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A note on a Newtonian approximation in a Schwarzschild background
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We consider a (very) simple version of the restricted three body problem in general relativity. The background geometry is given
by a Schwarzschild solution governing the motion of two bodies of masses m; and m,. We assume that corrections to the trajectory
of the body of mass m; due to the presence of the mass m, are given by a Newtonian approximation where Poisson's equation is
solved with respect to the Schwarzschild background geometry. Under these assumptions, we derive approximate equations of
motion for the corrections to the trajectory of the body of mass m;.

1. Introduction

In this note, we consider a simplified version of the
restricted three-body problem in general relativity
with orbital corrections to the farthermost body given
in a Newtonian type framework, and with all
interactions other than gravity neglected. More
precisely, consider three point bodies of masses
M, m,, and m,. Assume that M > m, > m,, so that
the dynamics of the body of mass M is unaffected by
the presence of the other two masses, and the effect of
the body of mass m, on that of mass m, is neglected
as well. Let the bodies of masses m, and m, orbit the
body of mass M along trajectories y; = y,(t) and
X, = x,(7), respectively, where 7 is an affine
parameter. Assume further that the body of mass M is
described by the Schwarzschild solution to Einstein's
equations:

Jsch = — (1 - r_rs) dt? + (1 — rr_S)_l dr? (1)

+ 12d0? + r2sin®(0)d >
where t denotes a time parameter, (r,0,¢) are
spherical  coordinates, and 1, =2GM (the
Schwarzschild radius), with G being Newton's
constant. Because of the ensuing assumptions, only the
exterior region of the Schwarzschild solution is
relevant here, so we can think of the body of mass M
as a static black hole as well as a massive star where
any interior dynamics is neglected. Finally, we
assume that y; (7) and x,(7) form closed orbits that do
not intersect, and that on each time slice t = constant
we have disty (x,(7),15) > 0 and

dist, (yl (1), x5 (‘r)) > 1, where g is the spatial metric
induced on t = constant time-slices, given by

(1T 2 202 )
g= (1—?) dr® +r“dé
+ r?sin?(8)d¢?
and dist, is the distance in the metric g. This situation
is illustrated in Figure 1 below.

Under the above assumptions, the motion of the body
of mass m, is given by a closed geodesic in the metric
(1). The motion of the body of mass m, is given by a

X2 B2

my

Figure 1. A schematic representation of the system.

closed geodesic in the metric (1) plus corrections due
to the to the presence of the mass m,. A simple
derivation of the equations of motion governing these
corrections is the goal of this note. We suppose that
these corrections are given by nearly Newtonian
dynamics of a test particle of mass m, subject to the
gravitational attraction of the body of mass m,, in the
following sense. Write y; (t) = w; (t) + x;(t), where
w; = w;(t) corresponds to the trajectory due to the
presence of the mass M and x; = x;(7) due to the
presence of the mass m,. The form of w; is known (see
below) and we are interested in determining a simple
form for the equations of motion satisfied by x;, at
least approximately. By saying that x; is given by
nearly Newtonian dynamics we mean that the
acceleration of the body of mass m, due to the mass
m, is obtained upon solving Poisson's equation for the
Newtonian potential ¥:

AgW(xq, x3) = 4mqS(x, — x3) 3)
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but with the Laplacian in (3) given by the Laplacian in
the metric (2) rather than the Euclidean Laplacian.

Explicitly: .
Ay = ——=10q(+/Ig1g**a
¢ Jlgl o 5)

with g,p the components of the metric (2), g*F the
components of the inverse of g, and |g| = det(g).
Above, § is the Dirac-delta function, and g is a
coupling constant given by g = m,G. The equation of
motion of the trajectory x; = x; () is then given by

Vi %y = —V9(xy, x5) )

: d .
where = and V represents the covariant
T

derivatives associated with (2).  This situation
obviously reduces to the example of a test body of
mass m, attracted by m, when M = 0. The resulting
(approximate) equations of motion are given in (12),
(13), and (714), for one particular approximation
involving logarithmic terms, and (16), (17), and (18),

for another type of approximation involving powers of
1

T

We believe that considering an approximation of this
type is very natural. To the best of our knowledge,
however, it has not appeared in the literature, despite

similar ideas in different settings [1, 2], and the
extended literature on post-Newtonian
approximations. (The literature on post-Newtonian
approximation is quite large, thus a complete list
cannot be given here. See, e.g., [3] and references
therein for standard results, or [4, 5] for some more
recent developments).

Hence, the main purpose of this note is to document
that the approach here considered is a possible avenue
to study general relativistic corrections in a simplified
version of the three-body problem. Therefore, we have
not striven to generality or applications, rather
focusing on the equations of motions and some
calculations that illustrate how corrections can be
computed.

