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Abstract
Nuclei segmentation is a fundamental task in histopathological image analysis. Typically, such
segmentation tasks require significant effort to manually generate pixel-wise annotations for fully
supervised training. To alleviate the manual effort, in this paper we propose a novel approach
using points only annotation. Two types of coarse labels with complementary information are
derived from the points annotation, and are then utilized to train a deep neural network. The fully-
connected conditional random field loss is utilized to further refine the model without introducing
extra computational complexity during inference. Experimental results on two nuclei segmentation
datasets reveal that the proposed method is able to achieve competitive performance compared to
the fully supervised counterpart and the state-of-the-art methods while requiring significantly less
annotation effort. Our code is publicly available1.
Keywords: Nuclei segmentation, Weak supervision, Deep learning, Voronoi diagram, Conditional
random field.

1. Introduction

Nuclei segmentation is a critical step in the automatic analyses of histopathology images, because
the nuclear features such as average size, density and nucleus-to-cytoplasm ratio are often related
to the clinical diagnosis and management of cancer. Modern deep learning based nuclei segmen-
tation methods (Xing et al., 2016; Kumar et al., 2017; Naylor et al., 2017, 2018; Mahmood et al.,
2018; Janowczyk and Madabhushi, 2016; Qu et al., 2019) have achieved better performance than
traditional approaches such as watershed segmentation (Veta et al., 2013) and graph-based segmen-
tation (Al-Kofahi et al., 2010). However, the fully supervised training of deep neural networks in
these methods requires a large amount of pixel-wise annotated data, which are difficult to collect
because assigning a nucleus/background class label to every pixel in the image is time-consuming
and requires specific domain knowledge. Therefore, methods using weak annotations are needed to
reduce the annotation burden.

1. The code can be found at: https://github.com/huiqu18/WeaklySegPointAnno
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There have been various methods using weak annotations in image segmentation. For natural
images, weak annotations include image-level tags (Papandreou et al., 2015; Pathak et al., 2015),
scribbles (Lin et al., 2016), points (Bearman et al., 2016) and bounding boxes (Dai et al., 2015;
Khoreva et al., 2017; Rajchl et al., 2017). Image-level tags are the class information of objects,
which are not used in medical image segmentation where object classes in images are usually fixed
(e.g., nuclei and background in our task). Scribbles annotation, which requires at least one scribble
for every object, is not suitable for our task due to the small size and large number of nuclei. The
objectiveness prior in the points supervision work (Bearman et al., 2016) is not working here since
nuclei are small and thus the prior is inaccurate. Bounding boxes are more well defined and are also
commonly adopted in medical images (Yang et al., 2018; Zhao et al., 2018). However, it is still time-
consuming and difficult to label an image using bounding boxes for hundreds of nuclei, especially
when the density is high. Kervadec et al. (Kervadec et al., 2019) used a small fraction of full labels
and imposed a size constraint in the loss function, which achieved good performance but is not
applicable for multiple objects of a same class. Different from existing methods, in this work we
propose to employ points annotation for nuclei segmentation. All a pathologist needs to do is mark
the location of every nucleus with a point. Our method is efficient and more annotation-friendly, and
to the best of our knowledge, this is the first time points annotation has been successfully applied to
nuclei segmentation.

In practice, the points annotation itself is not sufficient to directly supervise the training of neural
networks. To address this problem, we take advantage of the original image and the shape prior of
nuclei to derive two types of coarse labels from the points annotation using the Voronoi diagram
and the k-means clustering algorithm. The Voronoi diagram was ever used in nuclei detection (Kost
et al., 2017) for training sample selection, but here we utilize it to generate the coarse labels for
nuclei segmentation, which is a different and much harder task. These two types of coarse labels
are then used to train a deep convolutional neural network (CNN) with the cross entropy loss.

A common problem in various weakly supervised segmentation tasks is that the key information
near the object boundaries is missing. Therefore, post-processing like the dense conditional random
field (CRF) (Chen et al., 2015) or graph search (Yang et al., 2018) is needed to refine the object
boundaries, at the expense of increased processing time. Inspired by Tang et al.’s work (Tang et al.,
2018), we utilize the dense CRF in the loss function to fine-tune the trained model rather than add
a post-processing step, thereby leading to a more efficient model as the loss is no longer needed
during inference. This property makes our method more preferable in nuclei segmentation of large
Whole Slide Images.

