
j=1 1 =1

Lseg =

where p and t are respectively the predicted and ground-truth
segmentation probability map. i indexes the positions of pixels in
the map, j indexes positive predicted bounding box, M is the to-
tal number of pixels in the segmentation map, and N is the total
number of positive predicted bounding boxes.

4. Experimental results
4.1. Data description

We sample 644 neural cell images from a collection of time-
lapse microscopic videos of rat CNS stem cells (Ravin et al., 2008),

where the image size is 640 x 512. The neural cell data is cap-
tured using the Nomarski DIC optics with a 40x oil NA 1.3 lens
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and the ORCA ER CCD camera which captures 16-bit grayscale with
2 x 2 binning at final 640 x 512 px at 1.4 um/px. Images are up-
dated every 2 min. We randomly select 386 images for training,
129 for validation, and 129 for testing. Our annotations are human-
generated without any machine assistance. There are three experts
involved in the annotation process. The accuracy of the annota-
tion is validated by two other experts. We use Adobe Photoshop
CC to create the annotations. In particular, each cell in the input
image is labeled with a particular color, as shown in Fig. 9. Se-
quential frames are utilized to validate the ambiguous pixels. To
reduce over-fitting, we adopt data augmentation, transfer learning,
and validation strategies. The data augmentation includes random
expanding, cropping, flipping, contrast distortion and brightness
distortion to the training images to make the model more robust
to various input cell sizes and shapes. We transfer the weights of
backbone networks that are pre-trained on ImageNet dataset to
our model to improve the task performance on a smaller dataset.

4.2. Evaluation metrics

We evaluate the instance segmentation accuracy by mask-
level average precision (AP) (Everingham et al, 2010) at [oU
(intersection-over-union) threshold of «, following the existing
works (Dai et al, 2016; Li et al, 2017; He et al, 2017; Yi
et al, 2018a). We term the metric as AP@x. AP is defined as

the mean precision (p) at 11 recall (r) levels ({0, 0.1, ---, 1})

(Everingham et al., 2010):

AP=l1 Z max(p(r = 1). (15)
1e{0,0.1,,1}

To calculate the AP@«, we collect the predictions of the
proposed model, each prediction involves a bounding box, a
confidence score, and a segmentation mask. Non-maximum-
suppression (NMS) is applied to suppress repetitive predictions.
Next, we sort predictions according to their confidence scores in
a descending order to ensure the predictions with high scores are
considered first. For each prediction, we calculate its maximum
IoU between the predicted segmentation mask and all the ground-
truth masks:

IoU = max (’myi). (16)
i XUy;

where x € RV*H is the predicted segmentation mask, y; € RW*H
is the ith ground-truth mask, W and H are the image width and
height. A prediction is considered as a true positive instance if the
maximum loU is greater than a threshold «, the according ground-
truth is marked as detected. Any repetitive detection will be
considered as a false-positive instance. Finally, the AP metric sum-
marizes the shape of the precision/recall curve and gives an
evaluation measured both instance detection and segmentation
accuracy.

In addition to AP@w, we also measure the average IoU at
thresholds «. To be clear, we define

Nu

> (IoU); (17)

i=1

1

where N, is the total number of predictions that satisfy IoU > c.
The detection evaluation metric is the box-level average
precision APp,,@x, where the IoU is calculated between the

predicted bounding box and the ground-truth bounding box
(Everingham et al., 2010).

4.3. Implementation details

Our method is implemented with Pytorch and NVIDIA K40
GPUs. The backbone networks are fine-tuned with the weights pre-

trained on ImageNet (Deng et al., 2009), other parts of the network
are initialized with weights sampled from a standard Gaussian dis-
tribution. To accelerate the training process, we train the detection
and segmentation modules separately. In particular, the weights of
the detection module are frozen when training the segmentation
module. Moreover, we use stochastic gradient descent (SGD) with
a mini-batch size 64 to optimize the hyper-parameters. The ini-
tial learning rate of the SGD is 0.001. We use a weight decay of
0.0005 and a momentum of 0.9. The training and validation losses
of the detection module and the segmentation module are exhib-
ited in Figs. 7 and 8, respectively. From Figs. 7 and 8 we can ob-
serve that our model avoids over-fitting, thanks to the data aug-
mentation, validation and transfer learning.

