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Abstract—This paper considers optimal proactive caching
when future demand predictions improve over time as expected
to happen in most prediction systems. In particular, our model
captures the correlated demand pattern that is exhibited by
end users as their current activity reveals progressively more
information about their future demand. It is observed in previous
work that, in a network where service costs grow superlinearly
with the traffic load and static predictions, proactive caching can
be harnessed to flatten the load over time and minimize the cost.
Nevertheless, with time varying prediction quality, a tradeoff
between load flattening and accurate proactive service emerges.

In this work, we formulate and investigate the optimal proac-
tive caching design under time-varying predictions. Our objective
is to minimize the time average expected service cost given a
finite proactive service window. We establish a lower bound on
the minimal achievable cost by any proactive caching policy, then
we develop a low complexity caching policy that strikes a balance
between load flattening and accurate caching. We prove that our
proposed policy is asymptotically optimal as the proactive service
window grows. In addition, we characterize other non-asymptotic
cases where the proposed policy remains optimal. We validate
our analytical results with numerical simulation and highlight
relevant insights.

I. INTRODUCTION

Proactive content caching has been proposed to offer en-
hanced quality of experience (QoE) while maximally utilizing
the data network’s resources [1]. The idea hinges on exploiting
the recent advances in human behavioral modeling, machine
learning, and collaborative filtering in predicting future user
demand and serving it ahead of time. Proactive content caching
has promised significant network gains both for end-users and
content service providers (SPs). For an end user, receiving
content before demand reduces service delays [1], [2] and the
end user receives data content at lower prices compared to
reactive service techniques [3], [4], [5]. On the other hand,
SPs benefit from proactive content caching in regulating their
traffic load over time, limiting the large disparity between
peak and off-peak hour demand levels, and hence minimizing
operational costs [6], [7].

Several works have investigated design strategies for proac-
tive content caching from different perspectives. In [2], [8],
proactive caching has been considered from a queuing theory
perspective where perfectly predictable data requests are en-
queued and served based on the remaining time to arrival. In
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[6], the impact of uncertainty about future demand has been
addressed, order-optimal static proactive caching policies have
been developed, and the notion of offering incentives to the
end user for higher predictability has been introduced. In [4],
[5], joint pricing incentives and proactive caching strategies
have been considered but for a static setup. Dynamic proactive
caching policies with demand uncertainty have then been
developed in [7] under the assumption of time-invariant pre-
dictions. The concept of proactive caching has been extended
beyond pushing future demand to the end user’s device to
caching at small base stations in [9], [10].

In all previous work, there has been no rigorous attempt
to consider the impact of temporal correlation of the end
user’s demand on the proactive caching design even though
it is a natural feature of human behavior. For instance, after
the user has watched a two-hour movie on Netflix, they may
not watch another one before a while. On the other hand,
if the user runs the first song from a YouTube playlist, it is
more likely that the next song will play out after the current
one has finished. Such correlation in demand patterns offers
significant information about the future which, if judiciously
harnessed, boosts the quality of proactive caching decisions.
Nevertheless, demand correlation raises significant complexity
in the design of optimal online caching strategies due to the
associated time dependence of the caching decisions on the
future predictions. In some existing literature like [9], demand
correlation has been mentioned, however caching decisions
have been developed for a short-term optimization without
considering a model that factors in the correlated user behavior
itself.

In this work, we take the step of generalizing the user de-
mand profile from being independent over time to a correlated
one. In particular, we consider proactive content caching from
the perspective of a SP that aims at minimizing its time average
service costs while serving content to a user with correlated
demand activity. The user correlation model is assumed to be
a Markov process through which the user alternates between
requesting content and idling. To the best of our knowledge,
this is the first time such correlated user-SP interactions have
been captured in online proactive caching policy design. Our
contributions along with the paper outline can be summarized
as follows:
• In Section II, we formulate the time average cost min-

imization problem in which the end-user generates a time
correlated demand pattern and the SP optimizes its proactive
caching control over a finite window of time slots, called
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proactive service window.
• In Section III, we establish a fundamental lower bound

on the achievable cost by any proactive caching policy under
our correlated demand model.
• In Section IV, we develop an asymptotically-optimal

policy that is proven to achieve the lower bound as the
proactive service window size grows.
• In Section V, we show that our proposed policy is optimal

if the proactive service window is just one slot in length, or if
the user idles for at least one slot after receiving the requested
content, a typical characteristic of interactive apps like Yelp,
web-browsing, online gaming, etc.
• We validate our analytical results with numerical simula-

tions in Section VI and conclude our work in Section VII.
Finally, we note that, while our approach of lower bounding

the achievable cost and developing an asymptotically optimal
policy that achieves the bound has been first used in [7], we
stress that this paper is fundamentally different. The correla-
tion aspect of demand creates a tradeoff between smoothing
out the traffic through early-on proactive caching and waiting
as close as possible to the actual demand instant for maximal
utilization of information about such demand. The tradeoff
essentially calls for new techniques in both the lower bound
construction and the proposed policy design.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a time-slotted system that comprises a service
provider (SP) that supplies data content to an end user. In this
model, we are not confined to a particular timescale for the
time slot duration as has been the case in [7]. For example,
in the large timescale (order of minutes or hours) the service
can be a video file, the time slot is the duration to watch
such a video, and the SP can be YouTube, CNN, Netflix,
etc. In the medium timescale (order of seconds) the service
can be a server’s response to a user-generated query in an
interactive session [11], e.g., the SP can be Yelp sending a
burst of packets containing relevant information to the user. In
the small timescale (order of milliseconds or less) the service
can be a single packet sent from a general SP to a device.

