2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)

Very Long Term Field of View Prediction for 360-degree Video Streaming

(Invited Paper)

Chenge Li, Weixi Zhang, Yong Liu, Yao Wang
Department of Electrical and Computer Engineering, Tandon School of Engineering
New York University, Brooklyn, NY 11201, USA
{cl2840, wz1219, yongliu, yw523} @nyu.edu

Abstract—360-degree videos have gained increasing popu-
larity in recent years with the developments and advances in
Virtual Reality (VR) and Augmented Reality (AR) technologies.
In such applications, a user only watches a video scene within
a field of view (FoV) centered in a certain direction. Predicting
the future FoV in a long time horizon (more than seconds
ahead) can help save bandwidth resources in on-demand video
streaming while minimizing video freezing in networks with
significant bandwidth variations. In this work, we treat the
FoV prediction as a sequence learning problem, and propose
to predict the target user’s future FoV not only based on the
user’s own past FoV center trajectory but also other users’
future FoV locations. We propose multiple prediction models
based on two different FoV representations: one using FoV
center trajectories and another using equirectangular heatmaps
that represent the FoV center distributions. Extensive evalua-
tions with two public datasets demonstrate that the proposed
models can significantly outperform benchmark models, and
other users’ FoVs are very helpful for improving long-term
predictions.

Keywords-virtual reality; 360-degree video streaming; time
series prediction; field of view;

I. INTRODUCTION

Many VR/AR applications involve streaming of 360-
degree videos, ranging from pre-recorded 360-degree scenes
to live events captured from a camera array to physical &
virtual interactive environments. For on-demand streaming
of precoded video content, in order to absorb significant
bandwidth fluctuation between a server and a client, the
client typically prefetches future video segments and store
them in a display buffer. The prefetching buffer is typically
more than 5 seconds long, in order to prevent “video
freezing” when the bandwidth suddenly drops. For 360°
video streaming, this means that the client or the server
has to predict the viewer’s FoV far into the future, so that
appropriate portions of the future video segments can be
delivered. The further into the future an accurate prediction
can be performed, the more robust will be the streaming
system to the bandwidth fluctuations.

We treat the FoV prediction problem as a sequence predic-
tion problem and propose two groups of prediction models:
trajectory-based approach and heatmap-based approach. In
the first group, we predict the mean and standard deviation
(STD) of the FoV centers in future seconds. This approach
is developed for viewport-based streaming systems, where

978-1-7281-1198-8/19/$31.00 ©2019 IEEE
DOI 10.1109/MIPR.2019.00060

297

the client can request a single viewport for a future second
based on the predicted FoV mean and standard deviation.
We propose a Long Short-Term Memory (LSTM) sequence
to sequence model and compare it with several benchmark
models. Furthermore, assuming the video server has stored
the FoV trajectories of other viewers who have watched the
same video, we consider multiple strategies for using other
viewers’ trajectories to help the prediction of a target user’s
future trajectory.

In heatmap-based approach, where we represent the FoV
distribution for all frames within a second as a heatmap and
predict the heatmaps in future seconds. Such an approach is
intended for tile-based streaming systems, where the client
can request multiple tiles for a future second based on the
predicted heatmap. We propose a convolutional LSTM[1]
based model to predict the heatmap sequence of the target
viewer in the future from the viewer’s heatmap sequence in
the past. We further consider using the heatmap sequences
of other users and saliency maps derived from the video
sequence to help predict the target user’s future heatmaps.

II. RELATED WORK

The FoV prediction algorithms in the literature can be
categorized into two classes: trajectory based and content
based. [8] proposed to use linear regression and a 3-layer
MLP to predict the future FoV center locations. Compared
with our setting, their prediction horizon is very short: only
100 ~ 500 ms. [2] proposed a fixation prediction network
that concurrently leverages past FoV locations and video
content features to predict the FoV trajectory or tile-based
viewing probability maps in the next n frames. In [3], an
LSTM is used to encode the history of the FoV scan path
and the hidden state features are combined with the visual
features to do prediction up to 1 second ahead. A more recent
work [4] proposed two deep reinforcement learning models:
one offline model is first used to estimate the heatmap of
potential FoV for each frame based on the visual features
only, an online model is then used to predict the head
movement based on the past observed head locations as well
as the heatmaps from the offline model.

