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Abstract
Multi-domain translation seeks to learn a proba-
bilistic coupling between marginal distributions
that reflects the correspondence between differ-
ent domains. We assume that data from different
domains are generated from a shared latent rep-
resentation based on a structural equation model.
Under this assumption, we prove that the problem
of computing a probabilistic coupling between
marginals is equivalent to learning multiple uncou-
pled autoencoders that embed to a given shared
latent distribution. In addition, we propose a new
framework and algorithm for multi-domain trans-
lation based on learning the shared latent distri-
bution and training autoencoders under distribu-
tional constraints. A key practical advantage of
our framework is that new autoencoders (i.e., new
domains) can be added sequentially to the model
without retraining on the other domains, which
we demonstrate experimentally on image as well
as genomics datasets.

1. Introduction
Unsupervised translation between multiple domains is be-
coming increasingly popular in fields such as computer
vision (Zhu et al., 2017) and computational biology (Mc-
Dermott et al., 2018). In these problems, one often has
access to large quantities of unpaired data from different do-
mains, and the objective is to learn a probabilistic coupling
between the observed marginal distributions that reflects the
correspondance between the domains.

We consider unsupervised multi-domain translation under
the assumption of a shared latent representation of the dif-
ferent domains. This problem arises in settings where the
different domains have some common structure or latent
generative process. In computer vision, for instance when
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working with faces, one might consider the facial shape and
attributes to be a higher level structure conserved across
different populations (e.g. male, female, old, young.) while
differences in other characteristics such as hair color are
mutable between domains. Similarly, in genomics, one
might consider relating different types of experimental data
that are generated from the same latent representation of
a cell population. A key difference between the image-to-
image translation problem and translation between biologi-
cal data modalities is that correspondence between different
biological data usually cannot be enforced by the neural
architecture such as through convolutions. Thus strategies
for unsupervised translation of images based on sharing or
transferring weights of neural networks cannot easily be
translated to biological problems.

Many prominent methods for unsupervised translation in-
cluding (Almahairi et al., 2018; Liu et al., 2017; Yi et al.,
2017; Kim et al., 2017) are based on the CycleGAN frame-
work (Zhu et al., 2017), which uses generative adversarial
networks (Goodfellow et al., 2014). The main idea is to
train two generative networks to transport images between
two domains such that (i) adversarial networks in both do-
mains cannot discriminate between real and transported
data, and (2) the translations are consistent with each other
when composed, i.e. translating from domain 1→ domain
2→ domain 1 recovers the original data. However, Cycle-
GAN does not use shared latent structure and only considers
transport between one pair of domains at a time. More
recently, Liu et al. (2017) considered image-to-image trans-
lation under the assumption of a shared latent representation
by composing the GAN objective with two variational au-
toencoders that share weights. The model is based on the
CycleGAN framework and performs transport between pairs
of domains at a time, which limits scalability to multiple
domains.

Here we propose a novel framework for learning transport
maps between multiple domains. The main idea is to lever-
age the assumption of a shared latent representation in order
to decompose the multi-domain translation model between k
domains into k uncoupled autoencoders (Figure 1a). These
autoencoders are trained separately and composed to trans-
late between different pairs of domains (Figure 1b). This
offers the following advantages:
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(a) (b)

Figure 1. (a) The assumption that the different data domains share a latent representation is leveraged to decompose the multi-domain
translation model between multiple domains into multiple autoencoders that can be trained separately. (b) To transport data between
domains, we compose the encoder (red) of the source domain with the decoder (purple) of the target domain.

• Modularity:
(
k
2

)
pairwise transport maps between k

domains can be constructed from k autoencoders.

• Flexibility: since the k autoencoders can be trained
separately, the training procedure is more flexible –
for example, new domains can be added later without
needing to retrain the model on the original domains.

• Efficiency: while our framework uses adversarial train-
ing to match the data to a common latent space, the
discriminators operate in the latent space and thus can
have much simpler architectures as compared to mod-
els with discriminators in the original domain spaces.

• Finally, our framework is general in the sense that it
is not specifically designed for image-to-image trans-
lation. Autoencoders can be designed for transport
between very different domains. We demonstrate this
by applying our model to imaging and genomics data.

The paper is structured as follows. We begin by formalizing
our assumption of a latent representation using structural
equation models (Section 2). Subsequently, we present our
framework for multi-domain translation using uncoupled
autoencoders (Section 3), providing theoretical justification
for our approach as well as practical algorithms. Finally, in
Section 4, we demonstrate the efficacy of our algorithms on
handwritten digits, CelebA faces and genomics datasets.

2. Preliminaries and Related Work
2.1. Notation

Let X1,X2, · · ·Xk denote the data domains of interest, and
let Z denote the domain of their shared latent representation.
For most practical purposes it suffices to work in the reals;
so we assume throughout that Xi ⊆ Rni for all i ∈ [k] :=
{1, . . . , k} and Z = Rd. For any domain X , we let X

Figure 2. Graphical depiction of the structural equation model un-
derlying the probabilistic coupling PX.

denote a random variable in this domain with distribution
PX and corresponding density function pX . Finally we let
X denote a tuple of variables (X1, · · · , Xk).

