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Abstract

Directed acyclic graph (DAG) models are
popular for capturing causal relationships.
From observational and interventional data,
a DAG model can only be determined up
to its interventional Markov equivalence class

(I-MEC). We investigate the size of MECs for
random DAG models generated by uniformly
sampling and ordering an Erdős-Rényi graph.
For constant density, we show that the ex-
pected log observational MEC size asymptot-
ically (in the number of vertices) approaches
a constant. We characterize I-MEC size in
a similar fashion in the above settings with
high precision. We show that the asymptotic
expected number of interventions required to
fully identify a DAG is a constant. These re-
sults are obtained by exploiting Meek rules
and coupling arguments to provide sharp up-
per and lower bounds on the asymptotic
quantities, which are then calculated numer-
ically up to high precision. Our results have
important consequences for experimental de-
sign of interventions and the development of
algorithms for causal inference.

1 Introduction

Directed acyclic graphs (DAGs) are popular models
for capturing causal relationships among a set of vari-
ables. This approach has found important applica-
tions in various areas including biology, epidemiology
and sociology (Gangl, 2010; Lagani et al., 2016). A
central problem in these applications is to learn the
causal DAG from observations on the nodes. A popu-
lar approach is to infer missing edges based on condi-
tional independence information that is learned from
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the data (Spirtes et al., 2000; Kalisch and Bühlmann,
2007). However, multiple DAGs can encode the same
set of conditional independences. Hence in general the
causal DAG can only be learned up to a Markov equiv-

alence class (MEC) and interventional data is needed
in order to identify the causal DAG.

While an MEC may contain a super exponential num-
ber of candidate DAGs, Gillispie and Perlman (2001)
showed by enumerating all MECs up to 10 nodes that
for small graphs (up to 10 nodes) an MEC on average
contains about four DAGs and that about a quarter of
all MECs consist of a unique DAG. Generalizing these
results to larger graphs is critical for estimating the
average number of interventional experiments needed
for identifying the underlying causal DAG. More gen-
erally, given the recent rise in interventional data in ge-
nomics enabled by genome editing technologies (Xiao
et al., 2015), it is of great interest to understand the
average reduction in the size of MECs through the
availability of interventional data, i.e., to characterize
the average size of an interventional Markov equiva-

lence class (I-MEC). Further, such an analysis would
also shed light on the number of additional interven-
tions needed to uniquely identify the underlying causal
DAG moving away from worst case bounds.

The problem of characterizing the size of an MEC
or I-MEC is not only of interest for experimental de-
sign of interventions but also from an algorithmic per-
spective. A popular approach to causal inference is
given by score-based methods that assign a score such
as the Bayesian Information Criterion (BIC) to each
DAG or MEC and greedily optimize over the space
of DAGs (Castelo and Kocka, 2003), a combination
of permutations and undirected graphs (Teyssier and
Koller, 2012; Raskutti and Uhler, 2018; Solus et al.,
2017; Mohammadi et al., 2018) or MECs (Meek, 1997;
Brenner and Sontag, 2013). Similar score-based ap-
proaches have also been developed in the interven-
tional setting (Hauser and Bühlmann, 2012a; Wang
et al., 2017; Yang et al., 2018). While a greedy step in
the space of graphs can easily be defined (addition, re-
moval or flipping of an edge), a greedy step in the space
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of Markov equivalence classes is complicated (Meek,
1997). Hence performing a greedy algorithm in the
space of MECs only makes sense if the space of MECs
is significantly smaller as compared to the space of
DAGs. For instance showing that typically occurring
MECs or I-MECs are small would imply that graph-
based search procedures operate on a similar search
space as the ones that use MECs, but can do so using
simpler moves.