Several prior studies also exploited the cross-users be-
haviors instead of only the target user’s historical trajecto-
ries. [5] and [6] combined a linear regression (LR) model

IEEE
computer
® psoaety

with KNN clustering. From historical trajectories of head
movements, FoV center is firstly predicted using a linear
regression model, then the K nearest fixations of other users
around the LR result are found to improve the prediction
accuracy. A very recent work [7] first used the density-
based clustering algorithm DBSCAN to group users in the
server, then on the client end, an SVM classifier was used to
predict the user’s class to obtain the corresponding viewing
probabilities from the clusters.

A key difference of our work from the prior related
studies is that we focus on predicting the FoV for a much
longer time horizon (1 to 10 seconds vs < 1 second),
which enables the streaming system to prefetch future video
segments multiple seconds ahead, and to be more robust to
the bandwidth fluctuations.

III. TRAJECTORY-BASED PREDICTION
A. Prediction based on user’s own past

In related works such as [8] [3], future FoVs are predicted
by unrolling a single trained LSTM model. However, such
single LSTM model is appropriate only if the input data
types and data distribution in the past are the same as that
in the future. To accommodate different input data types
and distributions, we adopt the neural machine translation
architecture [9], the seq2seq model, (see lower branch of
Figure 1). We use an LSTM to encode the past trajectory
xy in time t = 1,2,...,T, and use the last hidden state hp
and memory state cr as the representation of the past. We
then use another LSTM initialized by hr and ¢y and an
initial input (u7,07) (mean and STD of), to generate
the hidden and memory states in future times ¢t = 7T+ 1,7T +
2,...,T + L. The final prediction y; (i.e. (¢, 0¢)) at time ¢
is obtained using one projection layer from the hidden state
hi. The LSTM encoder uses the frame-level trajectory in
each past second as the input (i.e., the sequence of (z,y, 2)
coordinates of the FoV centers in all the frames in a second).
The LSTM decoder uses the predicted mean p;—; and STD
o1 for time ¢ — 1 as the input for time t. The encoder
and decoder are trained together to minimize the prediction
error for the p and o for future L seconds.

B. Prediction with the help of others’ FoVs

In video-on-demand applications, the same video is often
watched by many users. For a new streaming session, we can
predict the target user’s future trajectory based on this user’s
past trajectory as well as the trajectories of other users who
have watched the same video before. We treat other users as
experts, and learn how to efficiently utilize their “guidance”.

MLP mixing. In this model (see Figure 1), we make use
of other users’ FoV at time ¢ when predicting the target user
FoV at the same time. We first use the sequence-to-sequence
model in section III-A to predict the mean and STD of FoV
centers, we then concatenate this temporary prediction with
the FoV center means and STDs of other users at time ¢, and

298

others’ future

*gtrel gtre2 8tT+3

| s 1 N % v 15 il B B 5.3
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, . $ t t
: . /MLP /MLP / / MLP /
i t o
hrer yra hry2 Y142 th+3
|

|

-

t bt t t t

Y142

-

decoder

*gtr4i means others’ (mean, STD) in second level at time T+i

Figure 1.
layer.

Mixing other users’ information using a shared MLP mixing

pass the concatenated predictions into the final projection
layer (orange MLP in Figure 1) to get the final prediction.
The last projection layer learns a mixing weight to combine
target user’s own prediction and others’ known locations.

Attentive Mixture of Experts (AME). Inspired by works
in the mixture of experts[10], we can treat the trajectories of
other users as experts’ advice. When predicting for the target
user, the known trajectories from other users can serve as
guidance. We propose a novel attentive mixture of experts
(AME)[10] module on the decoder part of the sequence to
sequence model. A context vector ¢; for each expert will be
generated from the observations available for that expert i,
which are then used to form a total context vector ciorqr =
>, a;c;. The weights «; depend on the similarity of the
target user and each expert. From c;,t4;, We can then predict
a property of the target user.

