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Abstract

Existing neural cell tracking methods generally use the

morphology cell features for data association. However,

these features are limited to the quality of cell segmentation

and are prone to errors for mitosis determination. To over-

come these issues, in this work we propose an online multi-

object tracking method that leverages both cell appearance

and motion features for data association. In particular, we

propose a supervised blob-seed network (BSNet) to predict

the cell appearance features and an unsupervised optical

flow network (UnFlowNet) for capturing the cell motions.

The data association is then solved using the Hungarian al-

gorithm. Experimental evaluation shows that our approach

achieves better performance than existing neural cell track-

ing methods.

1. Introduction

One primary aim of stem cell biology is to understand

the factors influencing cell fate when multipotent cells be-

come specified as terminal functional cell types. In the cen-

tral nervous system, neural stem cells become specified as

neurons, astrocytes, and oligodendrocytes. During this pro-

cess, cells are constantly sampling their environment, mak-

ing transient and long-term contacts with neighboring cells

via filopodia and lamellipodia. Such behavior is typically

recorded as time-lapse videos where the vision techniques

could be applied for automatic analysis. In particular, cell

tracking serves as an essential tool for the study of cell-cell

interactions and thereby plays an important role in discov-

ering the factors that influence the specified fate, and more

importantly, the specific changes that correlate with disease

progression [2].

Visual tracking for multiple targets in videos has been

widely studied for many years. This task aims to find the

optimal set of trajectories for moving objects within a video.

In cell tracking, particularly neural cell tracking problems,

one widely adopted strategy is tracking-by-segmentation

[38], where cells are segmented and then associated over

frames. However, existing methods [35, 2, 30, 26] typically

suffer from inaccurate segmentation due to the complexities

of neural cell images, which involve tiny cell structures, un-

clear cell boundaries, cell adhesion and background impuri-

ties. Moreover, their data association metrics are too simple

and limited to hand-crafted cell morphology attributes. As a

result, they fail to build association accurately and produce

large tracking errors.

Recent advances in deep learning have brought revolu-

tionary developments in visual tracking techniques. For

multi-object tracking, a prevalent methodology is tracking-

by-detection [6, 34, 25, 20], where the targets are localized

first, and then associated between frames. In data associa-

tion, metrics such as bounding box intersection-over-union

(IoU), spatial-temporal distance and appearance similarity

are used to measure how likely two targets belong to the

same identity. In particular, appearance similarity serves

as one of the most critical metrics; however, it tends to re-

sult in errors for similar targets. As a complement, optical

flow-based motion information is commonly incorporated

for more robust tracking [9, 39, 25]. However, the standard

optical flow methods [7, 12] exploited in their works are

computationally expensive, and their parameters need to be

manually adjusted for different situations. Such weakness

is recently overcome by training end-to-end optical flow

convolutional neural networks (CNN) on synthetic datasets

[11, 17]. However, due to the limited variability of syn-

thetic datasets, as well as the domain difference between

generated data and real-world imagery, the generalization of

these methods remains challenging. To alleviate this prob-

lem, unsupervised optical flow networks [18, 32, 37, 27]

are developed, yet with another shortcoming that their per-

formance is limited by occlusion and large motion [37].

In this paper, we introduce an online tracking-by-

segmentation method (see Fig. 1) that combines both ap-
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Figure 1. Illustration of our online tracking-by-segmentation pro-

cess. The images are cropped from original ones. We show a mi-

tosis data association example here. The updating process is based

on mask IoU and is performed with Hungarian algorithm [23, 28].

pearance and motion features for neural cell tracking. Our

method consists of two components (see Fig. 2): a super-

vised blob-seed network (BSNet) and an unsupervised op-

tical flow network (UnFlowNet). BSNet provides cell in-

stance appearance features, while UnFlowNet captures cell

motions between frames. The online tracking (see Fig. 1)

comprises two processes: mask prediction and updating. In

the updating process, we employ the Hungarian algorithm

[23, 28] for data association and adopt mask intersection-

over-union (IoU) as the association metric. We verify the

proposed method through a series of experiments, which

demonstrate its superiority in neural cell tracking.

2. Related Work

2.1. Multi­object Tracking

One prevalent paradigm for multi-object tracking is

tracking-by-detection. The general idea is to first localize

the targets using an object detector in each frame, and then

associate the targets across frames. One typical class of in-

stances is the online methods [8, 39, 21, 6], which associate

detections of the incoming frame immediately to existing

trajectories and are efficient for real-time scenarios. Trajec-

tories are typically handled with state-space models such as

Kalman [19] and particle filters [13]; and the bounding box

association for each tracker-detection pair aims to minimize

defined assignment cost, which can be solved via Hungarian

algorithm [23, 28] or greedy association [8]. Our method

also works in an online manner.