2.2. Problem Setting

We consider the problem of unsupervised transla-
tion between multiple domains: given random vari-
ables X1, X2, · · · , Xk with marginal distributions
PX1

, PX2
, · · ·PXk

, learn a probabilistic coupling PX

between the marginals that reflects the correspondance
between the variables. This can be formulated alternatively
as a conditional generative modeling task, in which the
objective is to estimate the pairwise conditional distributions
QXi|Xj

and QXj |Xi
with density functions qXi|Xj

and
qXj |Xi

under the constraint that they are consistent with the
same probabilistic coupling for all i, j ∈ [k]. In the k = 2
setting, for example, this would boil down to requiring that

pX1,X2(x1, x2) = qX2|X1
(x2|x1)pX1(x1)

= qX1|X2
(x1|x2)pX2(x2)

for all x1 ∈ X1, x2 ∈ X2.

There are various ways of defining a probabilistic coupling
between PX1

, PX2
, · · ·PXk

. In this work, we assume that
the random variables X1, X2, · · · , Xk are generated inde-
pendently from a common latent variable Z as shown in
Figure 2. Specifically:

Assumption 2.1. The random variables X1, . . . , Xk are
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generated by the following (causal) mechanism:

Xi = fi(Z,Ni), ∀i ∈ [k],

where fi, i ∈ [k] are injective functions, Z is a latent vari-
able with distribution PZ , and Ni, i ∈ [k], are independent
noise variables with distribution PNi .

This model is a structural equation model and implies the
following factorization of the joint distribution PX:

pX(x) =

∫
Z

k∏
i=1

pXi|Z(xi|z)pZ(z)dz, (1)

where pZ is the probability density of Z, and pXi|Z is the
conditional distribution of Xi given Z that reflects the gen-
erative process. Note that the relationship between Xi and
Z is allowed to be stochastic due to the noise variables in
the structural equation model.

2.3. Related Work

CycleGAN. Unsupervised transport between domains has
been addressed by many others before us, particularly in the
context of unsupervised image-to-image translation. To our
knowledge, many prevalent approaches (Almahairi et al.,
2018; Liu et al., 2017; Yi et al., 2017; Kim et al., 2017)
are based on the CycleGAN framework (Zhu et al., 2017),
which has proven to be very successful at training genera-
tive adversarial networks to translate between two unpaired
domains. Specifically, Zhu et al. (2017) proposed to rep-
resent the conditional distributions QX1|X2

and QX2|X1

between two domains with deterministic transport maps
G21 : X2 → X1 and G12 : X1 → X2 parameterized by
convolutional neural networks. These transport maps are
trained to satisfy the following constraints:

1. The distribution of images PX1
under the transfor-

mation G12 must be indistinguishable from the dis-
tribution PX2 , i.e. G12#PX1 = PX2 . Similarly, the
distribution of images PX2 under the mapping G21
must be indistinguishable from the distribution PX1

,
i.e. G21#PX2

= PX1
.

2. Composing the transport maps must result in the iden-
tity function, i.e., G21 ◦ G12(x) = x for all x ∈ X1,
and G12 ◦ G21(x) = x for all x ∈ X2.

While CycleGAN has seen great success in unsupervised
image-to-image translation, it does not make use of a shared
latent structure and only considers transport between one
pair of domains at a time. More recently, Choi et al.
(2018) proposed StarGAN to extend CycleGAN to the multi-
domain setting by training a single generator to generate
images from multiple domains. This model differs from

ours as it does not use the assumption of a shared latent
space; hence the model must be trained on all domains at
the same time and applies primarily to data types that can
use a common generator and discriminator for different
domains.

Latent Space Assumption. More closely related to our
work are several papers that propose methods for unsuper-
vised translation between different image domains under the
assumption of a common latent space. For example, Cou-
pled GAN (Liu & Tuzel, 2016) trains two GANs with shared
weights to learn a common representation of two domains.
However, Coupled GAN is not designed for inference, and
the training of networks is coupled, which is in contrast
to our model where training can be uncoupled. In addi-
tion, Liu et al. (2017) composed the CycleGAN framework
with variational autoencoders to concurrently learn the la-
tent space representation as well as transport maps between
two domains. However, the training of the two variational
autoencoders is coupled due to weight-sharing and the Cy-
cleGAN objective, whch is in contrast to our model where
training can be uncoupled over multiple autoencoders.

Regularized Autoencoders. There are several forms of
regularized autoencoders that are designed for generative
modeling by matching distributions in the latent space. Vari-
ational autoencoders (Kingma & Welling, 2013) minimize
the KL-divergence between generated and real images by
maximizing the evidence lower bound. However, this frame-
work assumes that the latent variable follows a Gaussian
distribution. In our work we use a form of the Wasserstein
autoencoder (WAE) (Tolstikhin et al., 2017), which is a
theoretically motivated generalization of the adversarial au-
toencoder (Makhzani et al., 2015). Both the adversarial
autoencoder and the discriminator-based WAE train an ad-
versary in the latent space to match encoded data samples
to the real latent distributions. The recent Sinkhorn autoen-
coder uses the Sinkhorn divergence instead of discriminative
loss to perform distribution matching in the latent space (Pa-
trini et al., 2018). However, none of these works address
multi-domain translation, which our framework will address
both in theory and in practice.