The user demand activity at time slot t is captured by
a binary random variable Rt ∈ {0, 1}, t = 0, 1, · · · , where
Rt = 1 only when the user sends a request and Rt = 0
when user is idle in slot t. The activity process {Rt}t forms a
Markov chain (c.f. Fig. 1) with transition probabilities P (Rt =
j|Rt−1 = i) = pij , i, j ∈ {0, 1}. Let π denote the steady
state probability of generating a request in a time slot, then
π = p01

p10+p01
.

The service of a data request consumes an amount S of
the SP’s available resources1 which incurs a cost C(L) on
consuming an amount L of resources in any time slot, with C
being a monotonically increasing and strictly convex function.
The sharper C is the more the need for proactive caching.

The SP can proactively serve potential user requests
before they are actually sent in order to regulate its resource

1The consumed resource S to serve an item need not be constant, it could
be time dependent but the SP must know it before applying proactive service
for that item.

consumption load (load for short) over time and minimize
the operational cost. Nevertheless, since the data content may
be updated frequently, the user discards service that is more
than T slots old, i.e., if the user sends a request at slot t, any
service that has been proactively cached in earlier than t− T
is discarded by the user.

Let ut(τ) denote the amount of resources used by the SP
in slot t to proactively cache the service of a probable request
at slot t + τ , τ = 1, · · · , T . As such, the total service load
experienced by the SP in a given slot t is given by

Lt := (S −
T∑
τ=1

ut−τ (τ))Rt +
T∑
τ=1

ut(τ), (1)

whereby the first term measures the ”reactive” load to com-
plete the service of the demand arriving in slot t and the second
term captures the proactive service of the predictable future
demand.

In networks where the SP reactively responds to generated
user demand and does not apply any proactive service, the
time average expected cost is given by crea := πC(S).

We formulate the problem of minimizing the SP’s time
average expected cost when it utilizes the predictability of the
future user activity along with the content freshness window
T in proactive service as follows. Given the per-slot-load Lt
(1) under a general proactive service strategy σ := {ul(τ)}l,τ ,
the time average expected cost minimization problem is thus
written as

c∗(T ) :=min
σ

lim sup
t→∞

1

t

t−1∑
l=0

E [C (Lt)] (2)

subject to,
T∑
τ=1

ul−τ (τ) ≤ S, ∀l = 0, 1, · · · , (3)

ul(τ) ≥ 0, ∀l = 0, 1, · · · , τ = 1, · · · , T. (4)

The expectation operator E[.] is taken over all random
variables in the system including all requests and proactive
services. The constraints (3), (4) are to ensure that the SP can
not proactively consume more than S units of resources to
cache predictable demand for a future slot and that caching
control is never negative.

The memory introduced to the system through correlated
user activity enhances the predictability of future demand as
the system gets closer to the actual demand instant. However,
such correlated activity renders the problem more challenging
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to tackle compared to the previous work [7] where demand
dynamics have been assumed independent every time slot.

III. FUNDAMENTAL LOWER BOUND

In this section, we establish a fundamental lower bound on
the achievable cost by any proactive service policy.

Theorem 1: For a given proactive service window T ,
the minimum achievable time average expected cost satisfies
c∗(T ) ≥ cb(T ), where

cb(T ) := min{µτ}Tτ=1,µτ≥0(1− π)C
(∑T

τ=1 µτ
)
+

p11πC
(
S − (1− π)

∑T
τ=2 µτ (1− (1− (p10 + p01))

τ−1)
)
+

p10πC
(
S −

∑T
τ=2 µτ (1− π + π(1− (p10 + p01))

τ−1)− µ1

)
(5)

subject to,
∑T
τ=1 µτ ≤ S,

Proof. Please refer to Appendix A.
Theorem 1 yields a simple finite dimensional and convex

optimization that serves as lower bound for any feasible
caching policy. The optimization (5) has a unique solution
for a given proactive service window T as the cost function
C is strictly convex and the constraints set is compact. We
denote such optimal solution by {µ∗τ}τ .

Different from [7] where the lower bound has been char-
acterized irrespective of the proactive window size, here we
provide a tighter bound for every value of T . This will enable
further insights on the capability of the proposed scheduling
policy in regimes where T takes on moderate values.

