
Fast Neural Cell Detection Using Light-Weight SSD Neural Network

Jingru Yi

Department of Computer Science

Rutgers University, NJ, USA

jy486@cs.rutgers.edu

Pengxiang Wu

Department of Computer Science

Rutgers University, NJ, USA

pw241@cs.rutgers.edu

Daniel J. Hoeppner

Lieber Institute for Brain Development

Hopkins Medical Campus, MD, USA

daniel.hoeppner@libd.org

Dimitris Metaxas

Department of Computer Science

Rutgers University, NJ, USA

dnm@cs.rutgers.edu

Abstract

Identifying the lineage path of neural cells is critical for

understanding the development of brain. Accurate neural

cell detection is a crucial step to obtain reliable delineation

of cell lineage. To solve this task, in this paper we present an

efficient neural cell detection method based on SSD (single

shot multibox detector) neural network model. Our method

adapts the original SSD architecture and removes the un-

necessary blocks, leading to a light-weight model. More-

over, we formulate the cell detection as a binary regression

problem, which makes our model much simpler. Experimen-

tal results demonstrate that, with only a small training set,

our method is able to accurately capture the neural cells

under severe shape deformation in a fast way.

1. Introduction

The establishment of lineage path from a single neural

stem/progenitor cell to the production of neurons, astro-

cytes, and oligodendrocytes is critical to the study of nor-

mal brain development [8]. In the lineage history, neural

cells divide themselves through mitosis, and physically in-

teract with each other through filopodia and lamellipodia,

aiming to establish local niches for differentiation, promote

maturation and ultimately produce neuronal synapses.

One way to investigate the lineage path for neural cells

is by recording the cell fate transitions in time-lapse videos.

Then different types of neural cell descendants in the video

are detected, which is a crucial pre-requisite step to classify-

ing the cells, capturing interactions between them and iden-

tifying the cell lineage. Conventionally, this is manually

performed by experts who examine the time-lapse videos

frame by frame. However, manual annotation suffers from

the issues such as considerably time-consuming and limited

reproducibility. Therefore, automatic cell detection meth-

ods are highly demanded to improve the efficiency and re-

duce the workload on researchers.

Nevertheless, this task is quite challenging due to the se-

vere aggregation and shape distortion of cells, and the sharp

increase of cell numbers (Figure 1). In addition, the unno-

ticeable background changes (e.g., lighting condition), as

well as the existence of dead cells and impurities in the

background, pose another challenge to detection. These fac-

tors render traditional handcrafted feature-based detection

methods, such as HOG feature-based detector [2], power-

less for coping with this problem. .

Recent years have witnessed the great success of deep

neural networks (DNNs) in object detection [5, 4, 11, 9,

10, 7]. Unlike handcrafted features, the features of DNNs

are built through learning and therefore are more general

and scalable, leading to better performance in practice. One

groundbreaking work was by Girshick et al. [5], who pro-

posed a R-CNN method which combines classical region

proposals with convolutional neural networks (CNNs) for

robust object detection and classification. R-CNN achieved

great success and was further improved in [4, 11]. However,

while accurate, the family of R-CNN methods still remain

too computationally expensive and too slow for real-time

applications. To overcome this problem, Redmon et al. [9]

proposed to predict the object bounding box directly with a

novel YOLO detection system, which is much simpler and

faster than R-CNN while achieving higher precision. In [7],

Liu et al. [7] went a step further and presented a single shot

multibox detector (SSD) method which eliminates proposal

generation and subsequent resampling stages, and is able

to obtain higher accuracy and speed than YOLO system.

In this paper, we employed a modified light-weight SSD

model for neural cell detection. The adapted model formu-

lates the cell detection as a binary regression problem, and

4321108



(a) (b)

Figure 1: Illustration of neural cell detection challenges.

(a) In the process towards maturation, neural cells tend to

stretch their filopodia and lamellipodia, distort themselves

(green box) and aggregate (yellow box), posing challenges

to robust cell detection. (b) To form a neural network, they

need to perform mitosis (red box), which leads to a large

change of appearance. Besides, the existence of dead cells

(cyan box) and impurities (pink box) also adds challenges

to the extraction of cells from background.

is much smaller in size than the original version.