3. Proposed Framework
In this section, we present our new framework for perform-
ing unsupervised translation between multiple domains un-
der the assumption that their coupling is given by the struc-
tural equation model in Assumption 2.1. We provide our
theoretical results in the setting where the distribution PZ is
known in Section 3.1 and then provide algorithms for the
general setting in Section 3.2.
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Figure 3. Schematic of training uncoupled regularized autoen-
coders: the encoder is forced to match the encoded data distribution
to the latent distribution; at the same time, both the encoder and
the decoder must reconstruct samples from the data distribution.

3.1. Multi-domain transport with known PZ

In this section, we show that when the latent distribution PZ
is known, then learning a probabilistic coupling between
the marginals PX1 , PX2 , · · · , PXk

under Assumption 2.1
can be solved by learning multiple uncoupled autoencoders
(see Figure 3). Specifically, for each domain i ∈ [k], we
propose training a regularized encoder-decoder pair (Ei :
X → Z ×Ni, Di : Z ×Ni → X ) to minimize:

Ex∼PXi
[L1(x,Di ◦ Ei(x)) + λL2(Ei#PXi

|PZ,Ni
)] ,

(2)

where λ > 0 is a hyperparameter, L1 is the Euclidean
metric, and L2 represents a divergence between probability
distributions. Concretely, L1 penalizes the reconstruction
loss of the autoencoder while L2 penalizes the divergence in
the latent space between Ei#PXi

, the encoded distribution
of PXi

, and the latent generating distribution PZ,Ni :=
PZ ⊗ PNi . Translation from domain i to j is accomplished
by composing the encoder from the source domain with the
decoder from the target domain, i.e. taking

Xi→j := Dj(π
Z(Ei(Xi)), Nj) (3)

where Xi ∼ PXi
, Nj ∼ PNj

, and the projection πZ :
(z, n) 7→ z restricts the output of the encoder to the domain
ofZ; see Figure 4 for an illustration. Note that the role of the
noise variables is to introduce stochasticity into the mapping,
i.e. our framework can handle stochastic mappings similar
to Almahairi et al. (2018).

Implementation. We parameterize (Ei, Di) using neural
networks and minimize the objective function in (2) via
stochastic gradient updates as shown in Algorithm 1. In
particular, we choose L2 to be the discriminative loss,

L2(P |Q) := max
f

Ex∼P log f(x) + Ex∼Q log(1− f(x)).

Figure 4. Schematic of performing transport from domain 1 to
domain 2: first E1 is used to encode a sample from domain 1 to
a latent variable; subsequently D2 is used to decode the latent
variable to domain 2.

The resulting objective function is equivalent to the adversar-
ial autoencoder (Makhzani et al., 2015) and the GAN-based
WAE (Tolstikhin et al., 2017), which are methods for gener-
ative modeling based on autoencoding. Unlike those works,
the ultimate goal of training the autoencoders for us is to
compose them for multi-domain translation.

Algorithm 1 Training of autoencoders for multi-domain
transport

Input: Distributions PZ , {PXi
}i∈[k], {PNi

}i∈[k], initial-
ized autoencoders (Eθi , Dφi

)i∈[k], discriminator fω
Output: Updated autoencoders (Eθi , Dφi

)i∈[k]
for i ∈ [k] do

while (Eθi , Dφi) not converged do
Sample x1, · · · , xN from PXi

Sample z1, · · · , zN from PZ
Sample n1, · · · , nN from PNi

Update Eθi , Dφi
by gradient descent on

1

N

N∑
j=1

||xj −Dφi(Eθi(xj)||22 + λ log fω(Eθi(xj))

Update fω by gradient ascent on

1

N

N∑
j=1

[log fω(Eθi(xj)) + log(1− fω(zj , nj))]

end while
end for

Theoretical properties. To justify our approach, we show
that the optimal solutions to (2), which are tuples of autoen-
coders (Ei, Di)i∈[k] over every domain, satisfy the proper-
ties of consistency and completeness under Assumption 2.1.
Before formalizing these two concepts, we introduce some
notation and definitions. Let QZ|Xi

and QXi|Z be the con-
ditional probability distributions induced by the encoder Ei
and decoder Di respectively, i.e. ∀i ∈ [k], the correspond-
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ing densities are given by,

qXi|Z(x|z) :=
∫
Ni

δDi(z,n)=x dPNi
(n) ∀z ∈ Z

and
qZ|Xi

(z|x) := δπZ(Ei(x))=z ∀x ∈ Xi,
where δ is the Dirac delta. Subsequently, we can define
the conditional probability distribution QXj |Xi

induced by
composing Ei and Dj for any i, j ∈ [k] as follows:

qXj |Xi
(x′|x) :=

∫
Z
qXj |Z(x

′|z)qZ|Xi
(z|x)dz ∀x ∈ Xi.

With this notation we discuss two notions of consistency.
Definition 3.1 (Path consistency). Let (i1, · · · , i`) denote a
sequence of domains. A tuple of autoencoders (Ei, Di)i∈[k]
is path-consistent if for every sequence (i1, · · · , i`),∫
Xi`−1

...

∫
Xi2

`−1∏
j′=1

qXi
j′+1
|Xi

j′
(xj′+1|xj′)dx2...dx`−1

= qXi`
|Xi1

(x`|x1).