Different from online approaches, the offline methods

typically construct a set of trajectories through global or de-

layed optimization. For example, network flow-based meth-

ods [3, 44, 31] model the problem as a graph which can

be solved globally and efficiently. However, these methods

are very restrictive in representing motion and appearance

due to the intrinsic properties of cost functions. Inspired

by the success of deep learning, Kim et al. [20] propose

to incorporate deep appearance features into multiple hy-

potheses tracking to solve the multidimensional assignment

problem. Similarly, Son et al. [34] learn the cost metric

through deep network, while the Siamese networks [25, 5],

triplet network [16] and correlation network [36] learn to

discriminate whether the two input image patches belong to

the same trajectory or not. These deep feature based track-

ing methods typically require well-defined supervision for

the learning of appropriate data association metric.

To make data association more reliable, standard optical

flow methods [7, 12] are utilized to incorporate motion in-

formation in multi-object tracking [9, 39, 25]. To accelerate

the computation and avoid manual parameter tuning of opti-

cal flow, deep learning based methods are developed. Rep-

resentative examples include FlowNet [11] and FlowNet 2.0

[17]. Training these deep models typically requires a large

amount of data, and is thus commonly performed on syn-

thetic dataset. However, due to domain difference, it is

difficult to apply the trained model directly to real-world

imagery such as microscopy images. To solve this issue,

Jason et al. [18, 32] propose unsupervised optical flow net-

works where the original supervised loss is replaced by a

proxy loss based on the classical brightness constancy and

smoothness assumptions. Wang et al. [37, 27] further de-

sign bidirectional flow to alleviate the occlusion problem. In

this paper, we employ the forward unsupervised flow to cap-

ture cell motions. However, different from existing works,

we avoid the influence of background and large motions by

masking the images with detected cell blobs, thereby largely

improving the flow accuracy.

2.2. Neural cell tracking

Existing neural cell tracking methods generally adopt

tracking-by-segmentation methodology. For example, Tang

et al. [35] use fuzzy threshold, watershed and geometric

snakes to segment cells across the whole sequences. Al-

Kofahi et al. [2, 30, 26] use seeded watershed to overcome

the segmentation errors caused by touching cells. These

unsupervised hand-crafted methods are sensitive to image

intensity variations and suffer from over- and under- seg-

mentation. To track the cells, Pinidiyaarachchi et al. [30]

propagate the seeds and tracker identities from the previ-

ous frame to the current frame. However, the propagation

fails to identify cell mitosis and the tracking performance

depends heavily on segmentation qualities. Al-Kofahi et

al. [2, 35, 26] model the probabilities of cell movement

and division using cell morphology attributes, such as cen-

troid, the major axis, and orientation. These prediction

models tend to generate large tracking errors due to inac-
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Figure 2. The two architectures: BSNet and UnFlowNet. The encoder is composed of conv0, conv1, conv2 x, con3 x, conv4 x from left to

right, where structures of conv1-conv4 are from ResNet50 [15] and conv0 contains two 3×3 convolutional layers. The red circle in BSNet

indicates the attached cells that can hardly be separated by blob map alone. The red circle in the UnFlowNet points to the learned optical

flow that can be used to predict cell mitosis.

curate segmentation as well as abnormal cell behaviors and

shapes. Compared to existing works above, our method

is able to identify cell mitosis and produce accurate blob

masks, thanks to the learned deep features.

3. Method

Our online tracking-by-segmentation method (see Fig. 1)

comprises two components: a supervised blob-seed net-

work (BSNet) and an unsupervised optical flow network

(UnFlowNet). The BSNet provides the instance blob seg-

mentation for each cell and the UnFlowNet captures the cell

motions between two frames for mask prediction. We first

introduce the two components in section 3.1 and section 3.2.

Then we demonstrate our tracking algorithm in section 3.3.

3.1. BSNet

For neural cell tracking, one key problem is to identify

the neural cell instances. However, neural cells tend to con-

tact each other transiently or long-termly, making it difficult

to distinguish different instances. Instance segmentation is

one possible solution to this problem [41, 14, 42, 43], while

it suffers from a huge imbalance between positive and neg-

ative anchor boxes [24, 40]. In response to such issues, we

propose to use blob segmentation to represent the cell ap-

pearance features for neural cell tracking. The blobs of cells

we utilize here are the areas inside the contours of cells,

where the filopodia and lamellipodia are not included. Cell

blobs are effective to tell apart different targets, but could

be insufficient for separating attached cells (see Fig. 1 and

Fig. 2). To deal with this problem, we further employ seed

heatmaps to help separate the cells. In particular, we detect

the number of seeds inside the blob area. When the number

of seeds is greater than one, we apply watershed to separate

the connected blobs.