One issue with DNNs is the heavy demand for training

data. In the presence of small dataset, such as our neural

cells (with only 1595 frames), the model performance could

decrease sharply. To deal with this problem, we transfered

the learned weights from pre-trained model (e.g., VGG-16

[13] for our case) to our adapted version, and fine-tuned it

on the neural cell images. This transfer learning process

enables our cell detection model to inherit the learned con-

cept of ‘objectness’ [6] from the trained SSD model, and

thereby helps our model capture the features of neural cells

with only a small training set. Experimental results demon-

strate that our method is able to detect the cells in a fast way

with relatively high accuracy.

The rest of this paper is organized as follows. We present

the details of our cell detection model in Section 2. Exper-

imental results and corresponding discussion are offered in

Section 3. Our work is summarized in Section 4.

2. Methods

2.1. Network architecture

The neural network architecture of our method is shown

in Figure 2. For each input image, it is formed as a mean-

subtracted 300 × 300 × 3 tensor. Then a series of feed-

forward convolutional layers are applied to the input image.

The bottom part of the network (Block 1 to Block 5) is based

on VGG-16 [13], for which the pre-trained weights on Ima-

geNet [12] are available. We transfer these learned weights

to the bottom part and fine-tune them on our neural cell im-

ages. Compared to the original SSD model, our adapted

version removes several intermediate layers and is therefore

much smaller in size. In particular, our network model is 1

billion FLOPs (in terms of multiplication) smaller than that

of the original version.

In order to perform detection on multiple scales, layers

from Block 4 (38× 38) and Block 7 (19× 19) are extracted

as our feature maps. For each feature map, it contains a

particular number of default bounding boxes, which are of

certain scales and aspect ratios (see Section 2.2). Two dif-

ferent kinds of filters, i.e., localization and objectness, are

applied to the two feature maps to predict the bounding box

offsets as well as the objectness scores. Finally, a sigmoid

layer is added to the end of objectness prediction layer to

restrict the objectness score to [0, 1].

2.2. Default box proposals

Two commonly used strategies for generating possible

object locations are sliding windows and region propos-

als. However, the sliding window method suffers from ex-

tremely high computational cost in training and prediction.

When there are many choices of window aspect ratios and

scales, the computation would become infeasible. By con-

trast, region proposals work better but are still expensive in

computation [11, 14]. To solve this issue, SSD model em-

ploys default boxes [7], which largely improves the speed

vs accuracy trade-off.

In default box strategy, the feature maps (38 × 38 and

19 × 19) are divided into grids with blocks of size 1 × 1,

and each of these blocks determines the centers of default

boxes. Specifically, the centers of default boxes are set to

(cxd, cyd) = ( i+0.5
l

, j+0.5

l
), i, j = 0, 1, 2, · · · , l−1, where

l is the size of feature map. Note that it is possible that

different default boxes correspond to one block center, de-

pending on the box width and height settings.

During the process towards maturation, neural cells tend

to become slender (the green box in Figure 1) so that they

could actively communicate with other cells around and fi-

nally form a neural network. According to this property, we

choose the aspect ratios ar ∈ {1, 2, 3, 1

2
, 1

3
} for 38 × 38

feature map, and ar ∈ {1, 2, 3, 4, 5, 1

2
, 1

3
, 1

4
, 1

5
} for 19× 19

feature map. For the scales of bounding boxes, they can be

4322109



Figure 2: The overview of detection network architecture. Two feature maps (38× 38 and 19× 19) are utilized to predict the

location offset and objectness score for each cell. Here, num locs indicates the number of bounding boxes, which depends

on the bounding box scale and aspect ratio specified for a particular layer; and num class is the number of cell classes (which

is 1 in this paper).

chosen to be sk ∈ {0.07, 0.15, 0.33}, where k is the index

of feature maps. We use s3 = 0.33 here because for aspect

ratio of ar = 1, we also add a default box whose scale is

s′k =
√
sksk+1 [7].