In the following lemmas we highlight some key insights on
the solution structure of (5) which are crucial to establish the
merits of our proposed policy in Section IV.

Lemma 1: The optimal solution {µ∗τ}Tτ=1 satisfies

µ∗1 +
T∑
τ=2

µ∗τ (1− (p10 + p01))τ−1 ≥ 0. (6)

Proof. Please refer to Appendix B.
It is important to note from Lemma 1 that inequality (6)

holds even when p10 + p01 > 1.
Lemma 2: For any τ ≥ 2, limT→∞ µ∗τ = 0.

Proof. Please refer to Appendix C.
As the proactive service window T grows, there will be no

particular preference over τ ∈ {2, · · · , T} to maintain µ∗τ > 0.
In other words, the share of the optimal solution for every µ∗τ
diminishes asymptotically for τ ≥ 2.

In the following section, we present and analyze our pro-
posed proactive caching policy.

IV. PROPOSED PROACTIVE CACHING POLICY

Our proposed policy, denoted by σ̄, is defined as follows.
Definition 1 (Policy σ̄): Consider a service policy σ̄ in which

the proactive service control ut(τ) is assigned as

ut(τ) :=


µ∗1, τ = 1, Rt = 0,∑T
d=2

µ∗
d

T−1 , τ ∈ {2, · · · , T}, Rt = 0,

0, otherwise,
(7)

where {µ∗τ}Tτ=1 is the optimal solution of (5).

We can clearly see that our proposed policy is feasible as
the cache controls {ut(τ)}t satisfy constraints (3), (4).

Before establishing its asymptotic optimality, we provide
the following two remarks.

Remark 1: The policy σ̄ aims at efficiently utilizing the
temporally improving predictability and load balancing over
time through its two main service components: (1) the near-
demand service component (exploration) ut(1) = µ∗1, which
harnesses the most information about the demand of the next
slot t, and (2) the load balancing component (exploitation)
{ut(τ)}τ = 1

T−1

∑T
τ=2 µ

∗
τ which aims at smoothing out the

load over time.
Remark 2: Policy σ̄ is a simple stationary online policy.

It assigns its controls based on only observing the current
demand state Rt and not on the past.
With the Markov correlated nature of the demand process
{Rt}t, the SP gains more information about future demand
as time gets closer to such demand instant. As such, the
accuracy (or quality) of proactive caching improves over time
thus attracting the SP to wait as close as possible to demand
instant to apply proactive caching. On the other hand, the more
the SP waits to apply a proactive caching service, the more
it wastes opportunities for proactively caching content early
on and spreading its service load uniform over more slots and
reducing its operational cost.

Theorem 2 (Asymptotic optimality of σ̄): Let cσ̄(T ) be the
time average expected cost under the proposed policy σ̄ where

cσ̄(T ) = p11πE
[
C
(
S −

∑T
τ=2 ut−τ (τ)

)
|Rt = 1,

Rt−1 = 1

]
+ p10πE

[
C
(
S −

∑T
τ=2 ut−τ (τ)− µ∗1

)
|

Rt = 1, Rt−1 = 0

]
+ (1− π)E

[
C
(
µ∗1 +

∑T
τ=2 ut(τ)

)]
.(8)

Then limT→∞ cσ̄(T )− cb(T ) = 0.
Proof. Omitted for space limitation. However, it follows

from Lemmas 1, 2. For complete proof, please refer to
Appendix D in [12].

Theorem 2 utilizes the fact that, as the proactive service
window grows, the proactive scheduler observes the typical
time average behavior of the Markov demand process where
the impact of the past user activity on the future decisions
diminish over time. Thus, proactive controls can be set equal,
interestingly, up to two slots to the actual demand time while
a more tailored control ut(1) is served one slot ahead.

Besides the asymptotic optimality property, policy σ̄ is
optimal for some non-asymptotic regimes that we discuss in
the next section in addition to some other relevant scenarios.

V. SPECIAL CASES OF THE PROPOSED POLICY

In this section, we study relevant network scenarios captured
by our proposed correlated demand profile and investigate the
performance of our proposed policy σ̄.

Theorem 3: For any proactive service window T ≥ 1, if
p10 = 1, then µ∗τ = 0, τ = 2, · · · , T and policy σ̄ is optimal.
Proof. Please refer to Appendix E in [12].
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If the user idles for at least one slot right after requesting
a service (i.e., p10 = 1), then irrespective of the size of
the proactive service window, the optimal proactive caching
strategy is to defer the caching decision to only one slot before
potential demand. Intuitively, in such a case, the SP is certain
about experiencing at least one idle slot before demand. Thus it
can safely utilize as much information as possible about future
demand to maximally improve the accuracy of the proactive
caching service while it is guaranteed to serve it in the slot
before predicted demand. Note that, from the definition of
policy σ̄, the SP does not apply any proactive caching service
in a slot experiencing user demand (i.e., when Rt = 1).

