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Abstract. Non-uniqueness of Leray-Hopf type of solutions is obtained for the
three dimensional magneto-hydrodynamics with Hall effect. It seems to be the
first result in the literature on non-uniqueness of Leray-Hopf weak solutions
for dissipative equations. As for the proof, we adapted the widely appreciated
convex integration framework developed in a recent work of Buckmaster and
Vicol [5] for the Navier-Stokes equation, and with deep roots in a sequence of
breakthrough papers for the Euler equation.
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1. Introduction

To capture the fast process of the magnetic reconnection phenomena in the
nature, the following two-fluid model of the incompressible magneto-hydrodynamics
(MHD) with Hall effect

ut + u · ∇u−B · ∇B +∇p = ∆u,

Bt + u · ∇B −B · ∇u+ ζ∇× ((∇×B)×B) = ∆B,

∇ · u = 0,

(1.1)

was proposed by astrophysicists. In (1.1), u, p and B represent the fluid velocity
field, the scalar pressure, and the magnetic field, respectively; they are the unknown
functions on the spacial-time domain Ω × [0,∞). In the present paper, we take
Ω = T3. The parameter ζ in front of the Hall term indicates the strength of the
Hall effect. For mathematical study on this model which was started not a long
time ago, we refer to [1, 8, 9, 10, 12, 14, 17, 21] and references therein.

We notice that system (1.1) with ζ = 0 is the usual MHD model. In this case,
one also observes that the magnetic field equation is essentially linear in B, while
the velocity equation is obviously the Navier-Stokes equation (NSE) with a Lorentz
force term. Due to the linear character of the magnetic field equation, it is expected
that the properties of solutions to the MHD system do not seriously deviate from
those of the solutions to the NSE. In fact, a vast amount of work for the MHD and
the NSE have shown this consistence.

However, for the Hall MHD system (1.1) with ζ > 0, the situation is drastically
different, comparing to the usual MHD system. On one hand, the equation of B is
nonlinear with a strong nonlinear Hall term which is actually more singular than
u · ∇u in the NSE; on the other hand, a natural scaling does not exist for the Hall
MHD system, while the MHD system shares the same natural scaling as for the

The author was partially supported by NSF grant DMS–1815069.
1



NON-UNIQUENESS OF HALL-MHD 2

NSE. More discussion on the scaling analysis will be provided at a later point. Due
to the obvious difference of the two systems, a natural question is that: how does
the presence of the Hall term change the behavior of solutions? Since the Hall term
is more singular than other nonlinear terms in the system, one expectation is that
it is probably more approachable to construct wild solutions and to discover severe
ill-posedness for the Hall-MHD system. Searching wild solutions and justifying
ill-posedness for fluid equations remains mathematically interesting and physically
important before one can give a positive answer to the global regularity problem of
these equations.

As for the 3D NSE, Leray’s conjecture regarding the appearance of singularity
at finite time has been a long-standing open problem; the uniqueness of Leray-Hopf
weak solutions is not known either. Since the time of these problems raised in 1930s,
much effort has been taken to tackle them from the negative side in the means
of constructing blow-up solutions, wild solutions, or wild data-to-solution maps.
In [25], Jia and Šverák showed non-uniqueness of Leray-Hopf weak solutions in
L∞(L3,∞) with the assumption that certain spectral condition holds for a linearized
Navier-Stokes operator. For an averaged NSE with modified nonlinear term, Tao
constructed a smooth solution which blows up in finite time in [29]; moreover, the
author proposed a program for adapting the blowup construction to the true NSE.
Very recently, in the groundbreaking paper [5], Buckmaster and Vicol constructed
nontrivial weak solutions for the 3D NSE by developing the convex integration
scheme using intermittent Beltrami flows, which leads to non-uniqueness of weak
solutions. It is a significant progress towards settling the problem of non-uniqueness
of Leray-Hopf weak solutions, although the weak solutions constructed there belong
to the space C0(0, T ;Hβ(T3)) for a very small number β > 0.

The convex integration method developed in [5] dates back to a sequence of
breakthrough work for the Euler equation in the last decade. It was first intro-
duced by De Lellis and Székelyhidi in [19, 20] to study the non-uniqueness of weak
solutions and the existence of dissipative continuous solutions for the Euler equa-
tion. The framework of convex integration was further developed in [2, 3, 18, 23] and
eventually leads to a complete resolution of the second half of Onsager’s conjecture
by Isett [24], and Buckmaster, De Lellis, Székelyhidi and V. Vicol [4].

Back to the dissipative equations, as mentioned above, the non-uniqueness of
Leray-Hopf weak solutions to the 3D NSE is still open. Following the convex
integration method in [5], one may expect to construct non-trivial solutions in
C0(Hβ) for β < 1/2 and close enough to 1/2; while crossing 1/2 spacial regularity
would be a major barrier. The reason is that Ḣ1/2 is critical for the 3D NSE,
in which the regularity implies uniqueness. When the dissipation is weak, as for
the hyperviscous Navier-Stokes equation with fractional Laplacian (−∆)θ with θ ∈
(0, 1/5) in [13], Colombo, De Lellis and De Rosa showed the non-uniqueness of
Leray weak solutions, that is, solutions with finite energy and in the space C0(Hθ).

Regarding the hyperviscous NSE with θ < 5/4, adapting the convex integration
techniques of [5], Luo and Titi in [28] established the non-uniqueness of weak solu-
tions by slightly simplifying the original construction of Buckmaster and Vicol. In
another work [6], Buckmaster, Colombo, and Vicol constructed wild solutions for
the 3D NSE, whose singular set in time has Hausdorff dimension strictly less than
1. Moreover, the result holds for the hyperviscous NSE with θ < 5/4 as well. Thus,



NON-UNIQUENESS OF HALL-MHD 3

along with the uniqueness result for θ ≥ 5/4 by Lions [27], the work of [28] and [6]
indicates the well-posedness criticality of the exponent θ = 5/4.

The main purpose of this paper is to address the problem of non-uniqueness of
Leray-Hopf weak solutions for the Hall MHD system (1.1) with ζ > 0. A scaling
analysis will be helpful to demonstrate why it is approachable to study this problem
by adapting the convex integration techniques. We first look at the MHD system,
that is (1.1) with ζ = 0. If the triplet (u(x, t), B(x, t), p(x, t)) solves the MHD
system with data (u0(x), B0(x)), the following scaled functions

uλ = λu(λx, λ2t), Bλ = λB(λx, λ2t), pλ = λ2p(λx, λ2t), (1.2)

solve the MHD system as well with scaled data (λu0(λx), λB0(λx)). In the case of
vanishing magnetic field B, such scaling holds for the NSE. Under scaling (1.2), the
space H1/2(T3) × H1/2(T3) is critical for the 3D MHD system. It is known that
regularity and hence uniqueness holds in subcritical spaces Hs with s > 1/2. Since
the MHD system with zero magnetic field reduces to the NSE, the non-uniqueness
result of the 3D NSE in [5] immediately provides a proof of non-uniqueness of weak
solutions for the 3D MHD system. Similarly as for the 3D NSE, the uniqueness
of Leray-Hopf solutions to the 3D MHD remains an open problem. The attempt
to construct non-unique Leray-Hopf solutions via the convex integration method
might not succeed since the criticality of 1/2 spacial regularity would be a crucial
obstacle to overcome.

Now we turn to the Hall MHD system (1.1) with ζ > 0, a natural scaling no
longer holds due to the presence of the Hall term ∇× ((∇×B)×B). One can see
that the Hall term is more singular than other nonlinear terms in the system and
the most singular one in the magnetic equation. This motivates us to consider the
magnetic equation with vanishing velocity field as the first step. Thus we analyze
the so-called Hall equation,

Bt +∇× ((∇×B)×B) = ∆B (1.3)

which has the natural scaling

Bλ = B(λx, λ2t). (1.4)

We observe that if ∇ · B(x, 0) = 0, ∇ · B(x, t) = 0 holds for all time t > 0. The
basic energy law for the Hall equation (1.3) is

1

2

d

dt
‖B(t)‖2L2 + ‖∇B‖2L2 = 0.

A Leray-Hopf type of weak solution to (1.3) is a function B ∈ L∞(L2) ∩ L2(H1)
which satisfies (1.3) in the distributional sense. On the other hand, under scaling
(1.4), the Sobolev space Ḣ3/2 (the same as H3/2 on periodic domains) is critical for
(1.3) in three dimensions. One can expect global regularity of solution in Ḣ3/2 and
uniqueness in the space as a consequence. Since the critical index 3/2 of regularity
is larger than the Leray-Hopf weak solution regularity index 1, non-uniqueness of
Leray-Hopf weak solutions in C0(H1) constructed by the convex integration method
would not contradict with anything according to the scaling properties.

Inspired by the aforementioned analysis, we adapt the convex integration scheme
to the Hall equation (1.3) and establish the first main result as follows.

Theorem 1.1. For any nonnegative smooth function E(t) : [0, T ]→ R≥0, there ex-
ists a weak solution B ∈ L∞([0, T ];L2(T3))∩C0([0, T ];H1(T3)) to the Hall equation
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(1.3), such that ∫
T3

|∇ ×B|2dx = E(t), t ∈ [0, T ].

The statement implies non-uniqueness of Leray-Hopf weak solutions of the Hall
equation (1.3). Indeed, the vorticity of the weak solutions can have any nonnegative
energy profiles and thus a constant (in particular, zero) is not the only weak solution.

Concerning the strategy to prove Theorem 1.1, we take the curl of the Hall
equation and apply the convex integration method to the resulted equation of the
current density J = ∇×B. Section 4 will be devoted to this purpose.

Once we have the convex integration scheme for the Hall equation, we turn to the
coupled Hall MHD system. At each level of the convex integration which produces
Bq, we solve the velocity field equation – the NSE with the Lorentz force (Bq ·∇)Bq.
We show that there exists a Leray-Hopf weak solution uq to the NSE based on the
estimates on Bq. In the end, we illustrate that the sequence {uq, Bq} converges to
a pair of functions {u,B} which is a Leray-Hopf weak solution of the Hall MHD
system (1.1). Therefore, we are able to prove the second main result stated below.

Theorem 1.2. For any nonnegative smooth function E(t) : [0, T ] → R≥0, there
exists a Leray-Hopf weak solution (u,B, p) to the Hall MHD system (1.1) with ζ > 0
on [0, T ], such that ∫

T3

|∇ ×B|2dx = E(t), t ∈ [0, T ].

Analogously, Theorem 1.2 suggests (0, 0, p) is not the only Leray-Hopf weak
solution of (1.1). Thus we provide a construction of non-unique Leray-Hopf weak
solutions for the 3D Hall MHD system. The proof of Theorem 1.2 will be laid out
in Section 5.