After setting the scales and aspect ratios for the default

boxes, we can then calculate their widths and heights as

wk = sk
√
ar and hk = sk/

√
ar, respectively. Thus in total

we have 6 default boxes for each block center in 38×38 fea-

ture map, and 10 default boxes per block in 19× 19 feature

map. Our next step is to encode the groundtruth bounding

boxes as default boxes.

2.3. Encode groundtruth boxes

After obtaining default boxes from section 2.2, we need

to encode the groundtruth bounding boxes as default boxes

such that we can get their offsets relative to the grid block

centers, the corresponding default box labels and their ob-

jectness scores. In this way we transform the groundtruth

bounding box into a form that can be fed into our SSD

model for training.

The transformation steps are as follows. First, we com-

pare the groundtruth box with each default box by calculat-

ing their jaccard index. If the jaccard value is greater than

the ignore threshold (0.45), then the default box is just the

corresponding encoded result. In this case, the objectness

label of the default box will be set to 1, the jaccard value

will be kept as the objectness score of the default box, and

the location offsets between groundtruth box and encoded

default box will also be recorded. However, it is possible

that two groundtruth boxes would match the same default

box. In this situation, we just keep the one with higher jac-

card value. Therefore, to sum up, the encoded groundtruth

vector consists of location offset (g = (cx, cy, w, h)), ob-

jectness score (p ∈ [0, 1]) and label (x ∈ {0, 1}). Note that

the location offsets are calculated as [7]:

cx = (cxg − cxd)/wd (1)

cy = (cyg − cyd)/hd (2)

w = log(
wg

wd

) (3)

h = log(
hg

hd

) (4)

where (cx, cy) is the center of the encoded box, and (w, h)
represents its width and height. The subscript index g and d
refer to the groundtruth box and default box, respectively.

2.4. Loss function

The total loss is a weighted sum of location offset loss

and the objectness score loss:

L =
1

N
(Lobj + αLloc). (5)

where N is the number of matched default boxes. The lo-

cation offset loss is defined as [4, 7]:

Lloc =
N
∑

i∈Pos

∑

m∈{cx,cy,w,h}

smoothL1
(lmi − gmi ) (6)

smoothL1
(z) =

{

0.5z2 if |z| < 1

|z| − 0.5 otherwise
(7)

where i is the index of default box with label 1, and l and

g refer to predicted box offsets and encoded box offsets,

respectively. The objectness score loss is calculated by the

4323110



binary cross-entropy:

Lobj = −
N
∑

i∈Pos

xilog(pi)−
N
∑

j∈Neg

(1− xj)log(1− pj)

(8)

where p is the objectness score of the predicted box, and x ∈
{0, 1} is the encoded label, which indicates the objectness

of default boxes. Hard negtive mining [7] is utilized when

calculating the objectness score loss for the negtive default

boxes. In this way we keep a balance between the positive

and negative training examples.

3. Experiments

The neural cell data used in our experiment came from

a series of time-lapse microscopy videos, from which we

sampled 2658 images in total. Among these images, 60%
are used for training, 20% for validation, and 20% for test-

ing. Considering that our training set is relatively small

(with only 1595 images), we additionally performed data

augmentation by random cropping and flipping. In the pre-

diction part, boxes with objectness scores greater than 0.4
are accepted as cell bounding boxes. Non-max suppression

with 0.5 threshold is utilized to get rid of similar bounding

boxes. Our model was implemented in Python using Keras

library [1], and was trained and tested on a single Nvidia

K40 GPU.

The detection accuracy is calculated according to [3]. If

the jaccard overlap between the predicted bounding box and

the groundtruth box exceeds 0.5, the predicted box will be

considered as correct. The accuracy for testing images (531
frames in total) is 83%, and the detection speed is 10 FPS

on average. We believe that with more powerful hardware

(e.g., Nvidia Titan X used by original SSD model [7]), the

detection speed would be further increased.

