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Abstract

We present exact results for partition functions of Jackiw-Teitelboim (JT)
gravity on two-dimensional surfaces of arbitrary genus with an arbitrary number
of boundaries. The boundaries are of the type relevant in the NAdS2/NCFT1

correspondence. We show that the partition functions correspond to the genus
expansion of a certain matrix integral. A key fact is that Mirzakhani’s recur-
sion relation for Weil-Petersson volumes maps directly onto the Eynard-Orantin
“topological recursion” formulation of the loop equations for this matrix integral.

The matrix integral provides a (non-unique) nonperturbative completion of
the genus expansion, sensitive to the underlying discreteness of the matrix eigen-
values. In matrix integral descriptions of noncritical strings, such effects are due
to an infinite number of disconnected worldsheets connected to D-branes. In
JT gravity, these effects can be reproduced by a sum over an infinite number of
disconnected geometries – a type of D-brane logic applied to spacetime.ar
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1 Introduction

Studies of the Sachdev-Ye-Kitaev (SYK) model [1, 2, 3] have led to a resurgence of interest
in Jackiw-Teitelboim (JT) gravity [4, 5, 6]. This is because the low energy dynamics of the
SYK model is described by the 1D Schwarzian theory [3, 7] which in turn is the boundary
description of bulk 2D JT gravity [8, 9, 10]. In particular, the low energy limit of the
thermal partition function of the SYK model 〈Z(β)〉 = 〈Tre−βHSYK〉 is approximated by the
Schwarzian theory on the circle, which is dual to JT gravity on the Euclidean disk.

Several studies have pointed to the importance in JT gravity of surfaces of other topologies
[11, 12, 13]. In particular, recent work on random matrix statistics in SYK [13] showed that
the “ramp” region of the spectral form factor 〈Z(β+iT )Z(β−iT )〉 is described by the “double
cone” geometry with the topology of the cylinder. This, as well as other hints described in
[13], led us to study JT gravity on surfaces of arbitrary topology.

The main result in this paper is the calculation of the the Euclidean JT gravity partition
functions 〈Z(β1)...Z(βn)〉conn. corresponding to surfaces with n Schwarzian boundaries and
arbitrary numbers of handles. These can be computed from a certain double-scaled matrix
integral that we will discuss. The topological expansion of this integral gives the sum over
handles in JT gravity. The matrix integral supplies a (non-unique) nonperturbative com-
pletion of this expansion, which among other things gives an explanation of the “plateau” in
the spectral form factor.

We now give a brief summary of this paper.
In section two we review the topological expansion of Hermitian matrix integrals. We

start by describing a conventional integral over L × L Hermitian matrices with potential
V (H):

Z =

∫
dH e−LTrV (H). (1)

We will think of the random matrix H as the Hamiltonian of the boundary theory. A
natural observable to consider is the thermal partition function Z(β) = Tr e−βH . In practice,
when studying matrix integrals, it is more convenient to work with the “resolvent” function
R(E) = Tr 1

E−H . The two are related by a simple integral transform.
For a rather general V (H), the matrix ensemble correlation functions 〈Z(β1)...Z(βn)〉conn.

and 〈R(E1)...R(En)〉conn. are of a very constrained type. In particular, a set of equations
known as the “loop equations” [14] determine all orders in the 1/L2 expansion of these
quantities in terms of a function ρ0(E). This function is simply the leading density of
eigenvalues that characterizes the infinite L theory.1 So if one knows ρ0(E), correlation
functions are fixed to all orders in 1/L2. And, in fact, this is a practical tool: the procedure
of implementing the loop equations was streamlined by Eynard [15] into simple recursion
relation, which is part of the more general theory of “topological recursion” [16].

1For example, in the Gaussian matrix model, where the potential is chosen to be V (H) = H2

2 , this
function would be the Wigner semicircle distribution ρ0(E) = 1

2π

√
4− E2. This has been normalized so that

the integral is one; the actual density of eigenvalues would be L · ρ0(E).
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The type of matrix ensemble that will be relevant to JT gravity is not quite of the type
described in (1). It is, formally, a matrix integral in which ρ0(E) is not normalizable. This
type of problem is known as a “double scaled” matrix integral [17, 18, 19], and it can be
understood as a limit of a conventional matrix integral. In this limit, L is taken to infinity,
the potential is tuned in a certain way, and one focuses attention near the edge of the
eigenvalue distribution, where the density of eigenvalues remains finite. We refer to this
density as eS0 . The loop equations commute with this limit, and they lead to an expansion
of correlation functions in powers of e−2S0 .

In section three, we will see that the JT gravity correlation functions 〈Z(β1)...Z(βn)〉conn.
are consistent with the matrix integral recursion relation described above, to all orders in
e−S0 . Let’s briefly describe how this arises. JT gravity is a theory of a two dimensional
metric gµν and a dilaton field φ, with Euclidean action

I = − S0

2π

[
1

2

∫
M

√
gR +

∫
∂M

√
hK

]
︸ ︷︷ ︸

topological term = S0 χ(M)

−
[

1

2

∫
M

√
gφ(R + 2)︸ ︷︷ ︸

sets R = −2

+

∫
∂M

√
hφ(K − 1)︸ ︷︷ ︸

gives action for boundary

]
. (2)

To study 〈Z(β1)...Z(βn)〉 in this theory, we impose boundary conditions that the manifold
M should have n boundaries, with regulated lengths β1/ε, ..., βn/ε and with φ = γ/ε at each
boundary. We regard ε as a “holographic renormalization” parameter that should be taken to
zero. With boundary conditions of this type, geometries of various topologies will contribute
to the JT path integral. The first term in (2) is proportional to the Euler characteristic of
M, and it implies that different topologies will be weighted by (eS0)χ. For example, with a
single boundary, the first three topologies are

++ + . . . (3)

A surface with one boundary and g handles, of genus g, has Euler characteristic χ = 1− 2g,
so the weighting is e(1−2g)S0 .

The sum over topologies is of the same form as a perturbative string expansion with
“string coupling” gs = e−S0 . Our perspective is different, though. In string perturbation
theory these diagrams represent the perturbative splitting and joining of closed strings, the
amplitude determined by the perturbative coupling gs. In the JT context these diagrams
represent the nonperturbative splitting and joining of closed JT “baby universes,” the am-
plitude controlled by e−S0 , nonperturbative in the gravitational coupling GN ∼ 1

S0
. Such

an expansion in multiple “baby universes” is sometimes referred to as a “third quantized”
description.

Our basic claim is that the JT gravity answer for the geometries (3), and their gen-
eralizations with n boundaries, are precisely consistent with the recursion relations of a
double-scaled matrix integral. To check this, a first step is to compute the analog of ρ0(E).
For this, one has to compute the leading (genus zero) contribution to 〈Z(β)〉, and then in-
terpret it as a Laplace transform of a density of states eS0ρ0(E). A nice feature of JT gravity
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is that this can be evaluated exactly. One can think about doing the JT path integral in
two steps, where we first integrate over the dilaton φ. If we do this integral along a contour
parallel to the imaginary axis, the dilaton functions as a Lagrange multiplier setting R = −2

everywhere. This implies that M is a rigid constant-negative-curvature surface. At genus
zero with one boundary, this is simply a piece of the hyperbolic disk. Since the bound-
ary conditions only fix the length of the boundary, we have to integrate over the “cutout
shape” of the geometry within the hyperbolic disk [9]. The action for this integral comes
from the final extrinsic curvature term in (2). The resulting path integral is the partition
function of the Schwarzian theory, which has been computed by several different methods
[20, 21, 22, 23, 24, 25] and it leads to the expression2

ρ0(E) =
γ

2π2
sinh(2π

√
2γE). (4)

Below, we will often set our units of energy so that γ = 1
2
.

A next step is to compute higher genus contributions to correlation functions such as
〈Z(β1)...Z(βn)〉, and see if they satisfy the matrix integral recursion relation of [15], with
the leading density (4) as input. For example, suppose we are trying to compute 〈Z(β)〉
in JT gravity. Then we we should consider geometries with one asymptotic region and a
boundary of length β/ε. The first three topological classes of orientable geometries3 are the
ones sketched in (3). The constraint R = −2 coming from the integral over φ simplifies the
path integral within each topological class significantly. However, there is still some work to
do. For each geometry, we have to do a path integral over the cutout shape of the regulated
boundary, with the Schwarzian action induced by the final extrinsic curvature term in (2).
For all but the first (genus zero) case, we also have to do a finite dimensional integral over
some moduli associated to the surface. It is convenient to divide this into two steps.4 First
we fix the length of the minimal geodesic that circles the neck of the geometry to be b. This
geodesic separates a hyperbolic “trumpet” from a Riemann surface with boundary:

geodesic of 

length �
(5)

Holding b fixed, we integrate over all of the moduli of the Riemann surface, and also over
the wiggles at the boundary of the trumpet. Finally, we integrate over b. As we will explain
in detail in section (3), this leads to an expression

〈Z(β)〉 ' eS0Zdisk
Sch (β) +

∞∑
g=1

e(1−2g)S0

∫ ∞
0

b db Vg,1(b)Z
trumpet
Sch (β, b). (6)

2Up to a multiplicative ambiguity that can be absorbed into S0. In this paper, unless stated otherwise,
we take

√
x to be positive for real positive x and branched along the negative real x axis.

3See [26] for treatment of the nonorientable case relevant for other matrix ensembles.
4A related approach was proposed in [27].
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Here the first term comes from the disk topology, and the others are from genus g. The ZSch

expressions come from doing the path integral over the wiggly boundary of the disk and the
trumpet. These are explicit functions

Zdisk
Sch (β) =

γ3/2e
2π2γ
β

(2π)1/2β3/2
, Ztrumpet

Sch (β, b) =
γ1/2e−

γb2

2β

(2π)1/2β1/2
. (7)

The only non-explicit part of this formula is the factor of Vg,1(b). This is the Weil-Petersson
volume of the moduli space of hyperbolic Riemann surfaces with genus g and one geodesic
boundary of length b. The “'” symbol will be commented on below.

If we were studying instead 〈Z(β1)...Z(βn)〉conn., we would have a similar integral to do
involving Vg,n(b1, ..., bn), the Weil-Petersson volume of the moduli space of a genus g surface
with n geodesic boundaries of lengths b1, ..., bn. These volumes were shown by Mirzakhani
[28] to satisfy a recursion relation.5 This was later shown by Eynard and Orantin [33]
to be closely related to the “topological recursion” that determines the genus expansion of
a matrix integral. As we described above, the matrix integral recursion relation depends
as input on a leading expression for the density of states ρ0(E). It turns out that if one
plugs in the leading answer computed from the disk contribution to JT gravity (4), then
the two recursion relations agree with one another. To summarize: to all orders in e−S0 ,
and for arbitrary correlators 〈Z(β1)...Z(βn)〉, the JT gravity answer coincides precisely with
the expected answer if we say that Z(β) = Tr(e−βH) and H is drawn from a double-scaled
random matrix ensemble with leading density of states given by (4).

In section four, we briefly review an older connection between 2D gravity and random
matrices [34, 35, 36, 37, 17, 18, 19] 6, the c < 1 “minimal string.” In this body of work, it was
argued that Liouville gravity coupled to a (2, p) minimal model (where p is odd) is related
to a matrix integral with [41]

ρ0(E) = sinh

[
p

2
arccosh

(
1 +

E

κ

)]
=
√
E
(
a0 + a1E + a2E

2 + ...+ a p−1
2
E

p−1
2

)
. (8)

In the limit p → ∞, this agrees with (4) after rescaling E. Since both JT gravity and the
minimal string are supposed to be dual to matrix integrals, matching ρ0(E) implies that
their partition functions agree on surfaces with arbitrarily many boundaries and handles.
This suggests that JT gravity is the large p limit of the (2, p) minimal string. Further work
on this is in progress [42].

From the perspective of a matrix integral, the e−S0 expansion is a perturbative expansion.
Matrix integrals also contain nonperturbative effects, and in section five, we review these
and give a tentative JT gravity interpretation. One can motivate the need for these effects
from Eq. (6). This was written with a “'” symbol because the sum over genus is an asymp-
totic series, due to the (2g)! growth of the volume of moduli space with genus g [43, 44, 45].

5The first general procedure for calculating Weil-Petersson volumes used topological gravity techniques
and the associated matrix integral constructions [29, 30, 31]. For a recent discussion see [32].

6For reviews see [38, 39] and for some more recent work see [40].
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To make sense of this formula, one would like to find a nonperturbative completion of this
series. This (2g)! behavior is generic in string theory [44] and the e−1/gs nonperturbative ef-
fects it points to are due to D-branes [46]. In the context of matrix integrals, these effects are
related to the dynamics of single eigenvalues and there are procedures for computing them.
In the Liouville-minimal string context these effects have been connected to two types of
branes, ZZ branes and FZZT branes [47, 48, 49, 50, 51, 52, 53, 54, 55, 53, 40].7 In JT gravity
we can imitate this connection and give these matrix phenomena a spacetime interpretation.
In doing so, we will again encounter two different types of nonperturbative effect.

The first is called, in the matrix literature, a “one-eigenvalue instanton” [58, 59, 60, 44].8

This represents a configuration in the matrix integral where one out of the L eigenvalues
has been displaced away from the rest. In JT gravity, this can be interpreted as a type
of D-brane effect which in Liouville theory is called a ZZ brane. In JT gravity there is a
similar construction where the spacetime plays the role of the worldsheet. The spacetime is
allowed to end at a new type of boundary associated to the location of the eigenvalue. By
the usual rules of D-branes [46], we can allow other disconnected spacetimes to also end at
the same boundary condition. These disconnected spacetimes exponentiate, adding up to a
tiny prefactor that makes the contribution proportional to e−(const.)eS0 . In fact, as we will
see, this contribution also comes with a prefactor of i, indicating that in the interpretation
of JT gravity as a matrix integral, it is one which is expanded about a metastable point.
Such a model can be defined nonperturbatively on an appropriate contour, but it doesn’t
have the reality properties of a conventional matrix integral.

The second type of effect corresponds to adding a “probe brane,” and is analogous to
the FZZT brane in the Liouville context. These branes are characterized by a parameter E,
and they correspond go an insertion of det(E −H) in the matrix integral. (An insertion of
1/ det(E −H) will be referred to as a “ghost brane.”) In the JT gravity interpretation, this
object involves an infinite set of disconnected spacetimes. To see this, one can write

det(E −H) = exp(Tr log(E −H)) (9)

Each trace corresponds to a boundary of the spacetime, so after expanding out the expo-
nential, this object involves an infinite number of boundaries. At leading order in the genus
expansion, each trace is associated to its own disconnected geometry with the topology of a
disk, with a boundary condition that depends on E. As in the ZZ brane case, this is formally
equivalent to a D-brane calculation [46].

These probe branes can be related to more familiar quantities like the resolvent using

Tr
1

E −H
= ∂E

det(E −H)

det(E ′ −H)

∣∣∣∣
E′→E

. (10)

This expresses the resolvent as a “dipole” of a brane and ghost brane. It is a trivial equality for
matrices, but in the semiclassical approximation to the matrix integral, it is quite surprising.

7There has been an important parallel line of development investigating nonperturbative “brane” effects
in the topological string. See, for example, [56, 57, 32].

8For a review see [61].
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In particular, the infinite number of disconnected spacetimes do not quite cancel out of the
RHS. These are interpreted as a nonperturbative contribution to R(E).

One of the motivations for this work was to understand the origin of random matrix
statistics in the SYK model [62, 63, 20, 13] from the gravitational perspective. The eigenvalue
pair correlation function 〈ρ(E)ρ(E ′)〉 can be extracted from the two resolvent correlator
〈R(E)R(E ′)〉. This in turn can be extracted from a four determinant expectation value
similar to (10), and this can be related to a FZZT brane type expression in JT gravity.
These contain effects that are nonperturbative in the “string” coupling, of order eieS0 , which
explain the rapidly oscillating part of the sine kernel formula for the pair correlator. This
oscillating behavior, a D-brane effect, is responsible for the “plateau” in the spectral form
factor which occurs at exponentially late times, t ∼ eS0 .9

Our analysis of these nonperturbative effects is not rigorous so it is important to make
a check. In principle, Borel resummation of the perturbative series gives another way to
determine nonperturbative effects (up to a choice of Borel contour). Nonperturbative effects
are associated to singularities in the Borel plane, and the closest singularity to the origin
encodes the large-order asymptotics of the perturbative series. We can therefore use the
nonperturbative effects described above to make a prediction for the large genus behavior of
the perturbative series.10 In particular, this gives a prediction for the large genus behavior
of the volumes of moduli space. For Vg,0 and for Vg,1(b) with b � g, this prediction agrees
with the Zograf conjecture [69].11 For Vg,1(b) at general b/g, this method provides a new
conjecture, which appears consistent with extrapolation to g = ∞ of results up to g = 20

kindly provided to us by Peter Zograf.
In section six we discuss some open questions.

2 Review of the genus expansion in matrix integrals

For the purposes of this paper, a matrix integral means an integral over Hermitian L × L
matrices H with a weighting that is determined by a potential function V (H):

Z =

∫
dH e−LTrV (H), H = L× L Hermitian matrix. (11)

We use the curly “Z” to refer to the matrix integral partition function, not to be confused
with the partition function Z(β) = Tr e−βH , which is an observable in this matrix ensemble.
Expectation values of such observables are given by e.g.

〈Z(β1)...Z(βn)〉 =
1

Z

∫
dH e−LTrV (H)Z(β1)...Z(βn). (12)

9Essentially the same method was used in the semiclassical quantum chaos literature to derive the plateau
from a sum over periodic orbits [64, 65, 66, 67, 68].

10For a review see [61].
11Parts of this conjecture have been established rigorously [31, 70, 45].
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Matrix ensembles of this type have been widely studied. They are solvable in the infinite L
limit, in the 1/L expansion, and in some cases beyond. For reviews, see [39, 71, 72]. In this
section, we will review the 1/L expansion, so that we can recognize the same structure when
it appears in the context of JT gravity.

In the matrix integral literature, a quantity that is commonly studied is the matrix
resolvent

R(E) = Tr
1

E −H
=

L∑
j=1

1

E − λj
. (13)

Here E is an arbitrary complex number. For a fixed matrix H, this function is a sum of
poles in E corresponding to the eigenvalues λj. But after taking the expectation value over
matrices, the poles are smeared into a branch cut. To specify the resolvent one has to indicate
which side of the cut one is studying; the discontinuity across the real axis given by

R(E + iε)−R(E − iε) = −2πiρ(E) (14)

where ρ(E) is the density of eigenvalues

ρ(E) =
L∑
j=1

δ(E − λj). (15)

For a fixed matrix, ρ(E) is a discrete sum of delta functions, but its expectation value over
an ensemble of matrices is a smooth function. From either ρ(E) or R(E), one can compute
Z(β) = Tr e−βH by an integral transform, and vice versa.

Correlation functions of resolvents have a 1/L expansion of the form

〈R(E1)...R(En)〉conn. '
∞∑
g=0

Rg,n(E1, ..., En)

L2g+n−2 . (16)

Of course, one also has a similar expansion for correlation functions of partition functions
Z(β) or eigenvalue densities ρ(E). The existence of such an expansion follows from the
analysis of matrix integral perturbation theory [73] in terms of ‘t Hooft double line diagrams
[74]. The parameter g is called the genus, because it is the genus of the double-line diagrams
that contribute to a given term. The ' is because the series is asymptotic, and the “conn.”
subscript means that we take the connected part, or cumulant.

In the next three subsections, we will illustrate several techniques for studying matrix
integrals by showing how to compute R0,1, R0,2, R1,1.

2.1 Computing R0,1

At infinite L, matrix integrals of the type described above simplify dramatically. The eigen-
values of the matrix become very finely spaced, and from the perspective of coarse-grained
observables like correlation functions of resolvents, they can be approximated as a smooth
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density. In the large L limit, this smooth density is non-fluctuating, or “self-averaging” which
means that it is the same for all typical matrices drawn from the ensemble.