We conclude this section by a few well-posedness results for the Hall MHD sys-
tem. In a previous paper [14], the author showed that system (1.1) with ζ > 0
is locally well-posed in the Sobolev space Hs(Rn) ×Hs(Rn) with s > n/2. Even-
tually in [15], the author established the local well-posedness of the system in
Hs(Rn) ×Hs+1(Rn) with s > n/2 − 1, which appears to be optimal in regards to
the scaling of the NSE and scaling (1.4) for the Hall equation.

2. Preliminaries

2.1. Notation. For the sake of brevity, we first fix some notations. We denote by:
A . B an estimate of the form A ≤ CB with an absolute constant C; A ∼ B an
estimate of the form C1B ≤ A ≤ C2B with absolute constants C1, C2.

2.2. The Hall equation. To analyze the effect of the Hall term, we first consider
the Hall equation, which is recalled here

Bt +∇× ((∇×B)×B) = ∆B. (2.5)

Note that ∇ · B(t) = 0 for all t ≥ 0 if ∇ · B(0) = 0. It is easy to verify that a
smooth solution of the Hall equation satisfies the energy identity,

1

2

d

dt
‖B(t)‖2L2 + ‖∇B(t)‖2L2 = 0.
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Definition 2.1. We say that B is a Leray-Hopf weak solution of (2.5), if for any
ϕ ∈ C∞c ([0, T ]× T3), the following integral equation∫ T

0

∫
T3

B · ϕt + (B ⊗B) : ∇∇× ϕ dx dt =

∫ T

0

∫
T3

∇B : ∇ϕ dx dt

is satisfied, and B belongs to L∞(0, T ;L2(T3)) ∩ L2(0, T ;H1(T3)).

Note that the definition is valid, since the vector identity

(∇×B)×B = ∇ · (B ⊗B)

is valid for divergence free vector field B. The existence of Leray-Hopf weak solu-
tions to (2.5) is trivial; for instance, it can be established by the standard Galerkin’s
approximating method.

Taking curl on the Hall equation leads to

(∇×B)t +∇×∇× ((∇×B)×B) = ∆∇×B.

By introducing the vorticity of the magnetic field, current density, J = ∇×B, we
give two formulations of the equation. The first one reads as

Jt +∇×∇× (J ×B) = ∆J. (2.6)

By applying a few vector calculus identities, see Section 6, the current density
equation can be formulated in a more symmetric way, namely

Jt +∇ · ((∇× J)⊗B +B ⊗ (∇× J)−∇(J ×B))−∇|J |
2

2
= ∆J. (2.7)

In the rest of the paper, we will need to refer to both formulations to have a more
complete vision of the structure of the Hall equation.

2.3. Leray-Hopf weak solution of the Hall-MHD.

Definition 2.2. We say that (u, p,B) is a Leray-Hopf weak solution of (1.1), if for
any ψ,ϕ ∈ C∞c ([0, T ]× T3), the following integral equations∫ T

0

∫
T3

u · ψt + (u⊗ u) : ∇ψ − (B ⊗B) : ∇ψ dx dt =

∫ T

0

∫
T3

∇u : ∇ψ dx dt,

∫ T

0

∫
T3

B · ϕt + (u⊗B) : ∇ϕ− (B ⊗ u) : ∇ϕ+ ζ(B ⊗B) : ∇∇× ϕ dx dt

=

∫ T

0

∫
T3

∇B : ∇ϕ dx dt

are satisfied; and

(u,B) ∈
(
L∞(0, T ;L2(T3)) ∩ L2(0, T ;H1(T3))

)2
.

The existence of Leray-Hopf weak solutions of (1.1) can be found in [7].
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2.4. Estimates for periodic functions and anti-derivative operator. The
following lemma regards Hölder’s inequality for two periodic functions with fre-
quencies far apart.

Lemma 2.3. [5] Assume integers M,κ, λ ≥ 1 satisfy

2
√

3πλ

κ
≤ 1

3
and λ4 (2

√
3πλ)M

κM
≤ 1.

Let p ∈ {1, 2} and f be a T3-periodic function with the property: there exists a
constant Cf such that

‖Djf‖Lp ≤ Cfλj

holds for all 1 ≤ j ≤M + 4. In addition, let g be a (T/κ)3-periodic function. Then
the following inequality

‖fg‖Lp . Cf‖g‖Lp

holds, where the implicit constant is universal.

A type of commutator estimate for periodic functions is introduced below.

Lemma 2.4. [5] Assume κ ≥ 1, p ∈ (1, 2] and L ∈ N is sufficiently large. Let
function a ∈ CL(T3) be such that there exists 1 ≤ λ ≤ κ and Ca > 0 with

‖Dja‖L∞ ≤ Caλj

for all 0 ≤ j ≤ L. Assume in addition that
∫
T3 a(x)P≥κf(x) dx = 0. Then the

estimate

‖|∇|−1(aP≥κf)‖Lp . Ca
(

1 +
λL

κL−2

)
‖f‖Lp
κ

holds for any f ∈ Lp(T3), where the implicit constant depends on p and L.

We also introduce an estimate for the symmetric anti-divergence operator.

Lemma 2.5. [19] There exists a linear operator R of order −1, such that

∇ · R(u) = u−
∫
T3

− u dx.

It satisfies the Calderon-Zygmund and Schauder estimates, for 1 < p <∞,

‖R‖Lp→W 1,p . 1, ‖R‖C0→C0 . 1, ‖RP 6=0u‖Lp . ‖|∇|−1P 6=0u‖Lp .

3. The Hall equation and intermittent Beltrami flows

In this part, we analyze the structure of the equation of the current density
J = ∇ × B and lay out the intermittent Beltrami flows introduced in [5]. The
analysis will reveal the fact that the equation of the current density is analogous to
the NSE near the intermittent Beltrami flows.
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3.1. Analyzing the equation. If we apply the convex integration scheme directly
to equation (2.6), we would consider the approximating equation

∂tJq +∇×∇× (Jq ×Bq) = ∆Jq +∇×∇×Mq, (3.8)

with Jq = ∇ × Bq, and Mq being certain vector with the property that Mq → 0
in an appropriate sense as q → ∞. The main idea would be to construct building
blocks for the increments vq+1 = Bq+1−Bq and wq+1 = Jq+1−Jq, which give rise to
a new pair (Bq+1, Jq+1) and consequently a new vectorMq+1 according to equation
(3.8) at the level of q+1. Most importantly, the construction should be designed in
such a way that: at level q + 1, the major contribution of nonlinear interaction to
the new vector Mq+1 cancels Mq; and hence the sequence {Mq} converges to zero
eventually.

However, we realize that it has certain advantages to apply the convex integration
scheme to the slightly more symmetric equation (2.7). In fact, we will work with
the approximating form of (2.7)

∂tJq+∇·((∇×Jq)⊗Bq+Bq⊗(∇×Jq)−∇(Jq×Bq))−∇
|Jq|2

2
= ∆Jq+∇·Rq, (3.9)

where Rq is recognized as an error stress tensor. The main element is that we need
to design building blocks for the increments vq+1 and wq+1, which in turn yield the
triplet (Bq+1, Jq+1, Rq+1) with the property: the significantly large part of Rq+1

from the nonlinear interaction represented by (∇×J)⊗B+B⊗(∇×J)−∇(J×B)
cancels the previous level of stress tensor Rq. A crucial observation is that:

• if we take B = W (x) as the Beltrami wave defined in Section 3.2 and
J = ∇×W (x) = λW (x), then we can verify

∇ · ((∇× J)⊗B +B ⊗ (∇× J)−∇(J ×B))−∇|J |
2

2
= ∇ · (J ⊗ J);

• if we take B = η(x, t)W (x) as the intermittent Beltrami wave and J =
∇ × (η(x, t)W (x)), with an approriate choice of η(t, x) defined in Section
3.2, one can make sure the difference[

∇ · ((∇× J)⊗B +B ⊗ (∇× J)−∇(J ×B))−∇|J |
2

2

]
−∇ · (J ⊗ J) (3.10)

is small.
This indicates that, the stationary Beltrami wave is a solution of the Hall equation;
while near certain intermittent Beltrami waves, equation (2.7) is “close” to

Jt +∇ · (J ⊗ J) = ∆J

which is the NSE without a pressure term (or constant pressure). An important
motivation we obain is that an analogous construction scheme by using the convex
integration method as for the NSE in [5] would possibly lead to the non-uniqueness
of weak solutions of equation (2.7) with J ∈ C0(0, T ;Hβ) for a small β > 0; hence
it implies B ∈ C0(0, T ; Ḣ1) since B is divergence free. Of course, in our case, two
functions J and B are simultaneously involved in the construction; and the relation
J = ∇ × B = ∇ × (ηW ) will generate many error terms. On the other hand, it
is also crucial to determine how to apply the important geometric lemma in the
current context.

We will describe the convex integration scheme in detail for equation (2.7) by
considering its approximation sequence (3.9) in the following section.
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3.2. Building blocks. We adapt the construction idea of [5] using intermittent
Beltrami flows. While we have to keep in mind that, rather than dealing with one
function satisfying the NSE, we deal with the pair (B, J) with J = ∇×B satisfying
(2.7) in our context.

We first fix ξ, Aξ, Bξ, and aξ as defined in [5]:

ξ ∈ S2 ∩Q3, Aξ ∈ S2 ∩Q3, Aξ · ξ = 0, Aξ = A−ξ,

aξ ∈ C, āξ = a−ξ,

Bξ =
1√
2

(Aξ + iξ ×Aξ) .

The stationary Beltrami wave is taken as

W (x) =
∑
ξ∈Λ

aξWξ :=
∑
ξ∈Λ

aξBξe
iλξ·x,

where Λ is a given finite subset of S2 such that Λ = −Λ, and λ is an integer such
that λΛ ⊂ Z3. One can verify that W (x) is real-valued and satifies

∇ ·W = 0, ∇×W = λW, ∇ · (W ⊗W ) = ∇|W |
2

2
,∫

T3

− W ⊗W dx =
1

2

∑
ξ∈Λ

|aξ|2(Id− ξ ⊗ ξ).

Lemma 3.1. [5] For any N ∈ N, we can find εγ > 0 and λ > 1 with the following
property. Let Bεγ (Id) be the ball of symmetric 3 × 3 matrices, centered at Id of
radius εγ . There exists pairwise disjoint subsets

Λα ⊂ S2 ∩Q3, α ∈ {1, ..., N},
with λΛα ∈ Z3, and smooth positive functions

γαξ ∈ C∞(Bεγ (Id)), α ∈ {1, ..., N}, ξ ∈ Λα,

with derivatives that are bounded independently of λ, such that:
(1) ξ ∈ Λα implies −ξ ∈ Λα and γαξ = γα−ξ;
(2) For each R ∈ Bεγ (Id) we have the identity

R =
1

2

∑
ξ∈Λα

(
γαξ (R)

)2
(Id− ξ ⊗ ξ).