In summary, the contributions of our work include:

• To the best of our knowledge, we are the first to successfully utilize the points annotation for
nuclei segmentation in histopathology images.

• We present a new method for deriving two types of informative pixel-level labels from points
label using the Voronoi diagram and k-means clustering algorithm, and employ the dense
CRF loss for model refinement in nuclei segmentation.

• We show that our approach achieves competitive segmentation performance on two nuclei
segmentation datasets. The accuracy is comparable to that obtained with full supervised ap-
proaches.
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Figure 1: Overview of the proposed approach. (a) Label generation. The Voronoi label and cluster
label are generated using the points label and original image. The green, red and black
colors indicate nuclei, background and ignored pixels, respectively. (b) Model training
using the cross entropy loss. (c) Model refinement using the CRF loss.

2. Methods

In this section we describe our approach in detail. In particular, our point-level supervision for
training a nuclei segmentation model consists of three parts: (1) coarse pixel-level labels generation
using points annotation; (2) segmentation network training with coarse labels; (3) model refinement
using the dense CRF loss.

2.1. From point-level to pixel-level labels

The point-level labels cannot be used directly for the training of a CNN with the cross entropy loss
due to the lack of (negative) background labels since all annotated points belong to the (positive)
nuclei category. To solve this issue, the first step is to exploit the information we have to generate
useful pixel-level labels for both classes. We have the following observations: (1) Each point is
expected to be located or close to the center of a nucleus, and the shapes of most nuclei are nearly
ellipses, i.e., they are convex. (2) The colors of nuclei pixels are often different from the surrounding
background pixels. Based on these observations, we propose to utilize the Voronoi diagram and k-
means clustering methods to produce two types of pixel-level labels.
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(a) image (b) true mask (c) Voronoi label (d) distance map (e) cluster result (f) cluster label

Figure 2: Label generation. (a) original image, (b) ground-truth nuclei masks (in green) and
Voronoi edges (in red), (c) Voronoi label, (d) distance map, (e) clustering result, (f) cluster
label (green: nuclei, red: background, black: ignored).

2.1.1. VORONOI LABELS

Voronoi diagram is a partitioning of a plane into convex polygons (Voronoi cells) according to the
distance to a set of points in the plane. There is exactly one point (seed point) in each cell and all
points in a cell are closer to its seed point than other seed points. In our task, the annotated points
of an image can be treated as seed points to calculate the Voronoi diagram, see Fig. 1. For each cell,
assuming that the corresponding nucleus is located within the cell, then the Voronoi edges separate
all nuclei well and the edge pixels belong to the background. This assumption holds for most of the
nuclei because the points are around the centers and nuclear shapes are nearly convex (Fig. 2(b)).

Treating the Voronoi edges as background pixels and the annotated points (dilated with a disk
kernel of radius 2) as nuclei pixels, we obtain the Voronoi point-edge label (Fig. 2(c)). All other
pixels are ignored during training. Note that although the pixels on the Voronoi edge between
two touching nuclei may not necessarily be background, the edges are still helpful in guiding the
network to separate the nuclei. The Voronoi labels aim to segment the central parts of nuclei and
are not able to extract the full masks, because they lack the information of nuclear boundaries and
shapes. To overcome the weakness, we generate another kind of labels that contain this information
as a complement.

2.1.2. CLUSTER LABELS

Considering the difference in colors between nuclei and background pixels, it is feasible to perform
a rough segmentation using clustering methods. We choose the k-means clustering algorithm to
extract both nuclei and background pixels from the original image, and produce the cluster labels
based on the results. Given an image x with N pixels (x1,x2, · · · ,xN), k-means clustering aims to
partition the N pixels into k clusters S = (S1,S2, · · · ,Sk) according to the feature vector f xi

of each
pixel xi, such that the sum of within-cluster variances is minimized :

argmin
S

k

∑
i=1

∑
x∈Si

‖ f x− ci‖2 . (1)