In the medium timescale (order of seconds), the p10 = 1
scenario is practically typical in applications dominated by
user-SP interactions with the user spending an amount of time
to process the content served by the SP before generating
another content request. For instance, the study in [11] shows
that end users interacting with Google Chrome and Yelp
spend on average 3 and 2.5 seconds, respectively, processing
previously requested content before sending a new request
while the service of a request itself only takes, on average,
0.5 to 1 second. If the slot duration is 1 second, then the end
user will likely idle more than one slot after every service.

Theorem 4: If the proactive service window size T = 1, the
proposed policy σ̄ is optimal. That is, cσ̄(1) = cb(1).
Proof. Follows by substituting with T = 1 in (5) and (8).

When the data content is highly dynamic, e.g., news, traffic,
or some social network updates, the SP does not have enough
freedom to proactively spread its future demand over time. As
such, the near demand service component µ∗1 is the only degree
of freedom to minimize the cost. The resulting cost in this case
coincides with the lower bound implying the optimality of the
policy σ̄ irrespective of the user-SP interaction characteristics.
That is, policy σ̄ is optimal for any p10, p01.

The T = 1 scenario can also serve as a good approximation
for any SP that can only make limited-term predictions of its
user’s data requests. In fact, we show numerically in Section
VI that the most contribution to cost reduction offered by
proactive content caching is attained by the one-slot ahead
service component ut(1).

Theorem 5: If p10 + p01 ≤ 1, then2 µ∗τ = 0 for all τ =
1, · · · , T − 1, but µ∗T > 0.
Proof. Please refer to Appendix F in [12].

If the user requests {Rt}t form an independent and identi-
cally distributed (i.i.d.) sequence rather than a Markov process,
then p10 + p01 = 1, in which case Theorem 5 agrees with the
asymptotic optimality result of Theorem 3 in [7] where users
demand has been assumed i.i.d. The value of Theorem 5 is that
it validates that the i.i.d. approximation is also asymptotically
optimal for correlated demand scenarios with p10 + p01 < 1.

In general, p10 + p01 < 1 represents the scenario where the
user tends to remain in one state (idle or request) more than
to switch between states. Under such a condition, the SP does
not have enough certainty about an empty slot prior to the
demand in order to apply a near-demand proactive caching,

2There is no contradiction between Lemma 2 and Theorem 5 as Lemma 2
considers the limiting behavior of {µ∗τ}Tτ=2 as T →∞.

hence it does not risk delaying proactive caching and starts
early on distributing its load.

The p10 + p01 < 1 scenario can model the network’s oper-
ation in the long and short timescales as follows. In the long
timescale (order of minutes to hours), the user interacting with
a video streaming SP may spend several minutes watching
a group of movies in a row (during a break or after the
business day). Then the user refrains from sending more movie
requests (returning to work or sleeping) creating a sequence
of idle slots, where the time slot itself can be the duration
of consuming one video. It has been recently found that the
average YouTube session duration is 40 minutes [13] while
the average popular YouTube video length is 4.3 minutes [14]
suggesting that users may watch more than one video in one
session. Thus, the user may remain in the same state more
than transitioning between states.

In the short timescale (order of milliseconds), the
interactive-traffic study [11] has revealed that the response
to a user query is a sequence of packets that occupy the
transmission link for several milliseconds and possibly a
whole second followed by a period of idling due to the user
processing such response. The idle period also spans thousands
of milliseconds. If the time slot is considered to be the packet
transmission duration, then the packet transmission process of
an interactive App can be modeled as a correlated Markov
process with Rt being the event of packet transmission in slot
t, and p10, p01 are the corresponding transition probabilities.

VI. NUMERICAL SIMULATIONS

In this section, we provide numerical validation of the
analytical results presented in the previous sections. In our
simulations, we consider the i.i.d. approximation as our base-
line caching strategy where the user’s demand is assumed i.i.d.
with probability of request π = p01 in any time slot. The i.i.d.
approximation ignores the additional information available
to the SP due to demand correlation. We also consider a
polynomial cost function of degree d = 4, i.e., C(L) = L4,
and set the service resource of a single request to S = 1 unit.

In Fig. 2, we show the time average cost performance as
well as the fundamental lower bound’s behavior with the
proactive window size T for two instances of the user-SP
interaction. First, p10 + p01 > 1 where p10 = 0.9, p01 = 0.8.
Fig. 2a manifests that the cost under our proposed policy σ̄
converges very fast in T , almost from T = 1. In addition,
the figure demonstrates the gap between the cost under i.i.d.
approximation and under policy σ̄ which is ∼ 34% of the i.i.d.
approximation’s cost. Second, p10 +p01 < 1 where p10 = 0.3,
p01 = 0.4. Fig. 2b shows that the i.i.d. approximation’s cost
coincides with our proposed policy’s validating Theorem 5.
While convergence of the time average cost is slower than
that of p10 + p01 > 1, it happens at reasonably moderate
values of T . For instance, if the time slot duration in the long
timescale is 10 minutes, then T = 100 corresponds to 16.67
hours, which can be considered a short lifetime for a wide
range of video content like TV shows, songs, Vlogs, etc.