Next we describe the intermittent Beltrami flows by adding oscillations to the
Beltrami waves. We start with the Dirichlet kernel Dn

Dn(x) =

n∑
ξ=−n

eixξ =
sin((n+ 1

2 )x)

sin(x2 )

which satisfies for p > 1

‖Dn‖Lp ∼ n1− 1
p .

We define the lattice cube

Ωr := {ξ = (j, k, l) : j, k, l ∈ {−r, ..., r}}
and the 3D normalized Dirichlet kernel

Dr(x) :=
1

(2r + 1)
3
2

∑
ξ∈Ωr

eiξ·x
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satisfying
‖Dr‖2L2 = (2π)3, ‖Dr‖Lp . r

3
2−

3
p , p > 1,

where the implicit constant depends only on p. The parameter r refers to the
number of frequencies along edges of Ωr.

We shall define a directed and rescaled periodic Dirichlet kernel with period
(T/(λσ))

3. The small constant σ is chosen such that λσ ∈ N which parameterizes
the spacing between frequencies; and σr � 1. We fix an integer N0 ≥ 1 such that

{N0ξ,N0Aξ, N0ξ ×Aξ} ⊂ N0S2 ∩ Z3

for all ξ ∈ Λα and α ∈ {1, ..., N}. We also introduce a parameter µ ∈ (λ, λ2), which
adjusts the temporal oscillation. It is then ready to define the modified Dirichlet
kernel

ηξ,λ,σ,r,µ(x, t) = Dr (λσN0(ξ · x+ µt), λσN0Aξ · x, λσN0(ξ ×Aξ) · x) (3.11)

for ξ ∈ Λ+
α ; while ηξ,λ,σ,r,µ(x, t) = η−ξ,λ,σ,r,µ(x, t) for ξ ∈ Λ−α . We take the short

notation ηξ(x, t) = ηξ,λ,σ,r,µ(x, t). It is important to notice that

µ−1∂tηξ(x, t) = ±(ξ · ∇)ηξ(x, t), ∀ξ ∈ Λ±α , (3.12)

which is the crucial identity used to design temporal oscillation in the increments
later.

One also observe that∫
T3

− η2
ξ (x, t) dx =

∫
T3

− D2
r(x) dx = 1, ‖ηξ(·, t)‖Lp = ‖Dr‖Lp . r

3
2−

3
p , (3.13)

for all 1 < p ≤ ∞.
Now we are ready to introduce the intermittent wave Wξ:

Wξ(x, t) = ηξ(x, t)Bξe
iλξ·x. (3.14)

It is worth to point out that Wξ is supported on certain frequencies. Indeed, we
have

P≤2λσrN0
ηξ = ηξ,

P≤2λP≥λ/2Wξ = Wξ,

P≤4λP≥c0λ (Wξ ⊗Wξ′) = Wξ ⊗Wξ′

where c0 is a small constant and ξ′ 6= −ξ.
Another important fact regarding Wξ is given by

∇ · (Wξ ⊗W−ξ + W−ξ ⊗Wξ) = ∇η2
ξ − (ξ · ∇)η2

ξξ = ∇η2
ξ −

ξ

µ
∂tη

2
ξ .

It is the main motivation that we need to include the temporal oscillation wtq+1

into the construction later.
Different from the Beltrami wave Wξ(x) = Bξe

iλξ·x, the intermittent Beltrami
wave Wξ is not divergence free or an eigenfunction of curl, i.e.

∇ ·Wξ 6= 0, ∇×Wξ 6= λWξ.

Instead, we have
∇ ·Wξ = ∇ηξ ·Wξ,

∇×Wξ = λWξ +∇ηξ ×Wξ.

Parameters λ, σ, r, and µ will be chosen in an appropriate way such that ∇ηξ ·Wξ

and ∇ηξ ×Wξ are sufficiently small.
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For such intermittent Beltrami waves Wξ and Λα, εγ , γξ as in Lemma 3.1, we
have the following geometric lemma, which is a key ingredient in the construction.

Lemma 3.2. [5] Assume aξ ∈ C are constants satisfying āξ = a−ξ. The vector
field ∑

α

∑
ξ∈Λα

aξWξ(x)

is real valued. Moreover, for each matrix R ∈ Bεγ (Id) we have∑
ξ∈Λα

(γξ(R))
2
∫
T3

− Wξ ⊗W−ξ dx =
∑
ξ∈Λα

(γξ(R))
2
Bξ ⊗B−ξ = R. (3.15)

3.3. Analogy of equation (2.7) with the NSE near intermittent Beltrami
flows. In this part, we further analyze the structure of the nonlinearity of equation
(2.7) by comparing it with the NSE near the intermittent Beltrami flows introduced
above. We can take the magnetic field B as

WB
ξ =

1

λ
Wξ =

1

λ
ηξWξ.

An important observation is that

∇×WB
ξ = ηξWξ +

1

λ
∇ηξ ×Wξ = Wξ +

1

λ
∇ηξ ×Wξ

and
‖ 1

λ
∇ηξ ×Wξ‖L2 . σr,

where the upper bound σr can be sufficiently small by choosing the parameters
appropriately. We denote Wε =: 1

λ∇ηξ ×Wξ to be the small error term between
∇×WB

ξ and Wξ. Thus we can naturally adapt J = ∇×WB
ξ .

Now we show that the difference (3.10) is actually small near the intermittent
Beltrami flows. Namely, by taking B = WB

ξ = 1
λWξ and J = ∇×WB

ξ = Wξ +Wε,
a straight forward computation shows the difference[
∇ · ((∇× J)⊗WB

ξ + WB
ξ ⊗ (∇× J)−∇(J ×WB

ξ ))−∇|J |
2

2

]
−∇ · (J ⊗ J)

=∇ · ((∇× (Wξ + Wε))⊗
1

λ
Wξ +

1

λ
Wξ ⊗ (∇× (Wξ + Wε))−∇((Wξ + Wε)×

1

λ
Wξ))

−∇|Wξ + Wε|2

2
−∇ · ((Wξ + Wε)⊗ (Wξ + Wε))

∼∇ · ((∇×Wξ)⊗
1

λ
Wξ +

1

λ
Wξ ⊗ (∇×Wξ)−∇(Wξ ×

1

λ
Wξ))−∇

|Wξ|2

2
−∇ · (Wξ ⊗Wξ)

∼∇ · (λWξ ⊗
1

λ
Wξ +

1

λ
Wξ ⊗ λWξ)− 2∇ · (Wξ ⊗Wξ)

=0.

Thus, near the intermittent Beltrami flows (B, J) = (WB
ξ ,∇×WB

ξ ), equation (2.7)
(the curl of the Hall equation) is indeed “close” to the NSE. Also, an obvious fact is
that J = ∇×B scales as the velocity field in the NSE. This is the main motivation
to investigate the problem of non-uniqueness of Leray-Hopf weak solutions for the
Hall-MHD system by adhering to what has been done for the NSE in [5]. Of course,
new difficulties arise in the construction. In particular, rather than one function,
involved here are a pair of functions B and J , which are related through J = ∇×B.
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On the other hand, to apply the rigid geometric lemma, one has to regroup the
nonlinear interactions in a suitable way such that error terms can be controlled.
It is also non-trivial to determine how to introduce the temporal oscillation. In
the end, to show non-uniqueness of Leray-Hopf weak solutions for the Hall-MHD
system, we need to design a scheme of combining the convex integration method
for the magnetic field equation and the classical regularity theory for the NSE. We
will address all of these problems in the rest of the article.

4. Convex integration for the Hall equation

In this part, we adapt the convex integration method to construct Leray-Hopf
weak solutions of the Hall equation with nonnegative energy profiles for the current
density field. The main strategy is to design an iteration scheme for the approxi-
mating equation (3.9) illustrated in Proposition 4.1.

We start with fixing several parameters: for large enough constants a � 1 and
b� 1, and small enough positive constant β � 1, we define:

λq = ab
q

, δq = λ3β
1 λ−2β

q , (4.16)

r = λ
3
4
q+1, σ = λ

− 15
16

q , µ = λ
5
4
q+1, ` = λ−20

q . (4.17)

It is easy to see that λq+1 = λbq.

Proposition 4.1. There exists an absolute constant C > 0 and a sufficiently small
parameter εR depending on b and β such that the following inductive statement
holds. Let (Bq, Jq, Rq) be a solution of the approximating equation (3.9) on T3 ×
[0, T ] satisfying:

‖Bq‖C1
x,t
≤ λ3

q, (4.18)

‖Jq‖C1
x,t
≤ λ4

q, (4.19)

0 ≤ E(t)−
∫
T3

|Jq|2 dx ≤ δq+1, (4.20)

and

E(t)−
∫
T3

|Jq|2 dx ≤ δq+1

100
implies Jq(·, t) ≡ 0 and Rq(·, t) ≡ 0. (4.21)

In addition, we assume

∇ ·Rq = ∇ · R̃q +∇×∇× M̃q +∇ · ∇Q̃q +∇p̃q+1 (4.22)

for a traceless symmetric tensor R̃q, vector field M̃q and Q̃q, and a scalar pressure
function p̃q+1, which satisfy

‖R̃q‖L∞(L1) + ‖M̃q‖L∞(L1) + ‖Q̃q‖L∞(L1) ≤ λ−εRq δq+1, (4.23)

‖Rq‖C1
x,t
≤ λ12

q . (4.24)

Then we can find another solution (Bq+1, Jq+1, Rq+1) of (3.9) satisfying (4.18)-
(4.24) with q replaced by q + 1. Moreover, the increments vq+1 = Bq+1 − Bq and
wq+1 = Jq+1 − Jq satisfy

‖vq+1‖L2 ≤ Cλ−1
q+1δ

1/2
q+1, ‖wq+1‖L2 ≤ Cδ1/2

q+1. (4.25)
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This proposition leads to a proof of Theorem 1.1 immediately.
Proof of Theorem 1.1: At the first step, we take (B0, J0, R0) = (0, 0, 0) which

satisfies (4.18)-(4.23), and (4.20)-(4.21) for large enough a > 0. For q ≥ 1, we
apply Proposition 4.1 to obtain a sequence of approximating solutions {(Bq, Jq, Rq)}
satisfying (4.18)-(4.21). It follows from (4.25) that∑

q≥0

‖Jq+1 − Jq‖L2 =
∑
q≥0

‖wq+1‖L2 .
∑
q≥0

δ
1/2
q+1 <∞.

which implies the strong convergence of Jq = ∇×Bq to a function J in C0(0, T ;L2),
and the strong convergence of Bq to a function B in C0(0, T ;H1) with J = ∇×B
and ∇ ·B = 0.