We will refer to the unit-normalized density of eigenvalues in the large L limit as

ρ0(E) = lim
L→∞

1

L
〈ρ(E)〉. (17)

We will focus on the simplest type of problem (the so-called “one-cut” matrix models) where
the density is supported in a single interval on the energy axis between a±. As an example,
ρ0(E) might look like the following:

ρ0

E

-a a+_

(18)

Note that in (17), ρ0 is normalized so that its integral is one. It is related to the leading
term R0,1 in the 1/L expansion of the expectation value of the resolvent (16), by

R0,1(E) =

∫ a+

a−

dλ
ρ0(λ)

E − λ
(19)

and an inverse expression

ρ0(E) = − 1

2πi
(R0,1(E + iε)−R0,1(E − iε)) . (20)

There are several ways to determine ρ0 or R0,1, starting from the matrix potential V (H).
One way begins by writing the matrix integral in terms of an integral over the matrix
eigenvalues,

Z = CL

∫
dLλ

∏
i<j

(λi − λj)2e−L
∑L
j=1 V (λj). (21)

Here the numerical factor CL and the Vandermonde determinant
∏

i<j(λi − λj)2 arise from
integrating out the unitary matrix that diagonalizes H. The leading density ρ0(E) can be
derived from a mean-field analysis (valid at large L) of the statistical mechanics problem for
these eigenvalues. The idea is as follows: the effective potential that a single eigenvalue feels
is a combination of the bare potential and a term coming from the Vandermonde factor:

Veff(λj) = LV (λj)−
∑
i6=j

log
[
(λi − λj)2

]
. (22)

After making a continuum approximation to the contribution from all of the other eigenvalues∑
i6=j

log
[
(λi − λj)2

]
= L

∫
dλρ0(λ) log

[
(λ− λj)2

]
(23)

9



the equilibrium condition is that each eigenvalue should sit at a stationary point of the
effective potential [73]:

V ′eff(E) = 0 =⇒ V ′(E) = 2

∫
dλ

ρ0(λ)

E − λ
. (24)

Here the integral should be defined by a principal value prescription, analogous to leaving
out the i = j term from the sum (22). Taking this prescription into account (24) can be
written as

R0,1(E + iε) + R0,1(E − iε) = V ′(E). (25)

To use (25) to get an expression for R0,1(E), one can use the following trick [14]. Let’s
imagine for a moment that we knew the end points a±, and let’s define a function

σ(x) = (x− a+)(x− a−). (26)

We will define
√
σ(x) as a function with a cut between x = a±, so that in particular for

large x,
√
σ(x) ∼ x. Then, for complex E away from the cut,

R0,1(E) =

∮
E

dλ

2πi

R0,1(λ)

λ− E

√
σ(E)

σ(λ)
= −

∫
C

dλ

2πi

R0,1(λ)

λ− E

√
σ(E)

σ(λ)

= −1

2

∫
C

dλ

2πi

V ′(λ)

λ− E

√
σ(E)

σ(λ)
. (27)

Here C is a contour surrounding the interval [a−, a+]. In the first equality we used the residue
theorem. In the second we deformed the contour past infinity12 to surround the cut on the
real axis. In the third equality we used that

√
σ(λ) takes the opposite sign on the two sides

of the cut. This sign change is canceled by the sign of dλ on the two sides, so the net effect
is that R0,1(λ) can be replaced by its average value on the two sides (25).

As a final step, we need to determine the endpoints a±. To do this, one can impose that
R0,1(E) ∼ 1

E
for large E. By expanding (27) for large E, one finds that this implies

0 =

∫
C

dλ

2πi

V ′(λ)√
σ(λ)

, 2 =

∫
C

dλ

2πi

λV ′(λ)√
σ(λ)

, (28)

which gives two conditions for the two endpoints a±. After solving for the endpoints using
these equations, (27) becomes an explicit equation for the resolvent R0,1(E), and we can take
its discontinuity (20) to get the density of eigenvalues ρ0(E).

2.2 Computing R0,2

A useful trick for computing R0,2(E1, E2) is the following [75, 76]. If we write the potential
as a power series

V (M) =
∞∑
n=0

vnM
n (29)

12It is clear from the definition that R0,1(λ) ≈ 1
λ at infinity so this is OK.
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then it is straightforward to check that an appropriate sum of derivatives of R0,1 gives R0,2:

R0,2(E1, E2) = −
∞∑
n=0

1

En+1
2

∂vnR0,1(E1). (30)

Since we have a formula (27) for R0,1 in terms of the potential, we can differentiate it with
respect to the parameters vn and get R0,2. In taking the derivative of (27), the term where
∂vn hits the potential can be simplified using

∞∑
n=0

1

En+1
∂vnV

′(λ) =
∞∑
n=0

nλn−1

En+1
=

1

(λ− E)2
. (31)

One also needs to know the derivative of the endpoints, ∂vna±. These can be determined by
taking derivatives of (28). For example, in the symmetric case with a± = ±a, one finds after
some algebra that

R0,2(E1, E2) =
1

2(E1 − E2)2

(
E1E2 − a2√
σ(E1)

√
σ(E2)

− 1

)
. (32)

Somewhat miraculously, this depends on the potential only through the endpoints ±a. This
is a very general feature of one-cut matrix integrals [75, 77].

2.3 Computing R1,1

In order to compute R1,1, we will introduce the machinery of the “loop equations,” which
make it possible to systematically compute all of the Rg,n. The starting point is the equation

0 =

∫
dLλ

∂

∂λa

[
1

E − λa
R(E1)...R(Ek)

∏
i<j

(λi − λj)2e−L
∑
j V (λj)

]
. (33)

To get R1,1, one only needs the first of these equations, with k = 0, so no extra resolvents
are inserted in the integrand. Evaluating the derivative explicitly in this case, one gets

0 =

〈
1

(E − λa)2
+

1

E − λa

∑
j 6=a

2

λa − λj
− LV ′(λa)

E − λa

〉
. (34)

After symmetrizing the second term under λa ↔ λj, combining it with the first term, and
then summing over a, this equation can be rewritten as〈(

Tr
1

E −H

)2

− LTr
V ′(H)

E −H

〉
= 0. (35)

This is an exact equation, but it can be expanded in powers of 1/L. At leading order in the
expansion, we find an equation that can be written (after dividing by L2 and adding terms
involving V ′(E) to both sides of the equation)(

R0,1(E)− V ′(E)

2

)2

=
V ′(E)2

4
−
〈

1

L
Tr
V ′(E)− V ′(H)

E −H

〉
0

(36)
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where the zero subscript means the large L limit. If the potential V (E) is an analytic
function, then the RHS of this equation is also analytic in E (in fact, if the potential is a
polynomial then the RHS is also a polynomial). So if we define the quantity

y = R0,1(E)− V ′(E)

2
, (37)

then (36) defines a hyperelliptic curve y2 = f(E), where f is the RHS of (36). This curve
is referred to as the spectral curve of the matrix integral. Concretely, it is a double cover of
the complex E plane, with the two sheets differing by y → −y. We define it so that (37)
holds on the physical sheet, away from the cut along the positive real axis. Eq. (20) then
implies that if we continue to the positive real axis through the upper half plane for E, we
have

y = −πiρ0(E). (38)

If we continue through the lower half plane, we would have the opposite sign.
Correlation functions of resolvents have branch points in the energy plane, but they

become single-valued functions on the spectral curve. For example, the same loop equation
(35) can be expanded to higher orders in 1/L2. And, at next order, one finds

2y(E)R1,1(E) = −R0,2(E,E)−
〈

1

L
Tr
V ′(E)− V ′(H)

E −H

〉
1

(39)

where the subscript on the expectation value in the RHS means the next-to-leading (i.e. 1/L2)
term. Note that the RHS is a single-valued function of E. This implies that R1,1 must be a
double-valued function, changing sign in the same way as y on the two sheets of the spectral
curve. So R1,1 can be defined as a single-valued function on the spectral curve.

An alternative way to get a single-valued function related to the resolvents is to multiply
them by factors of

√
σ(E), which changes sign in a compensating way between the two

sheets. So, for example R1,1(E)
√
σ(E) is a single-valued function in the original energy

plane. A very important point is that R1,1(E)
√
σ(E) is singular only at the endpoints of

the eigenvalue distribution E = a±. This follows from the representation

R1,1(E) =

∫ a+

a−

dλ
ρ1(λ)

E − λ
(40)

in terms of the 1/L2 correction ρ1 to the density of eigenvalues, which is itself analytic away
from the endpoints of the cut. It is obvious from this definition that R1,1 is singular only
when E coincides with an endpoint a±. For example, if E approaches the real axis somewhere
away from the endpoints, the contour can be deformed smoothly to avoid a singularity.

The fact that R1,1(E)
√
σ(E) is single-valued and only singular at a± makes it possible

to bypass the fact that we don’t know the second term on the RHS of (39). Following [15],

12



we write a dispersion relation

R1,1(E)
√
σ(E) =

∮
E

dλ

2πi

R1,1(λ)
√
σ(λ)

λ− E
= −

∑
±

∮
a±

dλ

2πi

R1,1(λ)
√
σ(λ)

λ− E
(41)

=
∑
±

∮
a±

dλ

2πi

R0,2(λ, λ)

λ− E

√
σ(λ)

2y(λ)
. (42)

The first equality uses the residue theorem, and the second equality uses that R1,1(λ)
√
σ(λ)

has singularities only at a±.13 In going to the third line, we used (39) and exploited the fact
that the unknown term on the RHS of (39) is not singular at the points a±.

Eq. (42) relates R1,1 to R0,2, which was computed in (32). In [15, 72], it is shown how
a similar strategy works for higher order quantities Rg,n. One expands the loop equations
in powers of 1/L and gets a set of equations for Rg,n involving some unknown correlators
that include a factor of TrV

′(E)−V ′(H)
E−H . These unknown terms are not singular at E = a±, so

the dispersion relation method in (42) gives a set of equations purely involving Rg,n. These
equations can be solved recursively. We will write a special case of the resulting recursion
relation below, after introducing the idea of double-scaled matrix integrals.

2.4 Double scaling

In this paper, we will be interested in an analog of a matrix integral for which the leading
density of eigenvalues is of the form

ρtotal0 (E) =
eS0

(2π)2
sinh(2π

√
E), E > 0. (43)

Here the superscript “total” is meant to indicate that unlike (17), we are not dividing by L
here, so this density of eigenvalues is normalized so that its integral is L. Of course, such an
equation doesn’t make sense, since the integral of the RHS is not normalized at all. However,
(43) can be realized as a limit of an ordinary matrix integral. For finite a, we can imagine
choosing a potential and a value of L so that

ρtotal0 (E) =
eS0

(2π)2
sinh

(
2π

√
a2 − E2

2a

)
, −a < E < a. (44)

Shifting E → E − a and taking a large, we recover (43). Note that as a becomes large, the
ratio L/eS0 also becomes large, in order to keep ρtotal0 (E) normalized to have integral L. So
the total number of eigenvalues is going to infinity. However, this doesn’t mean that the
matrix integral becomes trivial. The reason is that in the region of interest, the density of
eigenvalues is finite, controlled by eS0 , and the 1/L expansion will be replaced by an e−S0

13Since R(E) ∼ L
E + Tr(H)

E2 + ... for large E, a 1
E piece appears only in R0,1(E), and in particular R1,1 has

no pole at infinity.
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expansion. This procedure is an example of what is called “double scaling,” and what we are
saying here is that (43) makes sense as a leading density of eigenvalues for a double-scaled
matrix integral. In such an integral, correlation functions of resolvents have an expansion of
the form

〈R(E1)...R(En)〉conn. '
∞∑
g=0

Rg,n(E1, ..., En)

(eS0)2g+n−2
. (45)

Note that we are risking confusion by writing the coefficients of the e−S0 expansion of a
double-scaled matrix integral with the same notation Rg,n as the coefficients of the 1/L

expansion of a conventional matrix integral. Similarly, whereas for a conventional matrix
integral one defines ρ0 = 1

L
ρtotal0 , for a double-scaled theory we will use

ρ0(E) = e−S0ρtotal0 (E). (46)

The double-scaling procedure needed to achieve (43) would be quite complicated at the
level of the potential, since we have to tune it carefully as we take the limit. And, in fact,
the potential itself diverges in the limit.14 Fortunately, as we will see in a moment, the e−S0

expansion is determined directly by the leading density of eigenvalues itself, without any
explicit reference to the potential.15

In practice, double-scaled theories are a little simpler than conventional matrix integrals,
since they have only a single endpoint of the eigenvalue distribution, which we take to be at
E = 0. So for example, a formula that will be important below is the expression for R0,2.
If we start with (32) and shift E1 → E1 − a and E2 → E2 − a and finally take a large, one
finds a somewhat simpler expression

R0,2(E1, E2) =
1

4z1z2(z1 + z2)2
, zi =

√
−Ei. (47)

This is valid for any double-scaled theory. But in some cases one can say much more. For
example, it will sometimes be helpful to have in mind the simple double-scaled theory

ρtotal0 (E) =
eS0

π

√
E, E > 0. (48)

This theory is dual to topological gravity [29, 30]. For a recent discussion see [32].
The density of eigenvalues (48) can be obtained by starting with the Gaussian matrix

integral, for which ρ0 is a semicircle:

ρtotal0 (E) =
eS0

π

√
a2 − E2

2a
, −a < E < a. (49)

The condition that ρ0 should have unit normalization implies that L/eS0 = (a/2)3/2. To take
the double-scaled limit, one shifts E → E − a and takes a large, recovering (48). In this

14The quantity that remains finite is the effective potential on a given eigenvalue (22), which is the sum of
the “bare” potential and the Vandermonde potential from an increasingly large number of other eigenvalues.

15The same is also true for the 1/L expansion of a conventional matrix integral.
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limit, many quantities can be computed exactly, such as the exact ensemble average of the
density of eigenvalues:

〈ρ(E)〉 = e
2S0
3

[
Ai′(ξ)2 − ξAi(ξ)2

]
, ξ = −e

2S0
3 E. (50)

Note that unlike the leading expression (48), this eigenvalue distribution is extended along
the entire real axis, although it is nonperturbatively small (in e−S0) for fixed negative E.

2.5 Topological recursion

We will now present the recursion relation of [15], which efficiently determines all of the
higher Rg,n. Instead of working with functions of the energy, it will be convenient to define
a new coordinate z by16

z2 = −E. (51)

In terms of E, the functions Rg,n and the spectral curve quantity y are double valued.
They can be viewed as single-valued functions living on a double cover of the E plane. For
a conventional one-cut matrix integral, this double cover is branched over the endpoints
a−, a+. In the double scaled limit, we move one branch point to the origin and the other to
infinity, so we have a double cover of the E plane branched over the origin. The coordinate
z defined above is a good coordinate on that space. The variable x = −E is often used.
Then, more precisely, the spectral curve is given by the locus

(x(z), y(z)) ⊂ C2 . (52)

This curve is uniformized by z and so is genus 0.17

Concretely, Rg,n and y are single-valued functions of z. For example, for the case (43),
using (38) and (46) one has (up to a minus sign that can be fixed once and for all)

y =
sin(2πz)

4π
. (53)

In the topological gravity case (48), one has y = z. For small z the two differ by a factor of
two that is conventional; it could have been absorbed into a shift of S0 by log(2).

We can now present Eynard’s recursion relation for the expansion of the multi-resolvent
correlators Rg,n defined in (45). We will write this for the special case of a double-scaled
matrix integral, with one branch point at the origin. In order to line up with the notation
in [78], we define functions Wg,n by

Wg,n(z1, ..., zn) = (−1)n2nz1...znRg,n(−z21 , ...,−z2n) (54)
16The minus sign here is conventional, and we have chosen to define things so that real z corresponds to

the “forbidden” region of negative E, where the large L density of eigenvalues vanishes.
17 It can be also be viewed as a degenerate infinite genus curve with degenerations located at each of the

infinite number of zeros of y(z).
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except for two special cases where

W0,1(z) = 2z y(z), W0,2(z1, z2) =
1

(z1 − z2)2
. (55)

These two special cases are the inputs to the recursion relation of [15], which determines all
of the other Wg,n by:

Wg,n(z1,
J︷ ︸︸ ︷

z2, . . . , zn) = Res
z→0

{
1

(z21 − z2)
1

4y(z)

[
Wg−1,n+1(z,−z, J) (56)

+
′∑

I∪I′=J ;h+h′=g

Wh,1+|I|(z, I)Wh′,1+|I′|(−z, I ′)
]}

.

This expression is a residue at the origin (the one remaining branch point) because it is
derived using a dispersion relation argument as in (42). The only complication relative to
the discussion above for the case (g, n) = (1, 1) is that, in general, the loop equations involve
another term that appears here on the second line. Regarding the notation, I, I ′ are subsets
of the arguments z2, ..., zn and |I| is the number of elements in subset I. Also,

∑′ means
that two cases are excluded: (I = J, h = g) and (I ′ = J, h′ = g). This recursion relation is an
example of the more general structure referred to as Eynard/Orantin topological recursion
[16]. For more on this in the context of matrix integrals, see [72].

Let’s now see how this looks in the first few orders for the case (48) where y = z. The
first two W0,1 and W0,2 are given by (55), and working out the residue formula explicitly for
the first four nontrivial cases gives

W0,1 = 2z21 , W0,2 =
1

(z1 − z2)2
, W0,3 =

1

2z21z
2
2z

2
3

W1,1 =
1

16z41
, W1,2 =

5z41 + 3z21z
2
2 + 5z42

32z61z
6
2

(57)

W2,1 =
105

1024z101
.

Using (54) to convert back to Rg,n variables, and using (14) to compute the density of
eigenvalues, one finds that R1,1 and R2,1 agree with the expansion of the exact result (50).

One can also work out the answer for the case (43) where y = sin(2πz)
4π

:

W0,1 = 2z1
sin(2πz1)

4π
, W0,2 =

1

(z1 − z2)2
, W0,3 =

1

z21z
2
2z

2
3

(58)

W1,1 =
3 + 2π2z21

24z41
, W1,2 =

5(z41 + z42) + 3z21z
2
2 + 4π2(z41z

2
2 + z42z

2
1) + 2π4z41z

4
2

8z61z
6
2

W2,1 =

(
105

128z101
+

203π2

192z81
+

139π4

192z61
+

169π6

480z41
+

29π8

192z21

)
.

In this case, we don’t have an exact formula to expand and compare to. However, a fact
of central importance in this paper is the following. These quantities Wg,n are the Laplace
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transforms of the volumes Vg,n(b1, ..., bn) of the moduli space of bordered Riemann surfaces
with geodesic boundaries of lengths b1, ..., bn and genus g. The computation of these volumes
was difficult even for V1,1(b) [79] until the discovery by Mirzakhani of a recursion relation
[28] that enables their computation. The first few are18

V0,1 = undefined, V0,2 = undefined, V0,3 = 1 (59)

Ṽ1,1 =
1

48
(b21 + 4π2), V1,2 =

1

192
(4π2 + b21 + b22)(12π2 + b21 + b22)

V2,1 =
1

2211840
(4π2 + b21)(12π2 + b21)(6960π4 + 384π2b21 + 5b41).

One can verify explicitly that for these examples, we have

Wg,n(z1, ..., zn) =

∫ ∞
0

b1db1e
−b1z1 ...

∫ ∞
0

bndbne
−bnzn Vg,n(b1, ..., bn). (60)

This was noted and proven in general in work by Eynard and Orantin [33], who showed
that after Laplace transform, Mirzakhani’s recursion relation takes the form of (56) with the
spectral curve y = sin(2πz)

4π
. This relation provides a link between the loop equations of a

matrix integral and the volumes of the moduli space of curves. In the next section, we will
see that it implies that JT gravity is dual to a matrix ensemble.