Motivated by these considerations, in this work, we
initiate the study of interventional and observational
MECs for random DAG models. We focus on random

order DAGs, where the skeleton is a random Erdős
Rényi graph with constant density ⇢ and the order-
ing is a random permutation. We derive tight bounds
for the asymptotic versions of various metrics on the
I-MECs. More specifically, our contributions are as
follows:

1. We derive tight upper and lower bounds on (a) the
asymptotic expected number of unoriented edges
in an I-MEC given data from r = 0, 1, 2 . . . in-
terventions; (b) the asymptotic probability that
the I-MEC is a unique DAG given data from r

interventions; (c) the asymptotic number of ad-
ditional interventions needed to fully discover the
DAG given data from r interventions; and (d) the
asymptotic expected log-size of the I-MEC given
data from r interventions.

2. We also provide tight bounds for the number of
unoriented edges in the I-MEC when r interven-
tions have been performed using di↵erent algo-
rithms for choosing the interventions given the
observational MEC as input.

3. If M(r)n is the metric of interest of a random
order DAG of size n and r � 0 interventions, then
our bounds are of the following form: E[M(r)n] 
E[M(r)1]  E[M(r)n] + ✏n. Here, M(r)1 is the
limiting asymptotic metric, which we show is well
defined and exists. We also show that ✏n decays
exponentially fast in n for constant density ⇢.

4. We numerically compute E[M(r)n] through
Monte Carlo simulations for n as large as 110 at
which point ✏n is a small constant for various pa-
rameter regimes.

5. One of the surprising results is that for constant
density random order DAGs, all the above met-
rics tend asymptotically to a constant. Through
a combination of analysis of our bounds and nu-
merical computation, we can characterize these
constants precisely.

6. As an example of the nature of our results, quite
surprisingly, the asymptotic (as n ! 1) expected
log-observational MEC size of a random order

DAG with density 0.5 is at most 3.497 with prob-
ability at least 0.99 (see Theorem 14).

All omitted proofs can be found in the supplemental
material.

Related Work: There is currently only limited work
available on counting and characterizing MECs. In
(Gillispie and Perlman, 2001), the authors enumer-
ated all MECs on DAGs with p  10 nodes and an-
alyzed the total number of MECs, the average size
of an MEC, and the proportion of MECs of size one
on p nodes. Motivated by this work, Gillispie (2006),
Steinsky (2003), and Wagner (2013) provided formulas
for counting MECs of a specific size. Supplementing
this line of work, He and Yu (2016) developed various
methods for counting the size of a given MEC. Finally,
Radhakrishnan et al. (2017) addressed these enumer-
ative questions using a pair of generating functions
that encode the number and size of MECs for DAGs
with a fixed skeleton (i.e. underlying undirected graph)
and also applied these results to derive bounds on the
MECs for various families of DAGs on trees (Radhakr-
ishnan et al., 2018).

Another line of work (Hu et al., 2014; Hauser and
Bühlmann, 2012b; Shanmugam et al., 2015; Eber-
hardt et al., 2012; Hyttinen et al., 2013; Kocaoglu
et al., 2017) aims at characterizing the number of
interventions required to learn a causal DAG com-
pletely. While some of these works deal with the active
learning setting (Shanmugam et al., 2015; Hauser and
Bühlmann, 2012b), others choose interventions non-
adaptively given the observational MEC (Hu et al.,
2014; Eberhardt et al., 2012; Hyttinen et al., 2013;
Kocaoglu et al., 2017; Bello and Honorio, 2017) and
hence are concerned with the worst-case scenario.

2 Preliminaries and Definitions

In this work, we characterize the asymptotic behav-
ior of di↵erent metrics that capture the amount of
“causal relationships” which can be inferred from ob-
servational and interventional data on random DAG
models. In this section, we describe the random or-
derDAG model, briefly review causal DAG models and
Markov equivalence, and introduce the metrics that we
will analyze in this work.

2.1 Random Order DAG Model

Let G = (V,E) be a directed acyclic graph (DAG)
with vertices V = [n] and directed edges E ✓ V ⇥ V .
A random orderDAG with density ⇢ on n vertices
is a DAG Gn whose skeleton (i.e., underlying undi-
rected graph) is given by an Erdös-Rényi graph on n
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vertices with edge probability ⇢ and whose edges are
oriented according to a total ordering which is uni-
formly sampled among all permutations of n vertices.
We denote a graph Gn sampled from this model by
Gn ⇠ orderDAG(n, ⇢).