While ‖R̃q‖L∞(0,T ;L1) → 0 and ‖M̃q‖L∞(0,T ;L1) → 0 as q →∞, we conclude J is
a weak solution of (2.7), and B is a weak solution of (2.5); moreover, it is obvious
that B ∈ L∞(0, T ;L2(T3)) ∩ L2(0, T ;H1(T3)), since B is divergence free.

�
The proof of Proposition 4.1 will be carried out in Sections 4.1 – 4.5 below.

4.1. Construction of the perturbation (vq+1, wq+1). Based on the building
blocks introduced in Section 3.2, we proceed to construct the perturbation vq+1 =
Bq+1 −Bq,

vq+1 := vpq+1 + vcq+1 + vtq+1

where vpq+1 and vcq+1 are defined as

vpq+1 =
∑
ξ∈Λα

aξWB
ξ = λ−1

q+1

∑
ξ∈Λα

aξηξWξ,

vcq+1 =λ−2
q+1

∑
ξ∈Λα

∇(aξηξ)×Wξ,

while vtq+1 will be defined through wtq+1 later. One can verify that

∇ · (vpq+1 + vcq+1) = λ−2
q+1

∑
ξ∈Λα

∇ · (∇× (aξηξWξ)) = 0.

We now define the perturbation wq+1 = Jq+1 − Jq as

wq+1 = wpq+1 + wcq+1 + wtq+1

with
wpq+1 =∇× vpq+1, w

c
q+1 = ∇× vcq+1,

wtq+1 =µ−1
∑
ξ

PHP 6=0(a2
ξη

2ξ).

In the end, we define vtq+1 through wtq+1 = ∇× vtq+1 up to a gradient which we can
take as zero. Indeed, for vtq+1 ∈ L2, we can decompose vtq+1 as

vtq+1 = vtq+1,0 +∇φ, with ∇ · vtq+1,0 = 0.

In our case, we simply take vtq+1,0 to be vtq+1, since ∇×∇φ = 0. Thus, ∇·vtq+1 = 0

holds. Along with the fact ∇ · (vpq+1 + vcq+1) = 0, we have

∇ · vq+1 = 0.

On the other hand, it is obvious that

∇ · wpq+1 = ∇ · wcq+1 = ∇ · wtq+1 = ∇ · wq+1 = 0
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and
wq+1 = ∇× vq+1.

4.2. Estimates of building blocks. The main purpose of adding the oscillation
ηξ to the Beltrami waves is to make sure the L1 norm of the waves is significantly
smaller than the L2 norm. This can be seen in the following lemma.

Lemma 4.2. [5] The bounds

‖∇N∂Kt Wξ‖Lp . λN (λσrµ)Kr
3
2−

3
p , (4.26)

‖∇N∂Kt ηξ‖Lp . (λσr)N (λσrµ)Kr
3
2−

3
p (4.27)

hold for all 1 < p ≤ ∞.

We point out that, following [5], in order to avoid a loss of derivative, the pair
(vq, wq) at each level needs to be regularized by using standard Frieddrichs mol-
lifiers. Moreover, the corresponding stress tensor Rq is not spatially homogenous.
To fix it, cutoff functions that form a partition of unity can be introduced to de-
compose Rq into slices. The two steps involve delicate computations, which will
be omitted in our presentation. Rather, we do adapt the regularization parameter
` from the first step. We also adapt the partition of unity: let 0 ≤ χ̃0, χ̃ ≤ 1 be
smooth functions supported on [0, 4] and [ 1

4 , 4] respectively; and χ̃i(z) = χ̃(4−iz)
satisfying

χ̃2
0(z) +

∑
i≥1

χ̃i(z) ≡ 1, ∀z > 0.

Then we define the amplitude function aξ for the intermittent Beltrami flows as,

aξ,i,q+1 = ρ
1
2
i χi,q+1γ(ξ)

(
Id− Rq

ρi

)
(4.28)

where ρi and χi,q+1 are defined as

ρi = λ−εRq δq+14i+c0 , i ≥ 1,

χi,q+1(x, t) = χ̃i

(〈
Rq(x, t)

100λ−εRq δq+1

〉)
.

Here we use the notation 〈A〉 = (1 + |A|2)
1
2 with | · | being the Euclidean norm of

a matrix. Referring to [5], we have

4max{i} . `−1. (4.29)

To make sure the inequality (4.20) holds, we need to choose ρ0 as follows,

ρ(t) =
1

3|T3|

(∫
T3

χ2
0 dx

)−1

max

E(t)−
∫
T3

|Jq|2 dx− 3
∑
i≥1

ρi

∫
T3

χ2
i dx− δq+1

2
, 0


ρ0 =

(
(ρ1/2) ∗ ϕ`

)2

,

where ϕ` is the standard Friedrichs mollifer at time scale `. It was shown in [5],
such defined ρ0 satisfies

‖ρ0‖C0
t
≤ 2δq+1, ‖ρ1/2

0 ‖CNt . δ
1/2
q+1`

−N , for N ≥ 1.

Below is a collection of estimates satisfied by the amplitude function aξ.
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Lemma 4.3. The following bounds hold

‖χi‖L1 . 4−i (4.30)

‖aξ‖L2 . δ
1
2
q+1, (4.31)

‖aξ‖L∞ . δ
1
2
q+1`

− 1
2 , (4.32)

‖aξ‖Lp . δ
1
2
q+1`

− 1
2 (1− 1

p ), for p ≥ 1, (4.33)

‖aξ‖CNx,t . `
−N , for N ≥ 1. (4.34)

Proof: We only need to show (4.33), since other ones were shown in [5]. In view
of (4.30), we deduce

‖aξ‖L1 . ρ
1
2
i ‖χi‖L1 . λ−εR/2q δ

1
2
q+1.

Thus, by interpolation we obtain

‖aξ‖Lp . ‖aξ‖
p−1
p

L∞ ‖aξ‖
1
p

L1 . δ
1
2 (1− 1

p )

q+1 `−
1
2 (1− 1

p )λ
−εR 1

2p
q δ

1
2p

q+1 . δ
1
2
q+1`

− 1
2 (1− 1

p ).

�

4.3. Estimates of the perturbation.

Lemma 4.4. The increment vq+1 = Bq+1 −Bq satisfies the following estimates

‖vpq+1‖L2 . λ−1
q+1δ

1
2
q+1, (4.35)

‖vcq+1‖L2 . `−1µ−1λ−1
q+1δ

1
2
q+1r

3
2 , (4.36)

‖vtq+1‖L2 . `−1µ−1(λq+1σ)−1δq+1r
3
2 , (4.37)

‖vpq+1‖Lp . λ
−1
q+1δ

1
2
q+1`

− 1
2 (1− 1

p )r
3
2−

3
p , p ≥ 1, (4.38)

‖vcq+1‖Lp . λ−1
q+1δ

1
2
q+1`

− 1
2 (1− 1

p )σr
5
2−

3
p , p ≥ 1, (4.39)

‖vtq+1‖Lp . `−1µ−1(λq+1σ)−1δq+1r
3− 3

p , p ≥ 1, (4.40)

‖vpq+1‖W 1,p + ‖vcq+1‖W 1,p . `−2r
3
2−

3
p , p ≥ 1, (4.41)

‖vtq+1‖W 1,p . µ−1δq+1`
−1r4− 3

p , p ≥ 1, (4.42)

‖vpq+1‖CNx,t + ‖vcq+1‖CNx,t . λ
1+5N

2
q+1 , (4.43)

‖vtq+1‖CNx,t . λ
3+5N

2
q+1 , (4.44)

‖Bq+1‖CNx,t . λ
3+5N

2
q+1 . (4.45)

Proof: Adhering to Lemma 2.3, (4.33) and (4.26), we obtain for 1 ≤ p ≤ ∞

‖vpq+1‖Lp ≤ λ−1
q+1

∑
ξ∈Λα

‖aξWξ‖Lp

. λ−1
q+1

∑
ξ∈Λα

‖aξ‖Lp‖Wξ‖Lp

. λ−1
q+1δ

1
2
q+1`

− 1
2 (1− 1

p )r
3
2−

3
p .
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In view of Lemma 2.3, (4.33), (4.34), and (4.27), and the choice of parameters
(4.16)-(4.17), we obtain

‖vcq+1‖Lp ≤ λ−2
q+1

∑
ξ∈Λα

‖∇(aξηξ)‖Lp

. λ−2
q+1

∑
ξ∈Λα

‖aξ∇ηξ‖Lp + λ−2
q+1

∑
ξ∈Λα

‖∇aξηξ‖Lp

. λ−2
q+1

∑
ξ∈Λα

‖aξ‖Lp‖∇ηξ‖Lp + λ−2
q+1

∑
ξ∈Λα

‖∇aξ‖L∞‖ηξ‖Lp

. λ−2
q+1δ

1
2
q+1`

− 1
2 (1− 1

p )λq+1σr
5
2−

3
p + λ−2

q+1`
−1r

3
2−

3
p

. λ−1
q+1δ

1
2
q+1`

− 1
2 (1− 1

p )σr
5
2−

3
p .

The proof of estimates on other norms of vpq+1 and vcq+1 can be found in [5] (by
multiplying each estimate the factor λ−1

q+1). We only need to show the estimates
for vtq+1. Recall that vtq+1 satisfies

∇× vtq+1 = wtq+1 = µ−1
∑
ξ∈Λ

PHP 6=0(a2
ξη

2
ξξ)

and vtq+1 is divergence free. Thus by Lemma 2.3 we deduce

‖vtq+1‖L2 ≤µ−1

∥∥∥∥∥∥
∑
ξ∈Λ

curl−1PHP 6=0(a2
ξη

2
ξξ)

∥∥∥∥∥∥
L2

.µ−1

∥∥∥∥∥∥
∑
ξ∈Λ

curl−1
(
a2
ξP≥λq+1σ/2(η2

ξξ)
)∥∥∥∥∥∥
L2

.µ−1
∑
ξ∈Λ

‖a2
ξ‖L∞(λq+1σ)−1

(
1 +

1

`L(λq+1σ)L−2

)
‖η2
ξ‖L2

.µ−1δq+1`
−1(λq+1σ)−1r

3
2 .