3 The genus expansion in JT gravity

Now that we have reviewed the structure of the genus expansion in matrix integrals, we will
see how the same thing arises from an analysis of the path integral in JT gravity. This theory
is defined by the Euclidean action

IJT = −S0

2π

[
1

2

∫
M

√
gR +

∫
∂M

√
hK

]
−
[

1

2

∫
M

√
gφ(R + 2) +

∫
∂M

√
hφ(K − 1)

]
. (61)

The basic strategy is to compute something like the correlation functions of resolvents studied
in the previous section, and show that they satisfy the recursion relation of a double-scaled
matrix integral.

More precisely, we will study correlation functions 〈Z(β1)...Z(βn)〉conn., where in the
matrix integral interpretation, Z(β) = Tr(e−βH) and H is the random matrix. This is
related to the resolvent by an integral transform

R(E) = −
∫ ∞
0

dβeβEZ(β), (62)

which makes sense for E less than the ground state energy (which we will set to be zero).
The expression can be continued in E after doing the integral.

18The tilde on V1,1 is due to the fact that for this case, at every point in the moduli space of this surface,
there is a Z2 symmetry, and the volume we reported here is the volume taking this symmetry into account,
in other words counting only one of the pair of surfaces related by the Z2 symmetry.
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We can translate 〈Z(β1)...Z(βn)〉conn. to a bulk gravity computation using the usual
NAdS2/NCFT1 dictionary [9]. Here we think about the random matrix H as the Hamiltonian
of the boundary theory. The way the translation works is as follows. One integrates over 2d
geometries with the rule that for each factor of Z(β), the geometry must have a boundary
with length β/ε, and where the dilaton has the value φ = γ/ε. (One takes ε→ 0 at the end.)
In order to compute the connected part of the correlator, we require that the 2d geometry be
connected. In what follows we will often take γ = 1/2, which amounts to a choice of units.

The upshot of this is that to compute 〈Z(β1)...Z(βn)〉conn., we are looking for connected
geometries with n boundaries of a specific kind. For a fixed number of boundaries, these are
classified topologically19 by the number of handles (“genus”) g = 0, 1, .... The first S0 term20

in the JT action (61) gives a factor of (eS0)χ, where χ is the Euler character χ = 2− 2g− n.
So, summing over different topologies, we get an expression

〈Z(β1)...Z(βn)〉conn. '
∞∑
g=0

Zg,n(β1, ..., βn)

(eS0)2g+n−2
(63)

where Zg,n(β1, ..., βn) is the JT path integral for a given topology with the S0 term left out
of the action. As an example of the type of geometry involved, we have

Zg=2,n=3(β1, β2, β3) = (64)

where the lengths of the regularized (red) boundaries are fixed to be βj/ε, but they are
allowed to take wiggly shapes as we discuss in a moment.

The path integral over such geometries is simplified considerably by the fact that the
integral over φ with the action (61) imposes a constraint that the metric should be constant
negative curvature R = −2. It is possible to put a metric with R = −2 on a topology such
as (64), and in fact there is an infinite-dimensional space of such geometries, consistent with
our boundary conditions. This corresponds to the freedom to make the boundary wiggly,
and also a finite-dimensional moduli space associated to the surface itself. The path integral
over the metric then becomes an integral over the moduli space, and a path integral over the
boundary wiggles. The JT action reduces to the final extrinsic curvature term, and we have

Zg,n(β1, ..., βn) =

∫
d(bulk moduli)

∫
D(boundary wiggles)e

∫
∂M
√
hφ(K−1). (65)

19In this paper we restrict to orientable surfaces, which are appropriate for a Hermitian matrix integral.
We are grateful to Edward Witten for comments on nonorientable contributions. See [26] for discussion.

20We should note that the presence of the topological term in the low energy limit of the SYK model has
only been verified for the disk and the cylinder.
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As we will see, the integral over the boundary wiggles is easy to do. The integral over the
bulk moduli is difficult to get explicit expressions for, but we will see that Mirzakhani’s
recursion relation implies that the result satisfies the recursion of a double-scaled matrix
integral.

Since our goal is to compute the quantities Zg,n exactly, it will be important to understand
the integration measure. As we will see, the measure that follows from the JT path integral is
the Weil-Petersson measure on the bulk moduli, and the symplectic measure on the boundary
wiggles, with a relation between the normalization of these measures. As a first step we will
review the definition of the Weil-Petersson measure for the moduli space, deferring until
slightly later an explanation of why it is relevant in JT gravity.

3.1 The Weil-Petersson symplectic form

The Weil-Petersson measure is derived from a symplectic form. This form can be explained
very concretely in terms of the “pants” construction of a hyperbolic Riemann surface. This
is based on building up surfaces from an elementary building block, which is a hyperbolic
surface with genus zero and three geodesic boundaries, of lengths b1, b2, b3. For example, the
three shaded pieces here

(66)

can be glued together to give a genus two surface with one geodesic boundary. Such a geom-
etry can be attached to a “trumpet” (shown unshaded above) in order to form a geometry
with an asymptotic boundary, but for the moment we will focus on the shaded components
only. By gluing together several of these three-boundary building blocks, one ends up with a
manifold with some genus g and some number n (possibly zero) of leftover geodesic bound-
aries. In the example, (g, n) = (2, 1). The space of such manifolds for fixed values of the
external boundary lengths is denotedMg,n(b1, ..., bn), and referred to as the moduli space of
bordered Riemann surfaces.

A set of coordinates on this space are simply the parameters of the gluing construction,
known as Fenchel-Nielsen coordinates. These consist of the lengths b̃1, ..., b̃k of the pairs
of internal boundaries that were glued together, along with a corresponding set of twist
parameters τ1, .., τk, which represent the proper distance that one boundary is rotated relative
to its partner before the two are glued together. So, all together we have 2k coordinates,
and one can show that k = 3g + n − 3, where g is the genus and n is the number of fixed
leftover boundaries. The Weil-Petersson form is a symplectic form on this space, and in
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these coordinates it is simply [80]

Ω = α

3g+n−3∑
i=1

db̃i ∧ dτi, (67)

where α is a numerical constant that depends on convention. In the literature, α = 1 is
widely used, and we will often use this convention below. The quantity 1

k!
Ωk gives a volume

form, and one can integrate this to get the volume of the moduli spaceMg,n(b1, ..., bn).
In practice, a major complication is that the pants decomposition overcounts the moduli

space. Because hyperbolic Riemann surfaces have many geodesics on which to cut, one
can find different pants decompositions of the same geometrical surface. Although it is not
obvious in these coordinates, the form (67) is invariant under such changes in decomposition.
But to correctly compute the volume of the moduli space

Vg,n(b1, ..., bn) = vol (Mg,n(b1, ..., bn)) (68)

one still needs to restrict the integral to a fundamental region that counts each distinct
surface once. This is tricky: see e.g. [79] for an example computation.

In [28], Mirzakhani showed that these volumes satisfy a recursion relation that makes
it possible to compute them in practice (see [32] for a recent introduction to Mirzakhani’s
method). We will not show the recursion relation explicitly, but an important fact for this
paper is that it is equivalent to the statement that the Wg,n defined in (60) satisfy the
recursion relation of a double scaled matrix integral, with y = sin(2πz)

4π
[33].

3.2 Optional: the compact case, in the second-order formalism

We will now begin to explain why the Weil-Petersson measure is relevant for JT gravity. In
this section we start with an explanation intended to appeal to readers who have background
in string perturbation theory; a more complete explanation will be given later.

To avoid the complication of boundary wiggles for the moment, we will assume that we
are integrating over closed manifolds, and in order to have a hyperbolic metric, we assume
the genus is g ≥ 2. The path integral on a closed genus g surface gives a contribution to the
logarithm of the matrix integral partition function:

logZ ⊃ (eS0)χFg =

∫
DgµνDφ
Vol(diff)

e−IJT [gµν ,φ]. (69)

To evaluate the path integral, one can fix to conformal gauge

gab = e2ωĝab,
√
gR =

√
ĝ(R̂− 2∇̂2ω) (70)

where ĝ is a metric with R̂ = −2. The path integral becomes (see, e.g. eq. (3.13) of [81]
with d = 0 and including the extra JT gravity term)

Fg =

∫
moduli

d(Weil-Pet.)(det P̂ †1 P̂1)
1/2

∫
DωDφ e−26SL[ω]e

∫ √
gφ(R+2). (71)
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The integral over moduli is the integral over metrics ĝ with R̂ = −2. In [81] it is shown that
the path integral reduces to the Weil-Petersson measure on this space, times the Fadeev-
Popov determinant for the gauge-fixing to conformal gauge, (det P̂ †1 P̂1)

1/2. The operator P̂1

takes vectors to traceless symmetric tensors

(P̂1v)ab = ∇̂avb + ∇̂bva − ĝab∇̂cvc, (72)

and for a conventional choice of metric, its adjoint acts as (P̂ †1α)a = −2gab∇̂cαbc. SL is the
Liouville action; it will not play an important role in this theory because the Liouville field
will be localized to zero, and the action will give a multiple of the Euler characteristic.

The final term in the action in (71) can be written more explicitly as∫
√
gφ(R + 2) =

∫ √
ĝφ(R̂− 2∇̂2ω + 2e2ω) = 2

∫ √
ĝ φ(−∇̂2 + 2)ω +O(ω2). (73)

The path integral over φ imposes a delta function constraint δ((−∇̂2 + 2)ω) at every point
in space. This condition implies ω = 0, but in doing the integral over ω we get an inverse
power of det(−∇̂2 + 2). So the path integral becomes

Fg = e(const.)χ
∫
moduli

d(Weil-Pet.)
(det P̂ †1 P̂1)

1/2

det(−∇̂2 + 2)
(74)

= e(const.)χ
∫
moduli

d(Weil-Pet.) (75)

In going to the second line, we used that the ratio of determinants in (74) for hyperbolic
manifolds is proportional to e#χ. To show this, one can use the constant negative curvature
condition and a short calculation to write P̂ †1 P̂1 = 2(−∇̂2

1 + 1), where ∇2
1 is the Laplacian

acting on vectors. One can then write out the vector Laplacian explicitly, using coordinates
ds2 = dx2+dy2

y2
. One finds a simple expression after conjugating by a factor of y:

y−1∇̂2
1y =

(
D−1 − 1 0

0 D1 − 1

)
(76)

acting on two-component vectors with top component vx + ivy and bottom component vx−
ivy. The differential operators Dn are defined, following the conventions in [82], as

Dn ≡ y2
(
∂2x + ∂2y

)
− 2iny∂x. (77)

Note that D0 is simply the scalar Laplacian, so we conclude that

(det 1
2
P̂ †1 P̂1)

1/2

det(−∇̂2 + 2)
=

det1/2(−D1 + 2) det1/2(−D−1 + 2)

det(−D0 + 2)
=

det(−D1 + 2)

det(−D0 + 2)
. (78)

These determinants differ by at most a factor (const)χ where χ is the Euler characteristic, see
[82, 83]. Note that we inserted a factor of 1

2
in the first expression here. After regularization,

this factor also contributes at most a term proportional to (const)χ.
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So we find that, up to a factor e(const.)χ that can be absorbed into S0, the path integral on
a compact g ≥ 2 surface reduces to the Weil-Petersson volume of the moduli space.21 The
cancellation of the determinants that made this possible was quite specific to the JT theory.
We will see this from another perspective below.

3.3 First-order formalism

In order to evaluate (65), we need the measure both for the bulk moduli and the boundary
wiggles. And, moreover, we will need a relation between the normalizations of these mea-
sures. In order to derive this, it will be convenient to use the first-order formalism for JT
gravity, which is a topological BF -type theory.

3.3.1 Basic setup

We start with some equations for first order gravity in two dimensions. The basic objects
are the one forms ea = eaµdx

µ and the spin connection ωab = εabω where ε12 = 1, and a, b

indices are raised and lowered with δab, so we don’t need to distinguish up vs. down. The
no-torsion condition, which determines the spin connection, is

dea = −ωab ∧ eb. (79)

The curvature two form is
Ra

b = dωab + ωac ∧ ωcb = dωab. (80)

The first equation is the general definition. The second equation is true in two dimensions,
since in this case ωac ∧ ωcb = −δabω ∧ ω = 0. In general, the curvature two form is related to
the Riemann tensor by

Ra
b =

1

2
eaµe

ν
bR

µ
νρσdx

ρ ∧ dxσ. (81)

In two dimensions this simplifies because Rµνρσ = 1
2
R(gµρgνσ − gµσgνρ) and we find that

dωab =
1

2
Rea ∧ eb. (82)

Now, e1 ∧ e2 = e1 ∧ e2 =
√
gd2x, so

√
gd2xR = 2dω1

2 = 2dω. (83)

We can then write the JT action in the first order formalism as
1

2

∫
√
gφ(R + 2)→

∫ [
φ(dω + e1 ∧ e2) + φa(de

a + εabω ∧ eb)
]

(84)

= i

∫
Tr (BF ) . (85)

21Note that this volume also depends on an arbitrary normalization of the form in (67). If we rescale the
form by a factor of α, we will rescale the answer by a factor of α3g−3 = α− 3

2χ, so this factor can also be
absorbed into S0.
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In the first line, we introduced the φa as Lagrange multipliers that enforce the no-torsion
condition (79). In the second line we wrote the answer in terms of a matrix of scalars B and
a matrix of one forms A:

B = −i
(
−φ1 φ2 + φ

φ2 − φ φ1

)
A =

1

2

(
−e1 e2 − ω
e2 + ω e1

)
(86)

where the field strength F is defined as

F = DA = dA+ A ∧ A. (87)

The action can now be recognized as an SL(2,R) “BF ” theory. Note that we introduced
a factor of i in (85), and a compensating factor of −i in (86). With this convention, the
purely imaginary contour for our Lagrange multipliers φ, φ1, φ2 becomes a real contour for
the matrix B. The action (85) then has the usual factor of i for a BF theory in Euclidean
signature.

The field B enters the action only linearly, so we can integrate it out, getting a constraint
that F = 0, in other words that we should integrate only over flat connections.22 The
advantage of the BF theory presentation is that there is a very simple description for the
measure on the space of flat connections. This measure arises from the original ultralocal
measure for the path integral, after integrating out the nonzero modes. After gauge-fixing
and using the Fadeev-Popov procedure, it was shown in [84] for BF theories with compact
gauge group that the path integral on orientable surfaces reduces to an integral over flat
connections, with the measure induced by the symplectic form on the space of gauge fields

Ω(σ, η) = 2α

∫
Tr (σ ∧ η) . (88)

Here σ and η are elements of the tangent space in the space of gauge fields. Concretely, they
are one forms that parametrize infinitesimal variations of A. The constant α is arbitrary
and can be absorbed into a shift of S0, as we will see in detail below.

An important point in [84] is that this symplectic form is Kahler-compatible with a metric
on the space of one-forms, which can be used together with a similar metric on the space of
zero-forms to define the gauge-fixed path integral measure. Concretely, Kahler-compatibility
of a metric and a symplectic form means that g(σ, η) = Ω(σ, Jη), where J2 = −1 and
Ω(Jσ, Jη) = Ω(σ, η). In the case of compact BF theory, one can take J = ∗, and the
corresponding metric on the space of one-forms is

g(σ, η) = 2α

∫
Tr (σ ∧ ∗η) . (89)

Unlike (88), this formula involves a choice of metric on the underlying surface, which is
needed to define ∗, but in the gauge-fixed path integral, this dependence drops out if one

22Actually, in JT gravity we only want to integrate over one topological component of the space of flat
SL(2,R) connections (see e.g. footnote 5 of [32]). Global aspects of the space of flat connections will not be
important for us, because we view the second order Lagrangian as the definition of the theory, and only use
the BF description locally, in order to compute the correct measure about a given configuration.
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uses a similar formula to define the metric on the space of ghost and antighost fields, as
explained in [84].

In the noncompact case, (89) is not a positive metric on the space of field configurations,
since the Lie algebra metric has negative directions. However, following [85], we can use
a non-invariant but positive metric on the Lie algebra in order to define the gauge fixing
condition, and also to define the metric in the space of field configurations:

g(σ, η) = 2α

∫
Tr (σ ∧ ∗Tη) . (90)

Here T reverses the sign of the negative-metric component of the Lie algebra.23 This metric
is also Kahler-compatible with (88), using J = ∗T . This means that the analysis in the
noncompact case continues to apply, and in particular the induced measure on the space of
flat connections is the one that follows from (88).

3.3.2 The Weil-Petersson measure from BF theory

An important fact for us is that, on the space of flat SL(2,R) connections, (88) is locally
the same as the Weil-Petersson form on the moduli space of curves [86]. We will explain this
with a simple example in a moment, but first we should explain the formula in more detail.

Suppose we are at a point in the space of flat SL(2,R) connections. A symplectic form
is a two-form, which is supposed to take as input two vectors in the tangent space to this
point. The tangent space can be described (up to gauge transformations) as consisting of
gauge fields δA such that A+ εδA is still flat to linear order in ε, i.e.

d(δA) + A ∧ δA+ δA ∧ A = 0. (91)

We can stick two such configurations into (88) and get a number Ω(δ1A, δ2A), so (88) is a
two form in that sense. Note also that it is gauge-invariant on the space of flat connections.
To see this, suppose we make a gauge transformation of one of the deformations: δ2A →
δ2A+ dΘ + [A,Θ]. Then the change in the value of Ω(δ1A, δ2A) is

2α

∫
Tr (δ1A ∧ (dΘ + [A,Θ])) (92)

which vanishes after integrating by parts and using (91). (The possible boundary term in
this integration by parts will be important below.)

Let’s now see concretely how the form (88) is related to the Weil-Petersson form (67). To
do this we focus on a particular geodesic where two tubes of pants have been glued together.
Near this region, we choose coordinates ρ, x so that ρ measures the distance to the joining
locus (ρ < 0 is one tube, and ρ > 0 is the other). The metric is

ds2 = dρ2 + cosh2(ρ) [bdx+ τδ(ρ)dρ]2 , x ∼ x+ 1. (93)
23We are grateful to Edward Witten for suggesting this.
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The funny term involving δ(ρ) is to implement the twist by distance τ . To see that this
works correctly, we can write the expression in brackets as 24

bdx+ τδ(ρ)dρ = dy, y = bx+ τθ(ρ). (94)

The metric is smooth in y, which is a continuous coordinate on the geometry. This means
that x is actually discontinuous: the two spaces have been glued together with a shift by
proper length τ in the x direction.

In SL(2,R) gauge theory terms, up to a gauge choice A is given by (86) with

e1 = dρ, e2 = b cosh(ρ)dx+ τδ(ρ)dρ, ω = −b sinh(ρ)dx. (95)

We now consider small variations of δib, δiτ for i = 1, 2 and we compute

Tr (δ1A ∧ δ2A) =
1

2

(
δ1e

1 ∧ δ2e1 + δ1e
2 ∧ δ2e2 − δ1ω ∧ δ2ω

)
(96)

=
1

2
(δ1b δ2τ − δ2b δ1τ)δ(ρ)dxdρ. (97)

Integrating over ρ, x, the symplectic form (88) is

Ω(δ1A, δ2A) = α(δ1b δ2τ − δ2b δ1τ). (98)

This coincides with (67) including the normalization factor of α, which is why we chose the
specific normalization in (88).

3.3.3 Boundary conditions

The real advantage to working with the BF formulation is that it is straightforward to use the
same symplectic form (88) to get the measure for the integral over wiggly boundaries. Before
we can do that, though, we need to discuss the boundary conditions that we are imposing
on the BF theory. Our guiding principle is that we should choose boundary conditions that
reproduce the ones from the second order formulation of JT gravity. Essentially, we need to
arrange that the boundary conditions should allow a wiggly boundary but not more.