4.4, Ablation study for cell detection

The ablation study for different backbone networks with and
without feature fusion module and detection attention module is
exhibited in Table 2. From Table 2 we can observe that the fusion
module and attention module make the detection more accurate.
Moreover, the model with ResNet50 backbone achieves the highest
accuracy and fastest speed compared to the other two backbones,
especially when attention module is used. The reason that the
ResNet50 achieves the fastest speed is probably because ResNet-50
contains 25.5 x 108 parameters (Xie et al., 2017), while ResNet-101
contains 44.7 x 108 parameters and VGG16 contains 133 x 10% pa-
rameters (Simonyan and Zisserman, 2015). The results demonstrate
that ResNet50 is more suitable for the neural cell dataset.

We also investigate the effects of conv6 and input channels for
ResNet50 backbone with the feature fusion module and detection
attention module. The results are shown in Table 3, which suggest
that conv6 is necessary to detect cells of relatively large size. It
also reveals that the pre-trained weights for 3-channel input im-
ages are essential to improve the detection performance on our
small dataset.

4.5. Instance segmentation results

From the ablation study above, we observe that ResNet is bet-
ter than VGG16 in both accuracy and speed. Therefore, we report
our instance segmentation results with ResNet backbone. In partic-
ular, we compared our method with three state-of-the-art instance
segmentation algorithms, namely DCAN (Chen et al., 2017), MNC
(Dai et al., 2016), FCIS (Li et al., 2017) and Mask R-CNN (He et al.,
2017) and one of the most recent automatic neural stem cell de-
tection and segmentation method IMDLMS (Peng et al., 2009). The
IMDLMS is evaluated under the same parameter settings.

4.5.1. Quantitative results

The quantitative cell instance segmentation results are shown
in Table 4. It can be observed that the unsupervised method
IMDLMS (Peng et al, 2009) is time-consuming and inaccurate,
while the other supervised methods are more accurate and fast.
Although DCAN (Chen et al,, 2017) runs the fastest among all the
evaluated systems, it suffers from unsatisfactory detection and seg-
mentation accuracy. Except for DCAN, the proposed model out-
performs the other state-of-the-art methods in both accuracy and

Table 3
Effects of conv6 and input channels on detection performance.
Include Input
BaseNet conv6? channels APy, @0.5 APy, @0.7
ResNet50-Fusion-Attn X 3 78.00 33.60
ResNet50-Fusion-Attn v 1 7752 33.45
ResNet50-Fusion-Attn v 3 79.55 35.92
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Table 4
Results of neural cell instance segmentation. Time (seconds) is calculated on a single NVIDIA K40 GPU.
Method AP@0.5 AP@0.7 AloU@0.5 AloU@0.7 Time
IMDMLS (Peng et al., 2009) 10.83 2.91 56.83 7105 4800
DCAN Chen et al. (2017) 2591 227 59.21 72.31 0.0041
MNC (Dai et al., 2016) 48.72 1137 62.73 75.47 0.4750
ECIS (Li et al., 2017) 66.02 713 64.85 75.07 0.2130
Mask R-CNN (He et al., 2017) 59.94 25.87 7210 79.30 0.7486
Ours-ResNet50 88.89 63.34 7755 80.12 0.1575
Ours-ResNet50-Attn 89.06 70.96 77.75 80.30 0.1753
Ours-ResNet101 88.74 63.10 7757 80.60 0.2021
Ours-ResNet101-Attn 88.88 64.92 77.98 80.83 0.2201
0.15 . 0.15 : 0.15 .
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w v v
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Fig. 7. Training and validation loss values of neural cell detection.
speed. Especially for ResNet50 backbone, our model achieves the
0.06 — 0.06 — highest accuracy and the fastest speed. Even for ResNet101 back-
7Vr:lm 7\,:11“ bone, the proposed model only takes about 0.2s on NVIDIA K40
0.04 0.04 GPU. The fastest speed in our model would be owing to the strat-
2 egy that we employ the one-stage detector with a ResNet back-
o0 ‘002 bone, while the other three state-of-the-arts, MNC (Dai et al,
’ ) 2016), FCIS (Li et al., 2017) and Mask R-CNN (He et al., 2017) adopt
ResNet50 ResNet50-Atn the two-stage object detector. Besides, their ROI pooling or align-
0 s o0 10 % - o 50 ing strategy would lose details of the cells. Moreover, they gener-
epoch epoch ally ignore the rich low-level feature on the shallow layers. In this
0.06 0.06 paper, we elegantly combine the one-stage SSD detector with U-
—train —train net, making the neural cell instance segmentation more accurate
—val \k“ —val and fast.
0.04 u 0.04
ookl o = syt 4.5.2. Qualitative results
0.02 0.02 The qualitative results of neural cell instance segmentation are
ResNet101 ResNet101-Attn displayed in Fig. 9. We observe that the unsupervised method
0 0 IMDLMS (Peng et al., 2009) can hardly capture the boundaries of
0 50 100 150 200 250 0 50 100 150 200 250 . . . .
epoch epoch the neural cells. To improve its accuracy, we have to adjust its