In an analogous way, we can obtain

‖vtq+1‖Lp .µ−1δq+1`
−1(λq+1σ)−1r3− 3

p ,

‖vtq+1‖W 1,p .µ−1δq+1`
−1r4− 3

p .

Proof of inequality (4.44) can be referred to [5]; inequality (4.45) follows from (4.43)
and (4.44).

�

Lemma 4.5. The increment wq+1 = Jq+1 − Jq satisfies the following estimates,

‖wpq+1‖L2 . δ
1
2
q+1, (4.46)

‖wcq+1‖L2 + ‖wtq+1‖L2 . `−1µ−1δ
1
2
q+1r

3
2 , (4.47)

‖wq+1‖Lp . δ
1
2
q+1`

− 1
2 (1− 1

p )r
3
2−

3
p , p ≥ 1, (4.48)

‖wpq+1‖W 1,p + ‖wcq+1‖W 1,p + ‖wtq+1‖W 1,p . `−2λq+1r
3
2−

3
p , p ≥ 1, (4.49)

‖∂twpq+1‖Lp + ‖∂twcq+1‖Lp . `−2λq+1σµr
5
2−

3
p , p ≥ 1, (4.50)
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‖wpq+1‖CNx,t + ‖wcq+1‖CNx,t + ‖wtq+1‖CNx,t . λ
3+5N

2
q+1 , (4.51)

‖|∇|Nwpq+1‖Lp + ‖|∇|Nwcq+1‖Lp + ‖|∇|Nwtq+1‖Lp . λNq+1r
3
2−

3
p , p ≥ 1, (4.52)

‖|∇|NJq+1‖Lp . λ
N+ 3

2
q+1 , p ≥ 1. (4.53)

Proof: Recall that

wpq+1 = ∇× vpq+1 =
∑
ξ∈Λ

aξWξ + λ−1
q+1

∑
ξ∈Λ

∇(aξηξ)×Wξ

=: WJ + Wε,1 = λq+1v
p
q+1 + Wε,1;

wcq+1 = ∇× vcq+1 = λ−2
q+1∇×

∑
ξ∈Λ

∇(aξηξ)×Wξ

 = λ−1
q+1∇×Wε,1.

Note that WJ is the intermittent wave defined for the principle part of the velocity
increment upq+1 − upq in [5]; while the temporal oscillation part wtq+1 is defined the
same way as in [5]. Thus the estimates on WJ and wtq+1 can be adapted from [5].
Therefore, it is sufficient to estimate Wε,1 and ∇×Wε,1.

In addition, we notice that Wε,1 = λq+1v
c
q+1. It then follows from Lemma 4.4

that

‖Wε,1‖L2 ≤ λq+1‖vcq+1‖L2 . δ
1
2
q+1,

‖Wε,1‖W 1,p ≤ λq+1‖vcq+1‖W 1,p . `−2λq+1r
3
2−

3
p ,

‖∂tWε,1‖Lp ≤ λq+1‖∂tvcq+1‖Lp . `−2λq+1σµr
5
2−

3
p ,

‖Wε,1‖CNx,t ≤ λq+1‖vcq+1‖CNx,t . λ
3+5N

2
q+1 .

The estimates of ∇×Wε,1 and hence wcq+1 are carried out as follows. First, a direct
computation leads to

wcq+1 = λ−2
q+1

∑
ξ∈Λ

(Wξ · ∇∇(aξηξ)−Wξ ·∆(aξηξ)−∇(aξηξ) · ∇Wξ) (4.54)

where we used the fact that ∇ ·Wξ = 0. Thus, we have

‖wcq+1‖L2 . λ−2
q+1 (‖Wξ∇∇(aξηξ)‖L2 + ‖∇(aξηξ)∇Wξ‖L2)

. λ−2
q+1 (‖∇∇(aξηξ)‖L2 + λq+1‖∇(aξηξ)‖L2)

. λ−2
q+1

(
‖aξ∇2ηξ‖L2 + ‖∇aξ∇ηξ‖L2 + ‖∇2aξηξ‖L2

)
+ λ−1

q+1 (‖aξ∇ηξ‖L2 + ‖∇aξηξ‖L2) .

Following Lemma 2.3 for L2 norm, we obtain

‖aξ∇2ηξ‖L2 . ‖aξ‖L2‖∇2ηξ‖L2 . δ
1
2
q+1(λq+1σr)

2 . λ2
q+1`

−1µ−1δ
1
2
q+1r

3
2
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due to (4.27) and (4.31), and the choice of parameters (4.16) and (4.17). The other
terms are treated in an analogous way,

‖∇aξ∇ηξ‖L2 . ‖∇aξ‖L∞‖∇ηξ‖L2 . `−1λq+1σr . λ
2
q+1`

−1µ−1δ
1
2
q+1r

3
2 ;

‖∇2aξηξ‖L2 . ‖∇2aξ‖L∞‖ηξ‖L2 . `−2 . λ2
q+1`

−1µ−1δ
1
2
q+1r

3
2 ;

‖aξ∇ηξ‖L2 . ‖aξ‖L2‖∇ηξ‖L2 . δ
1
2
q+1λq+1σr . λq+1`

−1µ−1δ
1
2
q+1r

3
2 ;

‖∇aξηξ‖L2 . ‖∇aξ‖L∞‖ηξ‖L2 . `−1 . λq+1`
−1µ−1δ

1
2
q+1r

3
2 .

Combining the estimates above yields

‖wcq+1‖L2 . `−1µ−1δ
1
2
q+1r

3
2

which concludes the proof of (4.47).
Now we estimate the Lp norm of wpq+1, w

c
q+1, and wtq+1. Again we recall that

wpq+1 = λq+1v
p
q+1 + λq+1v

c
q+1. The estimates (4.38) and (4.39) give immediately

‖wpq+1‖Lp . δ
1
2
q+1`

− 1
2 (1− 1

p )r
3
2−

3
p + δ

1
2
q+1`

− 1
2 (1− 1

p )σr
5
2−

3
p

. δ
1
2
q+1`

− 1
2 (1− 1

p )r
3
2−

3
p .

In an analogous way of estimating ‖wcq+1‖L2 , we can obtain

‖wcq+1‖Lp . `−1µ−1δ
1
2
q+1r

3− 3
p .

While we deal with wtq+1 as follows, by using (4.32) and (4.27)

‖wtq+1‖Lp . µ−1
∑
ξ∈Λα

‖a2
ξη

2
ξ‖Lp

. µ−1
∑
ξ∈Λα

‖aξ‖2L∞‖ηξ‖2L2p

. µ−1δq+1`
−1r3− 3

p .

Combining the last three estimates yields

‖wq+1‖Lp . δ
1
2
q+1`

− 1
2 (1− 1

p )r
3
2−

3
p

which proves (4.48).
Next we estimate ‖wcq+1‖W 1,p . It follows from (4.54), Lemma 4.3, Lemma 4.5

and (4.16)-(4.17) that

‖wcq+1‖W 1,p . λ−2
q+1

(
‖Wξ∇2(aξηξ)‖W 1,p + ‖∇Wξ∇(aξηξ)‖W 1,p

)
. λ−2

q+1

(
‖∇3(aξηξ)‖Lp + λq+1‖∇2(aξηξ)‖Lp

)
. λ−2

q+1‖aξ‖C3

(
‖∇3ηξ‖Lp + λq+1‖∇2ηξ‖Lp

)
. λ−2

q+1`
−3
(
(λq+1σr)

3 + λq+1(λq+1σr)
2
)
r

3
2−

3
p

. `−2λq+1r
3
2−

3
p .
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Thus, the proof of (4.49) is also complete. To prove (4.50), we proceed to estimate
‖∂twcq+1‖Lp ,

‖∂twcq+1‖Lp . λ−2
q+1

∑
ξ∈Λ

(
‖∂t∇2(aξηξ)‖Lp + λq+1‖∂t∇(aξηξ)‖Lp

)
. λ−2

q+1

∑
ξ∈Λ

‖aξ‖C3

(
‖∂t∇2ηξ‖Lp + ‖∇2ηξ‖Lp

)
+ λ−1

q+1

∑
ξ∈Λ

‖aξ‖C2 (‖∂t∇ηξ‖Lp + ‖∇ηξ‖Lp)

. λ−2
q+1`

−3 (λq+1σrµ+ 1) (λq+1σr)
2r

3
2−

3
p

+ λ−1
q+1`

−2 (λq+1σrµ+ 1) (λq+1σr)r
3
2−

3
p

. `−2λq+1σµr
5
2−

3
p .

In the end, we estimate ‖wcq+1‖CNx,t ,

‖wcq+1‖CNx,t . λ−2
q+1

∑
ξ∈Λ

(
‖∇2(aξηξ)‖CNx,t + λq+1‖∇(aξηξ)‖CNx,t

)
. λ−2

q+1

∑
ξ∈Λ

(
‖aξ‖CNx,t‖∇

2ηξ‖CNx,t + ‖∇aξ‖CNx,t‖∇ηξ‖CNx,t + ‖∇2aξ‖CNx,t‖ηξ‖CNx,t
)

+ λ−1
q+1

∑
ξ∈Λ

(
‖aξ‖CNx,t‖∇ηξ‖CNx,t + ‖∇aξ‖CNx,t‖ηξ‖CNx,t

)
. λ−2

q+1

(
`−N (λq+1σr)

2 + `−N−1λq+1σr + `−N−2
)

(λq+1σrµ)Nr
3
2

+ λ−1
q+1

(
`−Nλq+1σr + `−N−1

)
(λq+1σrµ)Nr

3
2

. λ
3
2 + 5N

2
q+1 .

It completes the proof of the inequality (4.51).
Inequality (4.52) can be obtained analogously as (4.49); while (4.53) is implied

by (4.52) and (4.17).
�

4.4. Estimate of the stress tensor Rq+1.

Lemma 4.6. Consider the equation

∂tJq+1 +∇×∇× (Jq+1 ×Bq+1) = ∆Jq+1 +∇ ·Rq+1. (4.55)

There exists a traceless symmetric tensor Rq+1 satisfying (4.55). Moreover, there
exists another traceless symmetric tensor R̃q+1, vector field M̃q+1 and Q̃q+1, and
a scalar pressure function p̃q+1 satisfying

∇ ·Rq+1 = ∇ · R̃q+1 +∇×∇× M̃q+1 +∇ · ∇Q̃q+1 +∇p̃q+1.