The boundary conditions that are imposed in JT gravity in order to compute the partition
function Z(β) are

guu
∣∣
bdy =

1

ε2
, φ

∣∣
bdy =

γ

ε
, ε→ 0. (99)

The u coordinate is a rescaled proper length coordinate along the boundary. It should run
from zero to β, so that the total length of the boundary is β/ε. The invariant content of (99)
is that that φ|bdy = γ

β
· length(bdy), but these equations also define a preferred coordinate

u along the boundary. This coordinate will be convenient below. As emphasized in [9], this
type of boundary condition allows a “boundary graviton” mode corresponding to a wiggly

24It should be clear from context that θ(ρ) in the following equation is the step function, not an angular
coordinate.
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boundary. This is typically described by giving the trajectory of the ε-regularized boundary
in Euclidean AdS2.25 To specify this, one can use e.g. global coordinates

ds2 = dρ2 + sinh2(ρ)dθ2 (100)

and then give a function θ(u), which specifies the angle in the hyperbolic plane as a function
of the boundary proper length coordinate u. The function ρ(u) is then fixed by (99). Instead
of parametrizing things this way, we would rather have a formula for the asymptotic behavior
of the metric, so that we can read off conditions that can be translated to the first-order
formalism. To do this, we can use coordinates r, u where r is a coordinate that measures
distance to the boundary (which is taken to r = ∞ in the ε → 0 limit), and u is the
coordinate we have already discussed. Then one can show that a wiggly boundary leads to
a metric with the large r behavior

ds2 = dr2 +
(
1
4
e2r − Sch(u) + ...

)
du2, Sch(u) = Sch

(
tan

θ(u)

2
, u

)
. (101)

One way to check this is to note that this metric has R = −2 to the order we are working,
and then to compute the extrinsic curvature of a constant r surface for large r, which is

K =
1

2
guu∂rguu =

1
2
∂r
(
1
4
e2r − Sch(u) + ...

)
1
4
e2r − Sch(u) + ...

= 1 + 4e−2rSch(u) + ... (102)

This agrees with the computation of the extrinsic curvature of the parametrized boundary
in the fixed metric (100), as described in [9].26 So, the summary of this discussion is that a
to allow wiggly boundaries, we can impose that the metric should asymptotically take the
form (101) with an arbitrary function Sch(u) that is allowed to vary.

We would now like to translate this condition to the BF theory. First of all, a standard
minimal boundary condition for BF theory would be to fix some linear combination of B
and Au to zero

B + icAu
∣∣
bdy = 0, c = const. to be fixed below. (103)

The coefficient was taken to be purely imaginary so that the boundary condition is a real
one after continuing the Euclidean boundary time u to Lorentzian time. One can check that
with this boundary condition, the action with an appropriate boundary term

I = −i
∫
M

Tr(BF ) +
i

2

∫
∂M

Tr (BA) . (104)

is stationary with respect to linear variations about a solution. The boundary condition
(103) is closely related to a familiar boundary condition in three-dimensional Chern-Simons
theory. There, some linear combination of the boundary components of the gauge field are

25JT gravity localizes to exact Euclidean AdS2, but all that is really important for parametrizing the
boundary this way is that the geometry is asymptotically Euclidean AdS2.

26And the extrinsic curvature of the boundary curve specifies it uniquely, up to an SL(2,R) isometry of
the entire geometry that is a gauge symmetry in this context.
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typically set to zero. BF theory is a dimensional reduction of Chern-Simons theory where
the gauge field is taken to be independent of the third coordinate x3, and where

A(3d) = A+B dx3. (105)

From the three-dimensional perspective, the boundary components of A(3d) are Au and B, so
(103) is indeed the usual type of condition. Chern-Simons theory with this type of boundary
condition leads to a boundary theory that is a chiral WZW model [87, 88]. The analogous
statement for BF theory with Lie group G is that the boundary theory is the quantum
mechanics of a particle moving on the G manifold [89]. However, this isn’t quite what we
want. We are aiming for the Schwarzian boundary theory, which is a path integral over a
quotient of diff(S1), whereas the above suggests that we will get a path integral over the
larger space loop(SL(2,R))/SL(2,R) [90].

The problem can be fixed [23, 91, 92, 90] by following the steps [93] used to impose
the asymptotic boundary conditions for AdS3 [94] in the Chern-Simons formulation [95, 96]
(see also [97, 98] for recent 3d discussion). Basically, we need to impose stronger boundary
conditions, namely the asymptotic conditions (101). These conditions can be written in
first-order variables as

e1 = dr, e2 =
(
1
2
er − Sch(u)e−r

)
du, ω = −

(
1
2
er + Sch(u)e−r

)
du. (106)

In terms of the gauge field, this imposes the large r behavior

A =
dr

2

(
−1 0

0 1

)
+
du

2

(
0 er

−2 Sch(u)e−r 0

)
. (107)

We emphasize that in these boundary conditions, Sch(u) is an arbitrary function which is
allowed to vary; this describes the freedom in A at the displayed order in e−r. We should
check that the action for this quantity agrees with expectations from JT gravity. First, we
can fix the constant in (103) by requiring that (106) is consistent with the large r behavior
of (99), which requires φ = γ

ε
= γ e

r

2
. This fixes c = 2γ, so the boundary term becomes

I = γ

∫
duTr

(
A2
u

)
= −γ

∫
du Sch(u) (108)

which is the same Schwarzian action one gets from the standard treatment of JT.

3.3.4 The boundary wiggles and symplectic form

We can now give a BF theory description of the boundary wiggles and compute the measure
from the symplectic form (88). In Chern-Simons theory, the boundary WZW modes arise
from would-be gauge transformations that act nontrivially on the boundary. In BF theory
we are in the same situation: the physical mode describing the boundary wiggles is a trans-
formation by a would-be gauge transformation that does not vanish at infinity, but instead
limits to a function Θ(u, r) with some asymptotic r dependence and arbitrary u dependence.
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In principle Θ(u, r), as an sl(2,R) element, contains three independent functions. How-
ever, imposing that the transformation A→ A+ dΘ + [A,Θ] should preserve the condition
(107) allows us to solve for the large r behavior of two of the functions in terms of the third,
so that the most general transformation has the large r behavior

Θ(u, r)→
(

1
2
ε′(u) 1

2
erε(u)

−e−r [Sch(u)ε(u) + ε′′(u)] −1
2
ε′(u)

)
(109)

for some function ε(u). This preserves (107) but induces the transformation

Sch(u)→ Sch(u) + ε′′′(u) + ε(u)Sch′(u) + 2ε′(u)Sch(u). (110)

This transformation is the correct transformation of the Schwarzian derivative Sch(f(u), u)

under an infinitesimal reparametrization acting on the right: f(u) → f(u + ε(u)). This
identifies the mode (109) with an infinitesimal reparametrization, introducing a small wiggle.

We are finally in a position to evaluate the measure for the wiggles, by evaluating the
symplectic form

Ω(δ1A, δ2A) = 2α

∫
M

Tr(δ1A ∧ δ2A) (111)

on a pair of configurations where δiA = dΘi + [A,Θi] and Θi have the limiting behavior
(109). For any formal gauge transformations Θi, the integrand in (111) is a total derivative,
and a short calculation shows that the above can be written as a boundary integral

Ω(δ1A, δ2A) = 2α

∫
∂M

Tr
(
Θ1(dΘ2 + [A,Θ2])

)
. (112)

Now inserting the limiting form (109) and integrating by parts in u, assuming that all
functions including Sch(u) are periodic, one finds

Ω(δ1A, δ2A) = α

∫ β

0

du

[
ε′1(u)ε′′2(u)− Sch(u)

(
ε1(u)ε′2(u)− ε′1(u)ε2(u)

)]
(113)

which can also be written as

Ω =
α

2

∫ β

0

du

[
dε′(u) ∧ dε′′(u)− 2 Sch(u) dε(u) ∧ dε′(u)

]
. (114)

This is a multiple of the same (Kirillov-Kostant-Souriau) symplectic form that was assumed
for the Schwarzian path integral in [22]. Here we have derived it from the bulk theory. Also,
we have related the coefficient of the symplectic form for boundary wiggles to the coefficient
of the Weil-Petersson form (67), because both are special cases of the form (88).

3.3.5 The path integral over the boundary wiggles

We will now evaluate the path integral over the boundary wiggles for the cases that are
relevant for our problem. There are two cases, corresponding to a wiggly boundary on the

28



disk, and a wiggly boundary at the big end of a hyperbolic “trumpet” geometry as shown
below.

� �� �
end is a geodesic 

of length �
(115)

A useful simplification is that both path integrals are one-loop exact [22], so we can evaluate
them exactly by just doing the path integral for small fluctuations.

We start with the disk. In this case, it is convenient to use the following coordinates for
the hyperbolic disk

ds2 = dρ2 + sinh2(ρ)dθ2. (116)

The wiggly boundary can be described by giving θ(u), where u is a rescaled proper length
coordinate along the boundary, running from zero to β. The other coordinate ρ(u) is de-
termined by the condition that the induced metric for the boundary is guu = 1

ε2
. The

JT action reduces to the boundary extrinsic curvature term (65) in this case, which is
−γ
∫
du Sch(tan θ

2
, u) [9]. Evaluating the Schwarzian derivative explicitly and integrating by

parts, one finds that the path integral we want is

Zdisk
Sch (β) =

∫
dµ[θ]

SL(2,R)
exp

[
−γ

2

∫ β

0

du

(
θ′′2

θ′2
− θ′2

)]
. (117)

The measure dµ[θ] means the measure induced by the symplectic form (114). We are dividing
by SL(2,R) for the following reason: the hyperbolic disk has an SL(2,R) isometry group.
Acting with an isometry on the left panel of (115) moves the shaded droplet around in
the hyperbolic space, but doesn’t change the geometry of the shaded region. So to avoid
overcounting, we should integrate over wiggly boundaries only up to SL(2,R) equivalence
[9].

Using the one-loop exactness of this integral, we can get the exact answer by doing the
Gaussian integral for small fluctuations about the classical solution

θ(u) =
2π

β
(u+ ε(u)) . (118)

At quadratic order, the action three modes ε = 1, e±
2π
β
iu. These zero modes correspond to lin-

earized SL(2,R) transformations of the classical solution, and we can implement the quotient
in (117) by not integrating over these modes. So we integrate over functions parametrized
by

ε(u) =
∑
|n|≥2

e−
2π
β
inu
(
ε(R)
n + iε(I)n

)
(119)

where in order for ε(u) to be real, the real and imaginary parts satisfy ε
(R)
n = ε

(R)
−n and

ε
(I)
n = −ε(I)−n. One can view the independent variables are ε(R)

n and ε
(I)
n for positive n ≥ 2.
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It is straightforward to insert (119) into (114), along with the saddle point value of the
Schwarzian Sch(tan πu

β
, u) = 2π2

β2 and get the symplectic form in terms of these variables

Ω = 2α
(2π)3

β2

∑
n≥2

(n3 − n)dε(R)
n ∧ dε(I)n . (120)

After also working out the action in (117) to quadratic order in ε, one finds that the properly
normalized path integral is

Zdisk
Sch (β) = e

2π2γ
β

∏
n≥2

2α
(2π)3

β2
(n3 − n)

∫
dε(R)

n dε(I)n e
−(2π)4γ (ε

(R)
n )2+(ε

(I)
n )2

β3
(n4−n2) (121)

= e
2π2γ
β

∏
n≥2

αβ

γ n
=

1

α3/2

γ3/2

(2π)1/2β3/2
e

2π2γ
β . (122)

In the last step, we regularized the product using e.g. zeta function regularization or by
writing the product as an exponential of a sum of logs, introducing a smooth cutoff in the
sum, and then discarding the divergent piece.

Next we consider the trumpet. There is actually a one-parameter family of trumpet
geometries, labeled by the length of the geodesic at the small end of the trumpet. We take
this length to be b. The relevant geometry can be obtained by a piece of hyperbolic space
in the coordinates

ds2 = dσ2 + cosh2(σ)dτ 2, τ ∼ τ + b. (123)

The periodic identification of τ breaks the SL(2,R) symmetry of the hyperbolic plane down
to U(1) translations in τ . The wiggly boundary is described by a function τ(u), and in this
case the boundary action becomes −γ

∫
du Sch(e−τ , u).27 After writing this out explicitly

and integrating by parts, we find

Ztrumpet
Sch (β, b) =

∫
dµ[τ ]

U(1)
exp

[
−γ

2

∫ β

0

du

(
τ ′′2

τ ′2
+ τ ′2

)]
. (124)

This is also a one-loop exact integral [22], so we can get the exact answer by studying the
Gaussian integral over small fluctuations about the saddle point:

τ(u) =
b

β
(u+ ε(u)). (125)

One can again decompose ε into modes and work out the symplectic form, this time inserting
into (114) the classical value Sch(e−

ub
β , u) = − b2

2β2 . The path integral becomes

Ztrumpet
Sch (β, b) = e−

γb2

2β

∏
n≥1

2α
(2π)3

β2

(
n3 + b2

(2π)2
n
)∫

dε(R)
n dε(I)n e

−(2π)4γ (ε
(R)
n )2+(ε

(I)
n )2

β3

(
n4+

b2

(2π)2
n2

)

= e−
γb2

2β

∏
n≥1

αβ

γn
=

1

α1/2

γ1/2

(2π)1/2β1/2
e−

γ
2
b2

β . (126)

27One way to derive this is to find the relation between the τ and θ coordinates at the boundary of the
regular hyperbolic disk. This is cos θ = tanh(τ ), which implies tan θ

2 = e−τ . The standard formula for the
Lagrangian Sch(tan θ

2 , u) is then equal to Sch(e−τ , u).
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3.4 Putting it together: the contribution of genus g in JT gravity

We are now in a position to put the pieces together – the Weil-Petersson volume of the bulk
moduli space and the path integral over the wiggly boundary – and compute the genus g
partition function with n boundaries, Zg,n(β1, ..., βn), introduced in (63). The formula is
simply

Z0,1(β) = Zdisk
Sch (β)

Z0,2(β1, β2) = α

∫ ∞
0

bdbZtrumpet
Sch (β1, b)Z

trumpet
Sch (β2, b) (127)

Zg,n(β1, ..., βn) = αn
∫ ∞
0

b1db...

∫ ∞
0

bndbnV
α
g,n(b1, ..., bn)Ztrumpet

Sch (β1, b1)...Z
trumpet
Sch (βn, bn)

where we have written the first two (which are special cases) separately.
Let’s explain this formula for the case Zg,1(β). In this case, the geometries that we

integrate over have a trumpet connected to the rest of the space across a minimal geodesic
of some length b that should be integrated over:

geodesic of 

length �
(128)

For fixed b, the path integral factorizes into an integral over the moduli of the internal part
of the surface, and an integral over the wiggly boundary of the trumpet. Together, these
factors give

V α
g,n(b)Ztrumpet

Sch (β, b), (129)

where we have written V α
g,n with α explicit to make clear the dependence on the normalization

of the Weil-Petersson form (67). All that remains is to integrate over b. In fact, there is both
the length b and a twist parameter τ , and the measure is again the one that follows from
the Weil-Petersson form (67). For this case, since twisting by b leaves the surface invariant,
the twist is bounded between zero and b, so the total measure for the length parameter is∫

τ

Ω = αdb

∫ b

0

dτ = αbdb (130)

and the final answer is

Zg,1(β) = α

∫ ∞
0

bdb V α
g,n(b)Ztrumpet

Sch (β, b). (131)

The logic for n boundaries is similar.
Note that the α dependence of the entire expression is proportional to

αn · α3g+n−3 · α−n/2 = α
3
2
(2g+n−2) = α−

3
2
χ. (132)
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Here the first factor comes from the n explicit factors of α in (127), and the second factor
comes from the fact that Vg,n involves an integral over 3g+ n− 3 pairs of internal variables,
each carrying a factor of α form the form (67). The final factor comes from the α dependence
of the n factors of (126). Since the total α dependence is of the form α−

3
2
χ, we can set α to

one by a shift of S0 by 3
2

log(α).28

3.4.1 Example: Z0,2

Although it is a somewhat special case from the perspective of the above formulas, it is
interesting to work out the formula for Z0,2 explicitly. This corresponds to the case where
the two asymptotic boundaries are connected by a “double trumpet”

(133)

Explicitly, in this case one has

Z0,2(β1, β2) =

∫ ∞
0

bdb

(
γ1/2

(2π)1/2β
1/2
1

e
− γ

2
b2

β1

)(
γ1/2

(2π)1/2β
1/2
2

e
− γ

2
b2

β2

)
(134)

=

√
β1β2

2π(β1 + β2)
. (135)

If we continue β1 → β1 + it and β2 → β2 − it, and take t � β, we get the linearly growing
“ramp” contribution to the spectral form factor

Z0,2(β + it, β − it)→ 1

2π

t

β1 + β2
. (136)

The coefficient here agrees with the prediction of random matrix theory, but more is actually
true. The whole function (135) agrees with random matrix theory. To see this, we compute
the contribution to the correlator of resolvents (assuming E1, E2 < 0)

R0,2(E1, E2) =

∫ ∞
0

dβ1dβ2

√
β1β2

2π(β1 + β2)
eβ1E1+β2E2 (137)

=
1

4(−E1)1/2(−E2)1/2 [(−E1)1/2 + (−E2)1/2]
2 , (138)

which agrees with the universal answer (47) for double-scaled matrix integrals.
This expression can be continued to positive energy either through the upper half plane

to E+iε or through the lower half plane to E−iε. The difference between these continuations
gives the density of states (14), and one finds (using an obvious notation)

〈ρ(E1)ρ(E2)〉0 =
R(++) + R(−−)−R(+−)−R(−+)

(−2πi)2
=
−1

(2π)2
E1 + E2

E
1/2
1 E

1/2
2 (E1 − E2)2

(139)

28Note that although the above calculation does not apply to the special cases (g, n) = (0, 1) or (0, 2), it
is separately also true for those cases that the α dependence is α− 3

2χ.
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Note that this expression is singular as E1 approaches E2. This is not true for higher genus
contributions to the same correlator. This is easy to check for the genus one contribution,
by doing the integral with the explicit function V1,2 in (59).

3.4.2 Aside: these are not classical solutions

Except for the disk, none of the path integral configurations that we considered above are full
solutions to the equations of motion of JT theory. The equation of motion of φ is satisfied,
since R + 2 = 0. But the equation of motion for the metric implies that εµν∂νφ is a Killing
vector [99], and except for the disk and double trumpet, the manifolds we consider here do
not have isometries. For the double trumpet, a separate argument rules out a solution [11].

The basic point is that because of the e−b2/4β factor in the trumpet partition function,
there is pressure pushing b to be small [100], which prevents us from finding a fully on-shell
configuration. Of course, this is not a problem in the present context, since the JT theory
is simple enough that we can simply do the integral over b.

3.5 Correspondence with the matrix integral recursion relation

The agreement of R0,2 above with random matrix theory is an example of a more general fact,
which is that all of the Zg,n, taken together, give a solution to Eynard’s recursion relation
applied to double scaled matrix integrals (56).

As a first step, we should understand what the spectral curve function y(z) is for this
case. This can be obtained from the genus zero expression for the density of states as in
(38). The genus zero density of states for the JT theory is obtained by writing Z0,1 as an
integral with some density of states

Z0,1(β) =

∫ ∞
0

dEρ0(E)e−βE. (140)

In our case, Z0,1 = Zdisk
Sch was given in (122). After adjusting S0 to make α = 1, one can

check that this answer is reproduced by the function

ρ0(E) =
γ

2π2
sinh(2π

√
2γE), (141)

which implies
y(z) =

γ

2π
sin(2π

√
2γ z). (142)

We have already seen that R0,2 has the right form for a double-scaled matrix integral, so
it remains to check the generic Rg,n case. More precisely, we will check that Wg,n defined in
(54) satisfy (56). The quantities Wg,n are in general related to Zg,n by an integral transform

Wg,n(E1, ..., En) = 2nz1...zn

∫ ∞
0

dβ1...dβne
−(β1z21+...+βnz2n)Zg,n(β1, ..., βn). (143)
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For the JT gravity case (127), after inserting the explicit expression for Ztrumpet
Sch in (126),

one can do the integral over β inside the integral over b. Then, using the integral

2z

∫ ∞
0

dβe−βz
2 γ1/2

(2π)1/2β1/2
e−

γ
2
b2

β = (2γ)1/2e−
√
2γ bz, (144)

one finds that

Wg,n(z1, ..., zn) = (2γ)n/2
∫ ∞
0

b1db1e
−
√
2γ b1z1 ...