We consider two ways to derive the context vectors. In the
first case, we directly use the FoV center locations (mean and
STD of FoVs) of other users, denoted by x;, as the context
vectors. A shared embedding layer is applied to each x;
and x4, to generate embedded feature w; and w4, Where
Tiqr 1S the temporary prediction generated by the seq2seq
model. Finally, the prediction for the target user is generated
by a weighted sum of x; using the similarity weighting,
determined based on the embedded features u; and wuiq,.
We treat the initial prediction x4, as one of the experts so
that the final predicted location is based on the target user’s
past FoVs as well as other users current FoVs. In the second
case, we model each other user by a shared LSTM and treat
the hidden states as the context vectors. A shared embedding
layer is used to embed the hidden state h; to u; for each
other user (at time t). We also use the same embedding layer
to embed target user’s hidden state hiy, tO Usq,-. Similar to
the first case, the final prediction is the weighted sum of the
location x;’s using the similarity score between u; and uq; .

The similarity function S(utar, uj) can take different
forms as described in [11], such as dot product, concate-
nation or MLP. We used the dot product in our experiments
for simplicity. Note that using the hidden state to define
the similarity can be interpreted as measuring the similarity
between a user ¢ and the target user’s trajectories so far.

others’ future

—r
-

1

dr., » s
________________________ [f] [}1» [-

.
Yra
|

P e o«

—

t t t

ViXe Yra yr
convLSTM decoder

— - .

Figure 2. The model structure for predicting the future heatmap sequence
for a target user using the target user’s past heatmap sequence as well as
the average heatmap sequence of other users. Each heatmap sequence is
modeled using a convLSTM. All heatmaps are at second level.

IV. PREDICTION USING 2D EQUIRECTANGULAR
HEATMAP REPRESENTATION

A potential problem of the trajectory-based models is that
the mean and STD of FoV center within each second does
not fully describe the FoV center distribution. It also does
not explicitly exploit the fact that the FoV center is located
on a spherical surface (a 2D plane in the equirectangular
coordinate). To circumvent these problems, we further ex-
plore the use of a 2D heatmap representation of the FoV
distributions within each second and model the dynamics of
the heatmap sequences.

Similarly, with the different variants of the trajectory-
based model, we experimented with two kinds of models:
predicting the future heatmap sequence from the target user’s
own past heatmap sequence and predicting using both the
target user’s past heatmap sequence as well as other users’
heatmap sequences. We further considered using the saliency
maps derived from the video content to help the prediction.

A. Heatmap representation

Given the FoV center (6, ¢) for a frame, we generate a 2D
Gaussian heatmap in the equirectangular coordinate for this
frame, where the horizontal axis represents longitude angle
0 ranging from —x to 7, and the vertical axis represents
latitude angle ¢ ranging from —3 to 5. To prevent the
size of the heatmap from being too large for training, we
discretize the § — ¢ plane by setting the bin size to 10 x 10
degrees. Thus the size of the Gaussian heatmap is 18 x 36.
We assume the FoV spans 120° x 90° so that each FoV
initially corresponds to a 12 x 9 rectangle with value 1 in
the heatmap. Row ¢ is then blurred by applying a Gaussian
window with standard deviation o o< TTICnL to account for
the equirectangular projection distortion. Finally, we sum
up all 30 frame-level heatmaps within one second to get the
second-level heatmap (FPS=30). With this representation, an
FoV center trajectory is described by a heatmap sequence.
Example ground truth heatmap sequences are shown in
Figure 6.

299

shared FCN for saliency modeling

')

[3 @ 1]
I

v

hT,; h
oo
t

777777777777 > L - .

t

t t
0 Yro
convLSTM decoder.

time

Figure 3. Saliency heatmaps are modeled by a shared FCN at each time
step. Saliency features are fused with the hidden states of the decoder
convLSTM.