Path-consistency implies that any sequence of encodings
and decodings starting in domain i1 and ending in domain
i` induces the same conditional distribution.
Definition 3.2 (Global Consistency). Let Q(i) be the joint
distribution over X1, · · · , Xk with density given by

q(i)(x) :=

∫
Z

∏
j 6=i

qXj |Z(xj |z)qZ|Xi
(z|xi)pXi(xi)dz.

A tuple of autoencoders (Ei, Di)i∈[k] satisfies global con-
sistency if Q(1) = Q(2) = · · · = Q(k).

Intuitively, global consistency means that the joint proba-
bility distribution generated by encoding Xi using Ei and
decoding the resulting latent variable to all other domains
j ∈ [k], j 6= i using Dj is equivalent for any source domain
i ∈ [k]. These notions of consistency are generalizations of
cycle-consistency (Zhu et al., 2017) to the probabilistic and
multi-domain settings. The following proposition, whose
proof is given in the Supplementary Material, states that our
objective in (2) satisfies these consistency properties.
Proposition 3.3. Under Assumption 2.1, every optimal so-
lution of the objective in (2) satisfies path and global con-
sistency.

In general, the optimal solution of the objective in (2) is
not unique because there can potentially be multiple ways
to map between Z and Xi. However, we can guarantee
that the true probabilistic coupling under Assumption 2.1
is represented by some solution in the optimal set. This is
formalized in the following proposition, whose proof can
again be found in the Supplementary Material.

Proposition 3.4 (Completeness). For any probabilistic
coupling PX satisfying Assumption 2.1, there exists a tu-
ple of autoencoders (Ei, Di)i∈[k] optimizing (2) such that
PX = Qi for all i ∈ [k], where Qi is defined as in Proposi-
tion 3.3.

The consistency and completeness properties hold generally
in the non-parametric setting, i.e. when the autoencoders
that we optimize over have sufficiently large capacity to fit
the data distributions and optimize the objective function
in (2) to zero. In practice, however, the autoencoders are
constrained by parameterization using neural networks and
the objective function may not be optimized perfectly. The
following result provides a bound on transport error in terms
of autoencoder reconstruction and quality of latent encod-
ings, and applies to the case where the class of autoencoders
does not fit the latent and data distributions perfectly.

Proposition 3.5. Let QXi→j
denote the distribution of

Xi→j as defined in (3). If the decoder Dj is γj-Lipschitz,
then the 1-Wasserstein distance W (QXi→j

, PXj
) satisfies

W (QXi→j , PXj ) ≤ γjW (Ei#PXi , PZ ⊗ PNi)

+ γjW (PZ ⊗ PNj , Ej#PXj )

+ Ex∼PXj
L1(x,Dj ◦ Ej(x)).

The first two terms in this bound indicate how far the en-
coded distributions PXi

and PXj
are from the latent distri-

bution PZ ; the last term is the reconstruction loss of the
autoencoder for domain j. For a proof, see the Supplemen-
tary Material.

3.2. Multi-domain transport with unknown PZ

To extend the previous results to the setting where PZ is
unknown, we propose a two-step method: first estimate a
suitable latent representation, and subsequently apply Algo-
rithm 1 to learn an autoencoder for each domain.

A straight-forward approach for learning the latent distribu-
tion PZ is to train a regularized autoencoder on data from a
single representative domain. However, such a representa-
tion could potentially capture variability that is specific to
that one domain. To learn a more invariant latent representa-
tion, we propose the following extension of our autoencoder
framework. The basic idea is to alternate between training
multiple autoencoders until they agree on a latent represen-
tation that is effective for their respective domains. This is
particularly relevant for applications to biology; for exam-
ple, often one is interested in learning a latent representation
that integrates all of the data modalities.

In practice, we learned the latent distribution based on two
domains i, j ∈ [k] as follows. Let P̂Zi′ , i

′ ∈ {i, j} denote
the empirical latent distribution based on encoded data from
domain i′, i.e. P̂Zi′ = πZ ◦ Ei′#PXi′ . Then for domain i,
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(a) (b) (c) (d) (e) (f)

Figure 5. Examples of transport results from MNIST (a), inverted-MNIST (b), edge-MNIST (c), USPS (d), and colorized USPS (e) to the
other domains. The first column of each subfigure denotes the input image that is encoded to the latent space. Then from left to right we
have the decodings to the MNIST, inverted-MNIST, edge-MNIST, USPS, and colorized USPS domains. (f) Illustration of different latent
samples (rows) composed with different noise vectors (columns) decoded to the colorized USPS domains.

we optimized the objective,

min
Ei,Di

Ex∼PXi
L1(x,Di ◦ Ei(x)) + λL2(Ei#PXi

|PẐj ,Ni
),

while for domain j, we optimized the objective,

min
Ej ,Dj

Ex∼PXj
L1(x,Dj ◦ Ej(x)) + λL2(Ej#PXj |PẐi,Nj

),

where PẐj ,Ni
:= P̂Zj

⊗ PNi
and PẐi,Nj

:= P̂Zi
⊗ PNj

.
The training method was identical to Algorithm 1 except
that we replaced the true latent distribution PZ with the
empirical distributions of the encoded data.