∫ ∞
0

bndbne
−
√
2γ bnznVg,n(b1, ..., bn). (145)

If we take γ = 1
2
, then we land on the case discussed near eq. (60). Eynard and Orantin

showed that Mirzakhani’s recursion relation implies that these functions indeed satisfy the
recursion relation (56) for the spectral curve y = sin(2πz)

4π
, which is just (142) for γ = 1

2
.

The case for general γ follows trivially from this. One simply shows that the recursion re-
lation (56) behaves correctly under rescalings of energy. Concretely, if Wg,n(z1, ..., zn) satisfy
(56) with a given y(z) then so do (2γ)n/2Wg,n(

√
2γz1, ...,

√
2γzn) with y(z)→ (2γ)y(

√
2γz).

4 Connection to minimal string theory

In the last section, we saw that the sum over topologies in JT gravity reproduces the genus
expansion of a particular double-scaled matrix integral. This is reminiscent of previous
connections between two-dimensional gravity and matrix integrals [34, 35, 36, 37],29 which
were motivated by thinking of the double-line graphs of matrix perturbation theory [74, 73]
as a discretization of an integral over surfaces. This becomes precise in the double-scaled
limit [17, 18, 19], and we will find evidence that the correspondence identified above between
JT gravity and matrix integrals is related to a further limit of these models.

Let’s first briefly review the older story. In one presentation, one regards the sum over sur-
faces as a type of noncritical string theory called the “minimal string,” where the worldsheet
theory is a minimal model CFT on a fluctuating geometry described by Liouville theory.
Minimal model CFTs are labeled by a pair of relatively prime integers (p, p′), and for general
values of (p, p′), the minimal string is dual to a multi-matrix integral. But for the special
case of (2, p), with p an odd positive integer, one finds a single Hermitian matrix integral,
and we will focus on this case. The (2, p) minimal models are non-unitary, and have central
charge c = −3p + 13 − 12

p
. In order to get a c = 0 worldsheet theory, the minimal model

is combined with the usual c = −26 ghosts, and a Liouville theory [101]30 of central charge
3p+ 13 + 12

p
. This can be accomplished by taking the Liouville theory 31

I =
1

4π

∫
d2x
√
ĝ
(

(∇̂ϕ)2 + (b−1 + b)ϕR̂ + 4πµe2bϕ
)
, b =

√
2

p
. (146)

29For reviews see [38, 39].
30For reviews see [102, 38].
31Note that in the following action the only matter field operator appearing is the identity operator,

coupling to the cosmological constant. To achieve this in the matrix realization of the nonunitary minimal
string the negative dimension matter fields must be fine-tuned to zero. This is referred to as the “conformal
background” [41].
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The dictionary between this theory and the matrix integral is similar to what we discussed
for JT gravity. In particular, matrix ensemble averages of 〈Tr(e−`1H)...Tr(e−`nH)〉 are given
by the worldsheet path integral over surfaces with n boundaries. The boundary conditions
are fixed finite lengths `1, ..., `n for the Liouville sector, and the identity Cardy state for the
minimal model.

Assuming that the minimal string is dual to some matrix model, one can determine
the correct one by computing the disk partition function, interpreting it as the leading
contribution to 〈Tr(e−`H)〉, and reading off ρ0(E).32 This computation was first done by
[41], using a minisuperspace approximation to Liouville, which was shown to be exact, as in
[103]. It was later redone in [53], using formulas from the bootstrap solution of the Liouville
boundary problem [47]. In this approach, one uses, as an intermediate step, the FZZT
boundary condition, which corresponds to an unmarked boundary in Liouville with fixed
boundary cosmological constant µB. For this problem, expressions for one-point functions
are known [47]. By an integral transform, one can change from FZZT boundary conditions to
a marked boundary with fixed length `. The resulting one-point function of the cosmological
constant operator with these boundary conditions is given in Eq. (2.44) of [47] as

Wb(`) = (const.)µ
1−b2
2b2 K 1−b2

b2
(κ`), κ2 =

µ

sin(πb2)
. (147)

This one-point function can be interpreted as the derivative with respect to the cosmological
constant µ of the disk partition function, which is then given by integrating:

W (`) =

∫
dµWb(`) = (const.)

1

`
µ

1
2b2K 1

b2
(κ`). (148)

To determine the relevant matrix ensemble, we set b =
√

2/p and interpret (148) as
〈Tr(e−`H)〉, and then compute the inverse Laplace transform to obtain the leading density of
eigenvalues. Before doing this, it is convenient to adjust a boundary counterterm to multiply
(148) by a factor of eκ`, which will have the effect of setting the ground state energy to zero.
Then, using

es

s
K 1

b2
(s) = b2

∫ ∞
0

dt e−st sinh

(
1

b2
arccosh(1 + t)

)
(149)

one finds that
eκ`W (`) =

∫ ∞
0

dEρ0(E)e−`E (150)

with

ρ0(E) = (const.) sinh

[
p

2
arccosh

(
1 +

E

κ

)]
(151)

=
√
E
(
a0 + a1E + a2E

2 + ...+ a p−1
2
E

p−1
2

)
. (152)

32More precisely, to compute 〈Tr(e−`H)〉, one should consider a disk with a marked boundary, meaning
that a base point on the boundary has been chosen, and we do not consider translations of the boundary
time coordinate as a gauge symmetry. The difference is a factor of `: if we do not pick a base point on the
boundary, we would be computing 1

` 〈Tr(e
−`H)〉.
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This gives the leading density of eigenvalues in the matrix model dual to the (2, p) minimal
string. In the second line we wrote a schematic form for the function in the case of interest
where p is an odd integer. The coefficients ak are positive numbers.

We would now like to understand the relationship of this to JT gravity.33 For large p,
the central charge of the Liouville theory is large, and the fluctuations about the classical
solution will be small. The classical solution of Liouville theory is hyperbolic space, and by
working in units with 4πµ = 1

b2
, we can arrange that the radius of curvature of the classical

solution is one, so R = −2, as in our conventions for JT gravity. It seems plausible that
this theory could be related to JT gravity. However, since both are supposed to be dual to
matrix integrals, we can compare them by comparing the ρ0(E) function that specifies the
matrix integral. And, indeed, it is easy to check that if we take p → ∞ with E = 2π

p
EJT

held fixed, we land on the JT gravity spectral curve:

sinh

[
p

2
arccosh

(
1 +

E

κ

)]
→ sinh

(
2π
√
EJT

)
. (153)

The agreement of these spectral curves suggests that JT gravity is in some sense the p→∞
limit of the (2, p) minimal string.34 We will use this correspondence below to import intuition
from the minimal string on the role of FZZT and ZZ branes in Liouville theory.

5 Nonperturbative effects

The effects we have discussed so far in this paper are perturbative from the perspective of
a matrix integral. More precisely, they are perturbative in the expansion parameter 1/L,
or e−S0 in the double-scaled case. From the perspective of JT gravity, or the collective field
description of the SYK model, these are nonperturbative effects, because the quantity e−S0

is itself nonperturbatively small relative to the GN or 1
N

expansion:

gravity: e−S0 = e
− #
GN , SYK: e−S0 = e−#N . (154)

In matrix integrals these perturbative effects come from smooth fluctuations around the large
L density of states ρ0(E). The perturbative series describing these fluctuations are typically
divergent, with the coefficient at genus g behaving like (2g)!, indicating the existence of
nonperturbative effects of order exp(−cL), or exp(−ceS0) in the double scaled case (here c
can be complex).

Indeed, below we will derive the following formula, which summarizes the leading per-
turbative (i.e. genus zero) and leading nonperturbative effects in the density of eigenvalues:

〈ρ(E)〉 ≈


eS0ρ0(E)− 1

4πE
cos
(

2πeS0
∫ E
0
dE ′ρ0(E

′)
)

E > 0

1
−8πE exp

(
−2eS0

∫ −E
0

dx y (
√
x)
)

E < 0.
(155)

33We are grateful to Nathan Seiberg for emphasizing this question.
34A more complete description of this correspondence will be forthcoming in [42].
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Figure 1: The exact eigenvalue density for the Airy case (50) (blue, dark), and the tree-level
answer ρtotal0 (E) = eS0

π

√
E (orange, light) are plotted for eS0 = 1. Note the oscillations in

the “allowed” region E > 0 and the small but nonzero tail in the “forbidden” region E < 0.

Let’s explain some of the qualitative features of this formula. One feature that is easy to
understand concerns the density of eigenvalues in the “classically forbidden” region E < 0.
This is zero to all orders in perturbation theory, and the main nonzero contribution comes
from the exponentially small probability of a single eigenvalue being located at E < 0. The
weighting for such a configuration is controlled by the “effective potential” Veff(E) that the
eigenvalue feels: the sum of the actual potential V (E) and the Vandermonde repulsion from
the remaining eigenvalues. In the forbidden region we have from (22)

V ′eff(E) = LV ′(E)− 2eS0R0,1(E) = −2eS0y(
√
−E) (156)

Veff(E) = 2eS0

∫ −E
0

dx y
(√

x
)

(157)

and so in the forbidden region (155) can be rewritten as

〈ρ(E)〉 ≈ 1

−8πE
exp (−Veff(E)) . (158)

This simple picture only makes sense if Veff(E) > 0 in the forbidden region, indicating
stability of the tree level distribution ρ0(E). We will assume this for now to simplify our
presentation. For JT gravity it actually isn’t true, as we will discuss in section 5.5.

The oscillating behavior of (155) in the allowed region is in some respects more dramatic.
The nonperturbative cosine term in (155) is rapidly oscillating, but is not particularly small,
of order one in powers of eS0 . This is smaller than the tree level term eS0ρ0, but it is larger
than the first perturbative (genus one) correction, which we haven’t displayed in (155), but
which would be proportional to e−S0 . So the nonperturbative correction isn’t small, but it
is rapidly oscillating as a function of E, on the scale of the separation between individual
eigenvalues. This is clearly visible in Figure 1.

For integrated observables that are sufficiently smooth in energy, such a term will give
small effects. But in special observables they can be important. For example, oscillating non-
perturbative terms in the two-eigenvalue correlation function are needed in order to explain
the “plateau” in the spectral form factor. More generally, the oscillating nonperturbative
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term can be understood as a consequence of the underlying discreteness of the energy levels,
as the oscillations are on the scale of the separation between adjacent levels.

The kinds of nonperturbative effects discussed here have been given a “bulk” interpreta-
tion as D-branes in minimal string theories described by double scaled matrix integrals. One
eigenvalue instantons correspond to “ZZ branes,” an analog of D-instantons. The allowed
region oscillations are probed by “FZZT branes,” an analog of probe D0 flavor branes.

In this section, we will give a heuristic derivation of (155) and then interpret it in the
context of JT gravity by analogy to the minimal string identification. This is particularly
interesting since in that context, the effects are doubly-nonperturbative from the perspective
of ordinary gravitational perturbation theory in GN .

5.1 The determinant

In order to discuss nonperturbative effects in matrix integrals, it is convenient to start out by
working with determinants instead of resolvents.35 In these quantities, the nonperturbative
effects contribute at leading order, and are therefore easier to examine. In particular, we
define the quantity

ψ(E) ≡ det(E −H)e−
L
2
V (E). (159)

As we will discuss later, this operator can be interpreted as the insertion of a “brane” [57, 55].
A useful general fact is that the expectation value of ψ(E) in the matrix integral is

equal to PL(E)e−
L
2
V (E), where Pn(E) is the degree n monic polynomial from the family of

polynomials that are orthogonal with respect to the measure e−LV (E). In the double-scaled
limit, the polynomial index n is replaced by a continuous parameter n/L, and the orthogonal
functions satisfy a pair of linear differential equations. For large eS0 , these equations can be
solved using WKB methods, and a “one loop” solution at large eS0 is [104, 55]

〈ψ(E)〉 ∼ A

z1/2
exp

[
eS0

∫ z

0

dE(z′)y(z′)

]
+

B

z1/2
exp

[
−eS0

∫ z

0

dE(z′)y(z′)

]
. (160)

where E = −z2. This is written in terms of the spectral curve coordinate y (38). The
coefficients A,B are arbitrary so far, and as we will see, they can depend on the angle of E
in the complex plane.

5.1.1 Airy

A useful example to have in mind is the case where ρ0 = 1
π

√
E and the corresponding

spectral curve is y2 = −E. In this case, it is possible to write the exact answer for 〈ψ(E)〉 by
representing it as the effect of integrating out an additional “matter field” in the fundamental
representation. This motivates the interpretation of ψ(E) as a probe “flavor” brane.36

35We are grateful to Juan Maldacena for this suggestion.
36See for example [55]. This kind of construction is used extensively in the quantum chaos literature. For

reviews see [105, 106, 67, 68].
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We begin with the Gaussian matrix potential V (x) = 2
a2
x2, which has the leading order

density of states given by the Wigner semicircle:

ρtotal0 (E) =
eS0

π

√
a2 − E2

2a
, −a < E < a. (161)

For this to be normalized, L = eS0(a/2)3/2. For this theory, one can write the determinant
det(E − H) as an integral over Grassmann vectors χi and χi and perform the Gaussian
integral over H to arrive at an integral over the Grassmann variables that only depends on
the combination

∑
i χiχi,

〈det(E −H)〉 =

∫
dχidχie

Eχiχi− a
2

8L
(χiχi)

2

. (162)

We can introduce an auxiliary variable s so that χi and χi can be simply integrated out,

〈det(E −H)〉 =

√
2L

πa2

∫
ds dχidχie

(E+is)χiχi− 2L
a2
s2

=

√
2L

πa2

∫
ds(E + is)Le−

2L
a2
s2 . (163)

The final line is an integral representation for the Hermite polynomial ( a
2

8L
)L/2HL(

√
2LE/a).

The Hermite polynomials are the orthogonal polynomials for the Gaussian measure, so this
is an example of the general result mentioned above. We see that in this case 〈ψ(E)〉 is a
harmonic oscillator wavefunction, and so satisfies a Schrodinger equation (with ~ = 1

L
). For

this simple potential the WKB estimates described in (160) follow from a standard WKB
analysis of of this Schrodinger equation.37 To obtain the theory ρ0(E) = 1

π

√
E, we study

this Gaussian theory near the lower edge of the eigenvalue distribution. This corresponds
to studying the wavefunction near its left classical turning point. To do this, we replace
Eold = −a+Enew so that the support of ρ0 is 0 < Enew < 2a. Then we send a→∞ holding
Enew = E fixed. One can take this limit in the integral representation (163).

After multiplying by e−
L
2
V (E) as in (159), one finds38

〈ψ(E)〉 ∝ 1

2π

∫ ∞
−∞

ds e
i
3
s3+iξs = Ai(ξ), ξ = −e

2S0
3 E. (164)

The leading asymptotics of the Airy function on the real axis can be obtained from a standard
saddle point analysis of this integral. There are two saddle points, and in the allowed region
ξ < 0, the defining contour is deformable to the union of the two associated steepest-descent
contours. In the forbidden region, ξ > 0, the defining contour is deformable to the steepest

37We will not use the Schrodinger equation perspective directly, but it is a convenient way to obtain the
leading exponential behavior of (160). See e.g. section 4.3 of [32] for recent discussion.

38We change variables to s→ − ia2 +
√

a
2e

−S0/3s before taking a→∞. Also, as the overall normalization
in 〈ψ(E)〉 can be rescaled by a constant shift of the potential, we will choose things so that the constant of
proportionality in (164) is one.
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descent contour associated to only one of the saddles. This leads to the leading large ξ
asymptotics

Ai(ξ) ∼

{
1√

π(−ξ)1/4 cos
(
−π

4
+ 2

3
(−ξ)3/2

)
ξ < 0

1
2
√
πξ1/4

exp
(
−2

3
ξ3/2
)

ξ > 0.
(165)

This is consistent with the general formula (160) applied to the case y2 = −E, and it
determines the A,B coefficients in both the forbidden and allowed regions.

In this paper we are concerned with matrix integrals whose spectral curve approaches the
Airy curve y2 = −E at small E, up to a rescaling. We will determine the A,B coefficients in
general by demanding that the results join onto the Airy results for small E. This prescription
is consistent with rigorous results for unscaled matrix models [107].

5.1.2 Disks and Cylinders

We now describe another technique for obtaining semiclassical formulas like (160).39 This
technique is not rigorous, but it does have two advantages. First, it makes direct contact
with the quantities used in topological recursion. Second, and more importantly, it is directly
connected to the D-brane interpretation of these nonperturbative effects.

The essence of the technique is very simple. It is based on the identity

det(E −H) = exp
(

Tr log(E −H)
)
. (166)

We would like to take the expectation value of the RHS in the matrix ensemble, using the
general formula

〈eX〉 = exp

(
〈X〉+

1

2
〈X2〉conn. + ...

)
, (167)

where in our case X = Tr log(E−H). In a matrix integral, the higher connected correlators
are suppressed by powers of eS0 . So, in a leading approximation, we can keep only the first
term in (167), and we evaluate it to leading order. This can be done by integrating the
genus-zero resolvent:

〈Tr log(E −H)〉g=0 = eS0

∫ E

dE ′R0,1(E
′). (168)

This combines nicely with the explicit factor of e−
L
2
V (E) in (159). Using eS0y = eS0R0,1(E)−

L
2
V ′(E), we have the leading formula

〈ψ(E)〉 = e−
L
2
V (E)〈det(E −H)〉 ' exp

(
eS0

∫ E

dE ′ y

)
, (169)

which matches the exponential factors in (160).
39See for example [57, 54, 108, 32].
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This approach is analogous to Polchinski’s calculation [46] of D-brane amplitudes, of order
e−1/gs , as an expansion in disconnected worldsheets of disk topology, that is in powers of 1/gs.
We will give a corresponding brane interpretation of the effects in (169). Anticipating this
discussion, we will refer to the term in the exponential in (169) as the disk amplitude.

For the discussion below, we will need to be more precise about the choice of branch.
Because y is multivalued in the E plane, it is convenient to view the disk amplitude as a
function of z, where E = −z2:

Disk(z) ≡ eS0

∫ z

0

y(z′)dE(z′). (170)

For the Airy spectral curve y2 = −E, or alternatively y = z, this is

Disk(z) = eS0

∫ z

0

z · (−2zdz) = −2z3

3
eS0 . (171)

For the JT gravity curve, it is

Disk(z) = eS0

∫ z

0

sin(2πz)

4π
· (−2zdz) = −sin(2πz)− 2πz cos(2πz)

8π3
eS0 . (172)

In order to insert these expressions in (169), we have to decide which branch of z(E) to use.
In principle, we have this choice in each factor of 〈Tr log(E −H)〉g=0 that appears when we
expand out (166). In order to determine the branch, we need to supply additional input.
The known general form (160) can be reproduced if we choose the same branch for all terms
in the expansion of the exponential, and possibly also choose the other choice in another
complete sum. This gives the two exponentials in (160). Additional information has to be
supplied to fix their coefficients. In our case joining onto the Airy limit will determine this.

In order to reproduce the prefactor powers in (160), we need to include the order-one
terms in (167). For Hermitian matrix integrals, the only term of order one comes from the
connected two-point function. It will be convenient to view this as a function of separate
E1, E2 arguments:

〈Tr log(E1 −H)Tr log(E2 −H)〉conn. =

∫ E1

dE ′1

∫ E2

dE ′2 R0,2(E
′
1, E

′
2) +O(e−2S0). (173)

Anticipating the brane discussion, we will refer to the leading term on the RHS as the
cylinder, and we will regard it as a function of z:

Cyl(z1, z2) ≡
∫ z1

∞
dE(z′1)

∫ z2

∞
dE(z′2) R0,2(E(z′1), E(z′2)) (174)

=

∫ z1

∞

∫ z2

∞

dz′1dz
′
2

(z′1 + z′2)
2

= − log(z1 + z2) +∞. (175)

In the second line, we used (47) and did the integral, assuming z1, z2 > 0. The infinite
additive constant is independent of z1, z2, and it reflects an ambiguity in the normalization
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of ψ(E) in the double-scaled limit. For the moment, we simply add a constant to the potential
in order to cancel the ∞. In the better-defined ratio of determinants that we will consider
below, it will cancel automatically.