B. Prediction based on users’ own heatmaps

For using the target user information only, we used a
seq2seq model where the encoder and decoder each uses
a convolutional LSTM (convLSTM) (see the lower branch
of Figure 2). Both encoder and decoder contain 3 layers,
generating 128, 64, and 32 channel hidden-state feature
maps respectively, each with the same spatial size as the
input heatmaps. A fully convolutional network (FCN) is then
applied to the concatenated hidden state maps from all three
layers, to generate a predicted heatmap for one second.

C. Utilizing other users’ heatmaps

We explored different approaches to fuse others’ infor-
mation. 1) We model others’ average heatmap sequence'
using one convLSTM. At time ¢ + 1, the hidden states d;1
from this convLSTM and the hidden states h;;; from target
user’s decoder are concatenated and used to predict target
user’s heatmap at time t + 1, y;41, through an FCN as
shown in Figure 2. 2) Similar with the mlp mixing model in
section III-B, we directly concatenate other users’ heatmaps
at time ¢+ 1 with the hidden states from target user’s decoder
and use the FCN to generate the final prediction. The FCN
automatically learns the mixing weights (kernels) in order
to generate the final predictions.

D. Utilizing saliency maps derived from video sequences

We applied a 2D saliency model[12] pretrained on regular
2D natural images, on the optical flow motion field images
directly derived from the equirectangular images. A total
of 30 saliency maps are generated for each second, one
for each frame. The saliency maps at time ¢ + 1 are fed
into an FCN and the FCN features are then fused with the
hidden states from the target user’s convLSTM decoder. The
combined features are then used to generate the predicted
heatmap ¥;41, through another FCN, as shown in Figure
3. We further explored using other users’ FoV information
and the visual saliency information together with the target

'Note that if the number of other users is large enough, the average
heatmaps from other users at each second can be seen as a surrogate for
the saliency map for this second.

=%— AME (location similarity)
AME (hidden state similarity)

—=— seq2seq+mlpmixing
—e— target user only seq2seq
single LSTM
- persistence

truncated linear extrapolation
- linear regression

knn
—» - naive averaging

—_-

viewport hitrate %

5
Prediction horizon (seconds)

—¥— AME (location similarity)

AME (hidden state similarity)
—m— seq2seq+mlpmixing
—e— target user only seq2seq
single LSTM
persistence
truncated linear extrapolation
linear regression
knn
-»- naive averaging

viewport hitrate %

0.70

g

—-

A
——— e e
P - il

1 2 3 4 5 6 7 8 9
Prediction harizon (seconds)

Figure 4. Hit rate of future 10 seconds for dataset [3] (left) and [13] testset (right) for trajectory-based models, with spanning factor v = 1.25.

user’s past FoV information. Specifically, the hidden states
of the target user decoder, the hidden states of the other
users’ convLSTM, as well as the visual saliency FCN feature
maps are all concatenated to predict the future heatmap for
the target user.

V. EXPERIMENTS

We evaluate our models on two public datasets [3] and
[13]. We split each dataset into train and test subsets,
each contains different videos. We train all our models
using the train subset of [3] as it contains more dynamic
scenes, and evaluate the models on both test subsets. Directly
training and testing on dataset[13] would have even higher
performance, hence are omitted here. For the trajectory-
based models, we use the Cartesian coordinate (z,y,z) of
the FOV center to characterize the FOV location. Note that
we choose not to use the longitude 6 and latitude ¢ angles
to avoid the issue of 27 periodicity of 6.

A. Evaluation metrics

Hit rate. The proposed trajectory-based FoV prediction
methods are intended to be integrated into a viewport-based
streaming system such as [14], where video segments in
each second are precoded into different viewports covering
different portions of the sphere surface. Based on the mean
and STD of the predicted FoV centers for a future second,
the server will send a viewport centered at the predicted
mean (converted from (x,y,z) to (0,¢)). Generally, the
viewport should cover a larger angle span than the FoV for
every frame to accommodate the likely FoV shift within a
second. Ideally, the angle span should be proportional to
the predicted FoV standard deviation. However, this would
require the server to precode and store viewports with
different angle spans. Here we consider a simpler system
where the viewport’s coverage area is fixed and is o? times
the area of the FoV of the HMD. For the trajectory-based
model, we assume the FoV span is (120°,120°) and we

300

consider two expansion factors: « 1 and a = 1.25,
corresponding to the viewport angle span of (120°,120°)
and (150°,150°) respectively. The hit rate of a viewport
for each predicted second is the average percentage of the
viewport’s coverage area that is inside the actual frame FoV,
for all the frames in that second.