Fig. 8. Training and validation loss values of neural cell instance segmentation.

parameters exhaustively for each image. However, it costs enor-
mous time when applying the method to a bunch of images.
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Fig. 9. Qualitative neural cell instance segmentation results. Compared with the other methods, Ours-ResNet101-Attn is more accurate especially in capturing the slender

and tiny structures of neural cells.

DCAN (Chen et al, 2017) can hardly capture the slender struc-
tures of the neural cells due to the discarding of the contours. Be-
sides, DCAN tends to make severe over-segmentation when cells
are too close to each other. MNC (Dai et al., 2016) uses fully con-
nected layer (FC) for semantic segmentation, while Mask R-CNN
(He et al., 2017) adopts CNNs for semantic segmentation. The re-
sults in Fig. 9 show that the CNN layers capture more details than
the FC layers. However, the CNNs consume much more time (see
Table 4). FCIS (Li et al., 2017) adopts pixel-wise softmax to obtain

the instance mask, although fast, it is prone to generate the wavy
artifacts in the cell boundaries. Besides, FCIS is weak in detecting
small cells. Mask R-CNN is better in predicting the tiny structures
of small cells due to its FPN detector. However, when the cell in-
stance is large, the Mask R-CNN also fails to capture the slender
structure as it ignores the high-resolution details in the shallow
layers. Moreover, Mask R-CNN adopts the ROI align to restrict the
object feature patch to 7 x 7 The low resolution is not enough
to describe the details, especially for large objects. Compared to
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these state-of-the-art methods, our model exhibit remarkable per-
formance in capturing the tiny and slender structures of neural
cells. The results indicate that the shallow feature maps are essen-
tial in capturing the detailed pixel-wise information.

4.5.3. Segmentation attention unit

To make a further exploration of the attention unit effect, we
compared the qualitative results of the model with and without
segmentation attention unit (Fig. 10). There are multiple cases in
our prediction that the bounding box of one cell would involve the
other parts of another cell. The U-net dramatically suppresses the
false predictions by gradually introducing semantics from deep lay-
ers to shallow layers. However, we observe that when a big cell
bounding box completely involves another small cell, such as the
case in Fig. 10, there still are some false pixel-wise segmentation
(pointed by red arrows). We conjecture that the high percent in-
volvement of the bounding boxes make network think the false
segmentation part belongs to the big target. Besides, the lack of
such cell images makes the situation worse since the network does
not have experience in handling these cases. The introduction of
the attention unit enhances the useful features, therefore suppress-
ing the false predictions (Fig. 10(e)).

4.6. Visualization of the attention map

The attention map (Eq. (6)) at different query points from conv3
to conv6 are visualized in Fig. 11. The attention map describes
where the model pays attention to when a specific location on the
feature map is queried. Note that the sizes of the feature maps
are decreasing from conv3 to conv6, and the solid circles repre-
sent the projected regions on the input images. From Fig. 11 we
can observe that the model would consider other similar cell re-
gions when part of the cells are queried. Besides, the model will
consult all the background pixels when a background position is
queried. On the deepest layer conv6, the model only attends to the
largest cell. Fig. 11 also reveals that attention is mainly applied to
the soma of the cells, suggesting that our model can be used for
non-neuronal cells.

(c) Segmentation without attention

(e) Segmentation with attention () Projection with attention

Fig. 10. Effect of the segmentation attention unit. (c) and (e) show the segmenta-
tion results. (d) and (f) are the segmentation results projected to the input image.
The red box in (c) indicates the bounding box of the green cell. The red arrows
point to the green cell and the false segmentation that belongs to the green cell.
The red arrow in (e) shows that the segmentation attention unit suppresses false
segmentation.