We use k-means to divide all pixels into k = 3 clusters: nuclei, background and ignored. The
cluster that has maximum overlap with points label is considered as nuclei, and the cluster that has
minimum overlap with the dilated points label is considered as background. The remaining one
is the ignored class. The pixels of ignored class are often located around the nuclear boundaries,
which are hard for a clustering method to assign correct labels.
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For the feature vector f , color is the straightforward choice. However, clustering with color will
result in wrong assignments for pixels inside some nuclei that have non-uniform colors. To cope
with this issue, we propose to add a distance value in the feature vector. In a distance map (Fig. 2(d)),
each value indicates the distance of that pixel to the closest nuclear point and therefore incorporates
the position information. In particular, the pixels that belong to nuclei should be close enough
to points in the label while background pixels are expected to be relatively far from those points.
The distance map can be calculated by the distance transform of the complement image of points
label. Combining the distance value di with the RGB color values (ri,gi,bi) as the feature vector
f xi

= (d̂i, r̂i, ĝi, b̂i) and performing k-means clustering, we obtain the initial cluster labels (Fig. 2(e)).
d̂i is the clipped value by truncating large values to 20 and r̂i, ĝi, b̂i are scaled color values such that
each element in the feature vector has similar range. The final cluster label (Fig. 2(f)) is generated by
refining the clustering result with morphological opening operation. The cluster labels have more
shape information about the nuclei compared to Voronoi label, but may contain more errors and
uncertainties. We argue that these two types of labels are complementary to each other and would
jointly lead to better results.

2.2. Training deep neural networks with pixel-level labels

Once we have the pixel-level labels, we are able to train a deep convolutional neural network for
nuclei segmentation. The network (shown in Fig. 1) we use is a modified version of U-net (Ron-
neberger et al., 2015). We replace the encoder part of U-net with the convolution layers of ResNet34 (He
et al., 2016), which is more powerful in representation ability and can be initialized with pretrained
parameters from image classification task on ImageNet (Russakovsky et al., 2015). The network
outputs two probability maps of background and nuclei, which are used to calculate two cross en-
tropy losses with respect to the cluster label Lcluster and Voronoi label Lvor:

Lcluster/vor(y, t) =−
1
|Ω| ∑i∈Ω

[ti logyi +(1− ti) log(1− yi)] , (2)

where y is the probability map, t is the cluster label or Voronoi label, and Ω is the set consisting of
non-ignored pixels. The final loss is Lce = Lcluster +Lvor.

2.3. Model refinement using dense CRF loss

The model trained using the two types of labels is able to predict the masks of individual nuclei
with high accuracy. To further improve the performance, we refine the nuclear boundaries with the
dense CRF loss. Previously post-processing such as region growing (Kumar et al., 2017), graph
search (Yang et al., 2018) or dense CRF (Chen et al., 2015) is often utilized to refine the segmen-
tation results. These algorithms introduce more computational complexity, making them unsuitable
for the processing of large resolution Whole Slide Images. To solve this problem, similar to (Tang
et al., 2018) we embed the dense CRF into the loss function to improve the accuracy. The loss func-
tion is not calculated during inference, and therefore will not introduce additional computational
cost after training.

Let ỹ = (ỹ1, ỹ2, · · · , ỹN) denote the predicted label (0 for background and 1 for nuclei) from
probability maps y and t be the label. The dense CRF is to minimize the energy function:

E(ỹ, t) = ∑
i

φ(ỹi, ti)+∑
i, j

ψ(ỹi, ỹ j), (3)
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where φ is the unary potential that measures how likely a pixel belongs to a certain class, and ψ

is the pairwise potential that measures how different a pixel’s label is from all other pixels’ in the
image. The unary term is replaced with the cross entropy loss Lce. The pairwise potential usually
has the form:

ψ(ỹi, ỹ j) = µ(ỹi, ỹ j)Wi j = µ(ỹi, ỹ j)
K

∑
m=1

wmkm( f̃ i, f̃ j), (4)

where µ is a label compatibility function, Wi j is the affinity between pixels i, j and is often calculated
by the sum of Gaussian kernels km. In this work we choose µ as the Potts model, i.e., µ(ỹi, ỹ j) =

[ỹi 6= ỹ j], and bilateral feature vector f̃ i =
(

pi
σpq

, qi
σpq

, ri
σrgb

, gi
σrgb

, bi
σrgb

)
that contains both location and

color information. σpq and σrgb are Gaussian bandwidth.
To adapt the energy function to a loss function that is differentiable for training, we relax the

pairwise potential as (Tang et al., 2018): ψ(ỹi, ỹ j) = ỹi(1− ỹ j)Wi j. Therefore, the dense CRF loss
can be expressed as:

Lcr f (y, tcluster, tvor) = Lce(y, tcluster, tvor)+βLpair(y), (5)

where Lpair(y) = ∑i, j yi(1− y j)Wi j is the pairwise potential loss and β is the weighting factor. The
CRF loss is used to fine-tune the trained model. Due to the large number of pixels in an image,
the cost of directly computing the affinity matrix W = [Wi j] is prohibitive. For instance, there are
N2 = 1.6×109 elements in W for an image of size 200×200 that has N = 40000 pixels. We adopt
fast mean-field inference based on high-dimensional filtering (Adams et al., 2010) to compute the
pairwise potential part.

3. Experiments and Results

To validate our method, we apply it to two datasets of H&E stained histopathology images for
nuclei segmentation and compare the results with fully supervised methods, including the same
model trained with full masks, the CNN3 method proposed by Kumar et al. (Kumar et al., 2017)
and the DIST method proposed by Naylor et al. (Naylor et al., 2018).

3.1. Datasets, evaluation and implementation details

Datasets The Lung Cancer dataset contains 40 images from 8 different lung cancer cases, and
each case has 5 images of size about 900×900. These images are split into train, validation and test
sets, consisting of 24, 8 and 8 images, respectively. Each set has at least one image of each case.
Another dataset is publicly available, i.e., MultiOrgan dataset (Kumar et al., 2017). It consists of 30
image of size 1000× 1000, which are taken from multiple hospitals and include a diversity of nu-
clear appearances from seven organs (Kumar et al., 2017). Both datasets have full mask annotation.
We obtain the points annotation for the training sets by computing the central point of each nuclear
mask.

Evaluation metrics Four metrics are used for evaluation, including pixel accuracy, pixel-level
F1 score, object-level Dice coefficient (Sirinukunwattana et al., 2015) and the Aggregated Jaccard
Index (AJI) (Kumar et al., 2017). The pixel-level F1 score is defined as F1 = 2 ·T P/(2 ·T P+FP+
FN), where TP, FP, FN are the numbers of true positive, false positive and false negative pixels,
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Table 1: Results on Lung Cancer dataset using our methods in different settings.

Method
Pixel-level Object-level

Acc F1 Diceob j AJI

Full 0.9615 0.8771 0.8521 0.6979
Weak/Voronoi 0.9147 0.6596 0.6472 0.4791
Weak/Cluster 0.9188 0.7662 0.5936 0.2332
Weak w/o CRF 0.9413 0.8028 0.7885 0.6328
Weak w/ CRF 0.9433 0.8120 0.8002 0.6503

respectively. The object-level Dice coefficient is defined as

Diceob j(G ,S ) =
1
2

[
nG

∑
i=1

γiDice(Gi,S∗(Gi)+
nS

∑
j=1

σ jDice(G∗(S j),S j)

]
(6)

where γi, σ j are the weights related to object areas, G , S are the set of ground-truth objects and
segmented objects, S∗(Gi), G∗(Si) are the segmented object that has maximum overlapping area
with Gi and ground-truth object that has maximum overlapping area with Si, respectively. The
correspondence is built if the overlap area of two objects are more than 50%. This metric takes
into account each object individually, and measures how well each segmented object overlaps with
the ground truth objects, as well as how well each ground truth object overlaps the segmented
objects (Sirinukunwattana et al., 2015). Another object-level metric AJI is proposed to evaluate the
performance in nuclei segmentation and defined as

AJI =
∑

nG
i=1 |Gi∩S(Gi)|

∑
nG
i=1 |Gi∪S(Gi)|+∑k∈K |Sk|

(7)

where S(Gi) is the segmented object that has maximum overlap with Gi with regard to Jaccard
index, K is the set containing segmentation objects that have not been assigned to any ground-truth
object.