Remark: Our sampling procedure is a standard one
used for testing causal inference algorithms. It is for
example used in the well known pcalg R package1. A
di↵erent sampling scheme would be to sample DAGs
uniformly at random from all DAGs in which isomor-
phic DAGs would not be double counted. However,
such a sampling scheme is di�cult to perform in prac-
tice, while ours has a generative model that is easy
and intuitive. Limited prior computational evidence
in the observational setting suggests that the two sam-
pling schemes behave similarly (Gillispie and Perlman,
2001).

2.2 Markov Equivalence

A joint distribution P on the variables (Xv)v2V as-
sociated to the vertices of a DAG G is Markov with
respect to G if for any node v 2 G, Xv is conditionally
independent of its non-descendents given its parents.
In this case we say that P 2 M(G). Two directed
acyclic graphs G and G

0 are in the same Markov equiv-

alence class (MEC) if and only if M(G) = M(G0).
Two DAGs in the same MEC entail the same set of
conditional independence relations. (Meek, 1995).

The MEC of a DAG G can be uniquely represented
by a partially directed graph Ess(G) known as the
essential graph of G. The skeleton of Ess(G) is the
same as the skeleton of G and the directed edges in
Ess(G) are precisely those edges in G that have the
same orientation in all members of the MEC of G.
All other edges in Ess(G) are unoriented (Hauser and
Bühlmann, 2012a). The following procedure provides
all directed edges in Ess(G):

1. For every triple of nodes i, j, k 2 V if i and
j are disconnected in G and the ordered pairs
(i, k), (j, k) 2 E, then both edges (i, k) and (j, k)
are also oriented in Ess(G).

2. Orient edges by successive application of the
‘Meek rules’ (see (Meek, 1995) or Appendix A)
until they cannot be applied anymore to orient
any new edge.

2.3 Interventional Markov Equivalence

Let I ⇢ V and consider the set of single node inter-
ventional distributions (Pi)i2I , where node i is set to
some constant. Since in Pi, node Xi (a constant) is

1
https://rdrr.io/rforge/pcalg/man/randomDAG.html

independent of its parents XPa(i), it introduces addi-
tional conditional independences in addition to those
present in P . Let G

(i) denote the intervened DAG
obtained by deleting the edges from Pa(i) to i. If P
is Markov with respect to G, then Pi is Markov with
respect to G

(i). Two DAGs G and G
0 are in the same

I-Markov equivalence class (I-MEC) if and only if G(i)

and G
0(i) are in the same MEC for all i 2 I (Hauser

and Bühlmann, 2012a).

Similarly as in the purely observational setting, an I-
MEC can be uniquely represented by an I-essential

graph denoted by Ess(G, I). The skeleton of Ess(G, I)
is the same as the skeleton of G and the directed edges
in Ess(G, I) are precisely those edges in G that have
the same orientation in all members of the I-MEC
of G. All other edges in Ess(G, I) are unoriented.
The following procedure provides all directed edges in
Ess(G, I):

1. For every triple of nodes i, j, k 2 V with
(i, k), (j, k) 2 E and if i and j are disconnected
in G, then both edges (i, k) and (j, k) are also
oriented in Ess(G).

2. For every edge (i, j) such that either j 2 I or
i 2 I, then (i, j) is oriented.

3. Orient further edges by successive application of
the four rules in (Hauser and Bühlmann, 2012a)
(also given in Appendix A) until it cannot be ap-
plied anymore to orient any new edges.

2.4 Metrics of Interest

Suppose that the causal Bayesian network that gener-
ates data (both interventional and observational) is an
orderDAG Gn. Let P⇤ be an associated family of in-
terventional distributions compatible with Gn. In this
setting, our work asymptotically characterizes some
metrics that reflect identifiable portions of Gn from
an observational distribution P nd possibly also inter-
ventional distributions.

We denote by uEss an essential graph that is also a
DAG, i.e., an essential graph representing an MEC
consisting of a unique DAG. Such DAGs are of par-
ticular interest since they are identifiable from purely
observational data.