Mean Squared Error. We also report the mean squared
error between the predicted FoV center mean position in
(z,y,2z) and the ground truth mean, averaged over the
prediction horizons from 1 to 10 seconds.

Tile overlapping ratio. Recall that the heatmap-based
approach is intended for tile-based streaming systems, where
the clients can request multiple tiles based on the predicted
FoV heatmap. Therefore, we use the tile overlapping ratio
as the performance metric for evaluating heatmap-based
approaches. First, we determine the total number of bins
Nbing, in ground truth FoV heatmap that has non-zero values
within that second, (recall that each pixel in the heatmap
represents a bin with angle span 10° x 10°). Next, we sort
the confidence scores of each bin in the predicted heatmap
and determine overlapping bins between the Nbing largest
bins in the predicted heatmap and the ground truth heatmap.
The ratio of the number of overlapping bins and Nbing, is
the tile overlapping ratio.

FoV center estimation from the predicted heatmap. To
enable comparison between the heatmap-based approaches
and the trajectory-based approaches, we also determine
the mean location of the FoV centers from the predicted
heatmap for each second. Based on this estimated location,
we compute the hit rate of the corresponding viewport and
also the MSE. We determine the mean location by treating
the normalized heatmap value in each pixel (0, ¢) as the
probability that the FoV center is located at (6, ¢). The
estimated mean location is then the weighted sum of all
locations using the probability values as weights. What’s
more, recognizing that the number of effective pixels along
the line at the latitude ¢ decreases with a factor of cos(¢)

--- target user only convLSTM seq2seq

target seq2seq+other users' convLSTM

target seq2seq+saliency FCN

target seq2seq-+other users' convLSTM+saliency FCN

target user convLSTM seq2seq+other users' locations

target user convLSTM seq2seq-+other users' locations+saliency FCN

0.80

8
5
o

8
5
=]

B
@
o

tile overlapping ratio %

0.60

Prediction horizon (seconds)

Figure 5.

(¢ € [~5,5]), we weight the contribution of the pixels at
(0, ¢) by cos(¢). We also take care of the 27 periodicity of
the longitude # when computing the mean.

Table 1
PERFORMANCES OF VARIOUS TRAJECTORY-BASED MODELS.

Shanghai Dataset[3] Tsinghua Dataset[13]
Average Hit Rate MSE Average Hit Rate MSE
Model Variants a=1.25 a=1 a=1.25 a=1
linear regression 0.6260 0.4995 1.3831 0.7777 0.6572 0.7479
truncated linear
extrapolation 0.6565 0.5297 1.5197 0.6802 0.5424 1.5368
persistency 0.7043 0.5922 0.9210 0.8355 0.7398 0.4691
KNN (k=5) 0.7025 0.5775 0.8982 0.6199 0.5171 0.8635
Naive Average 0.6880 0.5586 1.1377 0.5873 0.4878 0.7717
single LSTM 0.7083 0.5834 0.6164 0.8464 0.7346 0.3731
target user only seq2seq 0.7283 0.6049 0.5881 0.8402 0.7253 0.3853
seq2seq+mlpmixing 0.7757 0.6510 0.4890 0.8677 0.7518 0.3043
AME
(location similarity) 0.7791 0.6566 0.4807 0.8658 0.7507 0.3037
AME
(hidden state similarity) 0.7772 0.6552 0.4983 0.8632 0.7474 0.3273

B. Perfomance comparison

For the trajectory-based methods, we compare our pro-
posed models with several baseline methods: 1. persistency
(repeating the location of the FoV center in the last frame
in the past), 2. linear regression on the last 10 seconds to
predict, 3. truncated linear extrapolation (linear regression
on the last monotonic line segment), 4. Naive average:
averaging all other user’s locations at time ¢ as the prediction
for time ¢. 5. K nearest neighbors (KNN): selecting K out
of all other users at time ¢ who are closest to the target
user’s predicted position at time ¢t — 1, and use the average
of these K positions as the prediction for time ¢. We used
K=5. 6. single LSTM, which uses the same LSTM model
for the past and future. These baselines are common choices
in related works (section II).