Overall, the Fig. 2 confirms Theorem 2 by showing that
the cost under policy σ̄ converges asymptotically to cb(T ).
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Fig. 2: Asymptotic optimality of the proposed policy σ̄.

Moreover, it verifies Theorem 4 as in Figs. 2a, 2b we have
cσ̄(1) = cb(1). We can also observe from the figures that
transitioning from T = 0 (the reactive service scenario) to T =
1 leads to the most significant contribution to cost reduction,
as mentioned in the discussion of Theorem 4 in Section V.

In Fig. 3, we shed light on the impact of the user re-
action time, captured by p01 of interactive-app session on
the performance of proactive caching. In particular, we set
p10 = 0.9, and consider the medium timescale of operation
where the time slot duration is a few seconds and the user is
interacting with an app through a sequence of query-response
pairs [11]. We assume that the served information has a
lifetime much larger than the slot size, hence we take T →∞.
We define the asymptotic service components of our policy
σ̄ as µI := limT→∞ µ∗1, µD := limT→∞

∑T
τ=2 µ

∗
τ , where

µI captures the near-demand service component, whereas µD
captures the load-balancing service component.
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Fig. 3: Asymptotic optimality of the proposed policy σ̄.

Fig. 3a shows the time average cost grows with p01. As the
user reaction time lessens p01 grows adding more utilization to
the SP’s resources and hence raising the cost. The cost under
i.i.d. approximation matches that of policy σ̄ for small values
of p01. In particular, according to Theorem 5, for all p01 ≤
1− p10 = 0.1, the i.i.d. approximation is optimal in our large
T scenario. As p01 grows beyond 0.1, the i.i.d. approximation
deviates from the optimal (policy σ̄) while the cost of policy σ̄
grows at slower rate highlighting the value of leveraging the
near-demand component rather than simply distributing the
load equally over the proactive service window.

Fig. 3b further depicts the allocation of the caching compo-
nents as p01 grows. Typically, the system begins with µI = 0

as p01 +p10 ≤ 1, then as transitioning between states starts to
dominate the system, i.e., p10 + p01 > 1, proactive caching
starts to utilize the near demand component especially as
the certainty about demand in the next slot, p01, grows. In
fact, it becomes more advantageous to the system to delay all
its proactive service to only one slot before demand as the
certainty, p01, approaches one.

VII. CONCLUSION

We have considered optimal proactive content caching for
an end user that exhibits a correlated demand pattern over
time. Such correlation best captures realistic scenarios of
today’s network dynamics in various timescales including
Apps that are based on user-service provider (SP) interactions
like Yelp, Web-browsing, etc. The SP has been assumed to
employ proactive caching within a proactive service window
to best regulate its service load and minimize its operational
cost. In this framework, we have developed an asymptotically
optimal caching strategy that achieves a fundamental cost
lower bound as the proactive service window grows. We
have further characterized non-asymptotic cases where our
proposed caching strategy remains optimal.

APPENDIX A
PROOF OF THEOREM 1

Let {u∗t (τ)}t,τ be the optimal solution to (2). Then, by
conditioning on Rl−1, Rl, for l ≥ 0 we have

c∗(T ) = lim sup
t→∞

1

t

t−1∑
l=0

p11πE

[
C

(
S −

T∑
τ=1

u∗l−τ (τ) +
T∑
τ=1

u∗l (τ)

)
|Rl−1 = 1, Rl = 1

]
+

p10πE

[
C

(
S −

T∑
τ=1

u∗l−τ (τ) +
T∑
τ=1

u∗l (τ)

)
|Rl−1 = 0, Rl = 1

]

+ p01(1− π)E

[
C

(
T∑
τ=1

u∗l (τ)

∣∣∣∣∣Rl−1 = 1, Rl = 0

]

+ p00(1− π)E

[
C

(
T∑
τ=1

u∗l (τ)

)
|Rl−1 = 0, Rl = 0

]
(a)

≥ lim sup
t→∞

1

t

t−1∑
l=0

p11πC

(
S −

T∑
τ=1

E[u∗l−τ (τ)

|Rl−1 = 1, Rl = 1] +
T∑
τ=1

E [u∗l (τ)|Rl−1 = 1, Rl = 1]

)
+
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p10πC

(
S −

T∑
τ=1

E
[
u∗l−τ (τ)|Rl−1 = 0, Rl = 1

]
+

T∑
τ=1

E [u∗l (τ)|Rl−1 = 0, Rl = 1]

)
+

p01(1− π)C

(
T∑
τ=1

E [u∗l (τ)|Rl−1 = 1, Rl = 0]