In the following, we will measure the degree of identifi-
ability of a random DAG Gn ⇠ orderDAG(n, ⇢) using
the following metrics:

1. Let Xn be the number of unoriented edges in
Ess(Gn). We show that X1 := lim

n!1
Xn exists.

2. Let isuEssn be an indicator variable that is 1
only if Ess(Gn) is a DAG. Similarly, the limit is
denoted isuEss1
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3. Let In be the number of single node interventions
required to fully orient Gn. Similarly, the limit is
denoted I1.

4. Let Ln be the size of the (observational) MEC of
Gn. The limit is denoted L1.

5. Let Xn(r) be the minimum number of unoriented
edges in Ess(Gn, I) optimized over all I : |I| = r.
The limit is denoted X1(r).

6. Let isuEssn(r) be an indicator variable that
is 1 when Xn(r) = 0. The limit is denoted
isuEss1(r).

7. Let Ln(r) be the size of the interventional markov
equivalence class when the interventions in the set
I are performed on Gn, where I minimizes the
number of unoriented edges in Ess(Gn, I) opti-
mized over all I : |I| = r. This limit is denoted
L1(r).

3 Main Results

We first describe the nature of our results and the
approach taken for obtaining these results for Xn.
The results for all other metrics follow using a simi-
lar approach, although the technical details di↵er de-
pending on the metric of interest. We show that
E(Xn)  E(X1)  E(Xn) + ✏n and we provide an ex-
plicit expression for ✏n. As a consequence, tight upper
and lower bounds can be constructed on the quanti-
ties of interest by numerically computing E[Xn] using
Monte Carlo simulations by generating random order
DAGs Gn for large n and averaging.

Formally, we state the main result in our work about
the asymptotic quantities of various metrics.

Theorem 1. We have the following inequalities sat-

isfied by various metrics:

E[Xn(r)]  E[X1(r)]  E[Xn(r)] + ✏n

E[In]  E[I1]  E[In] + ✏n

E[log2(Ln(r))]  E[log2(L1(r))]  E[X1(r)]

E[isuEssn(r)] � E[isuEss1(r)] � E[isuEssn(r)]� ✏n

for all r = 0, 1, 2 . . .. Here, ✏n is defined as follows:

✏n =
X

i�n

RHS(⇢, i)  (1� ⇢(1� ⇢))n

⇢(1� ⇢)2
+

n
(1� ⇢(1� ⇢))n�1

(1� ⇢)
, (1)

where RHS(⇢, n) = ⇢n ⇤ (1� ⇢(1� ⇢))n�1
and ⇢ is the

edge probability when sampling an order DAG.

We establish the main result on upper and lower
bounds through intermediate results as follows (ex-
plained taking the example of Xn): a) We first exhibit

a coupling between Gn and Gn+1 such that their re-
spective marginal distributions are preserved. This is
done in Section 3.1. b) Using the properties of this
specific coupling, we first show that E[Xn] is a mono-
tonic sequence in n in Section 3.1.1. c) The expression
for ✏n is obtained by upper bounding the successive
di↵erences E[Xn] � E[Xn+1] again using the proper-
ties of order DAG sampling and the coupling. This
is explained in Sections 3.1.2 and 3.1.3. Other sec-
tions provide additional results on I-MECs obtained
through other interventional design algorithms along
with numerical and simulation results.

3.1 Probability coupling

In this section, we provide a coupling argument be-
tween the distribution of Gn and Gn+1 such that ‘un-
orientability’ properties of certain edges are preserved.

For all 1  i < j  n, let Ai,j be a binary random
variable that is 1 with probability ⇢. Let Gn be the
DAG with nodes v1 . . . vn and directed edges between
vi ! vj if and only if Ai,j = 1.

Observation 1. Gn with permutation v1, v2, . . . , vn,

has the distribution of a random orderDAG on n ver-

tices with density ⇢.