Implementation details Color normalization (Reinhard et al., 2001) is applied to all images to
remove color variations caused by staining. Due to the small size of datasets, data augmentation
such as random crop, scale, rotation, flipping, and affine transformation are adopted. The network is
initialized with pretrained parameters and updated using the Adam optimizer. In weakly supervised
settings, we train a model for 60 epochs with a learning rate of 1e-4, and fine-tune the model
using dense CRF loss for 10 epochs with a learning rate of 1e-5. The parameters in CRF loss
are σpq = 10,σrgb = 10,β = 0.0005. The validation set is not used because we have no access
to ground-truth masks when training with points label. In fully supervised settings, we train 200
epochs using binary masks with a learning rate of 1e-4. The validation set is used to select the best
model for test.

3.2. Results and comparison

The effects of two types of labels In order to show the importance of two types of generated
labels, we report the results using either type of labels on the Lung Cancer datase in Table 1. Com-
pared to the results using the cluster labels, those with Voronoi labels are better in the object-level
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Table 2: Results on MultiOrgan dataset for CNN3 (Kumar et al., 2017), DIST (Naylor et al., 2017),
fully supervised training and our methods with and without CRF loss.

Method
Pixel-level Object-level

Acc F1 Diceob j AJI

CNN3 - - - 0.5083
DIST - 0.7623 - 0.5598
Full 0.9194 0.8100 0.6763 0.3919
Weak w/o CRF 0.9052 0.7745 0.7231 0.5045
Weak w/ CRF 0.9071 0.7776 0.7270 0.5097

(a) image (b) gt mask (c) Voronoi labels (d) cluster labels (e) both labels

Figure 3: Results using different pixel-level labels: (a) image, (b) ground-truth mask, (c)-(e) are
results using Voronoi labels, cluster labels and both labels, respectively.

metrics but worse in pixel-level metrics. This is because the model trained with Voronoi labels
predicts the central parts of nuclei, resulting in small separated instances (Fig. 3(c)). While lacking
the Voronoi edge information, the model using cluster labels is not able to separate close nuclei
(Fig. 3(d)). In contrast, segmentation results using both labels are better than those with either label
alone (Fig. 3(e)).

The effects of dense CRF loss From Table 1, it can be observed that the refinement with dense
CRF loss improves the segmentation performance on the Lung Cancer dataset for all four metrics,
but it is less effective on the MultiOrgan dataset. The reason is that in the MultiOrgan dataset there
are many more crowded and touching nuclei that have no clear boundaries. CRF loss cannot handle
these hard cases well.

Comparison to fully supervised methods The segmentation performance of our weakly super-
vised method is close to that of the fully supervised models with the same network structure. On the
Lung Cancer dataset, the gaps for accuracy, F1 score, Dice and AJI are 1.9%, 7.4%, 6.1%, 6.8%,
respectively. On the MultiOrgan dataset, the gaps for accuracy and F1 score are 1.3% and 4.0%.
However, the fully supervised model has very low Dice and AJI, since for fair comparison we didn’t
perform post-processing to separate the touching nuclei for any of the methods. The weakly super-
vised model is able to separate most of them due to the Voronoi labels while the fully supervised
model failed to achieve this. Compared to the CNN3 method in (Kumar et al., 2017), our method
achieved the similar accuracy in terms of the AJI value. Compared to the state-of-the-art DIST
method (Naylor et al., 2018), our approach has the higher pixel-level F1 score, but still has room
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(a) images (b) gt masks (c) without CRF (d) with CRF (e) full annotation

Figure 4: Comparison of weakly and fully supervised training: (a) images, (b) ground-truth masks,
(c)-(e) are results for weak labels without, with CRF loss and full labels, respectively,
overlapped with ground-truth masks. Pixels in green, magenta, white are true positives,
false positives and false negatives, respectively.

for improvement on the nuclear shapes, as indicated by the AJI values. Several image results are
illustrated in Fig. 4.

Annotation time In order to show the time efficiency of points annotation, our pathologist an-
notated eight images (one per case) in the Lung Cancer dataset using points, bounding boxes and
full masks, respectively. The average time spent on each image (about 600 nuclei in average) for
full masks is 115 minutes while for bounding boxes, 67 minutes. However, it only takes about 14
minutes for points annotation.

4. Conclusion

In this paper we present a new weakly supervised nuclei segmentation method using only points
annotation. We generate the Voronoi label and cluster label from the points label and take advantage
of the dense CRF loss to refine our trained model. Our method is able to achieve comparable
performance as fully supervised methods while requiring much less annotation effort which in turn
allows us to analyze large amounts of data.
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