We develop a supervised blob-seed network (BSNet) for

the prediction of cell seeds and blobs. The seed heatmaps

and the blob segmentations are combined to capture the ap-

pearance features of cell instances, which will be further

used for mask prediction and mask association. As shown

in Fig. 2, the BSNet structure is similar to a U-Net [33].

The encoder contains five convolutional layer blocks, which

we name them from left to right conv0, conv1, conv2 x,

con3 x, and conv4 x. The structures of conv1-conv4 are

from ResNet50 [15]. Conv0 consists of two 3 × 3 convo-

lutional layers. We use one 4 × 4 deconvolutional layers

with stride 2 in each skip connection with a plus operator

to combine the shallow and deep features. The head pre-

diction of BSNet is a two-channel feature map containing
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seed heatmap and blob map of the neural cells. The blob

and seed segmentations are then combined to generate the

blob instance masks. We normalize the two output maps

by a pixelwise sigmoid function. The objective loss of the

BSNet is a binary cross-entropy function.

3.2. UnFlowNet

Data association is one of the most critical problems for

cell tracking. Existing cell tracking methods generally use

empirical morphology metrics to associate cell instances.

To detect mitosis during tracking, overlaps [1], distances

[2], and morphology combinations [10] between parents

and children are employed. However, these metrics are in-

effective in scenarios where there exist touching cells and

morphology changes.

In this work, we propose to utilize the optical flow field

to correlate the cell instances between two frames directly

(see Fig. 1). In particular, for each cell blob instance in the

previous frame, we warp it to the current frame using the op-

tical flow field. Then the instance association between the

predicted blobs and the blob segments of the current frame

is solved by Hungarian algorithm [23, 28] using mask IoU.

Our method has two major advantages. First, the cell mito-

sis can be captured by optical flow (see Fig. 1 and Fig. 2).

Compared to existing complex restricted morphology met-

rics, our warping-based mitosis prediction is more reliable.

Second, the optical flow field predicts the possible morphol-

ogy and position changes of previous cell instances in the

current frame, thereby providing more accurate instance as-

sociation.

We employ an unsupervised optical flow network (Un-

FlowNet) to learn the motions between two consecutive

frames. To avoid the interference of background change and

large cell motion caused by filopodia and lamellipodia, we

mask the input images with the blob segmentations gener-

ated from BSNet. As shown in Fig. 2, the UnFlowNet con-

tains the same encoder architecture as BSNet. The coarse-

to-fine optical flow refinement parts follow the designs of

FlowNetS [11]. We use the smooth and photometric loss

[18] to optimize the network parameters. In particular, we

calculate the losses between the input image pairs and out-

put optical flow at every stage (s = 1, 2, . . . , 5). For input

images It, It+1 ∈ R
3×H×W , the loss function is defined as:

L =
5∑

s=1

(Lphotometric(us, vs, It, It+1) + Lsmooth(us, vs)),

(1)

where u, v ∈ R
H×W represent the horizontal and the ver-

tical flow between the two input images and s indexes the

stage number of output optical flow (see Fig. 2). The pho-

tometric loss is the sum of difference between It+1 and the

warped images from It:

Lphotometric(u, v, It, It+1) =
∑

i,j

ρ(It+1(i, j)− It(i+ ui,j , j + vi,j)),
(2)

where ρ(x) = (x2 + ǫ2)α is the Charbonnier penalty [18].

The smooth loss is as follows:

Lsmooth(u, v) =
∑

i,j

(ρ(ui,j − ui+1,j) + ρ(ui,j − ui,j+1)

+ρ(vi,j − vi+1,j) + ρ(vi,j − vi,j+1)).
(3)

3.3. Tracking Algorithm

Our online tracking-by-segmentation method for neural

cell tracking is illustrated in Algorithm 1. For two sequen-

tial images x1 and x2, BSNet is first applied to frame x1

to obtain its cell blob instance masks. We use N to repre-

sent the total number of masks. Next, we assign a tracker

ID ti to the i-th mask. We use T = {ti}
N
i=1 to represent

the tracker sets for frame x1. Algorithm 1 is then used to

predict and update the tracker sets. Note that each tracker ti
is associated with a cell blob mask.