Figure 4 show the hit rate curves for trajectory-based
models. We can see that the hit rate of the persistency and
truncated linear extrapolation models drop very rapidly as
the prediction horizon increases, indicating the nonlinear
nature of FoV trajectories. Our proposed model using the
target user information only (target user only seq2seq)

301

== target user only convLSTM seq2seq
target seq2seq-+other users' convLSTM
1 —— target seq2seq+saliency FCN
\ —— target seq2seq+other users' convLSTM+saliency FCN
B\ —— target user convLSTM seq2seq+other users' locations
—— target user convLSTM seq2seq-+other users' locations+saliency FCN

0.825

0.800 1

0.775 1

0.750 1

0.725 1

viewport hitrate %

0.700 4

0.675 1

Prediction horizon (seconds)

Heatmap-based models: Tile overlapping ratio (left) and hit rate (right) of future 10 seconds for dataset [3] testset.

outperforms all baselines by a large margin. Furthermore,
our models that utilize other users’ information yield much
higher hit rates at prediction horizons between 4-10 seconds.
However, different ways of utilizing other users’ information
lead to very similar performance; Modeling others using an
LSTM and using the hidden state similarity between others
and the target user (AME (hidden state similarity)) does not
provide gains over just using other users location informa-
tion at the prediction time (AME (location similarity) and
seq2seq+mlpmixing). But compared with KNN and Naive
average, our model learns automatically different mixing
weights for other users based on their similarities with the
target user, leading to much better performances. Table I
compares the trajectory-based methods in terms of the aver-
age hit rate and the MSE. Overall, the two methods of using
others’ trajectory information based on location similarity
(AME (location similarity) and seq2seq+mlpmixing) have
the best performance.

In Figure 5 and Table II, we compare the performances
of heatmap-based models. Overall, exploiting other users’
heatmaps and the saliency feature maps give the best
performance. However, different ways of utilizing others’
information yield very similar performances. Furthermore,
the gap between utilizing both others’ heatmaps and saliency
maps v.s. utilizing only one of these is rather small. This
suggests that the saliency information and the information
from others’ average heatmaps are not orthogonal.

Comparing the hit rate and MSE achievable by the
heatmap-based methods (Table II) with those obtained by the
trajectory-based models (Table I), we see that the trajectory-
based approaches are significantly better for predicting the
mean of the FoV centers in each second. Such mean
prediction is desirable for viewport-based streaming, where
the system can only deliver a continuous viewport for each
future second, and the center and span of the viewport
needs to be determined, to maximally cover all the FOVs
over the entire second. For tile-based streaming systems,
the heatmap-based approaches may be more appropriate, as
it predicts the FoV center distribution. For example, when a

Table 1T
PERFORMANCES OF VARIOUS HEATMAP-BASED MODELS.

Shanghai Dataset[3]
Average tile Average
Model Variants overlapping Hit Rate MSE
ratio (a=1.25)
target user only convLSTM seq2seq 0.5987 0.6943 0.9477
seq2seq + others’ convLSTM 0.6127 0.7059 0.9100
seq2seq + saliency FCN 0.6148 0.7079 0.8977
seq2seq + others convLSTM
and saliency FCN 0.6203 0.7097 0.8939
seq2seq + mlpmixing others’ heatmaps 0.6130 0.7136 0.8797
seq2seq + mlpmixing (others’
heatmaps and saliency fcn features) 0.6180 0.7101 0.8917

el w) o« =] =) S} o]) o] =] =

ground truth

prediction

ground truth

prediction

ground truth

t=1 =2 1=10 (second)

Figure 6. Heatmap-based method: example prediction results for the future
10 seconds.

predicted heatmap includes multiple separate peaks, the sys-
tem can send multiple non-contiguous tiles, corresponding
to different peaks.