4. Numerical Results
In this section, we show in practice how our framework can
be used to perform transport between multiple domains. A
key practical advantage of our framework is that once we
have learned an invariant latent representation based on a
couple of domains, new domains (i.e., new autoencoders)
can be added sequentially to the model without retraining on
the other domains. We demonstrate this experimentally on
MNIST and CelebA image datasets as well as a genomics
dataset.

4.1. Handwritten Digits

We first applied our algorithm towards multi-domain trans-
port on the MNIST and USPS handwritten digits datasets,
using the following experimental procedure.

1. Estimate the latent representation of handwritten digits
by training autoencoders on the MNIST dataset and
a synthetic MNIST variant (inverted-MNIST) as de-
scribed in Section 3.2.

2. Using the encoded MNIST dataset as a proxy for the
latent distribution, train autoencoders separately on the
following datasets as described in Section 3.1:

(a) A synthetic MNIST variant (edge-MNIST)
(b) USPS digits
(c) Colorized USPS digits

3. Compose autoencoders from Steps 1-2 for multi-
domain transport

The composition of encoders and decoders from 5 au-
toencders results in a total of 20 transport maps (or 10
pairwise maps) between the 5 domains. The results of the
transport maps are shown in Figure 5. Importantly, we did
not tune or retrain any of the existing autoencoders when
sequentially adding the new domains under Step 2 to the
model. This suggests that Algorithm 1 is successful at en-
coding the data from different domains to the same latent
representation.

With exception of the colorized USPS digits, all of the digits
from different domains can reasonably be assumed to be
generated deterministically from the latent space of hand-
written digits. For the colorized USPS digits, one would
expect color to be encoded stochastically from the noise
variable Ni rather than the shared latent variable Z. Our
autoencoder for the colorized USPS digits is designed to
capture this generative process (Figure 5f); when decoding
random samples from the latent and noise distribution to col-
orized USPS digits, the shape and color of the digits varies
with the latent variable and noise variable respectively.

We also attempted this experiment using a vanilla autoen-
coder on the MNIST dataset to learn the latent represen-
tation of the digits in Step 1. While the transport results
were acceptable between the different MNIST variants, the
transport between USPS and MNIST fared significantly
worse. This indicates that the latent representation learned
by alternating between two domains is more invariant to the
different handwritten digit domains, and further motivates
the importance of learning a quality latent representation in
future work.
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(a) (b) (c)

(d) (e) (f)

Figure 6. Examples of transport results from black-hair females (a), blond-hair females (b), brown-hair females (c), black-hair males (d),
and gray-hair males (e) to the other domains. The first column of each subfigure denotes the input image that is encoded to the latent
space. Then from left to right we have the decodings to the blond-hair female, brown-hair female, black-hair female, black-hair male, and
gray-hair male domains. (f) Illustration of different latent samples (rows) composed with two different noise vectors (columns) decoded to
all-males domain. The last image for each face is a binary mask showing regions of the image that change the most between the two noise
vectors (purple = 0, yellow = 1)

4.2. Celebrity Faces

Subsequently we used our framework to perform multi-
domain translation on the CelebA (Liu et al., 2015) celebrity
faces dataset. The experiments were performed using a
similar procedure as for the handwritten digits:

1. Learn a latent representation for faces by training
paired autoencoders on black-haired females and
blond-haired females as described in Section 3.2.

2. Using the encoded images of black-haired and blond-
haired females as a proxy for the latent distribution,
train autoencoders separately on the following datasets
as described in Section 3.1:

(a) brown-haired females
(b) black-haired males
(c) gray-haired males
(d) all males

3. Compose autoencoders from Steps (1-2) for transport

The composition of encoders and decoders from 6 autoen-
coders results in a total of 30 transport maps (or 15 pairwise
maps) between the 6 domains. Results of the transport are
shown for a subset of these maps in Figure 6a-e. Once again,
we did not tune or retrain the existing autoencoders when
adding the domains from Step 2 to the model. In fact, none
of the new autoencoders from Step 2 were exposed to the
data from other new domains during training; the only data
that was used was the latent encodings from the initial two
domains. This suggests that Algorithm 1 is successful at
encoding the data from different domains to the same latent
representation.

The autoencoder from Step 2d must learn the faces of males
with different hair colors, while the latent representation
in Step 1 was learned from domains of female faces with
the same hair color. Therefore one would expect hair color
to be encoded stochastically by the noise variable Ni. We
found qualitative evidence of the noise variable affecting
the darkness of hair when using the autoencoder to decode
random samples from the latent distribution with select
noise vectors (Figure 6f).
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Figure 7. Visualization of transport between single-cell RNA-sequencing data and single-cell ChIP-sequencing data via a latent space
representation. (Top-right) RNA-seq data; (Top-left) RNA-seq tranported to ChIP-seq domain; (Bottom-left) ChIP-seq data; (Bottom-right)
ChIP-seq data transported to the RNA-seq domain; (Center) shared latent space representation. Some outliers have been cut off by the
plot axes.