2. Geodesic and Newtonian dynamics

For a particle with position x with spherical
coordinates (7,6,¢) in the slice metric (2). For
a,B,y € {r,0,¢}, we have the components of the
acceleration V;x:

Vix® = %% + Tg %P iy
where Fé"y are the Christoffel symbols of the second
kind associated with the metric (2), given by:

Ts Ts -1 1
/‘? (1-3) 0 0 \ 0 - 0
T = — _ E 6 - 1
I =| 0 r(1-%) 0 | ro=(2 o 0
0 0 —7 sin?(0) (1 - %) 0 0 —sin(8)cos(H)
0 0 2
-
re=(o0 0  cot(9)
- cot(8) 0

The entries in the above matrices follow the order of
the coordinates (r, 8, ¢»). By denoting the position x;
in coordinates (ry,0;,¢,;) and with the same
convention for x,, we can now write explicitly (4) as

LT ( rs)‘l . ( rs> "
- 1-= -nl1-=2)6
1 21 n Th )t

7\ . (5
=y sint(0,) (1-2) ¢4
N
= _vrlp(xlix2)
. 2 . .
0, + —7,0, — sin(8,) cos(8,) ¢?
n 0 (6)
= —VoW(xy, x3)
o2 .
¢+ Erl(pl + 2 cot(6,) 0164 @)
= VW (x;, x,)

As mentioned, the motion of the body of mass m, is
given by a closed geodesic in the Schwarzschild
background, which corresponds to solving equations

(5), (6), and (7) with the indices 1 and 2 reversed and
Y = 0. Although the form of closed geodesics in a
Schwarzschild background is well-known (see, e.g.,
[6]), we derive it here for the reader's convenience.

We are interested in closed orbits, and in this case, we
can assume without loss of generality that 8, = g

The radial and angular part of the geodesic equation
are given, respectively, by

. 7 L2\
. L
4’2:? ©)

where E and L are constants of motion (L is the
orbital angular momentum).

Equation (8) can be viewed as the one-dimensional
motion of a particle of unit mass subject to the
potential
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1 T, L?
V(r) = 5(1 —7) (1 +r—2)
evaluated at r =1,. We see that V has a local
minimum at
12 < JI2 = 3r52>
Ty =— 1+ f

Ts
provided that L? — 372 > 0. Combining with (9) and
our assumptions, we see that the sought closed orbit

X, (1) = (7'2 (1), 0;(1), P, (T)) is given by

L? L7 =372
@) =—1+———
Ty L
b4
0,(r) =, (10)
2
2T
¢2(T) = 5 5 2 + ¢2(0)
L% — 3r,
3 s
L2{1+ T
Write
2t
A= - .
L2 — 312
3 S
L (1 + —I )

If we take the initial position ¢,(0) =0, we can
describe the ¢, position in the orbit more succinctly as
¢,(t) = At. Notice that the trajectory w,(7) has the
same form as (10), only with different constants of
motion.

3. % and logarithmic approximations for the
Newtonian potential

We will consider two approximations for the equations
of motion governing x;(7). One consists in an
expansion of the first few terms of ¥ in powers of
inverse of r;. This seems to be the more natural
expansion under our assumptions. We also consider,
however, an expansion in logarithmic terms. This
approximation is algebraically more complicated than

. . 1 o
the one involving powers of ! but it is in a sense more
1
. . . T
robust in that the series expansion of log (1 - r—s)
1
. .1
contains terms in —— to all orders.
1

A general solution to (3) can be found via separation
of variables and reads (see, e.g., [7])

l

8 (o]
W(xy,x;) = fqz Z Yim (62, ¢2) (11)
s 1=0m

=1

271, 2rs
V@0 90P (1-"2) 0 (1-22)

Ts Ts
Above, P, and @, are, respectively, Legendre functions
of the first and second kind; Y;,, are spherical
harmonics, * is complex conjugation, 7. =
min{ry, 1}, and .. = max{r;, 1> }. Recall that we have
the ordering in the r coordinate of the metric given by

<K= =r.<n =rmn.