VI. CONCLUSION

In this paper, we proposed two groups of FoV prediction
models: trajectory-based models and heatmap-based models
to suit different needs in viewport-based streaming and
tile-based streaming scenarios respectively. For each group,
we further considered models 1) using the target user’s
information only, or 2) utilizing other users’ FoVs as well.
For heatmap-based models, we also considered utilizing the
visual saliency information. We proposed multiple model
variants in both groups, especially, the MLP mixing model
and the Attentive Mixture of Experts (AME) model in the
trajectory-based group to automatically learn the importance
weights of other users’ contributions to the final prediction.
For heatmap-based models, we explored several ways to fuse
the features from the users’ FoV heatmaps as well as from
the video content. We have evaluated the proposed models
on two public datasets and showed that the proposed mod-
els utilizing the target user’s past information have higher
accuracies in long term predictions (4-10 seconds ahead)
than popular baseline methods in the literature. Furthermore,
models utilizing other users’ information provide substantial
performance gain over utilizing the target user’s information
only.

302

(1]

(2]

(3]

(4]

(5]

(6]

(7

[8

—_—

(9]

[10]

(11]

[12]

[13]

(14]

REFERENCES

S. Xingjian et al., “Convolutional Istm network: A machine
learning approach for precipitation nowcasting,” in Advances
in neural information processing systems, 2015, pp. 802-810.

C.-L. Fan et al., “Fixation prediction for 360 video streaming
in head-mounted virtual reality,” in Proceedings of the 27th
Workshop on Network and Operating Systems Support for
Digital Audio and Video. ACM, 2017, pp. 67-72.

Y. Xu et al., “Gaze prediction in dynamic 360 immersive
videos,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 5333-5342.

M. Xu et al., “Predicting head movement in panoramic video:
A deep reinforcement learning approach,” IEEE transactions
on pattern analysis and machine intelligence, 2018.

Y. Ban et al., “Cub360: Exploiting cross-users behaviors
for viewport prediction in 360 video adaptive streaming,” in
2018 IEEE International Conference on Multimedia and Expo
(ICME). IEEE, 2018, pp. 1-6.

Z. Xu et al., “Tile-based qoe-driven http/2 streaming system
for 360 video,” IEEE ICME Grand Challenge on DASH,
2018.

L. Xie et al., “Cls: A cross-user learning based system for
improving qoe in 360-degree video adaptive streaming,” in
2018 ACM Multimedia Conference on Multimedia Confer-
ence. ACM, 2018, pp. 564-572.

Y. Bao et al., “Shooting a moving target: Motion-prediction-
based transmission for 360-degree videos.” in BigData, 2016,
pp. 1161-1170.

1. Sutskever et al., “Sequence to sequence learning with neural
networks,” in Advances in neural information processing
systems, 2014, pp. 3104-3112.

P. Schwab et al., “Granger-causal attentive mixtures of ex-
perts: Learning important features with neural networks. arxiv
preprint,” arXiv preprint arXiv:1802.02195, 2018.

M.-T. Luong et al., “Effective approaches to attention-
based neural machine translation,” arXiv preprint
arXiv:1508.04025, 2015.

M. Cornia et al., “Predicting human eye fixations via
an Istm-based saliency attentive model,” arXiv preprint
arXiv:1611.09571, 2016.

C. Wu et al., “A dataset for exploring user behaviors in vr
spherical video streaming,” in Proceedings of the 8th ACM on
Multimedia Systems Conference. ACM, 2017, pp. 193-198.

L. Sun et al, “Multi-path multi-tier 360-degree video
streaming in 5g networks,” in Proceedings of the 9th
ACM Multimedia Systems Conference, ser. MMSys ’18.
New York, NY, USA: ACM, 2018, pp. 162-173. [Online].
Available: http://doi.acm.org/10.1145/3204949.3204978

