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We consider a (very) simple version of the restricted three body problem in general relativity. The background geometry is given 
by a Schwarzschild solution governing the motion of two bodies of masses  and . We assume that corrections to the trajectory 
of the body of mass  due to the presence of the mass 	are given by a Newtonian approximation where Poisson's equation is 
solved with respect to the Schwarzschild background geometry. Under these assumptions, we derive approximate equations of 
motion for the corrections to the trajectory of the body of mass . 
 
 

1. Introduction 
 
In this note, we consider a simplified version of the 
restricted three-body problem in general relativity 
with orbital corrections to the farthermost body given 
in a Newtonian type framework, and with all 
interactions other than gravity neglected. More 
precisely, consider three point bodies of masses ,, and . Assume that  ≫  ≫ , so that 
the dynamics of the body of mass  is unaffected by 
the presence of the other two masses, and the effect of 
the body of mass 	on that of mass  is neglected 
as well. Let the bodies of masses  and  orbit the 
body of mass  along trajectories    and    ,	respectively, where 		is an affine 
parameter. Assume further that the body of mass  is 
described by the Schwarzschild solution to Einstein's 
equations: Sch  1     1      sin 

(1) 

 
where  denotes a time parameter, , ,  are 
spherical coordinates, and   2 (the 
Schwarzschild radius), with  being Newton's 
constant. Because of the ensuing assumptions, only the 
exterior region of the Schwarzschild solution is 
relevant here, so we can think of the body of mass  
as a static black hole as well as a massive star where 
any interior dynamics is neglected. Finally, we  
assume that  and  form closed orbits that do 
not intersect, and that on each time slice    
we have dist,   0 and dist,  ≫ 1, where  is the spatial metric 
induced on    time-slices, given by   1       sin 

(2) 

 
and dist is the distance in the metric . This situation 
is illustrated in Figure 1 below. 

Under the above assumptions, the motion of the body 
of mass m is given by a closed geodesic in the metric 
(1). The motion of the body of mass  is given by a  

Figure 1. A schematic representation of the system. 

closed geodesic in the metric (1) plus corrections due 
to the to the presence of the mass . A simple 
derivation of the equations of motion governing these 
corrections is the goal of this note. We suppose that 
these corrections are given by nearly Newtonian 
dynamics of a test particle of mass  subject to the 
gravitational attraction of the body of mass , in the 
following sense. Write     , where     corresponds to the trajectory due to the 
presence of the mass  and    due to the 
presence of the mass . The form of  is known (see 
below) and we are interested in determining a simple 
form for the equations of motion satisfied by , at 
least approximately. By saying that  is given by 
nearly Newtonian dynamics we mean that the 
acceleration of the body of mass  due to the mass  is obtained upon solving Poisson's equation for the 
Newtonian potential Ψ: ΔΨ,   4   (3) 
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but with the Laplacian in (3) given by the Laplacian in 
the metric (2) rather than the Euclidean Laplacian. 
Explicitly: Δ  1||  ||	 
with 	the components of the metric (2),  the 
components of the inverse of , and ||  det. 
Above,  is the Dirac-delta function, and  is a 
coupling constant given by   . The equation of 
motion of the trajectory   	is then given by ∇  ∇Ψ,  (4) 

where   , and ∇ represents the covariant 
derivatives associated with (2).  This situation 
obviously reduces to the example of a test body of 
mass  attracted by  when   0. The resulting 
(approximate) equations of motion are given in (12), 
(13), and (14), for one particular approximation 
involving logarithmic terms, and (16), (17), and (18), 
for another type of approximation involving powers of . 
We believe that considering an approximation of this 
type is very natural. To the best of our knowledge, 
however, it has not appeared in the literature, despite 

similar ideas in different settings [1, 2], and the 
extended literature on post-Newtonian 
approximations. (The literature on post-Newtonian 
approximation is quite large, thus a complete list 
cannot be given here. See, e.g., [3] and references 
therein for standard results, or [4, 5] for some more 
recent developments). 
Hence, the main purpose of this note is to document 
that the approach here considered is a possible avenue 
to study general relativistic corrections in a simplified 
version of the three-body problem. Therefore, we have 
not striven to generality or applications, rather 
focusing on the equations of motions and some 
calculations that illustrate how corrections can be 
computed. 