)
+

p00(1− π)C

(
T∑
τ=1

E [u∗l (τ)|Rl−1 = 0, Rl = 0]

)
(b)

≥ lim sup
t→∞

p11πC

(
S −

T∑
τ=1

1

t

t−1∑
l=0

E[u∗l−τ (τ)|Rl−1 = 1, Rl = 1]

+
T∑
τ=1

1

t

t−1∑
l=0

E [u∗l (τ)|Rl−1 = 1, Rl = 1]

)
+

p10πC

(
S −

T∑
τ=1

1

t

t−1∑
l=0

E
[
u∗l−τ (τ)|Rl−1 = 0, Rl = 1

]
+

T∑
τ=1

1

t

t−1∑
l=0

E [u∗l (τ)|Rl−1 = 0, Rl = 1]

)
+

p01(1− π)C

(
T∑
τ=1

1

t

t−1∑
l=0

E [u∗l (τ)|Rl−1 = 1, Rl = 0]

)
+

p00(1− π)C

(
T∑
τ=1

1

t

t−1∑
l=0

E [u∗l (τ)|Rl−1 = 0, Rl = 0]

)
.

Inequality (a) follows by Jensen’s inequality since C is strictly
convex. Inequality (b) is another application of Jensen’s in-
equality while noting that 1

t

∑t−1
l=0 1 = 1.

The expectation E[u∗l−τ (τ)|Rl−1, Rl] can be expanded as

E[u∗l−τ (τ)|Rl−1, Rl] =
∑

x,y∈{0,1}

Pτ (x, y|Rl−1, Rl)×

E[u∗l−τ (τ)|Rl−τ−1 = x,Rl−τ = y,Rl−1, Rl], (9)

Pτ (x, y|Rl−1, Rl) := P (Rl−τ−1 = x,Rl−τ = y|Rl−1, Rl)
(10)

for any x, y ∈ {0, 1}. The causality of the cache controls
implies that the demand realization Rl is independent of the
previous controls {u∗l−τ (τ)}, τ = 1, · · · , T . Hence, (9) can be
re-written as

E[u∗l−τ (τ)|Rl−1, Rl] =∑
x,y∈{0,1}

E[u∗l−τ (τ)|Rl−τ−1 = x,Rl−τ = y]Pτ (x, y|Rl−1, Rl).

Let µτ (xy) := 1
t

∑t−T
l=T E[u∗l (τ)|Rl−1 = x,Rl = y], x, y ∈

{0, 1}. Then, we have

1

t

t−1∑
l=0

E[u∗l (τ)|Rl−1 = x,Rl = y] ≤ µτ (xy) + εt,

1

t

t−1∑
l=0

E[u∗l−τ (τ)|Rl−τ−1 = x,Rl−τ = y] ≤ µτ (xy) + εt,

where εt = TS
t . Note that, εt → 0 as t→∞.

From inequality (b) above, the optimal time average ex-
pected cost can further be lower bounded as

c∗(T ) ≥ lim sup
t→∞

p11πC

S − T∑
τ=1

∑
x,y∈{0,1}

Pτ (x, y|Rl−1 = 1, Rl = 1)×

(µτ (xy) + εt) +
T∑
τ=1

µτ (11)

)
+ p00(1− π)C

(
T∑
τ=1

µτ (00)

)

+ p10πC

S − T∑
τ=1

∑
x,y∈{0,1}

Pτ (x, y|Rl−1 = 0, Rl = 1)×

(µτ (xy) + εt) +
T∑
τ=1

µτ (01)

)
+ p01(1− π)C

(
T∑
τ=1

µτ (10)

)
(c)

≥ lim sup
t→∞

min
{µτ (xy)}τ,x,y

p01(1− π)C

(
T∑
τ=1

µτ (10)

)
+

p11πC

S − T∑
τ=1

∑
x,y∈{0,1}

Pτ (x, y|Rl−1 = 1, Rl = 1)×

(µτ (xy) + εt) +
T∑
τ=1

µτ (11)

)
+

p10πC

S − T∑
τ=1

∑
x,y∈{0,1}

Pτ (x, y|Rl−1 = 0, Rl = 1)×

(µτ (xy) + εt) +
T∑
τ=1

µτ (01)

)
+ p00(1− π)C

(
T∑
τ=1

µτ (00)

)
subject to, µτ (xy) ≥ 0, x, y ∈ {0, 1}, τ = 1, · · · , T

T∑
τ=1

µτ (xy) ≤ S, x, y ∈ {0, 1}.

The optimization on the RHS of inequality (c) is strictly
convex in {µτ (xy)}τ,x,y and its constraint set is compact,
hence it has a unique solution, call it {µ∗τ (xy, εt)}τ,x,y .