Remark: Observation 1 says that randomly sampling
a symmetric adjacency matrix (undirected graph with
edge probability ⇢), permuting rows and columns with
a random permutation, and then taking the upper tri-
angular part (orienting the graph according to the per-
mutation) is the same as fixing the permutation from
1,2..n and populating the upper triangular part ran-
domly.

Coupling: Motivated by the above observation, we
couple Gn and Gn+1 as follows. We first generate Ai,j

for 1  i < j  n as above and use that to orient Gn.
Then, we generate additional random variables Ai,n+1

for all 1  i  n and orient the edges incident to vn+1

accordingly.

The above coupling along with certain structural prop-
erties of Meek Rules (given in Appendix A) leads to
the following results on orientability of certain edges
in Gn and Gn+1 under the coupling.

Lemma 1. Under the above coupling, if an edge (i, j)
is unorientable in Gn, it is also unorientable in Gn+1.

Lemma 2. Under the above coupling, if after a set of

interventions R on Gn the edge (i, j) is unorientable

in Gn, then it is also unorientable in Gn+1 after the

same set of interventions on Gn together with an in-

tervention on vn+1.
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3.1.1 Monotonicity Lemmas

We prove that expected values of all metrics of in-
terest are monotonic in n using the properties of the
coupling demonstrated above. First, we show this for
observational quantities by appealing to Lemma 1.

Theorem 2. The following statements hold with prob-

ability 1 for the coupling between Gn and Gn+1:

a) Xn+1 � Xn.

b) Ln+1 � Ln.

c) In+1 � In.

Therefore, E(Xn+1) � E(Xn), E(Ln+1) � E(Ln) and

E(In+1) � E(In).

Similar monotonicity properties for interventional
quantities are obtained by appealing to Lemma 2.
However, note that these proofs are not a straight-
forward application of Lemma 2. Often, additional
arguments need to be made to show the following re-
sults.

Theorem 3. Xn+1(r) � Xn(r) with probability 1 ac-

cording to the coupling between Gn and Gn+1. Hence,

E(Xn+1(r)) � E(Xn(r)).

The previous two theorems directly provide the follow-
ing result.

Theorem 4. isuEssn+1(r)  isuEssn(r) for all

r = 0, 1, 2 . . . best interventions with probability 1
under the coupling between Gn and Gn+1. Hence,

E(isuEssn+1(r))  E(isuEssn(r)).

Proof. This follows directly from Theorem 3 and The-
orem 2.

Theorem 5. Ln+1(r) � Ln(r) with probability 1
under the coupling between Gn and Gn+1. Hence,

E(Ln+1(r)) � E(Ln(r)).

The established monotonicity results help prove that
the asymptotic versions of these metrics exist.

Theorem 6. lim
n!1

Xn = X1 exists and E[X1] =

limn!1 E[Xn].

Remark: Theorem 6 extends to all metrics that have
been shown to be monotonic non-decreasing, i.e. met-
rics in the set {Xn(r), In, Ln(r)}, by analogous ar-
guments. Note that monotonically non-increasing se-
quences like isuEssn(r) are bounded below and above
and hence the results can be shown again by the same
theorem applied to shifted negatives of these variables.

3.1.2 Gap Bounds on Observational Metrics

Using properties of the coupling between Gn and Gn+1

we can show that the expected di↵erence in the obser-
vational metrics for Gn and the asymptotic version is
bounded.

Theorem 7. E(X1)�E(Xn) 
P1

i=n ⇢i ⇤ (1� ⇢(1�
⇢))i�1

.

Theorem 8. E(I1) � E(In) 
P1

i=n ⇢i ⇤ (1 � ⇢(1 �
⇢))i�1

.

3.1.3 Gap Bounds on Interventional Metrics

In the following, we show that the expected di↵erence
in the interventional metrics for Gn and the asymp-
totic version is bounded again using the properties of
the coupling described before.

Theorem 9. E(X1(r))�E(Xn)(r) 
P1

i=n ⇢i ⇤ (1�
⇢(1� ⇢))i�1

.