 
2. Geodesic and Newtonian dynamics 

 
For a particle with position  with spherical 
coordinates , ,  in the slice metric (2). For , ,  ∈ 	 {, , }, we have the components of the 
acceleration ∇ : ∇    Γ  
where Γ  are the Christoffel symbols of the second 
kind associated with the metric (2), given by: 

Γ 


  1    0 00  1    00 0  sin 1   

		Γ  0
 0 0 00 0  sin cos	

	Γ  0 0 0 0 cot cot 0 
       

The entries in the above matrices follow the order of 
the coordinates , , . By denoting the position  
in coordinates , ,  and with the same 
convention for , we can now write explicitly (4) as   2 1      1     sin 1   ∇Ψ,  

 

(5) 

 

  2   sin cos  ∇Ψ,  
 

(6) 

  2   2 cot  ∇Ψ,  
 

(7) 

 

As mentioned, the motion of the body of mass  is 
given by a closed geodesic in the Schwarzschild 
background, which corresponds to solving equations 

(5), (6), and (7) with the indices 1 and 2 reversed and Ψ ≡ 0. Although the form of closed geodesics in a 
Schwarzschild background is well-known (see, e.g., 
[6]), we derive it here for the reader's convenience. 
 
We are interested in closed orbits, and in this case, we 
can assume without loss of generality that   . 
The radial and angular part of the geodesic equation 
are given, respectively, by   1  1     (8) 

   (9) 

where  and  are constants of motion ( is the 
orbital angular momentum). 
 
Equation (8) can be viewed as the one-dimensional 
motion of a particle of unit mass subject to the 
potential 
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  12 1   1   

evaluated at   . We see that 	has a local 
minimum at 

   1    3  

provided that   3  0. Combining with (9) and 
our assumptions, we see that the sought closed orbit   , , 	is given by  





	

   1    3 
  2 ,  

 1    3   0 
(10) 

 

Write  
   

 1    3  

If we take the initial position 0  0, we can 
describe the  position in the orbit more succinctly as   .	Notice that the trajectory  has the 
same form as (10), only with different constants of 
motion. 
 

3.  and logarithmic approximations for the 
Newtonian potential 

 
We will consider two approximations for the equations 
of motion governing . One consists in an 
expansion of the first few terms of Ψ in powers of 
inverse of . This seems to be the more natural 
expansion under our assumptions. We also consider, 
however, an expansion in logarithmic terms. This 
approximation is algebraically more complicated than 
the one involving powers of , but it is in a sense more 

robust in that the series expansion of log 1   

contains terms in  to all orders. 
 
A general solution to (3) can be found via separation 
of variables and reads (see, e.g., [7]) 
 
 

Ψ,   8   ,∗ , 



⋅ ,,  1  2  1  2 

 
(11) 

 

Above,   and   are, respectively, Legendre functions 
of the first and second kind; , are spherical 
harmonics, ∗ is complex conjugation,  min{, }, and   max{, }. Recall that we have 
the ordering in the  coordinate of the metric given by  <  ≡    <   . 
 
Using standard properties of Legendre functions (see, 
e.g., [8]), the Newtonian potential Ψ,  can also 
be written as 

Ψ,     42  1,∗ , 





⋅ ,,  ,  




   

where ,  12  1  !   !2  ! !2! 2    1!  