Progressive Training. Training the autoencoders on the
CelebA faces was significantly more challenging than hand-
written digits. To guide and stabilize training, we employed
a strategy of progressive training inspired by (Karras et al.,
2017) for GANs. We first trained the autoencoders in Step
1 on lower resolution (8 x 8) images and gradually pro-
gressed to higher resolution (64 x 64) images, adding new
convolutional layers to both the encoder and the decoder
components. We then performed the same procedure in Step
2, using the final encodings from Step 1. The discriminator
was not affected as it continued to train in the latent space.

4.3. Genomics

Datasets generated by different single-cell experimental
methods give only a partial view of the cell state. Pro-
cesses such as development and disease progression are
driven by the interplay between many components of a cell
(e.g. expression of key genes, chromatin conformation, epi-
genetic modifications, etc.) but each type of experiment
only produces data from one domain. Currently, methods
are lacking for integrating and translating between different
biological domains.

A significant difference between image-based and genomics-
based translation is the role that neural architecture plays
in enforcing correspondence between translated elements.
In image-to-image translation, the structure of natural im-
ages is preserved in the convolutional structure of the neural
network, which is biased by design towards the desired cou-
pling between images. On the other hand, natural structure
in genomics data, such as single-cell gene expression, is
based on the (unknown) 3D associations between different
loci on the DNA and is not naturally preserved in the neural
network structure. As a result, some high-level form of
supervision (e.g. in the form of generic class labels) may be
necessary to preserve the correct structure during transport.

We used our autoencoder framework to perform transla-
tion between unpaired single-cell RNA-sequencing data
(RNA-seq, Kolodziejczyk et al. (2015)) and single-cell
ChIP-sequencing data processed into chromatin signatures
(ChIP-seq, Rotem et al. (2015)) from mouse embryonic
stem cells. When performing this experiment without using
class labels, the distributions of the RNA-seq and ChIP-seq
data appeared to be Gaussian in the latent space, which al-
lowed for arbitrary alignment of the transported distributions
with the real domain distributions. We found that provid-
ing binary class labels based on the pluripotency marker
Oct4 (Pou5f1) to the discriminator in Algorithm 1 was suffi-
cient to orient the encoded distributions of the RNA-seq and
ChIP-seq data in the latent space. This resulted in translated
distributions that were well-aligned with the true distribu-
tions based on the full range of pluripotency (Figure 7). Our
framework can be used to make predictions with regards
to how different biological domains are related, which can
subsequently be validated by experimentation.

5. Discussion
We proposed a novel framework for learning transport maps
between multiple domains, based on leveraging a shared
latent representation to decompose the multi-domain trans-
lation model between k domains into k uncoupled autoen-
coders. These autoencoders are trained separately and com-
posed to translate between different pairs of domains. Com-
pared to existing frameworks, our model offers several ad-
vantages such as being flexible (i.e., autoencoders can be
trained separately on different domains) and efficient (i.e.,
only one discriminator is required in the latent space; distri-
bution matching is done in the latent space rather than the
original space). Future work will focus on better methods
for learning invariant representations in order to improve
data integration as well as generative quality.
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Multi-Domain Translation by Learning Uncoupled Autoencoders
(Supplementary Material)

A. Proofs from Main Text
For convenience we repeat the main assumptions, definitions, and results here:
Assumption A.1. The random variables X1, . . . , Xk are generated by the following causal generative mechanism:

Xi = fi(Z,Ni), ∀i ∈ [k],

where fi, i ∈ [k] are injective functions, Z is a latent variable with distribution PZ , and Ni, i ∈ [k], are independent noise
variables with distribution PNi

.
Definition A.2 (Path consistency). Let (i1, · · · , i`) denote a sequence of domains. A tuple of autoencoders (Ei, Di)i∈[k] is
path-consistent if for every finite sequence (i1, · · · , i`),∫

Xi`−1

...

∫
Xi2

`−1∏
j′=1

qXi
j′+1
|Xi

j′
(xj′+1|xj′)dx2...dx`−1

= qXi`
|Xi1

(x`|x1)

Path-consistency implies that any sequence of encodings and decodings starting in a domain i1 and ending in a domain i`
induces the same conditional distribution.
Definition A.3 (Global consistency). Let Q(i) be the joint distribution over X1, · · · , Xk with density given by

q(i)(x) :=

∫
Z

∏
j 6=i

qXj |Z(xj |z)qZ|Xi
(z|xi)pXi

(xi)dz.

A tuple of autoencoders (Ei, Di)i∈[k] satisfies global consistency if Q(1) = Q(2) = · · · = Q(k).

Global consistency means that the joint probability distribution generated by encoding a domain Xi using Ei and decoding
the resulting latent variable to all other domains j ∈ [k], j 6= i using Dj is equivalent for any source domain i ∈ [k].
Proposition A.4. Under Assumption A.1 every optimal solution of encoder-decoder tuples (Ei, Di)i∈[k] to the optimization
problem

min
(Ei,Di)i∈[k]

Ex∼PXi
[L1(x,Di ◦ Ei(x)) + λL2(Ei#PXi

|PZ,Ni
)] (4)

satisfies path and global consistency.

To prove this we first introduce some helpful lemmas.
Lemma A.5. The optimal value of the optimization problem in (4) is zero.