In addition, there exists p > 1 sufficiently close to 1, and a sufficiently small εR > 0
independent of q such that

‖R̃q+1‖Lp + ‖M̃q+1‖Lp + ‖Q̃q+1‖Lp . λ−2εR
q+1 δq+2 (4.56)

holds for some implicit constant which depends on p and εR.
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To estimate the stress tensor Rq+1, we first subtract the equation (3.9) at level
of Jq from the equation at level of Jq+1 to arrive

∂twq+1+ ∇ · ((∇× Jq+1)⊗Bq+1 − (∇× Jq)⊗Bq)
+ ∇ · (Bq+1 ⊗ (∇× Jq+1)−Bq ⊗ (∇× Jq))
− ∇ · (∇(Jq+1 ×Bq+1)−∇(Jq ×Bq))−∇pq+1

= ∆wq+1 +∇ ·Rq+1 −∇ ·Rq.

Rearranging the terms we obtain

∇ ·Rq+1 = ∂twq+1 −∆wq+1

+∇ · (∇× Jq+1 ⊗ vq+1 +∇× wq+1 ⊗Bq)
+∇ · (Bq+1 ⊗∇× wq+1 + vq+1 ⊗∇× Jq)
+∇ · (∇(Jq+1 × vq+1) +∇(wq+1 ×Bq))
+∇ ·Rq −∇pq+1.

We further classify the terms on the right hand side into linear, correction and
oscillation terms:

∇ ·Rq+1 = {∇ · [R(∂tw
p
q+1 + ∂tw

c
q+1 −∆wq+1)]

+∇ · [∇× Jq ⊗ vq+1 + vq+1 ⊗∇× Jq +∇× wq+1 ⊗Bq +Bq ⊗∇× wq+1]

+∇ · [∇(Jq × vq+1) +∇(wq+1 ×Bq)]}
+ {∇ · [∇× wpq+1 ⊗ (vcq+1 + vtq+1) + (vcq+1 + vtq+1)⊗∇× wq+1]

+∇ · [vpq+1 ⊗∇× (wcq+1 + wtq+1) +∇× (wcq+1 + wtq+1)⊗ vq+1]

+∇ · [∇(wpq+1 × (vcq+1 + vtq+1)) +∇((wcq+1 + wtq+1)× vq+1)]}
+ {∇ · [∇× wpq+1 ⊗ v

p
q+1 + vpq+1 ⊗∇× w

p
q+1 −∇(wpq+1 × v

p
q+1)]

−∇
|∇ × vpq+1|2

2
+ (∇ ·Rq + ∂tw

t
q+1)}

=: ∇ ·Rlinear +∇ ·Rcorrector +∇ ·Roscillation.

On the right hand side of the equation above, the first three lines correspond to
linear terms, the middle three correspond to correction terms, and the last two
lines correspond to oscillation terms. The estimates of them will be accomplished
separately below.

4.4.1. Linear terms. The estimates of the linear terms are relatively easy.

Lemma 4.7. For p > 1 sufficiently close to 1, Rlinear satisfies

‖Rlinear‖Lp . λ−2εR
q+1 δq+2.

Proof: It follows from Lemma 2.5 and (4.49) that,

‖R∆wq+1‖Lp . ‖wq+1‖W 1,p . `−2λq+1r
3
2−

3
p ;
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while Lemma 2.5 and (4.50) together give

‖R(∂t(w
p
q+1 + wcq+1))‖Lp = ‖R(∂t∇× (vpq+1 + vcq+1))‖Lp

= λ−1
q+1‖R∂t∇×∇× v

p
q+1‖Lp

= λ−1
q+1‖R∂t∇× w

p
q+1‖Lp

. λ−1
q+1‖∂tw

p
q+1‖Lp

. `−2σµr
5
2−

3
p .

We have, by (4.53) and (4.38)-(4.40),

‖(∇× Jq)⊗ vq+1 + vq+1 ⊗ (∇× Jq)‖Lp
.‖∇ × Jq‖L∞‖vq+1‖Lp

. λ3
q

(
λ−1
q+1δ

1
2
q+1`

− 1
2 (1− 1

p )r
3
2−

3
p + `−1µ−1(λq+1σ)−1δq+1r

3− 3
p

)
. λ3

q`
−1µ−1(λq+1σ)−1δq+1r

3− 3
p ;

and similarly, by (4.45) and (4.49),

‖(∇× wq+1)⊗Bq +Bq ⊗ (∇× wq+1)‖Lp
.‖Bq‖L∞‖wq+1‖W 1,p

. λ3
q`
−2λq+1r

3
2−

3
p .

Combining (4.53), (4.38)-(4.40), (4.41), (4.42), (4.45), (4.48), and (4.49) yields

‖∇(Jq × vq+1) +∇(wq+1 ×Bq)‖Lp
.‖∇Jq‖L∞‖vq+1‖Lp + ‖Jq‖L∞‖vq+1‖W 1,p

+ ‖∇Bq‖L∞‖wq+1‖Lp + ‖Bq‖L∞‖wq+1‖W 1,p

. λ3
q`
−1µ−1λ−1

q+1σ
−1r

3− 3
p

q+1 + λ3
q

(
`−2r

3
2−

3
p + µ−1δq+1`

−1r4− 3
p

)
+ λ4

q

(
δ

1
2
q+1`

− 1
2 (1− 1

p )r
3
2−

3
p + `−2λq+1r

3
2−

3
p

)
.

Summarizing the estimates above and taking into account the choice of parameters
(4.16)-(4.17) concludes the proof.

�

4.4.2. Correction terms.

Lemma 4.8. The corrector part ∇·Rcorrector of the stress tensor can be written as

∇ ·Rcorrector = ∇ · R̃corrector +∇×∇× M̃q+1,1 +∇ ·∇(2M̃q+1,1 + M̃q+1,2) +∇p̃q+1

for certain tensor R̃corrector, vector field M̃q+1,1 and M̃q+1,2, and a pressure term
p̃q+1. For p > 1 close enough to 1, and a sufficiently small constant εR > 0
depending on p, the following estimates hold:

‖R̃corrector‖Lp + ‖M̃q+1,1‖Lp + ‖M̃q+1,2‖Lp . λ−2εR
q+1 δq+1.

Proof: Upon the choice of parameters (4.16)-(4.17), the upper bound of ‖vtq+1‖Lp
is larger than that of ‖vcq+1‖Lp , as in Lemma 4.4. Thus we have to handle the
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terms involving ‖vtq+1‖Lp in a more delicate way. In order to do so, we rearrange
∇ ·Rcorrector as,

∇ ·Rcorrector =∇ · [(∇× wpq+1)⊗ (vcq+1 + vtq+1) + (vcq+1 + vtq+1)⊗∇× wq+1]

+∇ · [vpq+1 ⊗∇× (wcq+1 + wtq+1) +∇× (wcq+1 + wtq+1)⊗ vq+1]

+∇ · [∇(wpq+1 × (vcq+1 + vtq+1)) +∇((wcq+1 + wtq+1)× vq+1)]

=∇ · [(∇× wpq+1)⊗ vtq+1 + vtq+1 ⊗∇× wq+1]

+∇ · [∇× (wcq+1 + wtq+1)⊗ vtq+1]

+∇ · [∇(wpq+1 × vtq+1) +∇((wcq+1 + wtq+1)× vtq+1)]

+∇ · [(∇× wpq+1)⊗ vcq+1 + vcq+1 ⊗∇× wq+1]

+∇ · [vpq+1 ⊗∇× (wcq+1 + wtq+1) +∇× (wcq+1 + wtq+1)⊗ (vpq+1 + vcq+1)]

+∇ · [∇(wpq+1 × vcq+1) +∇((wcq+1 + wtq+1)× (vpq+1 + vcq+1))]

=∇ · [(∇× wq+1)⊗ vtq+1 + vtq+1 ⊗ (∇× wq+1) +∇(wq+1 × vtq+1)]

+∇ · [(∇× wq+1)⊗ vcq+1 + vcq+1 ⊗ (∇× wq+1)]

+∇ · [(∇× (wcq+1 + wtq+1))⊗ vpq+1 + vpq+1 ⊗ (∇× (wcq+1 + wtq+1))]

+∇ · ∇(wq+1 × vcq+1 + (wcq+1 + wtq+1)× vpq+1)

= : ∇ ·R{cor,1} +∇ ·R{cor,2} +∇ ·R{cor,3} +∇ ·R{cor,4}.

We notice that only R{cor,1} involves with vtq+1. We can further rewrite ∇·R{cor,1}
into
∇ ·R{cor,1} =∇ · [(∇× wq+1)⊗ vtq+1 + vtq+1 ⊗ (∇× wq+1)] +∇ · ∇(wq+1 × vtq+1)

=∇×∇× (wq+1 × vtq+1) +∇(wq+1 · (∇× vtq+1)) + 2∇ · ∇(wq+1 × vtq+1)

=∇×∇× (wq+1 × vtq+1) +∇(wq+1 · wtq+1) + 2∇ · ∇(wq+1 × vtq+1).

Denote
M̃q+1,1 = wq+1 × vtq+1, p̃q+1 = wq+1 · wtq+1

where p̃q+1 can be seen as a dummy pressure term. It follows that

∇ ·R{cor,1} = ∇×∇× M̃q+1,1 +∇ · ∇(2M̃q+1,1) +∇p̃q+1. (4.57)

While we can estimate M̃q+1,1 as, in view of (4.48), (4.40) and (4.16)-(4.17)

‖M̃q+1,1‖Lp ≤‖wq+1‖L2p‖vtq+1‖L2p

. δ
1
2
q+1`

− 1
2 (1− 1

p )r
3
2−

3
2p `−1µ−1λ−1

q+1σ
−1δq+1r

3− 3
2p

. `−3µ−1λ−1
q+1σ

−1δq+1r
9
2−

3
p

. λ−2εR
q+1 δq+1.

We turn to the estimates of R{cor,2}, R{cor,3}, and R{cor,4} which are trivial. Fol-
lowing from (4.39) and (4.49), it has

‖R{cor,2}‖Lp ≤ ‖wq+1‖W 1,2p‖vcq+1‖L2p

. λ−1
q+1δ

1
2
q+1`

− 1
2 (1− 1

p )σr
5
2−

3
2p `−2λq+1r

3
2−

3
2p

. `−3δ
1
2
q+1σr

4− 3
p

. λ−2εR
q+1 δq+1.
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By (4.49) and (4.38), we have, for p > 1 sufficiently close to 1

‖R{cor,3}‖Lp ≤ ‖wcq+1 + wtq+1‖W 1,2p‖vpq+1‖L2p

. λ−1
q+1δ

1
2
q+1`

− 1
2 (1− 1

p )r
3
2−

3
2p `−2λq+1r

3
2−

3
2p

. `−3δ
1
2
q+1r

3− 3
p

. λ−2εR
q+1 δq+1.