From Corollary 7.43 in [15], since C is strictly convex, then
µ∗τ (xy, εt) is continuous in εt, and µ∗τ (xy, εt) → µ∗τ (xy) as
t→∞. Hence, it follows that

c∗(T ) ≥ p11πC

(
S −

T∑
τ=1

∑
x,y∈{0,1}

Pτ (x, y|Rl−1 = 1, Rl = 1)

× µ∗τ (xy) +
T∑
τ=1

µ∗τ (11)

)
+ p00(1− π)C

(
T∑
τ=1

µ∗τ (00)

)
+

p10πC

(
S −

T∑
τ=1

∑
x,y∈{0,1}

Pτ (x, y|Rl−1 = 0, Rl = 1)µ∗τ (xy)

T∑
τ=1

µ∗τ (01)

)
+ p01(1− π)C

(
T∑
τ=1

µ∗τ (10)

)
.

(11)

Since C is monotonically increasing and Pτ ≤ 1, the RHS of
(11) can only increase in µ∗τ (x1), x ∈ {0, 1}, τ = 1, · · · , T .
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Therefore, µ∗τ (11) = µ∗τ (01) = 0, τ = 1, · · · , T .
Expanding Pτ from (10) and applying Jensen’s inequality

to the RHS of (11) we obtain

c∗(T ) ≥ (1− π)C

(
T∑
τ=1

(p00µ
∗
τ (00) + p01µ

∗
τ (10))

)
+

p11πC

(
S −

T∑
τ=2

(1− π)
(
1− (1− (p10 + p01))τ−1

)
×

(p00µ
∗
τ (00) + p01µ

∗
τ (10))

)
+ p10πC

(
S −

T∑
τ=1

(1− π + π(1− (p10 + p01)τ−1)(p00µ
∗
τ (00) + p01µ

∗
τ (10)))

)
(12)

Let µτ := p00µ
∗
τ (00) + p01µτ(10). Since p00 + p10 = 1, the

optimal time average expected cost is lower bounded by

c∗(T ) ≥ min{µτ}Tτ=1,µτ≥0,
∑T
τ=1 µτ≤S

(1− π)C
(∑T

τ=1 µτ

)
+

p11πC
(
S − (1− π)

∑T
τ=2 µτ (1− (1− (p10 + p01))τ−1)

)
+

p10πC
(
S −

∑T
τ=2 µτ (1− π + π(1− (p10 + p01))τ−1)− µ1

)

APPENDIX B
PROOF OF LEMMA 1

When p10 +p01 ≤ 1, the inequality (6) is trivial since µ∗τ ≥
0, τ = 1, · · · , T . When p10+p01 > 1, consider the Lagrangian
of the optimization (5).

g(λ, {µτ}τ ) := (1− π)C

(
T∑
τ=1

µτ

)
+ λ

(
T∑
τ=1

µτ − S

)

+p11πC

(
S − (1− π)

T∑
τ=2

µτ (1− (1− (p10 + p01))τ−1)

)
+

p10πC

(
S −

T∑
τ=2

µτ (1− π + π(1− (p10 + p01))τ−1)− µ1

)
.

(13)

The dual problem of (5) is, therefore,

max
λ≥0

min
{µτ}Tτ=1,µτ≥0

g(λ, {µτ}τ ).

From the KKT conditions on the dual problem, we have: if
µ∗1 > 0, then ∂g

∂µ∗
1

= 0. That is

λ+ (1− π)C ′

(
T∑
τ=1

µ∗τ

)
− πp10C

′

(
S −

T∑
τ=2

µ∗τ×

(1− π + π(1− (p10 + p01))τ−1)− µ∗1

)
= 0. (14)

Further, for any τ0 ∈ {2, · · · , T} such that µ∗τ0 > 0, we have
∂g
∂µ∗

τ0

= 0. That is:

λ+ (1− π)C ′

(
T∑
τ=1

µ∗τ

)
−

πp11(1− π)(1− (1− (p10 + p01))τ0−1)×

C ′

(
S −

T∑
τ=2

µ∗τ (1− π)(1− (1− (p10 + p01))τ−1)

)
− πp10(1− π + π(1− (p10 + p01))τ0−1)×

C ′

(
S −

T∑
τ=2

µ∗τ (1− π + π(1− (p10 + p01))τ−1)− µ∗1

)
= 0.

(15)

Assuming that µ∗1 > 0, substitute from (14) in (15) to get

πp10(1− 1 + π − π(1− (p10 + p01))τ0−1)×
C ′
(
S −

∑T
τ=2 µ

∗
τ (1− π + π(1− (p10 + p01))τ−1)− µ∗1

)
=

πp11(1− π)(1− (1− (p10 + p01))τ0−1)×
C ′
(
S −

∑T
τ=2 µ

∗
τ0(1− π)(1− (1− (p10 + p01))τ0−1)

)
.