Prediction Given the two sequential images x1 and x2

and the tracker sets T for x1, the prediction process is

to predict cell blob instance masks for x2 and update the

tracker set T . First, we obtain the optical flow field f be-

tween frame x1 and x2 using UnFLowNet (Line 1). For

each ti in T , we apply the Hadamard product between the

instance mask of ti and x1 to mask out the interference of

other cells, background and filopodia-like structures. And

then we warp the product image using optical flow field f

(Line 5). We denote the warped image by y. To check if

y contains mitosis, we count the seeds of y using the seed

heatmap from x2 and separate y when the seeds number is

2 (see Fig. 1). If no mitosis happens, we replace the mask

of ti with y (Line 6). Otherwise, we use an adding set Ma

and a removing set Mr to store the mitosis predictions. If a

mitosis happens to y, we put its parent tracker ti to Mr and

store the two child masks in Ma. Our aim is to remove the

tracker ID of the parent and create new tracker IDs for child

cells. After iterating all the tracker ti in T , as in Line 9, we

remove ti from T if ti is in Mr and we create new tracker

IDs for masks in Ma and add the new trackers to T . The

two sets Ma and Mr are then emptied.

Updating After the previous step, our updated tracker set

T contains the predicted blob masks for x2 which ideally

are consistent with the observed blob instance masks for x2

in terms of shape, size and the number of instances. Our

next step is to associate the predicted masks with the ob-

served masks using the Hungarian algorithm [23, 28]. First,
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we apply BSNet to x2 to obtain its blob cell instance masks

B, which are referred as the observed instance masks for x2

(Line 2). Then we find the matched pairs between B and

T using the Hungarian algorithm based on the mask IoU

between each pair (Line 10). The matched pair indices are

denoted by M . We update the instance mask of ti with bj if

(i, j) is in M (Line 12). We add bj to Ma and push ti into

Mr if (i, j) is not in M (Line 13). Finally, we remove ti
from T if ti is in Mr. We create new tracker IDs for masks

in Ma and add the new trackers to T (Line 15).

Algorithm 1: Online tracker prediction and updating

Input: frame x1 and x2, tracker T = {ti}
N
i=1 of x1

Output: updated tracker T for x2

1 f ← UnFlowNet(x1, x2) ; ⊲ f : optical flow

field

2 B = {bj}
M
j=1 ← BSNet(x2) ; ⊲ B : blob mask

instances

3 Ma ← ∅; Mr ← ∅;
4 for i← 1 to N do

5 y ←warp(ti ⊙ x1, f ) ; ⊲ Tracker

prediction; ⊙: Hadamard product

6 ti ← y if φ(y) = 1 ; ⊲ φ : connected

region number

7 Ma ←Ma ∪ {y} and Mr ←Mr ∪ {ti} if

φ(y) = 2 ;

8 end

9 T ← T \Mr; T ← T ∪Ma; Ma ← ∅; Mr ← ∅;

10 M ← Hungarian(T = {ti}
N ′

i=1, B = {bj}
M
j=1); ⊲ M :

match pair indices

11 for i← 1 to N ′, j ← 1 to M do

12 ti ← bj if (i, j) in M ; ⊲ Update

13 Ma ←Ma ∪ {bj} and Mr ←Mr ∪ {ti} if (i, j)
not in M ;

14 end

15 T ← T \Mr; T ← T ∪Ma;

4. Experiments

4.1. Data

The neural cell images used in this work come from a

series of time-lapse microscopy videos whose frame size is

512× 640. For the training of BSNet, we sample and man-

ually label 386 training images and 129 validation images.

The seed heatmap is generated using 2D Gaussian with a

radius of 10 centered at the centroid of the blob instances.

We use 8 sequences of images with a total number of 8797

neural cell frames to train the UnFlowNet. The tracking per-

formance is evaluated on 9 sequences of images with 1011

frames in total. We use flip, rotation, contrast and brightness

distortion for data augmentation.

4.2. Training Details

The BSNet is trained for 100 epochs with a batch size of

16 images, while the UnFlowNet is trained for 60 epochs

with a batch size of 12 images. In our experiment we

train the BSNet and UnFlowNet independently. Note that

we also experiment with sharing the encoder of these two

networks, but only observe dramatically decreased perfor-

mance for the UnFlowNet. Both networks are implemented

with PyTorch [29] and run on 4 Nvidia K80 GPUs. We use

Adam [22] with an initial learning rate of 0.001 for network

optimization. The weights of conv1-conv4 of the encoder

(Fig. 2) are initialized from a pretrained ResNet50 [15] on

ImageNet datasets. Other parts of the networks are initial-

ized with random weights sampled from a standard Gaus-

sian distribution.

