
Very Long Term Field of View Prediction for 360-degree Video Streaming
(Invited Paper)

Chenge Li, Weixi Zhang, Yong Liu, Yao Wang

Department of Electrical and Computer Engineering, Tandon School of Engineering
New York University, Brooklyn, NY 11201, USA
{cl2840, wz1219, yongliu, yw523}@nyu.edu

Abstract—360-degree videos have gained increasing popu-
larity in recent years with the developments and advances in
Virtual Reality (VR) and Augmented Reality (AR) technologies.
In such applications, a user only watches a video scene within
a field of view (FoV) centered in a certain direction. Predicting
the future FoV in a long time horizon (more than seconds
ahead) can help save bandwidth resources in on-demand video
streaming while minimizing video freezing in networks with
significant bandwidth variations. In this work, we treat the
FoV prediction as a sequence learning problem, and propose
to predict the target user’s future FoV not only based on the
user’s own past FoV center trajectory but also other users’
future FoV locations. We propose multiple prediction models
based on two different FoV representations: one using FoV
center trajectories and another using equirectangular heatmaps
that represent the FoV center distributions. Extensive evalua-
tions with two public datasets demonstrate that the proposed
models can significantly outperform benchmark models, and
other users’ FoVs are very helpful for improving long-term
predictions.

Keywords-virtual reality; 360-degree video streaming; time
series prediction; field of view;

I. INTRODUCTION

Many VR/AR applications involve streaming of 360-

degree videos, ranging from pre-recorded 360-degree scenes

to live events captured from a camera array to physical &

virtual interactive environments. For on-demand streaming

of precoded video content, in order to absorb significant

bandwidth fluctuation between a server and a client, the

client typically prefetches future video segments and store

them in a display buffer. The prefetching buffer is typically

more than 5 seconds long, in order to prevent “video

freezing” when the bandwidth suddenly drops. For 360◦

video streaming, this means that the client or the server

has to predict the viewer’s FoV far into the future, so that

appropriate portions of the future video segments can be

delivered. The further into the future an accurate prediction

can be performed, the more robust will be the streaming

system to the bandwidth fluctuations.

We treat the FoV prediction problem as a sequence predic-

tion problem and propose two groups of prediction models:

trajectory-based approach and heatmap-based approach. In

the first group, we predict the mean and standard deviation

(STD) of the FoV centers in future seconds. This approach

is developed for viewport-based streaming systems, where

the client can request a single viewport for a future second

based on the predicted FoV mean and standard deviation.

We propose a Long Short-Term Memory (LSTM) sequence

to sequence model and compare it with several benchmark

models. Furthermore, assuming the video server has stored

the FoV trajectories of other viewers who have watched the

same video, we consider multiple strategies for using other

viewers’ trajectories to help the prediction of a target user’s

future trajectory.

In heatmap-based approach, where we represent the FoV

distribution for all frames within a second as a heatmap and

predict the heatmaps in future seconds. Such an approach is

intended for tile-based streaming systems, where the client

can request multiple tiles for a future second based on the

predicted heatmap. We propose a convolutional LSTM[1]

based model to predict the heatmap sequence of the target

viewer in the future from the viewer’s heatmap sequence in

the past. We further consider using the heatmap sequences

of other users and saliency maps derived from the video

sequence to help predict the target user’s future heatmaps.

II. RELATED WORK

The FoV prediction algorithms in the literature can be

categorized into two classes: trajectory based and content

based. [8] proposed to use linear regression and a 3-layer

MLP to predict the future FoV center locations. Compared

with our setting, their prediction horizon is very short: only

100 ∼ 500 ms. [2] proposed a fixation prediction network

that concurrently leverages past FoV locations and video

content features to predict the FoV trajectory or tile-based

viewing probability maps in the next n frames. In [3], an

LSTM is used to encode the history of the FoV scan path

and the hidden state features are combined with the visual

features to do prediction up to 1 second ahead. A more recent

work [4] proposed two deep reinforcement learning models:

one offline model is first used to estimate the heatmap of

potential FoV for each frame based on the visual features

only, an online model is then used to predict the head

movement based on the past observed head locations as well

as the heatmaps from the offline model.