Using standard properties of Legendre functions (see,
e.g., [8]), the Newtonian potential ¥(x;, x,) can also

be written as
1

T
> s Yim (62,62

-1

Lp(xll xZ) =—q

1 . -k
Cl rl+}—k <
kj's rl+j+1
0 k=0 >

: Yl,m(91: ¢1)

Ms ng

—
I}

where
oo DU+ DA+ A+ )P
ST (U= k) (kDL j + 1)

4. Logarithmic approximation

Using the expression for ¥ given in (11), we will keep
the only the terms [ = Oand [ = 1 in (11)

The specific Legendre functions Py, P;, Qy, Q; are
given, for z € C, by

1 1+
P =1 () = log(—)

(2) = (2) = z (1 Z)
Pi(z z, Q,(z Lo

! 1 2 g 1-z

Since ., = 1y, the argument of @, is given by

1+(1—ﬁ) 22
rs rs

1_(1_m) o n
rS rS

and similarly, for the argument of P; since r. =r1,.
Because 7; < 13, we know that =—* < 0, so

_rs_rl Ts

g .
5 1| =1-2=
n L£]
It remains to choose the correct branch of the Log

function corresponding to the argument :—S — 1. Recall
1

that for z = re'® € C, we have that
Log(z) = In|z| + iArg(z) = In(r) + i6.

We know that :—S — 1 is a purely real negative number,
1

so then
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Ty Ty TS 3
Log (_ - 1) =Inf=-1/=1In (1 - _)- $(1,1) = —sin(@l) cos(¢,) cos(At)
rl 7”1 T'l
Therefore, we conclude that

0u(1-22) = Lrog(E - 1) =2 (1-5) (1 2r2>[2( ) og(1-2) 1]

S 1
s n Then

(-7 =5 (- ree (1) - »
Q T =2 T 08 m z Z S, m)-—log(l——)
1 27'1 Ts 1=0 m=—1
L (1 5) ;
2 Ts 41 —sin(6,) (sin(¢,) sin(At) + cos(¢,) cos(At))
Now we state the well-known spherical harmonics 8m 2
Yo.0 0,9), Y1,—1(3, ®), Yio 0,9), Vi1 (6,¢) and their [(1 _ i) log (1 _ _) _ 2]
conjugates: Ts
101 11(1 rs)+3'(9) (¢, — A1)
X =—Ilog(1——)+ ——sin(0,) cos(¢, — At
Y0,0(0,¢) = Y50(6,¢) = E\/: 8n 8
T 2r 27,
2 1
1= (-5 )2 -3) 2]
13 s/ Ts
Y,-1(0,¢) =Y7_1(6,¢) = = |=sin(0) sin(¢) So our approximation for ¥ becomes
2\m 8mq /1 Ty
W(xy,x,) = —(—log (1 - —)
113 7, \8m 7
=Y =— |- 3 2r.
Y1,0(60,9) =Y, (6,¢) 2 |7 cos(6) + B_Sin(91) cos(¢p, — A7) (1 — r_z)
S
wop =1 P [(-5)res(1-7) 2]
1a(6,9) = ¥i2(6,¢) =5 |=sin(9) cos(®) " "
q 3q . 2r.
Since we are taking 6, = gand ¢, = At, we have the = ——log (1 - r_) - r_SIrl(el) cos(¢p, — A1) (1 - r_z)
following: 3 ! 2r, °
1-2)iog(1-2) - 2]
. 11 [( ) 08 n
Y50(62, ¢2) = > |7 We now wish to compute the components of the
Schwarzschild gradient V. In order to do this, we first
1 /3 compute
Y7 1002, ¢2) = 2 ;Sm(AT) a_ly __1 l 3q . 21
or, 1_Lirg- Tsm(el) cos(¢p; —AT) |1 — -
Y0(62,¢2) =0, &1 s s
1 (3 2 ( rs) ( 2r1> 1
* =_|= c|——log|1——= 1-— —
Y1002, ¢2) = 2 T[COS(AT) T 8 n + Ts _Lr?

Now we will compute the individual terms

v
S(lm) = Yz*m(92: ¢2)Yl m(01, P1)

9 cos(0y) cos(ar — ) (1-22)
691 rcos 1) cos(At — ¢, "

o Ea(1-2) (-2l

for [ = 0,1. Since . =1, and r., = r; we substitute

0¥ 3q 2r.
these values into the aforementioned terms and get the = sm(91) sin(At — ¢,) (1 - —2)
s a¢1 Ts Ts
following:
1 g .[(1_ﬁ>] (1_r_5)_2
5(0,0) = -log (1 - —S) ) %8 "
3 T E Recall that the components of the Schwarzschild
S(1,-1) =— sin(@l) sin(¢,) sin(At) gradient are given by the following formulas:
27, 2ny VY =g'm— o + g7 — o +gm® a_lp
(1——)[2<1——)10g<1——>—1] ar 7930 79 5
5(1055 0 o= o0, 0 0¥ | 5, 0¥
- 9" 5 +9" 55t 9
oy oy oy
¢ or ___ $0 ___ b —__
VI =" 5ot 9T gt 5