Now we estimate R{cor,4} by observing that

R{cor,4} = ∇ · ∇M̃q+1,2, M̃q+1,2 := wq+1 × vcq+1 + (wcq+1 + wtq+1)× vpq+1;

and M̃q+1,2 can be estimated as

‖M̃q+1,2‖Lp . ‖wq+1‖L2p‖vcq+1‖L2p + ‖wcq+1 + wtq+1‖L2p‖vpq+1‖L2p

. δ
1
2
q+1`

− 1
2 (1− 1

p )r
3
2−

3
2pλ−1

q+1δ
1
2
q+1`

− 1
2 (1− 1

2p )σr
5
2−

3
2p

+ δ
1
2
q+1`

− 1
2 (1− 1

p )r
3
2−

3
2pλ−1

q+1δ
1
2
q+1`

− 1
2 (1− 1

2p )r
3
2−

3
2p

. `−3λ−1
q+1δ

1
2
q+1r

3− 3
p .

�

4.4.3. Oscillation terms.

Lemma 4.9. The oscillation part ∇ ·Roscillation of the stress tensor can be written
as

∇ ·Roscillation = ∇ · (λq+1v
p
q+1 ⊗ λq+1v

p
q+1 +Rq +R∂twtq+1) +∇ · Dq+1

for a certain tensor Dq+1. For a p > 1 sufficiently close to 1 and an arbitrarily
small constant εR > 0, we have

‖λq+1v
p
q+1 ⊗ λq+1v

p
q+1 +Rq +R∂twtq+1‖Lp + ‖Dq+1‖Lp . λ−2εR

q+1 δq+1.

Proof: In fact the first four oscillation terms can be written as

∇ · [∇× wpq+1 ⊗ v
p
q+1 + vpq+1 ⊗∇× w

p
q+1 −∇(wq+1 × vpq+1)]−∇

|∇ × vpq+1|2

2
=∇×∇× ((∇× vpq+1)× vpq+1).

Thus we can write the oscillation part as

∇ ·Roscillation =∇×∇× ((∇× vpq+1)× vpq+1) +∇ ·Rq + ∂tw
t
q+1

=∇×∇× ((∇× vpq+1)× vpq+1)−∇ · (λq+1v
p
q+1 ⊗ λq+1v

p
q+1)

+∇ · (λq+1v
p
q+1 ⊗ λq+1v

p
q+1) +∇ ·Rq + ∂tw

t
q+1

(4.58)

Notice that the last three terms together are exactly the oscillation part ∇·R̃oscillation

for the NSE in [5], and thus can be estimated the same way. Thus we are left to
estimate the difference

∇ · Dq+1 =: ∇×∇× ((∇× vpq+1)× vpq+1)−∇ · (λq+1v
p
q+1 ⊗ λq+1v

p
q+1)

which will be shown to be small enough. Indeed, we first recall that

wpq+1 = ∇× vpq+1 = λq+1v
p
q+1 + λ−1

q+1

∑
ξ∈Λ

∇(aξηξ)×Wξ := λq+1v
p
q+1 + Wε,1.
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Thus, we have
λq+1v

p
q+1 = wpq+1 −Wε,1.

On the other hand, we notice that

∇× wpq+1 =λq+1

∑
ξ∈Λ

aξWξ +
∑
ξ∈Λ

∇(aξηξ)×Wξ +∇×Wε,1

=λq+1

(
wpq+1 −Wε,1

)
+ λq+1Wε,1 +∇×Wε,1

=λq+1w
p
q+1 +∇×Wε,1.

Therefore, a straightforward computation leads to

∇ · Dq+1 =∇×∇× (wpq+1 × v
p
q+1)−∇ ·

(
(wpq+1 −Wε,1)⊗ (wpq+1 −Wε,1)

)
=∇ ·

(
(∇× wpq+1)⊗ vpq+1 + vpq+1 ⊗ (∇× wpq+1)−∇(wpq+1 × v

p
q+1)

)
− wpq+1 · ∇w

p
q+1 −∇ ·

(
wpq+1 ⊗ w

p
q+1

)
−∇ ·

(
Wε,1 ⊗ wpq+1

)
−∇ ·

(
wpq+1 ⊗Wε,1

)
+∇ · (Wε,1 ⊗Wε,1)

=∇ ·
(
(λq+1w

p
q+1 −∇×Wε,1)⊗ vpq+1 + vpq+1 ⊗ (λq+1w

p
q+1 −∇×Wε,1)

)
−∇ · ∇

(
(λq+1v

p
q+1 + Wε,1)× vpq+1

)
− wpq+1 · ∇w

p
q+1 −∇ ·

(
wpq+1 ⊗ w

p
q+1

)
−∇ ·

(
Wε,1 ⊗ wpq+1

)
−∇ ·

(
wpq+1 ⊗Wε,1

)
+∇ · (Wε,1 ⊗Wε,1)

=∇ ·
(
wpq+1 ⊗ λq+1v

p
q+1 + λq+1v

p
q+1 ⊗ w

p
q+1

)
−∇ ·

(
∇×Wε,1 ⊗ vpq+1 + vpq+1 ⊗∇×Wε,1

)
−∇ · ∇

(
Wε,1 × vpq+1

)
− wpq+1 · ∇w

p
q+1 −∇ ·

(
wpq+1 ⊗ w

p
q+1

)
−∇ ·

(
Wε,1 ⊗ wpq+1

)
−∇ ·

(
wpq+1 ⊗Wε,1

)
+∇ · (Wε,1 ⊗Wε,1)

=∇ ·
(
wpq+1 ⊗ (wpq+1 −Wε,1) + (wpq+1 −Wε,1)⊗ wpq+1

)
−∇ ·

(
∇×Wε,1 ⊗ vpq+1 + vpq+1 ⊗∇×Wε,1

)
−∇ · ∇

(
Wε,1 × vpq+1

)
− wpq+1 · ∇w

p
q+1 −∇ ·

(
wpq+1 ⊗ w

p
q+1

)
−∇ ·

(
Wε,1 ⊗ wpq+1

)
−∇ ·

(
wpq+1 ⊗Wε,1

)
+∇ · (Wε,1 ⊗Wε,1)

=−∇ ·
(
wpq+1 ⊗Wε,1 + Wε,1 ⊗ wpq+1

)
−∇ ·

(
∇×Wε,1 ⊗ vpq+1 + vpq+1 ⊗∇×Wε,1

)
−∇ · ∇

(
Wε,1 × vpq+1

)
−∇ ·

(
Wε,1 ⊗ wpq+1

)
−∇ ·

(
wpq+1 ⊗Wε,1

)
+∇ · (Wε,1 ⊗Wε,1)

where we used the fact that ∇ · wpq+1 = 0. The next step is to estimate the terms
of Dq+1. We also notice that ∇×Wε,1 = wcq+1.

‖wpq+1 ⊗Wε,1 + Wε,1 ⊗ wpq+1‖Lp

.λ−1
q+1

∥∥∥∥∥∥wpq+1

∑
ξ∈Λ

∇(aξηξ)

∥∥∥∥∥∥
Lp

.λ−1
q+1‖w

p
q+1‖Lp

∥∥∥∥∥∥
∑
ξ∈Λ

∇(aξηξ)

∥∥∥∥∥∥
L∞

.λ−1
q+1δ

1
2
q+1`

− 1
2 (1− 1

p )r
3
2−

3
p

(
`−1r

3
2 + δ

1
2
q+1`

− 1
2λq+1σr

5
2

)
.λ−2εR

q+1 δq+2.
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�

4.5. The energy iteration.

Lemma 4.10. If ρ0(t) 6= 0, then the energy of the current density Jq+1 satisfies∣∣∣∣E(t)−
∫
T3

|Jq+1(x, t)|2 dx− δq+2

2

∣∣∣∣ ≤ δq+2

4
.

Lemma 4.11. If ρ0(t) = 0, then Jq+1(·, t) ≡ 0, Rq+1(·, t) ≡ 0 and

E(t)−
∫
T3

|Jq+1(x, t)|2 dx ≤ 3

4
δq+2.

The proof of Lemma 4.10 and Lemma 4.11 follows closely as the proof of Lemma
6.2 and Lemma 6.3 in [5]. The two estimates in Lemma 4.10 and Lemma 4.11
immediately implies (4.20) for q + 1. On the other hand, if

E(t)−
∫
T3

|Jq+1(x, t)|2 dx ≤ δq+2

100
,

it follows from Lemma 4.10 that ρ0(t) = 0. Thus, Lemma 4.11 guarantees Jq+1(t) ≡
0 and Rq+1(t) ≡ 0, which shows (4.21) for q + 1.

Now we can conclude that the proof of Proposition 4.1 is complete.

5. Non-uniqueness of the Hall MHD system

In this section, we come back to the 3D Hall-MHD system (1.1) with ζ = 1
and demonstrate that non-unique Leray-Hopf weak solutions can be actually con-
structed for this coupled system of the NSE and the Hall equation. That is, we
prove Theorem 1.2.

We consider the approximating system
∂tuq + (uq · ∇)uq +∇pq = ∆uq + (Bq · ∇)Bq,

∂tJq +∇×∇× (Bq × uq) +∇×∇× (Jq ×Bq) = ∆Jq +∇ ·Rsq
∇ · uq = 0.

(5.59)

The plan is to apply convex integration framework only to the equation of the
current density and solve the NSE at every level of the convex integration. The
detailed scheme is described below:

• Start with (u0, B0, J0, R
s
0) = (0, 0, 0, 0) which satisfies (5.59) automatically;

• Construct appropriate perturbations w1 = J1 − J0 and v1 = B1 − B0 for
the J1 equation of (5.59) in the spirit of convex integration applied to the
pure Hall equation in Section 4; for such B1 = v1 + B0, we solve the NSE
of u1 in (5.59);
• Take the subtraction of equation Jq in (5.59) at levels q = 1 and q = 0 and

obtain Rs1; thus we obtain (u1, B1, J1, R
s
1) satisfying the system (5.59) at

level q = 1;
• Repeat the last two steps iteratively to generate a sequence {(uq, Bq, Jq, Rsq)}

for q ≥ 0;
• Prove that the sequence {(uq, Bq, Jq, Rsq)} converges to (u,B, J, 0) with

functions u,B, J satisfying

J = ∇×B, u ∈ L∞(L2) ∩ L2(H1), B ∈ L∞(L2) ∩ L2(H1),

and (u,B) is a Leray-Hopf weak solution of the Hall-MHD system (1.1).



NON-UNIQUENESS OF HALL-MHD 25

With the construction of perturbations at hand (refer to Section 4), the rest of
the scheme involves two major bulks: solving the NSE of uq and applying convex
integration on the Jq equation. Details are demonstrated by proving the following
iterative argument.