 
4. Logarithmic approximation 

 
Using the expression for  given in (11), we will keep 
the only the terms   0 and   1 in (11) 

 The specific Legendre functions , , ,  are 
given, for  ∈ ℂ, by 

0  1, 0  12Log 1  1  1  , 1  2Log 1  1   

Since   , the argument of   is given by 1  1  21 1  1  21  
2  2121    11  1  1 

and similarly, for the argument of   since   . 
Because  < , we know that  < 0, so    1  1   

It remains to choose the correct branch of the Log 
function corresponding to the argument   1. Recall 

that for    ∈ ℂ, we have that 
Log  ln ||  Arg  ln  . 

We know that   1 is a purely real negative number, 
so then 
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Log   1  ln   1  ln 1  . 
Therefore, we conclude that  1  2   12Log   1  12 ln 1   1  2   12 1  2 Log   1  1

 12 1  2  ln 1    1
 

Now we state the well-known spherical harmonics ,, , ,, , ,, , ,,  and their 
conjugates: 

,,   ,∗ ,   121
,,   ,∗ ,   123 sin sin

,,   ,∗ ,   123 cos
,,   ,∗ ,   123 sin cos

 

Since we are taking   	and   , we have the 
following: 

,∗ ,   121
,∗ ,   123 sin,∗ ,   0,
,∗ ,   123 cos

 

Now we will compute the individual terms , ≔ ,∗ , ,, ⋅  1  2  1  2   

for   0,1. Since    and    we substitute 
these values into the aforementioned terms and get the 
following: 0,0  18 log 1   

1, 1  34 sin sin sin
⋅ 1  2  12 1  2  log 1    1 1,0  0, 

1,1  34 sin cos cos
1  2  12 1  2  log 1    1 

Then 

  ,



  18 log 1   38 sin sin sin  cos cos

⋅ 1  2  log 1    2
 18 log 1    38 sin cos  
⋅ 1  2  1  2  log 1    2

 

So our approximation for Ψ becomes Ψ,  ≈ 8  18 log 1  	 38 sin cos   1  2 	⋅ 1  2  log 1    2
   log 1    3 sin cos   1  2 ⋅ 1  2  log 1    2

 

We now wish to compute the components of the 
Schwarzschild gradient ∇Ψ. In order to do this, we first 
compute Ψ  1  

1  3 sin cos   1  2 
⋅  2 log 1    1  2  11  


 

Ψ  3 cos cos   1  2 ⋅ 1  2  log 1    2  

Ψ  3 sin sin   1  2 ⋅ 1  2  log 1    2  

Recall that the components of the Schwarzschild 
gradient are given by the following formulas: ∇Ψ   Ψ   Ψ   Ψ  

∇Ψ   Ψ   Ψ   Ψ  

∇Ψ   Ψ   Ψ   Ψ 
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Since the slice metric is given by  

  1   0 00  00 0  sin 

we have that its inverse is  

 


1   0 0
0 1 0
0 0 1 sin

 

It follows that  ∇Ψ,   1   Ψ ,  ∇Ψ,   1 Ψ ,  ∇Ψ,   1 sin Ψ ,  
So combining these with our expressions for  ,  , , we have that the components of the 
Schwarzschild gradient of Ψ,  are as follows: ∇Ψ,     3 sin cos   1  2 ⋅  2 1   log 1    1  2  

 

∇Ψ,   3 cos cos   1  2 ⋅ 1  2  log 1    2  

∇,   3 sin   sin 1  2 ⋅ 1  2  log 1    2  

Combining the above with equations (5), (6), and (7), 
we finally obtain that    , ,  
satisfies, in this approximation, 
   2 1      1    sin 1     	 3 sin cos   1  2 ⋅ 1  2  log 1    2	

 

 

(12) 

  2   sin cos
 3 sin   sin 1  2 ⋅ 1  2  log 1    2

 

 

(13) 

  2   2 cot 
 3 sin   sin 1  2 1  2  log 1    2

 
(14) 

 

 
5. 	 approximation 

Here we are concerned with the terms  with least 
exponents	 ∈ ℕ, we will approximate Ψ in (11) by 
summing ,   0,1 only. In other words, this 
approximation is given by 