The African Review of Physics (2018) 13: 0001

Since the sli tric is given b L2 .
ince the slice metric 1s_gllven y b, + 21,0, — sin(8,) cos(8y) §?
(1-2) o 0 no
— r 3q sin(At — ¢,) 21,
o 0 Gy U)o
0 0 7r2%sin?(9) o
we have that its inverse is [(1 — _1> log (1 - _) — 2]
Ty Ts
1-= 0 0
r
1 . 2 . .
-1 = 0 = 0 $1+ =71y + 2 cot(0) 0,4
g | 72 [ n
\ 0 1 / _ 3gsin(At — ¢y) (1 2r2> (14)
r2 sin(@) © 1, r2sin(8;) T
It follows that 2r 7
2w (=) es(1-3) 2]
VW (xq,x,) = (1 - —) - (xq,x3) Ts £t
£t
1 s
VoW (x,,x,) = 260 ( sz) 5. — approximation
- 1 Here we are concerned with the terms rin with least
VO (xy, xp) = 12 sin2(6;) a¢ ( X1, X7) exponents n € N, we will approximate ¥ in (11) by
So combining these with our expressions for summing [,j=0,1 only. In other words, this
a_ly’a_ly’a_ty’ we have that the components of the approximation 1s glven by
ar,’ 20, d¢,
Schwarzschild gradieélt of W(xy, x,) are as follows: o, W(xy,x,) = _qz Z TE1 Yim (62, ¢2)
V'W(x,,x,) = = + —sm(@l) cos(¢p; — A1) (1 - r_> =0 m=-1
1 S N
rjk TE
. —E(l—ri)log(l—r—s) (1_ﬁ>_ Ym0, ¢1) chk] e S
Ts 41 141 Ty T'l j=0 k=0 .
3q (cos(6,) cos(At — 27 First, we focus on the term
VOW(x,, x,) = _CI( (61) 2( $1)) (1 _ _2) .
Ts n Ts cl Ltk < (15)
k,jTs I+j+1

[o-2)(:-2) 4 R

Vo (xy,x,) = 3‘1M<1 — ﬁ) Recall that . = r, and r, = 1y, so this term becomes
7, 1fsin(6,) T Ltk rk
2ry 7, Z] =0 Ek 0 Ck] SN When [=0, (15)
(-5)ee(1-3) -2 "
Ts n becomes
Combining the above with equations (5), (6), and (7), 12 i TE 1 o 1Y
we finally obtain that x,(7) = (1,(1), 6,(1), P, (7)) Z C,?_]-rs = TS Z C(?_]-rsj_ —
satisfies, in this approximation, =0 k=0 £ =0 T
1
T .\ "1 o\ . =Coo—+Co1Ts—
fl——52(1——5) 1'”12—1”1(1——5)912 1 1
21y 7 £l When I = 1, (15) becomes
2(g )(1 r) 5 q 11 K
—1'1 sin 1 - = - 1+] k 2
n/ ot e Z Cij T RV
3q 2r, (12) J=0 k=0 !
— r—sm(Hl) cos(¢p, — A1) (1 — —) 1 9 .
— 1 ,.1+j-0 plHi-1_2
- Z (COJ-TS T']+2 + Cl} ]+2>

2r
[1-2)es(1-2) -4 mO T
Ty 2

1 T, 1
=Clori—+ Cly—=+ CE 12—+ Ciiri—=
0,0's 7'12 1,0 7'12 0,1's T'13 1,1's 7'13
For the coefficients C,%_ j»we have the following:
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0 0 1 ¥ q
Coo=1 Gy =75 P (xll xz) =—=+tqrs—
1 2 ory 1] T
C(},o =73 Cio=1 +qsin(8;) COS(AT - ¢1)
1 1 3 1
1 __ 1o
Con = > Cia=1 . ((Zrz -7 = + 2 2rgr, —12) F)
Further, we have the following products of spherical v 1 1
harmonics: 1 ﬁ (xl' xz) = —q cos(@l) COS(AT — ¢1)
Y50 (02, ¢2)Yo,o (01, ¢1) = in 1 )
3 T 2ry—rg 1 2rg, —7151
" . . . : -+ -
Y7 1(62 $2)Y -1y (d1, ¢1) = ESIU(AT) sin(6;) sin(¢;) 2 1! 2
¥
Y1'0(02, 2)Y10(01,¢1) =0 ﬁ (x1,%,) = —qsin(6,) Sin(AT - ¢1)
3 1
Y1100, ¢2)Y11(01, 1) = ECOS(AT) sin(6,) cos(¢1) 2ry —1rg 1 N 2ryry — 1‘2 1
Now consider the terms in the sum of W(xq,x;). ' 2 r% 2 ri
When [ = 0: The components of the gradient are
. 1 Ty q 1
41Y50 (02, $2)Y0,0(01, P1) (Cc?,o 1 Cox r—52> V' (xy,x,) = = + qr, = + qsin(0,) cos(At — ¢1)
1 1 1 1
_1.st 1 3 1
rno 2 r12 : (27”2 - rs) =t E (27”57”2 - rs) 4
When [ = 1: 1 Ty
o 4n * -r . rl— rsin(@)cos(AT—q,’))
Z ?Yl,m(62'¢2)y(1,m)(91,¢1) sd r q Sy qrs 1 1
" 1 3 1
1 T 1 T
Loy 4 Clo 24 Clr? =+ Clyr = | @ry-r)=+=-@ra,, —1)—
(CO,Ors rlz + Cl,O rlz + CO,lrs T'13 + Cl,lrs 7”13> <( 2 s) rzll 2 ( s'2 s) 7‘?
A . 1 1
= ? (Y(l,—l) (HZP ¢2)Y1,—1(911 ¢1) = qE + q Sin(gl) COS(AT — ¢1) (21«2 —_ T-s) E