In terms of the disk and cylinder quantities, for a given choice of branch, we can write
the RHS of (167) to one-loop accuracy as a function of z

Ψ(z) ≡ exp

[
Disk(z) +

1

2
Cyl(z, z)

]
=

1√
2z

exp [Disk(z)] . (176)

We expect to be able to express 〈ψ(E)〉 in general in terms of a linear combination of the two
branches Ψ(z) and Ψ(−z). By matching to the Airy case (164) and using the asymptotics
of the Airy function (165), we find that specific linear combination has to be

〈ψ(E)〉 ∝

{
Ψ(z) + Ψ(−z) E > 0

Ψ(z) E < 0.
(177)

In this expression, we have z2 = −E as always. Because of the 1/
√

2z in (176), we have to
specify a branch for the prefactor. The correct prescription from matching to Airy is to take
Ψ(ei

π
2

√
E) + Ψ(e−i

π
2

√
E) on the first line, and Ψ(

√
−E) on the second line.

5.2 The inverse determinant

We would like to understand the origin of nonperturbative effects in more familiar quantities
like the average density, the pair density correlation function, or in resolvents. The orthogonal
polynomial approach to matrix integrals allows one to write all such quantities in terms of
orthogonal polynomials [72]. So in principle having determined the orthogonal polynomial
from the 〈det(E−H)〉 we have all that we need. But we would like to attempt a more direct,
if more formal, calculation.

An important intermediate tool is the insertion of

ψ̃(E) ≡ e
L
2
V (E)

det(E −H)
. (178)

The operator ψ̃(E) is interpreted as the insertion of a “ghost brane,” which is a term used to
mean an object that totally cancels a brane if it is inserted at the same point.40 The ghost
brane is a more complicated object than the brane. Before double scaling 〈1/ det(E −H)〉
is the Hilbert transform41 of 〈det(E − H)〉 with respect to the measure e−LV (E) [72]. This
procedure defines two independent functions, depending on whether the energy argument is
above or below the real axis. Of course, both functions can be continued in the complex
E plane, and they define two separate entire functions. We will refer to them as 〈ψ̃±(E)〉,

40See for example [57, 108, 32]. In some of these papers this object is referred to as an antibrane. We are
using the term ghost brane in the sense of [109].

41More precisely 〈1/ det(E −H)〉L+1 is the Hilbert transform of e−LV (E)〈det(E −H)〉L.
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where the plus subscript means that the formula gives the actual ghost brane answer for E
in the upper half-plane, and the minus subscript means that it agrees in the lower half-plane.

The double scaled version of 〈ψ̃(E)〉 also obeys a differential equation [110] which yields
a semiclassical expansion of the same general form as (160). To understand the more subtle
determination of coefficients in this case we turn again to the Airy example and then proceed
to a formal disk and cylinder calculation.

5.2.1 Airy

We start with the Airy case, with spectral curve y2 = −E. One can compute 〈ψ̃〉 using the
same technique we used for 〈ψ〉. Instead of introducing Grassmann flavor fields we introduce
bosonic fields φi, φ̄i to implement 1/ det(E−H). After mimicking the procedure that led us
to the Airy integral, and adjusting the arbitrary overall normalization, we find (see A.1.1)

〈ψ̃±(E)〉 =

∫
C±
dr e

1
3
r3−ξr, ξ = −e

2
3
S0E. (179)

As explained in appendix A.1.1, the contour C± starts at r = −∞ and ends at r = e±i
π
3 ·∞.

By comparing to the contour integral definitions of the Airy function, we see that the exact
answer for this integral is

〈ψ̃±(E)〉 = πBi(ξ)± iπAi(ξ). (180)

As in the case of the brane, the overall normalization of this quantity is not significant.

5.2.2 Disks and Cylinders

We would now like to write a candidate general formula in terms of the disk and cylinder
function. We use the same formula (167), but now with X = −Tr log(E −H). At one-loop
order, this is equal to

Ψ̃(z) ≡ exp

[
−Disk(z) +

1

2
Cyl(z, z)

]
=

1√
2z

exp [−Disk(z)] (181)

At one loop, one would expect to be able to write 〈ψ̃〉 in terms of a linear combination
of the two branches Ψ̃(±z). Matching to (180) determines the linear combination, up to an
overall constant multiple, as

〈ψ̃±(E)〉 ∼

{
Ψ̃(z) E > 0

Ψ̃(z) + 1
2
Ψ̃(−z) E < 0.

(182)

In these expressions, we mean that z is continued through the lower half-plane for ψ̃+ and
through the upper half plane for ψ̃−. So in the upper line we have Ψ̃(e∓i

π
2

√
E) and in the

lower line we have Ψ̃(
√
−E) + 1

2
Ψ̃(e∓iπ

√
−E). We expect (182) to be valid for a general

spectral curve that limits to the Airy curve near the origin.
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5.3 The resolvent

We will now combine the brane and ghost brane computations in order to get (155). The
key formula for this section relates the resolvent to the derivative of a dipole of a brane and
ghost brane42

Tr
1

E −H
= ∂E

det(E −H)

det(E ′ −H)

∣∣∣∣
E′→E

. (183)

Though the above way of writing this relation will be more suitable for calculations, the
following, more trivial-looking formula may also be helpful to think about

Tr
1

E −H
= Tr

(
1

E −H

)
det(E −H)

det(E ′ −H)

∣∣∣∣
E′→E

. (184)

The introduction of these determinants may seem unnecessary. However, if we include the
ratio of determinants for E 6= E ′ and calculate using the formal method of the previous sec-
tions we find in addition to the perturbative series for the resolvent there are nonperturbative
pieces that survive in the limit E ′ → E.

5.3.1 Airy

As always, we start with the Airy case y2 = −E. Modifying the techniques for the brane
and ghost brane, we show in appendix A.1.2 that〈

ψ(E)ψ̃±(E ′)
〉

= −
∫
C±

drds

2π
(r + is) exp

[
1
3
r3 + i

3
s3 + e

2S0

3 (E ′r − iEs)
]

(185)

= πe−
2S0
3 (∂E − ∂E′)Ai(ξ)

(
Bi(ξ′)± iAi(ξ′)

)
, (ξ, ξ′) = −e

2S0
3 (E,E ′).

By contrast to the brane and the ghost brane computations, this dipole quantity has a well-
defined and meaningful normalization. Taking another derivative with respect to E, using
the definition of the Airy function Ai′′(ξ) = ξAi(ξ), and setting E ′ → E, we find an exact
formula for the resolvent:

〈R±(E)〉 − LV ′(E)

2
= πe

2S0
3

[
−Ai′(ξ)

(
Bi′(ξ)± iAi′(ξ)

)
+ ξAi(ξ)

(
Bi(ξ)± iAi(ξ)

)]
. (186)

Note that like the ghost brane, the resolvent defines two separate entire functions, as dis-
cussed in [55]. Taking the difference between the two along the real axis, we recover (50).

One point to note is the following. The saddle point structure of the integral (185) is
the same as for the product of the integrals for 〈ψ(E)〉 and 〈ψ̃(E ′)〉. This means that the
asymptotics of 〈ψ(E)ψ̃(E ′)〉 is to leading order the same as the asymptotics of 〈ψ(E)〉〈ψ̃(E ′)〉.
At first sight this may seem problematic; 〈ψ(E)ψ̃(E ′)〉 should be exactly one as E ′ → E,
while the product 〈ψ(E)〉〈ψ̃(E)〉 is not equal to one. The one-loop correction away from the
product structure of (185) is critical for ensuring the correct behavior at E ′ → E, as we will
see in a moment.

42See for example [105, 67, 68, 108].
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5.3.2 Disks and cylinders

We would now like to reproduce the asymptotics of this formula with a formal disk-and-
cylinder approach. To do this, we write

det(E −H)

det(E ′ −H)
= exp

[ ∫ E

E′
dE ′′R(E ′′)

]
(187)

and then apply the formula (167). A nice feature of the ratio of determinants is that al-
though the determinant and the inverse determinant do not by themselves have a natural
normalization, their product does. This is because the arbitrary constant in the potential
cancels out. And, correspondingly, the total one-loop factor

C(z, z′) ≡ 1

2

(
Cyl(z, z) + Cyl(z′, z′)

)
− Cyl(z, z′) = log

z + z′

2
√
zz′

(188)

is finite without any subtraction of infinite terms. By analogy to the previous formulas (176)
and (181), we expect to write a one-loop formula for the brane-ghost brane pair in terms of
the function

Ψ(z; z′) =
z + z′

2
√
zz′

exp
(
Disk(z)−Disk(z′)

)
. (189)

We separate the arguments by a semicolon to emphasize that this function is not symmetric.
The first argument refers to the determinant, and the second to the inverse determinant.

We find that the exact Airy expression can be matched to the leading asymptotics

〈
ψ(E)ψ̃±(E ′)

〉
≈

{
Ψ(z; z′) + Ψ(−z; z′) E,E ′ > 0

Ψ(z; z′) + 1
2
Ψ(z;−z′) E,E ′ < 0.

(190)

The branch prescriptions for the two arguments are the same as in the respective determinant
and inverse determinant cases. Explicitly,

〈
ψ(E)ψ̃±(E ′)

〉
≈

{
Ψ(ei

π
2

√
E; e∓i

π
2

√
E ′) + Ψ(e−i

π
2

√
E; e∓i

π
2

√
E ′) E,E ′ > 0

Ψ(
√
−E;
√
−E ′) + 1

2
Ψ(
√
−E; e∓iπ

√
−E ′) E,E ′ < 0.

(191)

Unlike in the previous cases, the normalization here is meaningful. As a simple check, we
can take the limit E ′ = E. Using (189), we find that

Ψ(z, z) = 1, Ψ(z,−z) = 0, (192)

so (190) reduces to one in the limit E ′ = E. This is expected because ψ(E)ψ̃(E) = 1 exactly.
Now, to compute the resolvent we take the derivative ∂E = − 1

2z
∂z and then set E ′ → E.

Again using (189), and also using that Disk(z) is odd in z, one finds

∂zΨ(z; z′)
∣∣∣
z′=z

= ∂zDisk(z), ∂zΨ(z; z′)
∣∣∣
z′=−z

=
1

2
√
−z2

exp
[
2Disk(z)

]
. (193)
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This is an interesting expression. In the coincidence limit when the arguments are on the
same sheet, the derivative of the brane-ghost brane function (189) reduces to a simple ob-
ject, the derivative of the disk. But when the z arguments are on opposite sheets, we get
a nontrivial expression with an exponentiated disk amplitude. This is the source of the
nonperturbative effects in this way of calculating the resolvent.

Multiplying by − 1
2z

to convert the z derivative to an E derivative, and then plugging
into (191) and taking care with the branches, we find

〈R±(E)〉 ≈

{
∓eS0y(i

√
E)± i

4E
exp

[
± 2Disk(i

√
E)
]

E > 0

eS0y(
√
−E)∓ i

−8E exp
[
2Disk(

√
−E)

]
E < 0.

(194)

Given this expression for the resolvent, we can find the one-loop approximation to the density
of eigenvalues by using R+ −R− = −2πiρ. Using y(i

√
E) = iπρ0(E) for E > 0, we find

〈ρ(E)〉 ≈

{
eS0ρ0(E)− 1

4πE
cos
(
2πeS0

∫ E
0
dE ′ρ0(E

′)
)

E > 0
1

−8πE exp
(
− 2eS0

∫ −E
0

dx y(
√
x)
)

E < 0.
(195)

as claimed in (155).
Although it is more complicated, one can follow a similar procedure to calculate a non-

perturbative correction to the two-resolvent correlator, and extract a generalization of the
sine kernel formula for the pair correlation function 〈ρ(E)ρ(E ′)〉. In the appendix A.2, we
find that by writing each resolvent as a derivative of a ratio of determinants and calculating
to one-loop order, we find for E,E ′ > 0

〈ρ(E)ρ(E ′)〉 ⊃
cos
(
2π
∫ E′
E
dE ′′ρtotal0 (E ′′)

)
2π2(E − E ′)2

, |E − E ′| � 1. (196)

Adding the contribution from the leading perturbative cylinder geometry between the two
resolvents and approximating the integral in the above formula to leading order in E − E ′,
we find the familiar sine kernel expression for the pair correlation function. While the
nonperturbative correction and cylinder are separately divergent as E ′ → E, this expression
is finite in that limit (although there is also a delta function contact term, see (256) for more
detail).

5.4 Connection to JT gravity

We would like to understand how to interpret the above computations in the context of JT
gravity. We will start by thinking about 〈ψ(E)〉, using the representation of the determinant
as det(E −H) = exp(Tr log(E −H)). Expanding out the exponential, one has to compute
expectation values of arbitrary powers of Tr log(E − H). These are related by an integral
transform to an expectation value of products of partition functions Z(β1)...Z(βn), which
we know how to compute in JT gravity. As described before, for 〈Z(β1)...Z(βn)〉, one sums
over surfaces with n boundaries with lengths proportional to β1, ..., βn.
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The boundary condition required to compute Tr log(E − H) is a type of fixed energy
boundary condition and it can be obtained as an integral transform of the fixed length
boundary condition that defines Z(β) = Tr e−βH . Naively, the relation is

Tr log(E −H) = −
∫ ∞
ε

dβ

β
eβEZ(β) + const. (197)

This expression is quite natural from the perspective of quantum gravity. The integral over β
is an integral over the length of the boundary, and the eβE weighting amounts to a boundary
cosmological constant. The measure factor of 1

β
is familiar in string theory. It means that we

consider the boundary to have no marked point, so configurations that differ by a translation
of the boundary time coordinate should not be counted independently.43 In the context of
the minimal string, the boundary condition implied by (197) is simply the FZZT boundary
condition in Liouville, with µB ∝ −E.

The following is a technical remark. Eq. (197) works for contributions with genus g > 0,
but for the disk topology, the integral has an exponential divergence at β = 0. This reflects
the divergence in Tr log(E − H) in a double-scaled matrix integral. In the quantity ψ(E),
this is cured by subtracting the bare potential L

2
V (E). In JT gravity, a prescription that

effectively subtracts this is as follows. The function Z(β) is a double-valued function, due
to a branch point at β = 0. The two branches differ by a minus sign, so we can rewrite the
integrand in (197) as one-half of the difference of the two branches. The integral can then be
interpreted as the discontinuity across a branch cut. A way to define the integral in general
is to deform the contour slightly to pass around the branch point at the origin, avoiding the
singularity. This prescription is equivalent to the naive one for g > 0 and it also gives the
correct answer (subtracting the potential) for g = 0. In order to converge at infinity, the
integral has to be done along a ray that is oriented in an appropriate half-plane, depending
on the phase of E.

In any case, an insertion of Tr log(E − H) amounts to a boundary in JT gravity of a
particular kind. To compute 〈ψ(E)〉 we sum over configurations with an arbitrary number
of such boundaries. These boundaries can be connected to each other or disconnected. See
figure 2 for an example configuration. So ψ(E) is fundamentally a “many universe” quantity,
whose computation involves disconnected spacetime geometries.44

This is analogous to the mathematics of D-branes as described in [46]. The Tr log(E −
H) boundary condition is interpreted as the worldsheet boundary associated to a D-brane.
〈ψ(E)〉 is then the D-brane partition function, involving a sum over many disconnected
worldsheets ending at the same type of boundary condition. In this analogy, the D-brane
is labeled by the argument E, and the multivaluedness reflects the branched structure of
the semiclassical space of D-branes [55]. In the Liouville minimal string case, the relevant
D-branes are called FZZT branes [47], and they are defined by a boundary condition similar
to (197). So the mathematics is the same but the interpretation is different: we view the

43The integral to compute Tr 1
E−H has no such factor, and corresponds to a marked boundary.

44In the introduction we used the term “baby universe” to refer to a disconnected spatial universe. Here
we are referring to disconnected spacetimes, which would be the histories of such “baby universes.”
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Figure 2: An example of a geometry that contributes to 〈ψ(E)〉.

two-dimensional geometry as spacetime, rather than a string worldsheet.45

The computation of 〈ψ̃〉 is similar to that of 〈ψ〉: it is also a many-universe quantity.
One obvious difference is a minus sign associated to each boundary, which comes from
writing det(E − H)−1 = exp(−Tr log(E − H)). A less obvious difference is that the sum
over branches has to be treated differently than for 〈ψ〉. We do not have a derivation of
this branch prescription from JT gravity, but we can follow the rules outlined in the matrix
integral discussion above.

The calculation of the “dipole” partition function 〈ψ(E)ψ̃±(E ′)〉 is also similar. For a
given choice of branches, we sum over all geometries with any number of brane or ghost
brane boundaries. In the disk-and-cylinder approximation, the disconnected spacetimes
exponentiate to form the combination Ψ(z, z′). For coincident E ′ = E, the ghost brane
perfectly cancels the brane, thanks to (192).

The JT interpretation of the resolvent is more interesting. In (194), we got the resolvent
by differentiating the dipole partition function, and then setting E ′ = E. For the present
discussion, it is convenient to think about this procedure using the formula (184):

R(E) = lim
E′→E

R(E)ψ(E)ψ̃(E ′). (198)

To calculate this, we sum over geometries with a single resolvent boundary in addition to
the brane and ghost brane boundaries, see figure 3.46 In the sum over geometries, there is a
class in which the resolvent does not connect to any of the brane boundaries. These sum up

45It would be interesting to explore the D-brane interpretation of 〈ψ(E)〉 in JT gravity further, including
understanding the “target space” in which this D-brane lives. The description outlined in Section 4 of JT
gravity as a limit of the minimal string might provide a way of addressing this issue.

46A key point is that the resolvent boundary must be on the same branch as the brane boundary; we do not
sum over separate branch choices for the resolvent. This can easily be seen to follow from the requirement
that we match with the version of the calculation where we take the E derivative of the dipole partition
function.
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R(E)

E’

E’

E’

Figure 3: An example of a geometry that leads to the nonperturbative correction to the resolvent.
The black (dark) boundary corresponds to the insertion of a resolvent operator, Tr 1

E−H . The blue
(medium) boundaries correspond to the insertion of a brane operator, Tr log(E −H). The orange
(light) boundaries correspond to the insertion of a ghost brane operator, −Tr log(E′ −H).

to the factorized expectation value 〈R±(E)〉〈ψ(E)ψ̃±(E ′)〉. Taking the limit E ′ → E, the
brane and ghost brane cancel and we recover the perturbative series for the resolvent.

The leading correction to factorization comes from a geometry where the resolvent is
connected to one of the branes by a cylinder diagram. By a calculation similar to the one in
(174), we find the cylinder between the resolvent and the brane is

〈R(E)Tr log(E ′ −H)〉conn. =
1

2z(z + z′)
. (199)

The cylinder to the ghost brane is minus the same thing. Combining these two, and with
the right sum over branches, we have at leading order

〈R(E)ψ(E1)ψ̃(E2)〉 − 〈R(E)〉〈ψ(E1)ψ̃(E2)〉 =
∑

branches

z2 − z1
2z(z + z1)(z + z2)

Ψ(z1, z2). (200)

Let’s first consider this function for the case where E1 = E2 6= E. Then the explicit cylinder
factor vanishes if z1, z2 are on the same sheet, and from (189) the function Ψ vanishes if z1, z2
are on opposite sheets, so we find zero. However, when we obtain the resolvent as a limit
of the derivative of the brane-ghost brane dipole, we are effectively setting E = E1 before
taking the limit E2 = E1. In this case the answer still vanishes if z1, z2 are on the same
sheet, but if they are on opposite sheets, a factor in the denominator of (200) cancels the
zero in Ψ(z,−z) and we get a nonzero answer, proportional to exp[2Disk(z)]. In this term,
the sum over an infinite number of disconnected spacetimes remains!