Proof. We choose (Ei, Di) as follows: Take Di = fi and note that PXi
= Di#(PZ ⊗ PNi

). Now we construct Ei such
that Ei#PXi = PZ ⊗ PNi and Di ◦Ei(x) = x almost surely with respect to PXi

. To do this, first note that there exists a
subsetA ⊆ Xi such that the restriction D̃i : Z×Ni → A is surjective and PXi(A) = 1. Since D̃i is injective by hypothesis,
it follows that D̃i : Z ×Ni → A is a bijective map with an inverse D̃−1i : A→ Z ×Ni. Let Ei : X → Z ×Ni be any
function such that Ei(x) = D̃−1i (x), ∀x ∈ A. It follows that Di(Ei(x)) = Di(D

−1
i (x)) = x, ∀x ∈ A and that for all Borel

sets B ⊆ Z ×Ni,

Ei#PXi
(B) = D−1i #PXi

(B) = PXi
(Di(B)) = Di#(PZ ⊗ PNi

)(Di(B)) = PZ ⊗ PNi
(B).

Observe that this choice of (Ei, Di) achieves zero loss for the objective in (4), which is the smallest possible value given the
non-negativity of L1 and L2.
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Lemma A.6. For any tuple of optimal solutions (Ei, Di)i∈[k] to (4), there exists Ai ⊆ Xi and Bi ⊆ Z ×Ni, i ∈ [k] such
that

(i) PXi(A) = 1,

(ii) PZ ⊗ PNi
(Bi) = 1,

(iii) the restrictions Ei : Ai → Bi and Di : Bi → Ai are bijective with Ei = D−1i ,

(iv) πZB1 = · · · = πZBk, where πZ : (z, n) 7→ z is the projection to Z.

Proof. We construct Ai and Bi as follows. From the previous lemma, it follows that for all i ∈ [k], any optimal solution
(Ei, Di) to (4) satisfies

Ex∼PXi
L1(Di(Ei(x)), x) = 0.

Since L1 is non-negative and equal to zero if and only if Di(Ei(x)) = x, this implies that there exists Ai ⊆ Xi such
that PXi

(Ai) = 1 and Di(Ei(x)) = x for all x ∈ Ai. Consider the restriction Ei : Ai → Z ×Ni; Ei has a left inverse
Di over this domain which implies that Ei is injective. Note that Ei#PXi

= PZ ⊗ PNi
=⇒ (πZ ◦ Ei)#PXi

= PZ .
This implies there exists B ⊆ Z such that for all i ∈ [k], πZ ◦ Ei : Ai → B is surjective and PZ(B) = 1. Additionally,
since Ei#PXi = PZ ⊗ PNi , there exists Bi ⊆ B ×Ni with πZBi = B such that PZ ⊗ PNi(Bi) = 1 and the restriction
Ei : Ai → Bi is surjective. It follows that Ei : Ai → Bi is bijective with inverse Di : Bi → Ai. This concludes the
proof.

This lemma implies that for any optimal autoencoder (Ei, Di) the encoder and decoder are the inverses of each other when
the domains and codomains are restricted to Ai, Bi. Since all the data falls into these sets with probability one, in the
subsequent discussion, for any given optimal (Ei, Di), we can restrict Xi = Ai, Z = B, and Z ×Ni = Bi and assume
Ei = D−1i without loss of generality.

Proof of Proposition A.4. It suffices to prove path-consistency for the case of ` = 3; for longer sequences the result can be
proven by induction. Without loss of generality, consider the sequence (1, 2, 3). Note that∫

X2

q(x3|x2)q(x2|x1)dx2 =

∫
X2

[∫
Z
q(x3|z′)q(z′|x2)dz′

] [∫
Z
q(x2|z)q(z|x1)dz

]
dx2

=

∫
X2

[∫
Z
q(x3|z′)δπZ(E2(x2))=z′dz

′
] [∫

Z

∫
N2

δD2(z,n)=x2
dN2(n)q(z|x1)dz

]
dx2

=

∫
Z

∫
Z

∫
X2

∫
N2

q(x3|z′)δπZ(E2(x2))=z′δD2(z,n)=x2
q(z|x1)dN2(n)dx2dzdz

′

=

∫
Z

∫
Z

∫
N2

q(x3|z′)δπZ(E2(D2(z,n)))=z′q(z|x1)dN2(n)dzdz
′

=

∫
Z

∫
Z

∫
N2

q(x3|z′)δπZ(z,n)=z′q(z|x1)dN2(n)dzdz
′

=

∫
Z

∫
Z
q(x3|z′)δz=z′q(z|x1)dzdz′

=

∫
Z
q(x3|z′)q(z′|x1)dz′

:= q(x3|x1),

which proves path consistency.