Several prior studies also exploited the cross-users be-
haviors instead of only the target user’s historical trajecto-

ries. [5] and [6] combined a linear regression (LR) model

297

2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)

978-1-7281-1198-8/19/$31.00 ©2019 IEEE
DOI 10.1109/MIPR.2019.00060

with KNN clustering. From historical trajectories of head

movements, FoV center is firstly predicted using a linear

regression model, then the K nearest fixations of other users

around the LR result are found to improve the prediction

accuracy. A very recent work [7] first used the density-

based clustering algorithm DBSCAN to group users in the

server, then on the client end, an SVM classifier was used to

predict the user’s class to obtain the corresponding viewing

probabilities from the clusters.

A key difference of our work from the prior related

studies is that we focus on predicting the FoV for a much

longer time horizon (1 to 10 seconds vs ≤ 1 second),

which enables the streaming system to prefetch future video

segments multiple seconds ahead, and to be more robust to

the bandwidth fluctuations.

III. TRAJECTORY-BASED PREDICTION

A. Prediction based on user’s own past

In related works such as [8] [3], future FoVs are predicted

by unrolling a single trained LSTM model. However, such

single LSTM model is appropriate only if the input data

types and data distribution in the past are the same as that

in the future. To accommodate different input data types

and distributions, we adopt the neural machine translation

architecture [9], the seq2seq model, (see lower branch of

Figure 1). We use an LSTM to encode the past trajectory

xt in time t = 1, 2, ..., T , and use the last hidden state hT

and memory state cT as the representation of the past. We

then use another LSTM initialized by hT and cT and an

initial input (μT , σT) (mean and STD of xT), to generate

the hidden and memory states in future times t = T+1, T+
2, ..., T + L. The final prediction yt (i.e. (μt, σt)) at time t
is obtained using one projection layer from the hidden state

ht. The LSTM encoder uses the frame-level trajectory in

each past second as the input (i.e., the sequence of (x, y, z)
coordinates of the FoV centers in all the frames in a second).

The LSTM decoder uses the predicted mean μt−1 and STD

σt−1 for time t − 1 as the input for time t. The encoder

and decoder are trained together to minimize the prediction

error for the μ and σ for future L seconds.

B. Prediction with the help of others’ FoVs

In video-on-demand applications, the same video is often

watched by many users. For a new streaming session, we can

predict the target user’s future trajectory based on this user’s

past trajectory as well as the trajectories of other users who

have watched the same video before. We treat other users as

experts, and learn how to efficiently utilize their “guidance”.

MLP mixing. In this model (see Figure 1), we make use

of other users’ FoV at time t when predicting the target user

FoV at the same time. We first use the sequence-to-sequence

model in section III-A to predict the mean and STD of FoV

centers, we then concatenate this temporary prediction with

the FoV center means and STDs of other users at time t, and

Figure 1. Mixing other users’ information using a shared MLP mixing
layer.

pass the concatenated predictions into the final projection

layer (orange MLP in Figure 1) to get the final prediction.

The last projection layer learns a mixing weight to combine

target user’s own prediction and others’ known locations.

Attentive Mixture of Experts (AME). Inspired by works

in the mixture of experts[10], we can treat the trajectories of

other users as experts’ advice. When predicting for the target

user, the known trajectories from other users can serve as

guidance. We propose a novel attentive mixture of experts

(AME)[10] module on the decoder part of the sequence to

sequence model. A context vector ci for each expert will be

generated from the observations available for that expert i,
which are then used to form a total context vector ctotal =∑

i αici. The weights αi depend on the similarity of the

target user and each expert. From ctotal, we can then predict

a property of the target user.

We consider two ways to derive the context vectors. In the

first case, we directly use the FoV center locations (mean and

STD of FoVs) of other users, denoted by xi, as the context

vectors. A shared embedding layer is applied to each xi

and xtar to generate embedded feature ui and utar, where

xtar is the temporary prediction generated by the seq2seq

model. Finally, the prediction for the target user is generated

by a weighted sum of xi using the similarity weighting,

determined based on the embedded features ui and utar.

We treat the initial prediction xtar as one of the experts so

that the final predicted location is based on the target user’s

past FoVs as well as other users current FoVs. In the second

case, we model each other user by a shared LSTM and treat

the hidden states as the context vectors. A shared embedding

layer is used to embed the hidden state hi to ui for each

other user (at time t). We also use the same embedding layer

to embed target user’s hidden state htar to utar. Similar to

the first case, the final prediction is the weighted sum of the

location xi’s using the similarity score between ui and utar.