This surprising result would be natural if we were studying a different problem, a string
theory where the worldsheet is described by JT gravity – the “JT string.” Then the infinite
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number of spacetimes would just be the infinite number of worldsheets connected to a D-
brane, as in the minimal string theory calculations that motivated the above analysis. But
this result is highly unnatural from the point of view of gravity, where the resolvent is a
“single-spacetime” object, at least at the perturbative level of the sum over geometries. Could
it be that there is a different gravitational theory that does not include the nonperturbative
effects discussed above?

The gravitational sum over geometries is divergent. If we make the plausible assumption
that it is a resurgent asymptotic series then, as we will see in section 5.6, the perturbation
series itself contains information about nonperturbative effects. That information is consis-
tent with the results of the D-brane approach. So, perhaps the right question is whether
there is another method of calculating these effects that is natural from the single-spacetime
gravitational point of view – although it might be less efficient than the D-brane method
that is natural in the JT string. SYK model considerations, discussed in section 6.3, hint at
the existence of such a method. Then the question would become, what does the existence
of these two different approaches mean for quantum gravity?

5.5 Nonperturbative instability and ZZ brane

Up to this point we have made the simplifying assumption that Veff(E) > 0 in the forbidden
region, meaning that the most likely position for an eigenvalue is in the allowed region where
ρ0(E) is supported. But in some cases Veff(E) can become negative, indicating that the
density ρ0(E) is not the dominant contribution to the matrix integral. Another eigenvalue
density, perhaps with multiple regions of support, could dominate.

In fact, for JT gravity the situation is more extreme. The JT spectral curve, y = sin(2πz)
4π

gives the effective potential

Veff(E) =
eS0

4π3

[
sin(2π

√
−E)− 2π

√
−E cos(2π

√
−E)

]
, E < 0. (201)

We give a plot of this function in figure 4. As we enter the forbidden region, the potential
initially rises, reaching a local maximum value at E = −1

4
, before decreasing and becoming

negative. It then oscillates repeatedly, with regions that are more and more negative. The
consequence is that this model is nonperturbatively “unstable.” 47

To give the model a nonperturbative definition, we must choose a contour other than
the real axis for the integral over eigenvalues. We choose a contour so that the integral
converges and so that the perturbative series which involves expanding around the ρ0(E)

saddle point is actually asymptotic to the true value of the integral. For example the contour
can extend along the real axis from positive infinity down to E = −1

4
, and then follow this

steepest descent contour either upwards or downwards into the complex E plane and out to
infinity, see figure 4. Any linear combination of these contours (suitably normalized) would

47A similar situation applies in the (2, p) minimal string: there the potential oscillates a finite number
of times, passing through zero p−1

2 times before eventually going to either positive infinity (a metastable
situation) or negative infinity (an unstable situation).
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Figure 4: At left we show a plot of the effective potential for the JT spectral curve in the forbidden
region. At right we sketch an example of an integration contour for the eigenvalues, corresponding
to a steepest-ascent path for Veff that leaves the real axis at λ = −1

4 .

also produce the same asymptotic series and be a viable nonperturbative completion of the
theory, so such a completion is not unique.

A special role is played by the saddle point at E = −1
4
. In the matrix integral literature,

such saddle points are known as one-eigenvalue instantons. In the minimal string, they are
related to boundary conditions in Liouville known as ZZ branes. We will study this in matrix
integral language in the next section. First, we will give a somewhat tentative JT gravity
interpretation.

An important point is that in the minimal string, ZZ branes are interpreted in a fun-
damentally different way than FZZT branes. As we have seen, FZZT branes correspond to
observables that one can insert into the matrix integral partition function. By contrast, ZZ
branes are non-optional: they are like instantons that occur as part of the matrix integral,
and will contribute a small amount to any computation.

Let’s first study the effect of a ZZ brane on the matrix integral partition function, Z. As
discussed in section 3.2, Z has an asymptotic series given by the sum over closed surfaces.
The ZZ brane correction amounts to allowing surfaces to end in a particular boundary
associated to the ZZ brane. This boundary condition can be described in the minimal string
as a difference of two FZZT boundary conditions [51]:

|ZZ〉 = |FZZT(zZZ)〉 − |FZZT(−zZZ)〉 (202)

Here we are using the notation that |FZZT(z)〉 is the boundary state associated to an inser-
tion of Tr log(E −H) − LV (E)

2
, with the understanding that z encodes both the energy via

z2 = −E and also the choice of branch. This can be rewritten as

|ZZ〉 =

∫ zZZ

−zZZ
dE(z′)|R(z′)〉 (203)

where |R(z)〉 is the boundary state associated to an insertion of R(E) − LV ′(E)
2

. The z
coordinate of the ZZ brane is determined by the condition that it be a stationary point of
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the effective potential, so that y(z) = 0. At such points, the two branches of the spectral
curve meet, and the integral in (203) can be understood as a closed contour on the spectral
curve, see [53]. Concretely, for the ZZ brane associated to the local maximum of Veff at
E = −1

4
, we have zZZ = 1

2
.

In the matrix integral partition function, we propose to include surfaces that end on the
ZZ brane by taking

Z → Z ·
[
1 + (const.) · e2Disk(zZZ)

]
. (204)

Let’s explain this formula. First of all, the term involving the 1 is just the original series
for the matrix partition function. The correction represents the possibility that a ZZ brane
is “present.”48 In this term, any number of surfaces can connect to the ZZ brane: the
exponential factor is the disk amplitude associated to the boundary state (202), after we
remember that Disk(−z) = −Disk(z). Note that Disk(zZZ) < 0. Formally, the constant
should include the one-loop contribution that comes from the exponentiated cylinder diagram
connecting the ZZ brane to itself. Using (203), this cylinder diagram is∫ zZZ

−zZZ
dE(z1)dE(z2)R0,2(E(z1), E(z2)) =

∫ zZZ

−zZZ

dz1dz2
(z1 + z2)2

(205)

but the integral appears to be infinite or ambiguous. It may be possible to resolve this
directly, but we will leave the constant arbitrary, and see that it can be matched to a matrix
integral computation below. We will find that the constant is imaginary, and that it depends
on the contour choice described above.

Let’s now discuss the contribution of the ZZ brane to the resolvent. To discuss this
correction, we do not need to represent the resolvent as a brane-ghost brane dipole. We can
simply treat it in the naive way as a single boundary. At leading order, the contribution of
the ZZ brane reflects the possibility of this resolvent boundary connecting to the ZZ brane
boundary via a cylinder diagram. This leads to

〈R(z)〉 → 〈R(z)〉+
zZZ
z

1

−z2 + z2ZZ
· (const.) · e2Disk(zZZ). (206)

In this expression, the constant and exponential factors are the same as in (204). The
prefactor is simply the cylinder diagram between a resolvent boundary and the ZZ state
(203): ∫ zZZ

−zZZ
dE(z′)R0,2(E(z), E(z′)) =

∫ zZZ

−zZZ

−2z′dz′

4zz′(z + z′)2
=
zZZ
z

1

−z2 + z2ZZ
. (207)

We see that indeed the expression has a pole when the energy argument E of the resolvent
agrees with the energy associated to the ZZ brane, −z2ZZ = −1

4
. This is consistent with the

interpretation of the ZZ brane as an eigenvalue sitting at the local maximum of the potential.
48A familiar subtlety in this type of expression is that the series without the ZZ brane is asymptotic, with

a nonperturbative ambiguity that is of the order of the correction. Depending on the Borel contour, we could
view the correction term as just arising from the resummation of the perturbative series. However, as with
other instantons, the ZZ brane gives a semiclassical interpretation to this correction.
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Finally, we emphasize that the ZZ brane effects are numerically very small, because
2Disk(zZZ) = − eS0

4π2 , so the contribution is double-exponentially suppressed. However, these
effects are significant because they encode the large orders behavior of the asymptotic series.
We will discuss this next.

5.6 Large order behavior

In this section we will use the density of eigenvalues in the forbidden region to predict the
large genus asymptotics of the Weil-Petersson volumes, following a similar approach for other
problems described by topological recursion in [111, 112, 61]. In doing this, we are assuming
that the matrix integral dual to JT gravity is resurgent, so that it can be analyzed by Borel
transform techniques. We will start by reviewing these.

In general, given a formal series

A(u) '
∞∑
n=0

aku
k (208)

where the coefficients grow asymptotically as ak ∼ k!, one can define a related convergent
series called the Borel transform of A:

Â(t) =
∞∑
k=1

ak
Γ(k)

tk−1. (209)

This sum will have a finite radius of convergence under our growth assumption for ak. One
can then define a third function, sometimes called the Borel sum of A, or inverse Borel
transform of Â, by

Ã(u) = a0 +

∫
C
e−t/uÂ(t)dt. (210)

Here, the contour C starts at the origin and ends at infinity and is chosen so that the integral
is convergent. By substituting in (209) and doing the t integral, one can show that Ã has an
asymptotic series that matches A. Therefore Ã is a candidate nonperturbative completion
of A, although in general there will be multiple choices depending on the contour C.

The closest singularity to the origin of the Borel transform Â(t) encodes the large orders
asymptotics of the original series ak. To see this, one can write a dispersion relation for ak
by starting with a contour integral around the origin

ak =
Γ(k)

2πi

∮
0

dt

tk
Â(t) (211)

and then deforming the contour outwards in the complex t plane. For large k, the closest
singularity to the origin will dominate the answer.
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5.6.1 Large Genus Asymptotics of Vg,0

We would like to apply (211) to predict the large genus behavior of Weil-Petersson volumes.
We start by considering the perturbative series for the matrix partition function Z for JT
gravity, which involves a sum over closed surfaces of arbitrary genus. As discussed in section
3.2, the partition functions of these closed surfaces evaluate to the Weil-Petersson volumes
with no boundary. So the matrix integral free energy has a perturbative series

F(e−S0) = logZ '
∞∑
g=0

e(2−2g)S0Vg,0. (212)

The genus zero and one cases have to be defined specially, but we are interested in the large
genus behavior, so this will not be important. The series (212) is asymptotic due to the (2g)!

growth of the volumes Vg,0. In order to apply the Borel transform formalism, we should think
in terms of a series indexed by k = 2g − 2 instead of g, so that the growth is k!. Explicitly,
one can write

F(e−S0) '
∞∑

k=−2

fke
−kS0 , fk =

{
0 k odd
V k+2

2
,0 k even.

(213)

Now, we switch perspective to the matrix integral. We start with a conventional matrix
integral with finite L. Then Z is an integral over L eigenvalues. We can can organize this
into integrals over the allowed region E > 0 and the forbidden region E < 0:

Z =

∫
A

dλ1

∫
A

dλ2· · ·
∫
A

dλL µ({λi}) + L

∫
F

dλ1

∫
A

dλ2· · ·
∫
A

dλL µ({λi}) + . . .

= Z(0) + Z(1) + . . . (214)

Here µ({λi}) denotes the measure, including both the Vandermonde and the potential. We
will refer to Z(1) as the “one-instanton” contribution to Z. The nonperturbative expression
for the free energy will be

F = logZ = logZ(0) +
Z(1)

Z(0)
+ ... (215)

where Z(1)

Z(0) is the one-instanton contribution to the free energy. From (214), we can recognize
this quantity simply as

Z(1)

Z(0)
=

∫
F

dλ 〈ρ(λ)〉 (216)

after integrating over the other eigenvalues λ2, ..., λL. This generalizes in a trivial way to a
double-scaled theory.

The main idea is to recognize the integral over λ in (216) as a contribution to an inverse
Borel transform integral for the free energy F

F(e−S0) =

∫
C
dt exp(−eS0t) F̂(t) (217)
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with some mapping between t and λ. This relationship can be fixed by interpreting the
exponential term in the density of eigenvalues, given by (158), as exp(−eS0t). In other words
t = Veff(λ)

eS0
. To determine the large genus asymptotics via (211), we need to know F̂(t) near

the closest singularity to the origin. This singularity is associated to the saddle point in the
effective potential at λ = −1

4
. Expanding (201) near this point, and matching (216) to (217),

we find
t ≈ 1

4π2
− 1

2
(λ+ 1

4
)2, F̂(t) ≈ 1

2π
√

2( 1
4π2 − t)

. (218)

So, in particular, F̂(t) has a branch point singularity at t = 1
4π2 .

We now apply (211). Since the perturbative series for F is an even function of e−S0 , the
same will be true for F̂ , and the integral will vanish for odd k. For even k, we will get the
contribution from the branch point described in (218), together with an equal contribution
from the reflection under t→ −t. For large g, this leads to

Vg,0 ≈ 2 · Γ(2g−2)

2πi

∫ ∞
1

4π2

dt

t2g−2
disc

[
F̂(t)

]
≈ (4π2)2g−

5
2

21/2π3/2
Γ(2g − 5

2
). (219)

In the final step, we substituted in (218) and did the integral. This expression is expected
to be accurate at order one, which means that it will have multiplicative corrections of the
form (1 + a1

g
+ a2

g2
+ ...). And, indeed, at this level of precision (219) matches a conjecture

due to Zograf [69].49

5.6.2 Large genus asymptotics of Vg,1(b)

We now move on to discuss the large genus asymptotics of Vg,1(b), for which we will find a
new formula. We start by defining a generating function of the volumes for g ≥ 1:

V (b, e−S0) '
∞∑
g=1

e(1−2g)S0Vg,1(b) =
∞∑
n=0

e−nS0vn(b). (220)

Here vn = 0 for even n and vn(b) = Vn+1
2
,1(b) for odd n. In terms of this quantity, the

expectation value of the resolvent is given by (dropping the genus zero piece)

〈R(−z2)〉 = − 1

2z

∫ ∞
0

b db V (b, eS0)e−zb. (221)

In appendix A.3, we compute the nonperturbative contribution to the resolvent that results
from integrating one eigenvalue in the classically forbidden region. The result is

〈R(E)〉(1) =

∫
F

dλ
〈ρ(λ)〉
E − λ

√
λ

E
. (222)

49Parts of this conjecture have been established rigorously [31, 70, 45].
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One can use this to get a formula for the nonperturbative contribution to V (b, e−S0) by
inverting (221) by inverse Laplace transform. This leads to

V (1)(b, e−S0) =
2

b

∫
F

dλ 〈ρ(λ)〉 sinh(
√
−λb) (223)

=

∫
F

dz

2π

sinh(bz)

bz
e−e

S0 t(z). (224)

In the second line, we substituted in the formula for the density of eigenvalues in the forbidden
region (158) and changed variables to λ = −z2. The function t(z) is

t(z) = 2

∫ z2

0

dx
sin(2π

√
x)

4π
=

sin(2πz)− 2πz cos(2πz)

4π3
. (225)

Similarly to the discussion of the free energy, we would like to interpret the integral in
(224) as an inverse Borel transform V (b, e−S0) =

∫
dte−e

S0 tV̂ (b, t) and thus determine V̂ . In
making this correspondence, the mapping between t and z will be (225). Then, to predict
the large-orders behavior we need to compute (for odd n)

Vn+1
2
,1(b) ≈ 2 · Γ(n)

2πi

∫ ∞
1

4π2

dt

tn
disc

[
V̂ (b, t)

]
. (226)

This integral is over a contour in the t plane that surrounds the branch cut along the positive
t axis. In the free energy case, we computed F̂(t) approximately by inverting (225) near
the singularity at t = 1

4π2 , which maps to z = 1
2
. However, in the present case we will need

to know the behavior for more general values of t. Because it is difficult to invert (225) in
general, it turns out to be more convenient to work in terms of the z variable. In terms of
this coordinate, one finds that the integral (226) becomes

Vg,1(b) ≈
Γ(2g − 1)

πi

∫
C

dz

2π

sinh(bz)

bz

1

t(z)2g−1
. (227)

We expect this formula to be correct at large g for arbitrary b. More precisely, we expect
multiplicative corrections (1 +a1/g+a2/g

2 + ...) where the coefficients a1, a2, ... are bounded
functions of b. The contour C in the z plane is sketched in figure 5. For large g where the
formula should be correct, the answer is dominated by a saddle point with 0 < z < 1

2
. For

small values of b/g, the saddle point is close to z = 1
2
, and for large values of b/g, it is close

to the origin.
We will provide a few checks of this formula.

1. If b � g, then the saddle point is very close to z = 1
2
. We can approximate t(z) ≈

1
4π2 − 1

2
(z − 1

2
)2 and do the integral for large g, finding

Vg,1(b) ≈
4(4π2)2g−

3
2

(2π)3/2
Γ(2g − 3

2
)
sinh( b

2
)

b
, g � b, g � 1. (228)
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Figure 5: The contour that computes the integral of the discontinuity of V̂ (b, t) is shown on the t
plane and the z plane. The contour can be deformed to pass through the saddle point z∗ which is
somewhere between z = 0 (for b� g) and z = 1

2 (for b� g).

This formula follows from Conjecture 1 and Conjecture 2 of [69], after translating from
intersection numbers to volumes using

Vg,1(b) =

3g−2∑
k=0

(2π2)3g−2−k

k!(3g − 2− k)!

(
b2

2

)k ∫
Mg,1

κ3g−2−k1 ψk1 . (229)

2. At the other extreme, where b � g � 1, the saddle point is close to the origin. This
time we can expand t(z) ≈ 2z3

3
and find

Vg,1(b) ≈
(

3

2

)2g−1
Γ(2g − 1)

Γ(6g − 2)

b6g−4

2π
, b� g � 1. (230)

This agrees at large g with the exact formula for
∫
ψ3g−2
1 = 〈τ3g−2〉 in (5.31) of [113].

3. At the level of the factorial dependence, it agrees with the conjecture in (26) of [114].

4. Peter Zograf provided us with exact results for Vg,1(b) up to g = 20. In figure 6 we
plot the ratio of (227) divided by the exact answer for a few different values of g. The
agreement seems to be reasonable for all b, and certainly improving as we increase g.

5. Using this same data, we attempted to extrapolate in 1/g. For each value of b, we
modeled the ratio of (227) to the exact answer as a0 + a1/g + a2/g

2 + a3/g
3 + a4/g

4.
We fit the coefficients using Zograf’s data from g = 14, ..., 20, and thus extracted a
prediction a0 for the ratio at g = ∞. We tried two methods in the extrapolation. In
method one, we held b fixed as we varied g. In method two, we held B = b/g fixed.
The two methods can be compared approximately using the maximum value g = 20.
Method one works better for b . 2g and method two works better for b & 2g. We
found that the maximum over b of the minimum of the two extrapolated errors |a0−1|
was around 3×10−6, and the maximum of the maximum was around 0.004. Repeating
the analysis with g = 9, ..., 15, the max of the min error is roughly ten times higher.

These checks give us some confidence in our understanding of nonperturbative effects in
the matrix integral dual to JT gravity. As a side note, it would be possible to use a similar
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Figure 6: We compare the formula (227) to exact results provided to us by Peter Zograf [115].

method to predict the large g behavior of Vg,n(b1, ..., bn). It is also interesting to consider the
possibility that the large genus limit of any expansion described by topological recursion can
be obtained in a similar way, by using the one-eigenvalue sector of a formal matrix integral
with spectral curve y, see [111, 112, 61] for some related work.

6 Discussion

6.1 Disordered but k-local theories like SYK

The SYK model is a type of sparse random matrix ensemble, and there is numerical evidence
that certain aspects of the model are well described by random matrix statistics. However,
it is not a random matrix ensemble in the sense of section 2, and so in general we do not
expect the JT gravity results in this paper to match the behavior of SYK.

One reason is the following. Varying the SYK couplings Ja1...aq will “rattle around” the
fine-grained structure of the spectrum, as in a true random-matrix ensemble. However,
because the number of variable parameters is relatively small, of order N q, one also expects
there to be some “global” features of the spectrum with relatively large 1/N q fluctuations.
These features include the overall normalization of the Hamiltonian, as well as other low-order
moments [20, 116, 117]. They lead to relatively large connected correlations in 〈Z(β1)Z(β2)〉
of order 1/N q. Taken at face value, these represent a large departure from random matrix
statistics, and one without a clear JT gravity interpretation. However, we note that these
modes can be reduced or eliminated by “unfolding” the spectrum sample-by-sample [117], so
we will not dwell on this point.