+Y{0(02, $2)Y1,0(61, b1) + Y1 (05, $2)Ys.1 (01, 1)) . (1 in(0,) cos(Ar - ¢,) (2, — ) 2) :
q\57ssin(81) cos(Ar = ¢, ) (2r, — 1) —7¢ |
2 n

-<cgorl+c110r—2+cglr2i+cflr E) 3 1
OS2 12 S 3 o —q (Erﬁ (2r, — r,) sin(6,) cos(At — qbl)) =
) 2rn—-1,1 2nr—-121 "
= sin(6;) cos(AT — ¢;) .z > 3 VoW (x,,x,) = —qcos(8,) cos(AT - ¢1)
1 1

Our resulting approximation of W(x;, x,) becomes 2ry =1y 1 2rg,—1i 1 >
1 re 1 ’ A 5

W(xy, %) % —q—— q_s_z 2 " 2 "

Ty 27y

sin(4t — ¢ 2re—1rg 1
V¢1P(x1,x2) =—-q ( 1)< - =

—qsin(8,) cos(Ar — ¢,) sin(6,) 2 1
2r,—rg 1 2rg, —12 1 2rgry, — 12 1
() )
Now we have Combining the above with equations (5), (6), and (7),

we finally obtain that x,(7) = (r2 (1), 05(7), P, (T))
satisfies, in this approximation,
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r

:r:l_

2
2r] Ty

1 N1
= —q (Ers sin(6,) cos(A‘r - ¢1) 2r,—r,) — rs) E

r\ "L e\ . s\ .
s (1 ——5) i =7 (1——5) 9% —r, sin?(6,) (1 ——5) 9
T r

1

(16)

3 1
+q (Erg(zrz —7,)sin(6,) cos(4r — ¢1)) =
81

y 2, .
6, + —7,6, — sin(8;) cos(6;) qbi
T

= qcos(6,) COS(AT - (],’)1)

17
. 2r2—rsl+2rsr2—r§l (1)
2 ! 2 3
. 2. .
¢, + r—rlqbl +2cot(6,) 619,
1
sin(4r - ¢,) (18)
sin(6,)
. 2r, —rsi+ 2rgr, —r?l
2 1 2

Since r; > 1, > 15, we have that the distance between
the bodies of masses m, and m, is of the order r;. The

highest contribution to (16), rq—z, is therefore consistent
1

with the Newtonian gravitational interactions between
these bodies, as it should in light of our assumptions.

6. Discussion

In this work, we have derived an approximation for the
orbital corrections to the equations of motion of the
outermost object in a restricted three body-type of
problem on a Schwarzschild background. The
approximation is sufficiently simple to be treated by
elementary methods, yet it provides insight on the
behavior of such corrections without appealing to the
heavy machinery of post-Newtonian approximations
used to describe more realistic scenarios. Therefore,
equations (12), (13), and (14) and (16), (17), and (18)
provide a quick assessment of the qualitative behavior
of the system that can be used as a starting point to
more thorough and quantitative studies.

The method relies essentially on an exact solution to
Poisson's equation for a Schwarzschild metric and can
thus be adapted to other backgrounds where the
Poisson equation can be solved exactly or
approximately. In particular, as long as an
approximate solution to Poisson's equation can be
written in terms of a series expansion that asymptotes

to an exact solution, a procedure similar to the one here
presented can be used.
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