The similarity function S(utar, uj) can take different

forms as described in [11], such as dot product, concate-

nation or MLP. We used the dot product in our experiments

for simplicity. Note that using the hidden state to define

the similarity can be interpreted as measuring the similarity

between a user i and the target user’s trajectories so far.

298

Figure 2. The model structure for predicting the future heatmap sequence
for a target user using the target user’s past heatmap sequence as well as
the average heatmap sequence of other users. Each heatmap sequence is
modeled using a convLSTM. All heatmaps are at second level.

IV. PREDICTION USING 2D EQUIRECTANGULAR

HEATMAP REPRESENTATION

A potential problem of the trajectory-based models is that

the mean and STD of FoV center within each second does

not fully describe the FoV center distribution. It also does

not explicitly exploit the fact that the FoV center is located

on a spherical surface (a 2D plane in the equirectangular

coordinate). To circumvent these problems, we further ex-

plore the use of a 2D heatmap representation of the FoV

distributions within each second and model the dynamics of

the heatmap sequences.

Similarly, with the different variants of the trajectory-

based model, we experimented with two kinds of models:

predicting the future heatmap sequence from the target user’s

own past heatmap sequence and predicting using both the

target user’s past heatmap sequence as well as other users’

heatmap sequences. We further considered using the saliency

maps derived from the video content to help the prediction.

A. Heatmap representation

Given the FoV center (θ, φ) for a frame, we generate a 2D

Gaussian heatmap in the equirectangular coordinate for this

frame, where the horizontal axis represents longitude angle

θ ranging from −π to π, and the vertical axis represents

latitude angle φ ranging from −π
2 to π

2 . To prevent the

size of the heatmap from being too large for training, we

discretize the θ− φ plane by setting the bin size to 10× 10
degrees. Thus the size of the Gaussian heatmap is 18× 36.

We assume the FoV spans 120◦ × 90◦ so that each FoV

initially corresponds to a 12 × 9 rectangle with value 1 in

the heatmap. Row i is then blurred by applying a Gaussian

window with standard deviation σ ∝ 1
cos(φi)

, to account for

the equirectangular projection distortion. Finally, we sum

up all 30 frame-level heatmaps within one second to get the

second-level heatmap (FPS=30). With this representation, an

FoV center trajectory is described by a heatmap sequence.

Example ground truth heatmap sequences are shown in

Figure 6.

Figure 3. Saliency heatmaps are modeled by a shared FCN at each time
step. Saliency features are fused with the hidden states of the decoder
convLSTM.

B. Prediction based on users’ own heatmaps

For using the target user information only, we used a

seq2seq model where the encoder and decoder each uses

a convolutional LSTM (convLSTM) (see the lower branch

of Figure 2). Both encoder and decoder contain 3 layers,

generating 128, 64, and 32 channel hidden-state feature

maps respectively, each with the same spatial size as the

input heatmaps. A fully convolutional network (FCN) is then

applied to the concatenated hidden state maps from all three

layers, to generate a predicted heatmap for one second.

C. Utilizing other users’ heatmaps

We explored different approaches to fuse others’ infor-

mation. 1) We model others’ average heatmap sequence1

using one convLSTM. At time t+1, the hidden states dt+1

from this convLSTM and the hidden states ht+1 from target

user’s decoder are concatenated and used to predict target

user’s heatmap at time t + 1, yt+1, through an FCN as

shown in Figure 2. 2) Similar with the mlp mixing model in

section III-B, we directly concatenate other users’ heatmaps

at time t+1 with the hidden states from target user’s decoder

and use the FCN to generate the final prediction. The FCN

automatically learns the mixing weights (kernels) in order

to generate the final predictions.

D. Utilizing saliency maps derived from video sequences

We applied a 2D saliency model[12] pretrained on regular

2D natural images, on the optical flow motion field images

directly derived from the equirectangular images. A total

of 30 saliency maps are generated for each second, one

for each frame. The saliency maps at time t + 1 are fed

into an FCN and the FCN features are then fused with the

hidden states from the target user’s convLSTM decoder. The

combined features are then used to generate the predicted

heatmap yt+1, through another FCN, as shown in Figure

3. We further explored using other users’ FoV information

and the visual saliency information together with the target

1Note that if the number of other users is large enough, the average
heatmaps from other users at each second can be seen as a surrogate for
the saliency map for this second.