Theorem 10. E(isuEssn(r)) � E(isuEss1(r)) P1
i=n ⇢i ⇤ (1� ⇢(1� ⇢))i�1

.

All these results together allow us to prove the main
result (Theorem 1).

Proof of Theorem 1. The theorem follows from results
in Sections 3.1.1, 3.1.2, and 3.1.3. We use the fact
that log2(Ln(r))  Xn(r), since Ln(r)  2Xn(r) by
considering all possible orientations of the unoriented
edges in the I-essential graph.

3.1.4 Lower Bound on Successive Di↵erences

The above gap bounds depend on upper bounding suc-
cessive di↵erences of E[Xn]. In the following, we pro-
vide a lower bound on the successive di↵erences which
implies that gap bounds that are faster than exponen-
tial cannot exist.

Theorem 11.

E(Xn)�E(Xn�1) � (n� 1)⇢(1� ⇢)2n�4 � ⇢(1� ⇢)2n.

4 Results on I-MECs obtained by

Interventional Design Algorithms

In the following, we provide asymptotic convergence
rates for the number of undirected edges after r in-
terventions, when the interventions are chosen by an
algorithm that has a property that we call downstream-

independence. Greedy algorithms that choose r inter-
ventions sequentially based on the essential graph at
the observational stage are downstream-independent.
Note that, in this section, we do not consider Xn(r),
which is the minimum number of edges left unoriented
when r interventions are chosen based on the DAG
structure. We are therefore interested in algorithms
that optimize the interventions based on the essen-
tial graph, which can be inferred from purely observed
datasets.
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Notation 1. Let J be a set of interventions. We say

that H = J(G) when H is the essential graph that

results from performing the interventions J on the un-

derlying causal DAG G. Note that if G
0
is a subgraph

of G, then J(G0) is obtained by skipping the interven-

tions on nodes outside of G
0
.

Lemma 3. Let G be a DAG and vn a vertex of

ess(G) with no outgoing or undirected edges. Then,

J(G\vn) = J(G)\vn. In other words, interventions do

not a↵ect vertices that have no outgoing or undirected

edges.

Lemma 4. Let G
0
be an induced subgraph of G con-

sisting of all vertices vi such that neither vi nor any de-

scendants of vi have adjacent undirected edges. Then

J(G\G0) = J(G)\G0
.

Proof. The proof follows by applying Lemma 3 recur-
sively to G.

Definition 1. We say that an algorithm A for

performing interventions on an essential graph is

downstream-independent if the inverventions it

performs on G are identical to the ones it performs

on G\G0
.

Note that G\G0
is the result of the following process:

starting with G, recursively remove vertices that have

no undirected or outgoing edges.

Theorem 12. Let A be a downstream-independent al-

gorithm. Let Y (r, A)i be the expected number of undi-

rected edges in the essential graph of the random order

DAG Gi after performing r interventions according to

algorithm A. Then

|E(Y (r, A)i+1 � E(Y (r, A)i)|  ⇢i ⇤ (1� ⇢(1� ⇢))i�1

⇤ i(i+ 1)/2 (2)

Remark: Suppose there is an algorithm A that op-
timizes some score function based on the essential
graphs alone which is a proxy for minimizing the num-
ber of expected unoriented edges after r interventions,
then such algorithms are likely to be making decisions
independent of G0 in general due to Lemma 4. An ex-
ample is the algorithm that greedily picks the interven-
tion that reduces the expected number of unoriented
edges where the expectation is over the uniform distri-
bution of DAGs compatible with the essential graph.

Theorem 13. Let A be an algorithm that is down-

stream independent and chooses interventions based on

ess(G). Let Y (r, A)n be the number of undirected edges

after r interventions made by the algorithm A. Then,

E[Y (r, A)n]  E[Y (r, A)1]

 E[Y (r, A)n]+
1X

i=n

⇢i
2(i+ 1)/2 ⇤ (1� ⇢(1� ⇢))i�1

.

Here, lim
n!1

Y (r, A)n = Y (r, A)1 and this limit exists.