(c) conv5 (16x16)

(d) convé (8x8)

Fig. 11. Visualization of the attention maps at different query points. The query points are represented by solid circles. Note that the locations of the query points are on the
feature maps, whose sizes vary across different convolutional layers. The leftmost image in each sub-figure is the input image, while other images are the attention maps
that are resized and projected on the input image. The response of a position centered at the solid circle is computed by the weighted average of the attention features of

all positions.
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Table 5

Quantitative results of nucleus instance segmentation of our method on the Kaggle 2018
Data Science Bowl dataset. The architecture is under the same settings as neural cells.

Method AP@0.5 AP@0.7 AloU@0.5 AloU@0.7
CosineEmbedding (Payer et al., 2018) 341 64.14 76.84
DCAN (Chen et al,, 2017) 51.88 23.45 74.08 82.56
Mask R-CNN (He et al, 2017) 69.88 54.69 80.57 84.83
Ours 7093 56.88 80.88 84.55

4.7. Application to other datasets

To investigate the generalization ability of our method, we ap-
ply our method to a public dataset of the Kaggle competition: 2018
Data Science Bowl. The aim of the competition is to find the nuclei

(a) Input images

(b) Ground-truth (c) Ours

Fig. 12. Qualitative results of nucleus instance segmentation of our method on a
public dataset of Kaggle 2018 Data Science Bowl. The dataset images are acquired
under a variety of conditions and vary in the cell type, magnification, and imaging
modality (brightfield vs. fluorescence).

in divergent images, which are acquired under a variety of condi-
tions and vary in the cell type, magnification, and imaging modal-
ity (brightfield vs. fluorescence). The dataset does not contain neu-
rons or cell types with filopodia-like structures. It is adopted as an
extended experiment to show that our method could be applied to
different types of images.

In particular, we separate the original training datasets (670
images) with annotations into three sets: training (402 images),
validation (134 images), testing (134 images). These images vary
in sizes. We use the same architecture settings, data augmenta-
tions, implementation skills and evaluation metrics as the neural
cells. Note that the backbone of the network is initialized with the
training weights from ImageNet, other weights are sampled from
a Gaussian Distribution. We divide the input images by 255 to
normalize the images before training, validation and testing. The
quantitative and qualitative results on the testing set are reported
in Table 5 and Fig. 12, respectively. The results demonstrate that
our method can be applied to other biomedical instance segmen-
tation tasks.

Although the cell nuclei are in regular morphology, the Kag-
gle Science Bowl dataset is challenging. First, the cell images are
acquired under different conditions. Second, the cell nuclei's mor-
phologies are quite different for each type. Third, the number of
images for each type or each imaging condition is largely im-
balanced. Finally, there are some human annotation errors in the
dataset. Compared to the neural cell dataset (386 images for train-
ing), the Kaggle dataset does not provide sufficient data for the
model to fully learn all types of cell nuclei under different imag-
ing conditions (402 images for training in total). These are the rea-
son why the performance of our method on the Kaggle dataset
(Table 5) is not as good as the performance on neural cell dataset
(Table 4). However, it is still better than the other state-of-the-art
methods. In particular, CosineEmbedding (Payer et al., 2018) largely
suffers from the false positive detections, which are caused by the
undesired behavior that the clustering usually generates multiple
separate clusters for the same cell instances. DCAN (Chen et al.,
2017) is less effective at separating the touching cells due to the
unclear cell boundaries. Mask R-CNN (He et al., 2017) achieves sim-
ilar performance to our method because bounding boxes are su-
perior in separating the touching cells. Nevertheless, overall our
method is more effective than Mask R-CNN.

5. Conclusion

This paper proposes an attentive neural cell instance segmen-
tation method. The employment of the one-stage object detector
makes the proposed model accurate and fast in detection. Besides,
the proposed attention modules enhance the model ability to learn
the cell objectness information as well as capture the slender and
tiny structures of the cells. These properties indicate a great po-
tential of our method in physical interaction study between neural
stem cells.

Future endeavors will be devoted to the expansion of perfor-
mance testing on young neurons. Besides, we plan to investigate
the effect of the proposed model on other biomedical images that
depict tiny and slender objects, such as vessel images.
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