Figure 3 demonstrates several examples of our detection

results. It can be observed that our method is able to grace-

fully deal with cell aggregation and shape deformation. We

also show several failure cases in Figure 3 (pointed to by ar-

rows), which are probably caused by small number of fea-

ture maps or the lack of scale and aspect ratio options for

default boxes. One way to resolve this issue is to enrich the

available scale and aspect ratio specifications, which, how-

ever, also means the increased need for training data.

To illustrate the advantage of our light-weight SSD

model over handcrafted feature-based detection method, in

Figure 4 we compare our model with classical HOG-based

SVM detector [2]. It can be observed that HOG detector

is quite sensitive to impurities and fails to distinguish be-

tween dead and normal cells, whereas our method is com-

paratively more robust and handles the background inter-

ference well. The precision and recall for HOG detector are

60% and 44%, while for our light-weight SSD model they

(a) (b)

Figure 4: Comparison of the detection results by (a) HOG-

based SVM detector and (b) our light-weight SSD model.

Compared to HOG detector, our model handles the inter-

ference of impurities and dead cells better, and captures the

target cells in a more accurate way.

are 83% and 96% respectively, outperforming HOG detec-

tor by a large margin. Moreover, our method is 67× (0.1s

per frame) faster than HOG detector (6.72s per frame).

4. Conclusion

In this paper, we applied a modified light-weight SSD

model to the problem of neural cell detection. Compared to

the original SSD architecture, our adapted version is much

smaller in size. Besides, our model formulates the cell de-

tection as a binary regression problem, making it simpler to

deploy. Experimental results demonstrate that our method

is able to detect the neural cells in an accurate and fast way,

thereby setting the foundation for future cell classification

and lineage establishment.

References

[1] F. Chollet. Keras. https://github.com/fchollet/

keras, 2015.

[2] N. Dalal and B. Triggs. Histograms of oriented gradients

for human detection. In CVPR, pages 886–893 vol. 1, June

2005.

[3] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes (voc) chal-

lenge. International Journal of Computer Vision, 88(2):303–

338, 2010.

[4] R. B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.

4324111

https://github.com/fchollet/keras
https://github.com/fchollet/keras


Figure 3: Detection results. Top row: successful examples, where the predicted bounding boxes for neural cells are repre-

sented by green boxes. Bottom row: examples with failure cases, which are pointed to by black arrows. In particular, (d) and

(e) illustrate respectively the cells that are too long and large to capture, while (f) provides a failure instance where the two

newly generated cells from mitosis are too small to recognize.

[5] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich

feature hierarchies for accurate object detection and semantic

segmentation. CoRR, abs/1311.2524, 2013.

[6] S. D. Jain, B. Xiong, and K. Grauman. Pixel objectness.

CoRR, abs/1701.05349, 2017.

[7] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed,

C. Fu, and A. C. Berg. SSD: single shot multibox detector.

CoRR, abs/1512.02325, 2015.

[8] R. Ravin, D. J. Hoeppner, D. M. Munno, L. Carmel, J. Sulli-

van, D. L. Levitt, J. L. Miller, C. Athaide, D. M. Panchision,

and R. D. McKay. Potency and fate specification in cns stem

cell populations in vitro. Cell Stem Cell, 3(6):670–680, 2004.

[9] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi.

You only look once: Unified, real-time object detection.

CoRR, abs/1506.02640, 2015.

[10] J. Redmon and A. Farhadi. YOLO9000: better, faster,

stronger. CoRR, abs/1612.08242, 2016.

[11] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN:

towards real-time object detection with region proposal net-

works. CoRR, abs/1506.01497, 2015.

[12] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein,

A. C. Berg, and F. Li. Imagenet large scale visual recog-

nition challenge. International Journal of Computer Vision,

115(3):211–252, 2015.

[13] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014.

[14] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and

A. W. M. Smeulders. Selective search for object recognition.

International Journal of Computer Vision, 104(2):154–171,

2013.

4325112