For global consistency, we introduce the following notation: for any conditional probability distribution QY1|Y2
and any

probability distribution PY2 we denote their joint distribution by QY1|Y2
⊗ PY2 . We first show that the joint distributions

QXi|Z,Ni
⊗ PZ ⊗ PNi and QZ,Ni|Xi

⊗ PXi are equal over any subsets S ⊆ Xi, S′ ⊆ Z ×Ni:
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QXi|Z,Ni
⊗ PZ ⊗ PNi(S, S

′) = 1D(Z,N)∈SPZ ⊗ PNi(S
′)

= PZ(S
′ ∪D−1(S))

= PX(E−1(S′ ∩D−1(S)))
= PX(E−1(S′) ∩ E−1 ◦D−1(S))
= PX(E−1(S′) ∩D ◦D−1(S))
= PX(E−1(S′) ∩ S)
= 1E(X)∈S′PXi(S)

= QZ,Ni|Xi
⊗ PXi(S, S

′)

By marginalizing out Ni (i.e. taking S′ = A×Ni for some A ⊆ Z), it follows that QXi|Z ⊗ PZ = QZ|Xi
⊗ PXi

. Based
on this result, we have for any i ∈ [k]:

⊗
j∈[k]

QXj |Z ⊗ PZ =
⊗

j∈[k],j 6=i

QXj |Z ⊗QXi|Z ⊗ PZ =
⊗

j∈[k],j 6=i

QXj |Z ⊗QZ|Xi
⊗ PXi

= Q(i)

which gives the desired result.

In general, the optimal solutions to the optimization problem in (4) are not unique because there can potentially be multiple
ways to map between Z and Xi. However, we can guarantee that the true probabilistic coupling under Assumption A.1 is
represented by some solution in the optimal set. This is formalized in the following proposition.

Proposition A.7 (Completeness). For any probabilistic coupling PX satisfying Assumption A.1, there exists a tuple of
autoencoders (Ei, Di)i∈[k] solving (4) such that PX = Qi for all i ∈ [k], where Qi is defined as in Proposition A.4.

Proof. The construction of such an optimal solution is given by Lemma A.6. Combining this with the previous proposition
yields the desired result.

Proposition A.8. Let QXi→j
denote the distribution of Xi→j := Dj(π

Z(Ei(Xi)), Nj). If the decoder Dj is γj-Lipschitz,
then the 1-Wasserstein distance W (QXi→j

, PXj
) satisfies

W (QXi→j , PXj ) ≤ γjW (Ei#PXi , PZ ⊗ PNi)

+ γjW (PZ ⊗ PNj , Ej#PXj )

+ Ex∼PXj
L1(x,Dj ◦ Ej(x)).

Proof. The proof is obtained using the triangle inequality and Lipschitz property of Wasserstein metrics, which can be
found in (Patrini et al., 2018). By applying these properties we get:

W (QXi→j
, PXj

) ≤W (QXi→j
, QXj→j

) +W (QXj→j
, PXj

)

≤ γjW ((πZ ◦ Ei#PXi
)⊗ PNj

, Ej#PXj
) +W (QXj→j

, PXj
)

≤ γj
[
W ((πZ ◦ Ei#PXi)⊗ PNj , PZ ⊗ PNj ) +W (PZ ⊗ PNj , Ej#PXj )

]
+W (QXj→j , PXj )

≤ γj
[
W (Ei#PXi , PZ ⊗ PNi) +W (PZ ⊗ PNj , Ej#PXj )

]
+W (QXj→j , PXj )

≤ γj
[
W (Ei#PXi , PZ ⊗ PNi) +W (PZ ⊗ PNj , Ej#PXj )

]
+ Ex∼PXj

L1(x,Dj ◦ Ej(x)),

which concludes the proof.
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(a) (b)

Figure 8. (a) Examples of gene ontology terms strongly correlated with the latent dimension based on the GOrilla analysis tool (Eden
et al., 2009) (b) Examples of chromatin signatures strongly correlated with the latent dimension; descriptions can be found in (Rotem
et al., 2015)

B. Supplement to Numerical Experiments.
Genomics Datasets. To illustrate a biological application of the translation model from our genomics experiment, we
performed an analysis of correspondence between the gene expression (from RNA-seq data) and chromatin signatures
(from ChIP-seq data). Specifically, we filtered for genes and ChIP signatures that are significantly correlated with the same
latent dimension. Figure 8a shows some examples of cellular processes based on the GOrilla gene ontology (Eden et al.,
2009) analysis of genes correlated with the same latent dimension as the chromatin signatures in Figure 8b. A few notable
correlations that were statistically significant and are corroborated by biological evidence include the following:

• There were several cellular processes associated with pluripotency with significant p-values: stem cell population
maintenance (p = 1.05×10−7), stem cell differentiation (p = 2.13×10−7), somatic stem cell population maintenance
(p = 4.35× 10−4), and stem cell division (p = 4.37× 10−4). These correspond with ChIP signatures such as Oct4,
Sox2, and Nanog, which are known to regulate pluripotency (Kashyap et al., 2009).

• Several processes associated with histone modification with significant p-values, including and not limited to: regulation
of histone modification (p = 1.59× 10−7), histone acetylation (p = 5.16× 10−7), regulation of histone methylation
(p = 3.38× 10−5). These correspond with ChIP signatures based on histone markers such as H3K4me1, H3K4me3,
H3K9ac, etc.

• Processes related to chromosomal regulation and cell division, including and not limited to: protein localization to
chromosomes (p = 2.77× 10−6), protein localization to the centromeric region of chromosomes (p = 3.83× 10−4),
cell division p = 4.02× 10−7. These correspond with ChIP signatures NIPBL, Smc1, Smc3, etc. which are known to
regulate chromosomes during cell division (Zuin et al., 2014; Eijpe et al., 2000).