4.3. Evaluation Metrics

The multiple object tracking precision (MOTP) and mul-

tiple object tracking accuracy (MOTA) [4] are employed in

this work to evaluate the tracking performance. MOTP re-

flects the ability of the tracker to estimate the precise object

segmentations:

MOTP =

∑
i,t d

i
t∑

t ct
, (4)

where ct is the number of matches found at time t. For

each of these matches, dit is the mask IoU between object oi
and its corresponding hypothesis. MOTA accounts for all

object configuration errors made by the tracker, false posi-

tives, misses and mismatches over all frames:

MOTA = 1−

∑
t(mt + fpt +mmet)∑

t gt
, (5)

where mt, fpt and mmet are the number of misses (or false

negatives, FN), false positives (FP) and mismatches, respec-

tively. gt is the number of objects present at time t.

Note that in Table 1, FP is the number of false detec-

tion, FN is the number of missed detection, TP is number

of correct detection. We use N GT as the total number of

cells in the 9 sequential testing images. IDsw is the num-

ber of tracker ID switches. We follow the same strategies in

[4] to calculate these variables. Briefly speaking, if no blob

mask in tracker sets Ts matches with a groundtruth mask at

time s (i.e., mask IoU< 0.3), we count the case as a FN. If a

blob mask in the tracker sets Ts has no matched groundtruth

mask, we count the case as a FP. Otherwise, if a blob mask

in Ts is matched with a grountruth mask, we count the case

as a TP and we create a correspondence between them. If

a new correspondence is made at time s + 1 which contra-

dicts the old correspondence, we count this case as a IDsw

and we update the correspondence.
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Figure 3. Qualitative examples of tracking results. The top row shows the images that are projected with their blob instance segmentation

masks. The bottom row shows the related seed heatmaps.

Method MOTA ↑ MOTP ↑ N GT TP ↑ FP ↓ FN ↓ IDsw ↓
Watershed+Kalman -0.0732 0.5018 11879 4684 5259 7195 295

BNet+Kalman (Ours) 0.8235 0.9754 11879 10646 768 1233 96

BNet+UnFlowNet (Ours) 0.8737 0.9729 11879 11421 960 458 82

BSNet+UnFlowNet (Ours) 0.8746 0.9744 11879 11685 1215 194 81

Table 1. Tracking evaluation results. N GT is the total number of cells in the 9 sequences of testing images. IDsw represents the number of

tracker ID switches. TP, FP and FN indicate the number of true positive, false positive and false negative, respectively. BNet is the BSNet

without seed heatmaps.

4.4. Results

The evaluation results of our tracking methods are shown

in Table 1. First, we investigate the effect of seed heatmap.

From the ablation study between row3 and row4 of Ta-

ble 1, we observe that the seed heatmap helps to decrease

the false negatives due to the separation of attached cells,

while it would also lead to false positives. The reason would

be that the seed heatmap can hardly predict the seed for

neural cells with extremely irregular morphological shapes,

such as those with a long extension (see Fig. 3). However,

from TP we find that the seed heatmap is helpful in locat-

ing the target cells. As a result, the overall performance

(i.e., MOTA) of BSNet+UnFlowNet is better than that of

BNet+UnFlowNet. We also compare our UnFlowNet per-

formance with Kalman filter [19]. From the results of row2

and row3 in Table 1, it can be observed that UnFlowNet

suppresses the number of false negatives significantly, in-

dicating that UnFlowNet is better at identifying the newly

appeared cells from mitosis. Note that, although Kalman

filter has a stronger ability to reduce false positives, over-

all its performance is inferior to UnFlowNet, as shown by

the MOTA score. Finally, we compare our BNet with the

traditional watershed-based neural cell tracking approach

[2]. The results demonstrate the significant advantage of

our method. Some qualitative tracking results are illustrated

in Fig. 3. As can be seen, there are some background im-

purities (#9 and #26) which are very similar to cells in ap-

pearance and thus are recognized as cells. Besides, for the

same cell, its ID could be updated constantly through dif-

ferent frames. This phenomenon is caused by the failure of

seed detection. In particular, the inaccurate seed prediction

in frame x1 would lead to the inability of our method to sep-

arate touching cells. Consequently, these touching cells are

treated as one instance and the additional tracker IDs will be

removed from T . Although in the succeeding frame x2 the

touching cells are correctly separated, the newly emerged

instances are assigned with new tracker IDs.

5. Conclusion

In this paper, we propose an online neural cell tracking

method that exploits both the appearance and motion fea-

tures of neural cells. The appearance information is cap-

tured by BSNet, and the motion feature is extracted using

UnFlowNet. Compared to previous methods, our method is

able to achieve higher tracking accuracy.
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