Proof. This is a direct corollary from the previous re-
sults in this section together with analogous arguments
regarding monotonicity and existence of limits similar
to those for Xn(r).

5 Discussion of the Results

Theorems 1 and 13 provide upper bounds in terms of
quantities computable by Monte-Carlo simulation at
finite n from random order DAGs and constants such
as ✏n that are exponentially small in n. If empirical
means of these finite n quantities appearing in these
upper bounds can be characterized with very high pre-
cision, then we can characterize the constant by which
these asymptotic quantities are upper bounded.

In the following section, we plot the empirical means of
these finite n quantities or upper bounds to these finite
n quantities for very large n and show that when com-
bined with the above bounds, the asymptotic quanti-
ties tend to a constant.

5.1 Precise Calculation of High Confidence
Upper Bounds on Asymptotic log-MEC
Size for Random Order DAGs of Density
⇢ = 0.5

We demonstrate how to obtain confidence inter-
vals on the expected asymptotic mean E[X1] and
E[log2(L1)] using our bounds and Monte Carlo sim-
ulations.

Details of Numerical Experiment: We sampled
X30 S = 100000 times for random order DAGs with
⇢ = 0.5. The sample variance we observed was V =
7.054 while the empirical mean was M = 3.394.

We use an empirical Bernstein bound for E[X30] and
show the following bound on expected value of X1:

Theorem 14. With probability at least 0.99 over the

randomness in our numerical experiments over S =
100000 samples, we have: E[log2(L1)]  E[X1] 
3.497.

This is an illustration of how our upper bounds, em-
prirical Bernstein bounds and Monte Carlo simulation
can be combined to give highly precise guarantees for
all the considered metrics.
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(a) Average number of unoriented edges, Xn(r), in the es-

sential graph associated with orderDAGs of density ⇢ af-

ter r interventions, averaged over 2000 samples; the high-

lighted region corresponds to points within 2-standard

deviations from the mean.

(b) Average logarithm of the size of the I-MEC for or-

der DAGs of density ⇢ after r interventions, averaged

over 2000 samples; the highlighted region corresponds to

points within 2-standard deviations from the mean.

Figure 1: We plot Monte-Carlo estimates of E[Yn(r, A)], i.e the number of unoriented edges in the essential
graph of a random order DAG after r interventions, together with E[log2 Ln(r, A)], i.e. the size of the I-MEC
after r interventions.

(a) Probability that the essential graph associated with

an order DAG of density ⇢ can be uniquely identified after

r interventions, averaged over 2000 samples; the high-

lighted region corresponds to points within 2-standard

deviations from the mean.

(b) Empirical mean of the number of interventions

needed to fully identify a random order DAG of density ⇢,
averaged over 2000 samples; the highlighted region cor-

responds to points within 2-standard deviations from the

mean.

Figure 2: We plot Monte-Carlo estimates of P(isuEssn(r, A)), i.e. the probability that the essential graph of a
random order DAG is equal to the order DAG itself, together with E[In(r, A)], i.e. the number of single-node
interventions required to fully orient a random order DAG.
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6 Numerical Results

We compute and plot the empirical means of the fol-
lowing observational metrics: a) Xn, b) isuEssn, c)
In, and d) log2 Ln. We also plot the empirical mean
of the following interventional metrics a) Y (r, A)n, b)
isuEss(r, A)n, c) log2 L(r, A)n, and d) I(r, A)n. These
interventional metrics are obtained on the essential
graph Ess(Gn, A) obtained by the greedy algorithm
A that operates as follows: First pick the node I1 that
orients the most edges, then for each consecutive r,
pick Ir that orients the most edges in Gn given the
({I1, . . . , Ir�1}-)essential graph.

Graph Generation: We generated 2,000 random or-
der DAGs with n = {3, 5, 10, 30, . . . 110} nodes and
densities ⇢ = {.1, .2, .5, .7}. For each DAG, we used the
open-source causaldag package in Python to compute
the number of DAGs in the (I-)MEC and the number
of undirected edges in the (I-)essential graph obtained
by applying algorithm A on Gn.