Ψ,  ≈   42  1	,∗ , 





⋅ ,,  ,  





   

First, we focus on the term 

,  





  

 

(15) 

 

Recall that    and   , so this term becomes ∑ ∑ ,   .  When   0, (15) 

becomes  

,   ,  








  , 1  , 	 1
 

When   1, (15) becomes 

, 	 






,    ,  	


 ,  1  ,   ,  1  ,  

 

For the coefficients , , we have the following: 
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,  1 ,  12,  12 ,  1
,  12 ,  1

 

Further, we have the following products of spherical 
harmonics: ,∗ , ,,   14,∗ , ,,   34 sin sin sin	,∗ , ,,   0,∗ , ,,   34 cos sin cos

 

Now consider the terms in the sum of 	Ψ, . 
When   0: 4,∗ , ,,  , 1  ,  1  2 1

 

When   1: 
 43 ,∗ , ,,


,  1  ,   ,  1  ,   43 ,∗ , ,, ,∗ , ,,   ,∗ , ,, 	⋅ , 	 1  ,   ,  1  ,   sin cos   2  2 1  2  2 1

 

Our resulting approximation of Ψ,  becomes  Ψ1, 2 ≈  11   2 112 sin1 cos  1⋅ 22  2 112  22  22 113
 

Now we have  

Ψ1 1, 2  12   113 sin1 cos  1
⋅ 22   113  32 22  2 114

 

Ψ1 1, 2   cos1 cos  1
	 ⋅ 22  2 112  22  22 113

 

Ψ1 1, 2   sin1 sin  1
⋅ 22  2 112  22  22 113

 

The components of the gradient are  ∇1, 2  12   113   sin1 cos  1
⋅ 22   113  32 22  2 114

 113   114   sin1 cos  1
⋅ 22   114  32 22  2 115  112   sin1 cos  1 22   113 12  sin1 cos  1 22    2 114 32 222   sin1 cos  1 115

 

∇Ψ1, 2   cos1 cos  1⋅ 22  2 114  22  22 115  

∇Ψ1, 2   sin  1sin1 2  2 114	 22  22 115
 

Combining the above with equations (5), (6), and (7), 
we finally obtain that   , ,  
satisfies, in this approximation, 
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1  212 1  11 12  1 1  1  12  1 sin21 1  1  12 	 12  sin1 cos  1 22    2 114 		  32 222   sin1 cos  1 115 
 

(16) 

 1  21 1 1  sin1 cos1 12  cos1 cos  1⋅ 22  2 114  22  22 115
 

 

(17) 

 1  21 1 1  2 cot1  1 1	
  sin  1sin1⋅ 22  2 114  22  22 115

 

 

(18) 

 

Since  ≫   , we have that the distance between 
the bodies of masses  and  is of the order . The 
highest contribution to (16), , is therefore consistent 
with the Newtonian gravitational interactions between 
these bodies, as it should in light of our assumptions. 
 

6. Discussion 
 
In this work, we have derived an approximation for the 
orbital corrections to the equations of motion of the 
outermost object in a restricted three body-type of 
problem on a Schwarzschild background. The 
approximation is sufficiently simple to be treated by 
elementary methods, yet it provides insight on the 
behavior of such corrections without appealing to the 
heavy machinery of post-Newtonian approximations 
used to describe more realistic scenarios. Therefore, 
equations (12), (13), and (14) and (16), (17), and (18) 
provide a quick assessment of the qualitative behavior 
of the system that can be used as a starting point to 
more thorough and quantitative studies. 
 
The method relies essentially on an exact solution to 
Poisson's equation for a Schwarzschild metric and can 
thus be adapted to other backgrounds where the 
Poisson equation can be solved exactly or 
approximately. In particular, as long as an 
approximate solution to Poisson's equation can be 
written in terms of a series expansion that asymptotes 

to an exact solution, a procedure similar to the one here 
presented can be used. 
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