299

Figure 4. Hit rate of future 10 seconds for dataset [3] (left) and [13] testset (right) for trajectory-based models, with spanning factor α = 1.25.

user’s past FoV information. Specifically, the hidden states

of the target user decoder, the hidden states of the other

users’ convLSTM, as well as the visual saliency FCN feature

maps are all concatenated to predict the future heatmap for

the target user.

V. EXPERIMENTS

We evaluate our models on two public datasets [3] and

[13]. We split each dataset into train and test subsets,

each contains different videos. We train all our models

using the train subset of [3] as it contains more dynamic

scenes, and evaluate the models on both test subsets. Directly

training and testing on dataset[13] would have even higher

performance, hence are omitted here. For the trajectory-

based models, we use the Cartesian coordinate (x, y, z) of

the FOV center to characterize the FOV location. Note that

we choose not to use the longitude θ and latitude φ angles

to avoid the issue of 2π periodicity of θ.

A. Evaluation metrics

Hit rate. The proposed trajectory-based FoV prediction

methods are intended to be integrated into a viewport-based

streaming system such as [14], where video segments in

each second are precoded into different viewports covering

different portions of the sphere surface. Based on the mean

and STD of the predicted FoV centers for a future second,

the server will send a viewport centered at the predicted

mean (converted from (x, y, z) to (θ, φ)). Generally, the

viewport should cover a larger angle span than the FoV for

every frame to accommodate the likely FoV shift within a

second. Ideally, the angle span should be proportional to

the predicted FoV standard deviation. However, this would

require the server to precode and store viewports with

different angle spans. Here we consider a simpler system

where the viewport’s coverage area is fixed and is α2 times

the area of the FoV of the HMD. For the trajectory-based

model, we assume the FoV span is (120◦, 120◦) and we

consider two expansion factors: α = 1 and α = 1.25,

corresponding to the viewport angle span of (120◦, 120◦)
and (150◦, 150◦) respectively. The hit rate of a viewport

for each predicted second is the average percentage of the

viewport’s coverage area that is inside the actual frame FoV,

for all the frames in that second.

Mean Squared Error. We also report the mean squared

error between the predicted FoV center mean position in

(x, y, z) and the ground truth mean, averaged over the

prediction horizons from 1 to 10 seconds.

Tile overlapping ratio. Recall that the heatmap-based

approach is intended for tile-based streaming systems, where

the clients can request multiple tiles based on the predicted

FoV heatmap. Therefore, we use the tile overlapping ratio

as the performance metric for evaluating heatmap-based

approaches. First, we determine the total number of bins

Nbingt in ground truth FoV heatmap that has non-zero values

within that second, (recall that each pixel in the heatmap

represents a bin with angle span 10◦ × 10◦). Next, we sort

the confidence scores of each bin in the predicted heatmap

and determine overlapping bins between the Nbingt largest

bins in the predicted heatmap and the ground truth heatmap.

The ratio of the number of overlapping bins and Nbingt is

the tile overlapping ratio.

FoV center estimation from the predicted heatmap. To

enable comparison between the heatmap-based approaches

and the trajectory-based approaches, we also determine

the mean location of the FoV centers from the predicted

heatmap for each second. Based on this estimated location,

we compute the hit rate of the corresponding viewport and

also the MSE. We determine the mean location by treating

the normalized heatmap value in each pixel (θ, φ) as the

probability that the FoV center is located at (θ, φ). The

estimated mean location is then the weighted sum of all

locations using the probability values as weights. What’s

more, recognizing that the number of effective pixels along

the line at the latitude φ decreases with a factor of cos(φ)

300

Figure 5. Heatmap-based models: Tile overlapping ratio (left) and hit rate (right) of future 10 seconds for dataset [3] testset.

(φ ∈ [−π
2 ,

π
2]), we weight the contribution of the pixels at

(θ, φ) by cos(φ). We also take care of the 2π periodicity of

the longitude θ when computing the mean.

Table I
PERFORMANCES OF VARIOUS TRAJECTORY-BASED MODELS.