Proposition 5.1. There exists an absolute constant C > 0 and a sufficiently small
parameter εR depending on b and β such that the following inductive statement
holds. Let (uq, pq, Bq, Jq, R

s
q) be a solution of the approximating equation (5.59) on

T3 × [0, T ] satisfying:
‖Bq‖C1

x,t
≤ λ3

q, (5.60)

‖Jq‖C1
x,t
≤ λ4

q, (5.61)

0 ≤ E(t)−
∫
T3

|Jq|2 dx ≤ δq+1, (5.62)

and

E(t)−
∫
T3

|Jq|2 dx ≤ δq+1

100
implies Jq(·, t) ≡ 0 and Rsq(·, t) ≡ 0. (5.63)

In addition, we assume

∇ ·Rsq = ∇ ·Rq +∇×∇×M ε
q (5.64)

with Rq being the stress tensor in (3.9) and M ε
q being a vector field. Then we

can find another solution (uq+1, pq+1, Bq+1, Jq+1, R
s
q+1) of (5.59) satisfying (5.60)-

(5.64) with q replaced by q+ 1. Moreover, Rq satisfies the properties in Proposition
4.1; the increments vq+1 = Bq+1 − Bq, wq+1 = Jq+1 − Jq, zq+1 = uq+1 − uq, and
M ε
q satisfy

‖vq+1‖L2 ≤ Cλ−1
q+1δ

1/2
q+1, ‖wq+1‖L2 ≤ Cδ1/2

q+1, (5.65)
lim
q→∞

‖zq+1‖Lp = 0, 1 ≤ p ≤ 2, (5.66)

lim
q→∞

‖M ε
q‖Lp = 0, for p > 1 close enough to 1. (5.67)

In analogy with Proposition 4.1 and Theorem 1.1, a proof of Theorem 1.2 follows
immediately from Proposition 5.1; thus the details are omitted.

Regarding the proof of Proposition 5.1, we emphasize again that we adapt the
same construction for perturbations of vq+1 = Bq+1 −Bq and wq+1 = Jq+1 − Jq as
for the Hall equation in Section 4; the stress tensor Rq in (5.64) is the same stress
tensor in the approximating equation (3.9); while the vector M ε

q comes from the
nonlinear interaction of uq ×Bq and will be shown to be small. Thus the estimates
for vq+1 and wq+1 in Lemma 4.4 and Lemma 4.5, respectively, are valid; and the
estimates for Rq+1 in Lemma 4.6 also hold. In particular, estimates (5.60), (5.61),
and (5.65) automatically hold.

We focus on completing the proof of Proposition 5.1 in the two subsections below.

5.1. Weak solution uq+1 of the NSE in L∞(L2) ∩ L2(H1). We consider the
forced NSE

∂tuq+1 + (uq+1 · ∇)uq+1 +∇pq+1 = ∆uq+1 +∇ · (Bq+1 ⊗Bq+1). (5.68)

By construction, we have

Bq+1 = B0 +

j=q∑
j=0

vj+1, Jq+1 = J0 +

j=q∑
j=0

wj+1
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with ‖vq+1‖L2 ≤ Cλ−1
q+1δ

1/2
q+1 and ‖wq+1‖L2 ≤ Cδ

1/2
q+1. It is then obvious that

‖Bq+1‖L2 ≤ C and ‖Jq+1‖L2 ≤ C which implies Bq+1 ∈ L∞(0, T ;H1(T3)), since
Bq+1 is divergence free.

It follows from the Sobolev embedding theorem that Bq+1⊗Bq+1 is in L2(0, T ;L3(T3)),
and hence in L2(0, T ;L2(T3)) as well. Thus we have∇·(Bq+1⊗Bq+1) ∈ L2(0, T ;W−1,2).
Then there exists a weak solution uq+1 of (5.68) with uq+1 ∈ L∞(0, T ;L2(T3)) ∩
L2(0, T ;H1(T3)), see [30].

Upon writing uq+1 as the sum of increments,

uq+1 = u0 +

j=q∑
j=0

(uj+1 − uj) = u0 +

j=q∑
j=0

zj+1,

the fact uq+1 ∈ L∞(0, T ;L2(T3)) implies

lim
q→∞

‖zq+1(t)‖L2(T3) = 0, t ∈ [0, T ].

Moreover, we have limq→∞ ‖zq+1(t)‖Lp(T3) = 0, 0 ≤ t ≤ T , for all p ∈ [1, 2].
Therefore, (5.66) is justified.

5.2. Convex integration for the Maxwell equation. With vq+1 = Bq+1 −Bq
and wq+1 = Jq+1 − Jq constructed as in Section 4 and uq+1 obtained in Section
5.1, we operate the convex integration method on the Jq+1 equation in (5.59).
Compared to the Jq equation in (3.9), there is one extra term ∇×∇× (Bq × uq)
in the Jq equation of (5.59). Thus, Rsq+1 will be different from Rq+1 due to the
interaction of this extra nonlinear term. In fact, taking the subtraction of the Jq+1

equation and Jq equation in (5.59), it is not hard to see

∇ ·Rsq+1 = ∇ ·Rq+1 +∇×∇× (Bq+1 × uq+1 −Bq × uq)

and we denote M ε
q+1 = Bq+1 × uq+1 −Bq × uq. An obvious rearrangement yields

M ε
q+1 = Bq+1 × uq+1 −Bq × uq = vq+1 × uq+1 +Bq × zq+1.

Therefore, we deduce from (4.38), (4.39), and (4.40), for p > 1 close to 1,

‖M ε
q+1‖Lp ≤ ‖vq+1 × uq+1‖Lp + ‖Bq × zq+1‖Lp

. ‖vq+1‖
L

2p
2−p
‖uq+1‖L2 + ‖Bq‖

L
2p

2−p
‖zq+1‖L2

. ‖vq+1‖
L

2p
2−p
‖uq+1‖L2 + ‖zq+1‖L2

j=q−1∑
j=0

‖vj+1‖
L

2p
2−p

. λ−1
q+1δ

1/2
q+1r

3
2−

3(2−p)
2p + ‖zq+1‖L2

j=q−1∑
j=0

λ−1
j+1δ

1/2
j+1λ

3
4 [ 3

2−
3(2−p)

2p ]
j+1

. λ−1
q+1δ

1/2
q+1r

3− 3
p + ‖zq+1‖L2 .

Therefore, along with (5.66), we can conclude (5.67).
Regarding the energy iteration properties (5.62) and (5.63), they can be obtained

in a similar way as of (4.20) and (4.21). Indeed, we notice that the Jq equation in
(5.59) differs from the Jq equation (3.9) by the nonlinear term ∇×∇× (uq ×Bq),
which is smaller than the nonlinear portion of the Hall term ∇×∇× (Jq×Bq) (up
to scale λ−1

q ). Therefore, when deriving (5.62) and (5.63) for q + 1, the nonlinear
term ∇×∇×(uq+1×Bq+1) can be treated as a small error term and hence absorbed
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by other terms in the estimates. Thus, slight modification of the proof of energy
iteration in [5] will yield (5.62) and (5.63).

We conclude the proof of Proposition 5.1.
Proof of Theorem 1.2: We are left to show that the sequence {(uq, Bq)}∞q=1

converges to a pair (u,B) ∈
(
L∞(0, T ;L2(T3)) ∩ L2(0, T ;H1(T3))

)2 which solves
the Hall MHD (1.1).

For given (u0, B0, J0, R0), we apply Proposition 5.1 iteratively to obtain a se-
quence of approximating solutions {(uq, Bq, Jq, Rq)} satisfying (5.60)-(5.67). It
follows from (5.65) that∑

q≥0

‖Jq+1 − Jq‖L2 =
∑
q≥0

‖wq+1‖L2 .
∑
q≥0

δ
1/2
q+1 <∞.

which implies the strong convergence of Jq = ∇×Bq to a function J in C0(0, T ;L2),
and the strong convergence of Bq to a function B in C0(0, T ;H1) with J = ∇×B
and ∇ ·B = 0.

According to the analysis above, we have uq ∈ L∞(0, T ;L2(T3))∩L2(0, T ;W 1(T3))
for all q ≥ 1. It follows the weak convergence of uq to a function u in L∞(0, T ;L2).
Combining the fact of Bq converging to B strongly in C0(0, T ;H1), we obtain that
(u,B) solves the NSE part of (1.1) in the weak sense.

On the other hand, the facts ‖Rq‖L∞(0,T ;L1) → 0 and ‖M ε
q‖L∞(0,T ;L1) → 0 as

q →∞ lead to ‖Rsq‖L∞(0,T ;L1) → 0 as q →∞. Thus, (u,B) also solves the second
equation of (1.1) in the weak sense. It indicates that (u,B) is a weak solution of
(1.1).

To show convergence of uq to a function u in C0(0, T ;L2), do we need to estimate
∂tuq?

‖∂tuq‖H−2 . ‖∆uq −∇ · (uq × uq) +∇ · (Bq ×Bq)‖H−2

6. Appendix: Vector calculus identities

Let A and B be vector valued functions, and ϕ be a scalar function. The following
identities hold:

∇× (ϕA) = ϕ(∇×A) + (∇ϕ)×A;

∇(A ·B) = B · ∇A+A · ∇B;

∇ · (A×B) = (∇×A) ·B −A · (∇×B);

∇× (A×B) = A(∇ ·B)−B(∇ ·A) +B · ∇A−A · ∇B
= ∇ · (BAT −ABT );

∇× (∇×A) = ∇(∇ ·A)−∇2A = ∇(∇ ·A)−∆A.

Applying the identities above, one can rewrite
∇×∇× [(∇×B)×B]

= ∇(∇ · [(∇×B)×B])−∆[(∇×B)×B]

= ∇(∇× (∇×B) ·B −∇×B · ∇ ×B)−∆[(∇×B)×B]

= ∇× (∇×B) · ∇B +B · ∇∇ × (∇×B)−∇|∇ ×B|
2

2
−∇ · ∇[(∇×B)×B].
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Assume B is divergence free. Let J = ∇× B, then ∇ · J = 0 and ∇ · ∇ × J = 0.
Thus we can further rewrite

∇×∇× ((∇×B)×B)

=∇ · [(∇× J)⊗B +B ⊗ (∇× J)−∇(J ×B)]−∇|J |
2

2
.

One can also derive the identity,

∆(∇×B) = ∇× (∆B).

Thus, taking curl of the Hall equation

Bt +∇× ((∇×B)×B) = ∆B,

we obtain the equation of the current density J = ∇×B,

Jt +∇ · [(∇× J)⊗B +B ⊗ (∇× J)−∇(J ×B)]−∇|J |
2

2
= ∆J.
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