Noting that πp10 = (1− π)p01, we obtain

p01C
′

(
S −

T∑
τ=2

µ∗τ (1− π + π(1− (p10 + p01))τ−1)− µ∗1

)

= p11C
′

(
S −

T∑
τ=2

µ∗τ (1− π)(1− (1− (p10 + p01))τ−1)

)
,

(16)

where C ′ is the first derivative of the cost function C.
Since C is convex, C ′ is monotonically increasing. Thus,

its inverse exists. In addition, p01 > p11 by the hypothesis that
p10 + p01 > 1. Dividing (16) by p01 and taking C ′−1 of both
sides, we get

S −
T∑
τ=2

µ∗τ (1− π + π(1− (p10 + p01))τ−1)− µ∗1 =

C ′−1

(
p11

p01
C

(
S −

T∑
τ=2

µ∗τ (1− π)(1− (1− (p10 + p01))τ−1)

))

≤ S −
T∑
τ=2

µ∗τ (1− π)(1− (1− (p10 + p01))τ−1,

which implies that µ∗1 +
∑T
τ=2 µ

∗
τ (1− (p10 + p01))τ−1 ≥ 0.

Assuming that µ∗1 = 0, then (14) does not hold. However,
the gradient of the Lagrangian of g(λ, {µτ}τ ) at µτ = µ∗τ in
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the direction of µ1 can not be greater than its value in the
direction of µτ0 for otherwise, µ∗1 must be positive. Thus,

p10πC
′

(
S −

T∑
τ=2

µ∗τ (1− π + π(1− (p10 + p01))τ−1)

)
≤

πp11(1− π)(1− (1− (p10 + p01))τ0−1)×

C ′

(
S −

T∑
τ=2

µ∗τ (1− π)(1− (1− (p10 + p01))τ−1)

)
+

πp10(1− π + π(1− (p10 + p01))τ0−1)×

C ′

(
S −

T∑
τ=2

µ∗τ (1− π + π(1− (p10 + p01))τ−1)

)
,

⇒ p01C
′

(
S −

T∑
τ=2

µ∗τ (1− π + π(1− (p10 + p01))τ−1)

)

≤ p11C
′

(
S −

T∑
τ=2

µ∗τ (1− π)(1− (1− (p10 + p01))τ−1)

)
.

Again, dividing by p01, taking the inverse C ′−1 and noting
that p01 > p11, we get

∑T
τ=2 µ

∗
τ (1 − (p10 + p01))τ−1 ≥ 0

which completes the proof.

APPENDIX C
PROOF OF LEMMA 2

It suffices to show that there exists a feasible solution
{µ̂τ}Tτ=1 to (5) for which µ̂τ = K

T−1 + ετ−1, for some K > 0
and ε ∈ [0, 1), τ = 2, · · · , such that |µ∗τ−µ̂τ | → 0 as T →∞.
To that end, {µ̂τ}τ must satisfy the feasibility conditions:
µ̂τ ≥ 0 for all τ ,

∑T
τ=1 µ̂τ ≤ S and the optimality conditions:

T∑
τ=1

µ̂τ − µ∗τ = 0 (17)

T∑
τ=2

(µ̂τ − µ∗τ )(1− π)(1− (1− (p10 + p01)τ−1) = 0 (18)∑
τ=2

(µ̂τ − µ∗1)(1− π + π(1− (p10 + p01))τ−1) =

µ∗1 − µ̂1 (19)

as T →∞. Subtracting (19) from (18),

µ∗1−µ̂1 =
1− (p10 + p01)

p10 + p01
(1−(1−(p10+p01))T−1)

K

T − 1
+

(1− (ε(1− (p10 + p01)))T−1)
ε(1− (p10 + p01))

1− ε(1− (p10 + p01))
−

T∑
τ=2

µ∗τ (1− (p10 + p01))τ−1. (20)

From (17), µ̂1 =
∑T
τ=1 µ

∗
τ − K − (1 − εT−1) ε

1−ε . Thus,
substituting in (20), and letting T →∞, we obtain

K =
∞∑
τ=2

µ∗τ (1− (1− (p10 + p01))τ−1)+

ε

(
1− (p10 + p01)

1− ε(1− (p10 + p01))
− 1

1− ε

)

We next select a value for ε ∈ [0, 1) to establish the feasibility
conditions of {µ̂τ}τ . First, µ̂1 ≥ 0, that is

∞∑
τ=1

µ∗τ −
∞∑
τ=2

µ∗τ (1− (1− (p10 + p01))τ−1)−

ε

(
1− (p10 + p01)

1− ε(1− (p10 + p01))
− 1

1− ε

)
− ε

1− ε
≥ 0,

which implies

ε(1− (p10 + p01))

1− ε(1− (p10 + p01))
≤ µ∗1 +

T∑
τ=2

µ∗τ (1− (p10 + p01))τ−1.

(21)
From Lemma 1, choosing ε = 0 satisfies (21). Second, for any
τ ≥ 2, with ε = 0, µ̂τ = K/(T −1), with K =

∑∞
τ=2 µ

∗
τ (1−

(1− (p10 + p01))τ−1) ≥ 0 which ensures that µ̂τ ≥ 0.
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