Shanghai Dataset[3] Tsinghua Dataset[13]

Average Hit Rate MSE Average Hit Rate MSE

Model Variants a=1.25 a=1 a=1.25 a=1

linear regression 0.6260 0.4995 1.3831 0.7777 0.6572 0.7479

truncated linear

extrapolation 0.6565 0.5297 1.5197 0.6802 0.5424 1.5368

persistency 0.7043 0.5922 0.9210 0.8355 0.7398 0.4691

KNN (k=5) 0.7025 0.5775 0.8982 0.6199 0.5171 0.8635

Naive Average 0.6880 0.5586 1.1377 0.5873 0.4878 0.7717

single LSTM 0.7083 0.5834 0.6164 0.8464 0.7346 0.3731

target user only seq2seq 0.7283 0.6049 0.5881 0.8402 0.7253 0.3853

seq2seq+mlpmixing 0.7757 0.6510 0.4890 0.8677 0.7518 0.3043

AME

(location similarity) 0.7791 0.6566 0.4807 0.8658 0.7507 0.3037
AME

(hidden state similarity) 0.7772 0.6552 0.4983 0.8632 0.7474 0.3273

B. Perfomance comparison

For the trajectory-based methods, we compare our pro-

posed models with several baseline methods: 1. persistency

(repeating the location of the FoV center in the last frame

in the past), 2. linear regression on the last 10 seconds to

predict, 3. truncated linear extrapolation (linear regression

on the last monotonic line segment), 4. Naive average:

averaging all other user’s locations at time t as the prediction

for time t. 5. K nearest neighbors (KNN): selecting K out

of all other users at time t who are closest to the target

user’s predicted position at time t− 1, and use the average

of these K positions as the prediction for time t. We used

K=5. 6. single LSTM, which uses the same LSTM model

for the past and future. These baselines are common choices

in related works (section II).

Figure 4 show the hit rate curves for trajectory-based

models. We can see that the hit rate of the persistency and

truncated linear extrapolation models drop very rapidly as

the prediction horizon increases, indicating the nonlinear

nature of FoV trajectories. Our proposed model using the

target user information only (target user only seq2seq)

outperforms all baselines by a large margin. Furthermore,

our models that utilize other users’ information yield much

higher hit rates at prediction horizons between 4-10 seconds.

However, different ways of utilizing other users’ information

lead to very similar performance; Modeling others using an

LSTM and using the hidden state similarity between others

and the target user (AME (hidden state similarity)) does not

provide gains over just using other users location informa-

tion at the prediction time (AME (location similarity) and

seq2seq+mlpmixing). But compared with KNN and Naive

average, our model learns automatically different mixing

weights for other users based on their similarities with the

target user, leading to much better performances. Table I

compares the trajectory-based methods in terms of the aver-

age hit rate and the MSE. Overall, the two methods of using

others’ trajectory information based on location similarity

(AME (location similarity) and seq2seq+mlpmixing) have

the best performance.

In Figure 5 and Table II, we compare the performances

of heatmap-based models. Overall, exploiting other users’

heatmaps and the saliency feature maps give the best

performance. However, different ways of utilizing others’

information yield very similar performances. Furthermore,

the gap between utilizing both others’ heatmaps and saliency

maps v.s. utilizing only one of these is rather small. This

suggests that the saliency information and the information

from others’ average heatmaps are not orthogonal.

Comparing the hit rate and MSE achievable by the

heatmap-based methods (Table II) with those obtained by the

trajectory-based models (Table I), we see that the trajectory-

based approaches are significantly better for predicting the

mean of the FoV centers in each second. Such mean

prediction is desirable for viewport-based streaming, where

the system can only deliver a continuous viewport for each

future second, and the center and span of the viewport

needs to be determined, to maximally cover all the FOVs

over the entire second. For tile-based streaming systems,

the heatmap-based approaches may be more appropriate, as

it predicts the FoV center distribution. For example, when a

301

Table II
PERFORMANCES OF VARIOUS HEATMAP-BASED MODELS.