Results Established: The plots serve two purposes -
a) The empirical mean plots (Figs. 1a-2b) and the box
plots (Figs. 4a-5c) of all the estimated quantities pro-
vide an idea of what values the asymptotic quantities
are bounded by given the formula for ✏n in Theorem
1. For a more refined high confidence upper bound,
for large enough n, analysis similar to Theorem 14 can
be done. b) They help corroborate the monotonicity
results we have derived analytically.

Bounding Interventional Metrics: We observe
that the above interventional metrics plotted provide
an upper bound to Xn(r), Ln(r), isuEssn(r) and In(r)
which are based on the set of optimal interventions
for Gn that minimize the number of unoreinted edges
given Gn. Therefore, by Theorem 1 they certainly pro-
vide valid upper bounds together with ✏n. The shaded
regions in each plot are the estimates of the 95% confi-
dence intervals as given by the scipy.stats function
bayes mvs.

Figure 1a plots empirical mean of Xn and Y (r, A)n.
We observe that X̄n increases sharply for ⇢ � 0.5 and
plateaus near n = 10, while X̄n increases more gradu-
ally for ⇢ < 0.5, with a higher limit for sparse graphs.
For all densities, the empirical mean of Y (r, A)n in-
creases more gradually than the observational X̄n.

Figure 1b plots empirical mean of logLn and
logL(r, A)n. We again observe sharper increases and
lower plateaus for the higher densities, ⇢ = 0.5 and
⇢ = 0.7, compared to more gradual rises and higher
plateaus for the lower densities. Whereas in Figure 1a,
X̄n stabilizes at similar values for ⇢ = 0.2 and ⇢ = 0.5,
in Figure 1b, the empirical mean of logLn is greater
for ⇢ = 0.2 than for ⇢ = 0.5. This indicates that each

unoriented edge contributes to more MECs when the
density is low.

Figure 2a demonstrates the monotonicity of the empir-
ical mean of isuEssn and isuEss(r, A)n. We observe
that the empirical mean of isuEssn drops sharply for
all densities, with ⇢ = 0.5 appearing to have the high-
est limit. The di↵erence in behavior of the empirical
mean of isuEss(1, A)n and isuEss(2, A)n for di↵erent
densities is noteworthy. For sparser graphs, 1 or 2 in-
terventions do not significantly increase the expected
ability to identify the DAG; for instance, when ⇢ = 0.1,
the expected number of fully identified DAGs barely
changes from the observational case after n = 30.
However, for denser graphs, such as for ⇢ = 0.5 and
⇢ = 0.7, even 1 intervention is su�cient to learn
roughly 50% and 60% of the sampled graphs, respec-
tively, and 2 interventions is su�cient to learn nearly
all of them, even when n = 110. This result can be
explained by the fact that sparse graphs often consist
of multiple connected components and interventions
in one component have no e↵ect on other components.
Finally, Figure 2b demonstrates the monotonicity of
the empirical mean of In. Surprisingly, it takes very
few interventions to orient even large, sparse graphs.

7 Conclusion

We provided sharp upper and lower bounds for asymp-
totic expected log-MEC size and the number of inter-
ventions needed to fully orient a random order DAG
after r = 0, 1, 2.. (constant) number of initial inter-
ventions. There are various other metrics associated
with I-MECs of random order DAGs that we precisely
quantify in this work. Our methods relied on analyti-
cal bounds on the asymptotic quantities based on cou-
pling arguments and exploiting the properties of Meek
rules. This together with Monte Carlo simulations at
finite sizes establishes quantifiable and precise bounds.

Our results mean that a walk over the space of graphs
(larger search space but simpler moves) would not be
more time consuming than a walk over the space of
Markov equivalence classes (more complicated moves)
when implementing greedy search for structure learn-
ing. This is because the asymptotic log MEC size goes
to a constant for dense graphs. In addition, our results
imply that in general relatively few interventions are
needed to identifying dense causal networks. Investi-
gations like this for random graphs considering various
levels of sparsity and relaxing the causal su�ciency as-
sumptions are interesting directions for future work.
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