Shanghai Dataset[3]

Average tile Average

Model Variants overlapping Hit Rate MSE

ratio (a=1.25)

target user only convLSTM seq2seq 0.5987 0.6943 0.9477

seq2seq + others’ convLSTM 0.6127 0.7059 0.9100

seq2seq + saliency FCN 0.6148 0.7079 0.8977

seq2seq + others convLSTM

and saliency FCN 0.6203 0.7097 0.8939

seq2seq + mlpmixing others’ heatmaps 0.6130 0.7136 0.8797
seq2seq + mlpmixing (others’

heatmaps and saliency fcn features) 0.6180 0.7101 0.8917

Figure 6. Heatmap-based method: example prediction results for the future
10 seconds.

predicted heatmap includes multiple separate peaks, the sys-

tem can send multiple non-contiguous tiles, corresponding

to different peaks.

VI. CONCLUSION

In this paper, we proposed two groups of FoV prediction

models: trajectory-based models and heatmap-based models

to suit different needs in viewport-based streaming and

tile-based streaming scenarios respectively. For each group,

we further considered models 1) using the target user’s

information only, or 2) utilizing other users’ FoVs as well.

For heatmap-based models, we also considered utilizing the

visual saliency information. We proposed multiple model

variants in both groups, especially, the MLP mixing model

and the Attentive Mixture of Experts (AME) model in the

trajectory-based group to automatically learn the importance

weights of other users’ contributions to the final prediction.

For heatmap-based models, we explored several ways to fuse

the features from the users’ FoV heatmaps as well as from

the video content. We have evaluated the proposed models

on two public datasets and showed that the proposed mod-

els utilizing the target user’s past information have higher

accuracies in long term predictions (4-10 seconds ahead)

than popular baseline methods in the literature. Furthermore,

models utilizing other users’ information provide substantial

performance gain over utilizing the target user’s information

only.

REFERENCES

[1] S. Xingjian et al., “Convolutional lstm network: A machine
learning approach for precipitation nowcasting,” in Advances
in neural information processing systems, 2015, pp. 802–810.

[2] C.-L. Fan et al., “Fixation prediction for 360 video streaming
in head-mounted virtual reality,” in Proceedings of the 27th
Workshop on Network and Operating Systems Support for
Digital Audio and Video. ACM, 2017, pp. 67–72.

[3] Y. Xu et al., “Gaze prediction in dynamic 360 immersive
videos,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 5333–5342.

[4] M. Xu et al., “Predicting head movement in panoramic video:
A deep reinforcement learning approach,” IEEE transactions
on pattern analysis and machine intelligence, 2018.

[5] Y. Ban et al., “Cub360: Exploiting cross-users behaviors
for viewport prediction in 360 video adaptive streaming,” in
2018 IEEE International Conference on Multimedia and Expo
(ICME). IEEE, 2018, pp. 1–6.

[6] Z. Xu et al., “Tile-based qoe-driven http/2 streaming system
for 360 video,” IEEE ICME Grand Challenge on DASH,
2018.

[7] L. Xie et al., “Cls: A cross-user learning based system for
improving qoe in 360-degree video adaptive streaming,” in
2018 ACM Multimedia Conference on Multimedia Confer-
ence. ACM, 2018, pp. 564–572.

[8] Y. Bao et al., “Shooting a moving target: Motion-prediction-
based transmission for 360-degree videos.” in BigData, 2016,
pp. 1161–1170.

[9] I. Sutskever et al., “Sequence to sequence learning with neural
networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[10] P. Schwab et al., “Granger-causal attentive mixtures of ex-
perts: Learning important features with neural networks. arxiv
preprint,” arXiv preprint arXiv:1802.02195, 2018.

[11] M.-T. Luong et al., “Effective approaches to attention-
based neural machine translation,” arXiv preprint
arXiv:1508.04025, 2015.

[12] M. Cornia et al., “Predicting human eye fixations via
an lstm-based saliency attentive model,” arXiv preprint
arXiv:1611.09571, 2016.

[13] C. Wu et al., “A dataset for exploring user behaviors in vr
spherical video streaming,” in Proceedings of the 8th ACM on
Multimedia Systems Conference. ACM, 2017, pp. 193–198.

[14] L. Sun et al., “Multi-path multi-tier 360-degree video
streaming in 5g networks,” in Proceedings of the 9th
ACM Multimedia Systems Conference, ser. MMSys ’18.
New York, NY, USA: ACM, 2018, pp. 162–173. [Online].
Available: http://doi.acm.org/10.1145/3204949.3204978

302