There is another reason. It seems possible that the collective field description of SYK
involves analogs of the JT geometries discussed in this paper. For example, the ramp saddle
point [13] is analogous to the double trumpet considered here. However, even for these
contributions, one expects differences from JT gravity. As a crude model, one can consider
the effect of free bulk matter fields on the JT gravity computation. The measure for the
genus g moduli space will now include the matter determinant as well as the Weil-Petersson
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measure. At higher genus this leads to a dramatic effect: the portion of moduli space with
long thin tubes will be exponentially divergent, due to the negative Casimir energy on the
small circle. This is essentially the tachyon divergence familiar from string theory.

In the full SYK theory we expect that this divergence will be preempted by a first order
Hawking-Page transition, very similar to the situation discussed by Maldacena and Qi [11].
There, before a cylinder becomes long and thin, it disconnects into two disks, describing
disconnected Euclidean black holes. This mechanism could effectively remove the dangerous
part of moduli space, but in doing so it will change the JT gravity answer significantly.

So, in general, we do not expect the JT gravity results in this paper to match those of
SYK, or indeed any k-local theory. An important exception is for the short-ranged spectral
correlators that are subject to random matrix universality (probed e.g. by the late-time
spectral form factor). These are described by the universal ramp saddle point of [13], together
with D-brane effects for the plateau. As we have seen, the D-brane contribution in JT is
determined by the disk and cylinder amplitude. The matter field correction to the disk
contribution determines the correction to the leading order density of states. For short
range spectral correlations the cylinder is far from the transition point and so the matter
fields should not change its energy dependence.50 So we expect a close relative of the the
D-brane effects described in JT to explain the sine kernel result with a modified SYK density
of states. This clearly deserves more work.

6.2 Non-disordered theories

So far all the comments in this paper have concerned averaged systems. Some of the deep-
est questions in this subject concern the fine-grained behavior of the energy eigenvalues of
gauge/gravity dual systems that are not averaged – large N Super Yang-Mills theory (SYM)
is the canonical example. In trying to apply the ideas of this paper to such a system one
encounters an immediate problem. Consider for example the double-trumpet:

(231)

This contributes to the connected correlator 〈Z(β1)Z(β2)〉 − 〈Z(β1)〉〈Z(β2)〉. But in a non-
disordered theory, Z(β) is a fixed function rather than an observable in an ensemble, and
such a correlator would not make sense [118, 119].

We are not sure what to say about this, but there is a well understood example of
quantum chaos that may be instructive. This is the semiclassical quantum dynamics of
classically chaotic systems with a few degrees of freedom.51 These systems are studied using
the Feynman path integral representation (or actually its refinement known as the Gutzwiller

50 The matter field corrections to the cylinder do limit the range of agreement of eigenvalue pair correlations
with random matrix theory to energy differences less than a “Thouless energy” of order 1/ logN [13].

51For a review see [67], especially the ArXiv version.
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Figure 7: A cartoon of the way that averaging over erratic phases might result in the wormholes
present in Figure 2.

trace formula) for Tre−iHT/~ as a sum over periodic paths a:

Tre−iHT/~ ∼
∑
a

e
i
~Sa . (232)

Here Sa is the classical action. To study the spectral form factor one uses two copies,

TreiHT/~ Tre−iHT/~ ∼
∑
a,b

e
i
~Sae−

i
~Sb . (233)

Note that this factorizes into the product of the result for each copy. Semiclassically the long
time behavior is determined by long periodic classical orbits. In a chaotic system the details
of such orbits are extremely complicated and the resulting behavior in (233) is erratic.52

But this signal simplifies after averaging, for instance over a time window. For long orbits
the phases in the orbit sum in (233) are very large and after any appreciable averaging most
terms in the double sum over a, b cancel. The only surviving terms for times in the ramp
region are those with a = b up to a time translation. For these terms the action precisely
cancels. This pairing is Berry’s “diagonal approximation” [120], and gives the ramp. This
pattern is a close analog of the double cone [13], which is a continuation of the geometry
(231). The two systems, decoupled without averaging, become correlated into a connected
“geometry” after averaging. Factorization is destroyed by suppressing the a 6= b terms.53

The role of essentially random phases in creating these connections calls to mind the work
of Coleman [121, 122] on Euclidean wormholes.54 Here Euclidean wormholes result from
integration over random couplings. Operator insertions with Gaussian random coefficients
on the same or different “universes” are paired by Wick contraction and fattened by an
OPE into wormholes. In our setup we might imagine “forming” the wormholes in Figure
2 by averaging over erratic phases as in Figure 7. Figure 2 would be an open “many-
universe” analog of the closed “many-universe” configurations that are summed up in this

52The results will resemble Figure 10 in [20].
53The potential for averaging to make such connected geometries, and the link to Coleman’s ideas, were

pointed out in [118].
54This work was motivated by [123, 124, 100]. See also, [125, 126, 127, 128, 129].
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approach [122, 126, 127, 128]. This sum also produces results doubly exponential in 1/GN ,
for analogous reasons.

Perhaps we have a choice about the bulk description of spectral statistics for non-
disordered systems: an unaveraged description with simple topology but with exceedingly
detailed and complicated information about microstates, like the individual orbits a, and
their intricate and rapidly fluctuating phases; or an averaged description made up of sim-
pler geometrical objects. But the price for this simplicity seems to be third quantization,
wormholes, and branes.

6.3 Other open questions

1. What is the result for the cylinder amplitude that connects a ZZ brane to itself?

2. Is it possible to recover the description of the matrix integral in terms of eigenvalues,
starting with the bulk JT gravity description? A possible hint is the McGreevy-Verlinde
proposal [50] for the c = 1 string. As refined in [52] this proposal asserts that the L
unstable ZZ branes, combined with the tachyonic stretched strings between them, form
the matrix of the matrix quantum mechanics.

3. Is there another way to get the nonperturbative effects without summing over discon-
nected geometries? SYK may give a useful perspective. The determinant approach
from section 5 should work, but it involves infinitely many SYK replicas as an interme-
diate step. As an alternative, it should be possible in principle to get the full spectral
form factor (including the plateau) by doing the exact G,Σ path integral with two
replicas. Can the plateau be obtained this way in practice?

4. We have emphasized the doubly exponential character of the brane effects, of order
exp(ce1/GN ) or exp(ceNSYK). This suggests two layers of asymptotic expansion. Con-
sider the SYK spectral form factor expressed as a two replica G,Σ integral. Away from
the Schwarzian limit where certain quantities become one loop exact, we expect to
have an asymptotic expansion in 1/N . Presumably its Borel transform has singular-
ities corresponding to various e−N effects. Perhaps the higher genus surfaces present
in the JT limit persist in some fashion and determine some of these effects. If this is
the case then these e−N effects themselves will form another asymptotic series, whose
Borel plane singularities will contain the doubly exponential effects. Can we find a
simpler problem with a similar two-layer structure?55

5. Another natural set of observables in JT gravity are correlators of probe bulk matter
fields. Some preliminary remarks about higher genus corrections to them were made
in [13] and a systematic treatment has been initiated in [132]. One interesting aspect
of these observables is that they probe matrix elements as well as energies and so give

55This is unlike the more familiar pattern, where the sum over e−N instantons is convergent, see e.g. [130].
There is a field theory example where such phenomena occur [131], due to IR “renormalon” effects.
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information about the random matrix character of eigenstates, i.e. ETH. Higher order
OTOCs may be especially interesting to study in this regard.

6. Are there theories of quantum gravity in higher dimensions that are dual to ensemble
averages of boundary theories, rather than specific boundary theories?

7. In cases where the boundary theory is fixed, what prevents us from including the
contribution of connected geometries? See [118, 119]. These papers considered actual
solutions to the bulk equations of motion. By contast, the gravity configurations
considered in this paper are not solutions: there is no on-shell configuration for the
dilaton (more physically, the action is not stationary with respect to b, as in [100]). If
we are willing to consider such geometries in higher dimensions, the problem could be
even worse than envisioned in [118, 119].

8. The disk and cylinder geometries are the ingredients required to determine the ramp
and plateau. These seem to have a natural extension to higher dimensions: the Eu-
clidean black hole solution and, when continued to Minkowski signature, the double
cone portion of the eternal AdS-Schwarzschild geometry [13]. Do these provide an ex-
planation of spectral statistics in suitably averaged higher dimensional gauge/gravity
dual systems?

9. The branched structure of the spectral curve was important for getting the nonpertur-
bative effects. What is the meaning of this spectral curve in gravity?

We will close the paper with the following comment. In an ensemble average of quantum
systems, unitarity of time evolution is not as dramatic as for an individual system (e.g. there
are no recurrences). But it still means something. For example, it implies that the spectral
form factor cannot decay to zero at late time. So Maldacena’s version of the black hole
information problem [133] can be formulated for disordered theories.

Concretely, an analog of Maldacena’s puzzle for disordered theories is to explain in bulk
language the late time behavior of the spectral form factor. For the case where the bulk dual
is JT gravity, the nonperturbative effects discussed in this paper provide a type of answer.56

Of course, we did not derive the effects from bulk reasoning: in section 5 we were essentially
reinterpreting the rules of a matrix integral in JT language. A clearer bulk understanding
of these rules, or perhaps a different version of them, would be valuable.
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A Some details on nonperturbative effects

A.1 The Airy ghost brane and dipole

A.1.1 Integral representation for ghost brane

We begin with the Gaussian model57 described by V (H) = 2
a2
H2. Instead of introducing

Grassmann flavor fields we introduce bosonic fields φi to implement 1/ det(E −H).58 Per-
forming the Gaussian integral over H, we find an integrand that depends only on

∑
i φiφi. We

then introduce an auxiliary variable r that renders the integral over the φi and φi Gaussian,
allowing us to integrate them out. The result is the integral

〈det(E ± iε−H)−1〉 =

√
2L

πa2

∫ ∞
−∞

dr(E ± iε+ r)−Le−
2L
a2
r2 . (234)

Before we discuss the saddle point structure of this integral, we will verify that this integral
representation reproduces the expected discontinuity across the real axis. First, we shift
r → r ∓ iε so that the the pole is on the real axis, and the contour for r runs either just
above or just below the real axis. The discontinuity of the integral is the integral over the

57For related work in this context see [134].
58The opposite statistics of these fields motivates the name “ghost brane.” Another point of view derives

from the field theory on the spectral curve discussed in [104, 57, 32].
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difference of the two contours. The two contours can be joined at infinity to form a loop,
which we can shrink to surround the pole at r = −E. We recognize the resulting integral
as the familiar contour integral representation for the L − 1’th Hermite Polynomial. Up to
a constant of proportionality, we find

disc
[
〈ψ̃(E)〉L

]
∝ i〈ψ(E)〉L−1. (235)

Here we are defining the L and L− 1 ensembles as described around (258).
Now we move on to a saddle point analysis of (234). There are two saddle points, r = r±.

We will focus on the case E < 0 because we are ultimately interested in double-scaling near
E = −a. Then the behavior of the integral depends on how E compares to −a:

1. For E < −a, the two saddle points are on the real axis. The steepest descent contour for
r− runs along the real axis, while the steepest descent contour for r+ passes vertically
through r+. We may deform the defining contour into two portions of these steepest
descent contours. The first segment comes in from r = −∞, passes through r−, then
reaches r+. Here we go either upwards or downwards along the steepest descent contour
for r+. Which way we go is determined by the iε prescription in (234), which requires
the r contour to go either below or above the pole, see figure 8. Schematically,

〈det(E ± iε−H)−1〉 ∼ e−LI(r−) ± i

2
e−LI(r−), E < −a. (236)

Here e−LI(r±) is the integrand evaluated on the saddle point r±. In the above expression
we have ignored the contributions of one-loop factors except to emphasize the i

2
.

2. For E > −a, the defining contour can be deformed into just one of the steepest descent
contours. Again, the choice is determined by the iε prescription. The leading order
saddle point approximation gives

〈det(E ± iε−H)−1〉 ∼ e±i
π
4
−LI(r±), −a < E < a. (237)

So far, we have discussed the standard Gaussian matrix integral. To get the double-
scaled theory, we multiply (234) by e

L
2
V (E), shift E → E − a, shift r → a

2
+
√

a
2
e−

S0
3 r,

and take the limit a → ∞, holding fixed eS0 = (2/a)3/2L. This leads to (179), up to a
constant of proportionality. This limit scales away the pole in (234), but it leaves a remnant:
the integrand grows along the positive real axis. Because of this, the integration contour
has to go to infinity in the right half-plane at a finite angle either above or below the real
axis, ending at e±i

π
3 · ∞. In taking the double-scaled limit, this choice matches onto the

choice of whether the contour goes above or below the pole on the real axis, and is therefore
determined by the ±iε prescription.

A.1.2 Integral representation for dipole

We start again with the potential V (H) = 2
a2
H2. By writing the ratio of determinants as an

integral over Grassmann vectors χi, χi and bosonic vectors φi, φi, we find an integral that
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depends only on the matrix

Ŝ =

(∑
i φiφi

∑
i φiχi∑

i χiφi
∑

i χiχi

)
. (238)

Defining the supertrace Str(M̂) ≡ M̂11 − M̂22, we have

〈
det(E −H)

det(E ′ ± iε−H)

〉
=

∫ L∏
i=1

[
dχidχidφidφi

2π

]
exp

[
a2

8L
Str(Ŝ2)− φiφi(E ′ ± iε) + χiχiE

]
.

(239)
We can introduce an auxiliary matrix S which has bosonic diagonal elements and Grassmann
off-diagonal elements to render the integral over the χi, χi and φi, φi Gaussian,

S =

(
S11 S12

S21 i S22

)
. (240)

Defining the matrix E = diag(E ′± iε, E) and performing the Gaussian integral we are led to
an integral just over the matrix S,〈

det(E −H)

det(E ′ ± iε−H)

〉
=

∫
dS11dS22dS12dS21

2π
exp

[
− L Str log(E + S)− 2L

a2
Str(S2)

]
. (241)

To take the double scaled limit we multiply this by exp[LV (E′)−V (E)
2

], shift E,E ′ by a,
shift the matrix S → a

2
+
√

a
2
S, then take the limit a→∞ keeping eS0 fixed. We find

〈
ψ(E)ψ̃(E ′ ± iε)

〉
=

∫
C±

dS11dS22dS12dS21

2π
exp

[
eS0Str

(
1
3
S3 + ES

)]
. (242)

The contours for S11, S22 are the same as the contours for r, s in the respective ghost brane and
brane computations. To obtain the formula (185), we simply integrate out the Grassmann
variables S12 and S21. This leads to〈
ψ(E)ψ̃(E ′ ± iε)

〉
= −eS0

∫
C±

dS11dS22

2π
(S11 + iS22) exp

[
eS0
(
1
3
S3
11 + i

3
S3
22 +E ′S11 − iES22

)]
.

(243)
After relabeling S11 = e−

S0
3 r, S22 = e−

S0
3 s, we find (185). Note that for this Airy case, apart

from the factor of (S11 + iS22), this is the product of the brane and ghost brane answers.
This correction term can be obtained by differentiating with respect to E,E ′.

This calculation is a simple application of a central technique in the modern treatment
of quantum chaos [105, 106, 67, 68, 135, 136]. In this approach correlators of arbitrary
numbers of determinants and inverse determinants are represented by higher dimensional
versions of Ŝ. The integral over Ŝ is then treated as a nonlinear sigma model whose target is
embedded in a superspace. Its “pion” perturbative excitations produce the long range energy
correlations. A nonperturbative saddle point, the analog of a baryon, produces the D-brane
effects. In this context the saddle point is called the “Altshuler-Andreev” instanton [137].
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This approach offers a framework to demonstrate random matrix universality. “All” one
needs to do is show that the system being studied produces the necessary pattern of symmetry
breaking in the effective sigma model. It would be interesting to explore this approach in
the gravity context.

A.2 Density pair correlation function

We want to calculate the density pair correlation function 〈ρ(E1)ρ(E2)〉 for |E1 − E2| � 1,
E1, E2 > 0. To do so, we compute the resolvent correlator using the formula〈

R±(E1)R
±′(E2)

〉
= ∂E1∂E2

〈
ψ(E1)ψ(E2)ψ̃±(E3)ψ̃±′(E4)

〉∣∣
E1=E3, E2=E4

(244)

and then extract the density correlator using

(−2πi)2〈ρρ〉 = 〈R+R+〉+ 〈R−R−〉 − 〈R+R−〉 − 〈R−R+〉. (245)

This computation involves many different cases, and we will simplify our task somewhat by
restricting to the pieces that are singular as E2 → E1. The one-loop function, including the
exponentiated disks and cylinders, is

Ψ(z1, z2; z3, z4) =
(z1 + z3)(z1 + z4)(z2 + z3)(z2 + z4)

4 · √z1z2z3z4(z1 + z2)(z3 + z4)
eDisk(z1)+Disk(z2)−Disk(z3)−Disk(z4). (246)

The branch prescription is determined by the prescription for the dipole (191). In the allowed
region, the rule is to sum over both branches for the brane operators, but to take only the
branch z = e∓i

π
2

√
E for the ghost brane operator associated to R±. In all cases, we will

evaluate the contribution to the resolvent, which is

∂E1∂E2Ψ =
−1

2z1
∂z1
−1

2z2
∂z2Ψ(z1, z2; z3, z4) (247)

where z21 = z23 = −E1 and z22 = z24 = −E2 with a choice of branch in the square root that
has to be specified. The singular terms arise from the action of derivatives on the prefactor
(cylinder) expressions, so we do not need to differentiate the disk functions. We will now go
through the cases.

1. First, we consider the computation of 〈R+R+〉, so z3 = e−i
π
2

√
E1 and z4 = e−i

π
2

√
E2.

The computation for 〈R−R−〉 can be treated similarly. There are four branch choices.
In the two cases (z1, z2) = ±(z3, z4), one finds no singular contribution. In the case
(z1, z2) = (−z3, z4), one finds

〈R+R+〉 ⊃ i

4
√
E1E2(E1 − E2)

e2Disk(i
√
E1). (248)

This is singular at E1 = E2, but the singularity cancels when we include the term
from (z1, z2) = (z3,−z4), which is obtained from the above by switching 1↔ 2. So, in
summary, thre are no singular terms in 〈R+R+〉 or 〈R−R−〉.
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2. Next, we consider 〈R+R−〉, so z3 = e−i
π
2

√
E1 and z4 = ei

π
2

√
E2. The case 〈R−R+〉

follows from complex conjugation, or by interchanging 1↔ 2.

(a) If both z1 = z3 and z2 = z4, we find the singular term

〈R+R−〉 ⊃ −1

4
√
E1E2(

√
E1 −

√
E2)2

. (249)

This is simply the singularity that is present for the resolvent in the perturbative
theory, coming from the double trumpet (138).

(b) If z1 = −z3 and z2 = z4, we find

〈R+R−〉 ⊃ −i
4
√
E1E2(E1 − E2)

e2Disk(i
√
E1). (250)

(c) If z1 = z3 and z2 = −z4, we find

〈R+R−〉 ⊃ −i
4
√
E1E2(E1 − E2)

e−2Disk(i
√
E2). (251)

(d) If z1 = −z3 and z2 = −z4, we find

〈R+R−〉 ⊃ 1

16E1E2

(
√
E1 +

√
E2)

2

(
√
E1 −

√
E2)2

e2Disk(i
√
E1)−2Disk(i

√
E2) (252)

So, we see that for 〈R+R−〉 and 〈R−R+〉, all terms are singular. The term (249) has
a double pole at E1 = E2, but no single pole. The terms (250) and (251) have single
poles at E1 = E2, but the coefficient is rapidly oscillating as a function of energy. For
our purposes, the most interesting term is (252). This contains a double pole that
cancels the double pole in (249), and it also contains a single pole with a coefficient
proportional to the derivative of the disk amplitude.

One can now add the contributions for 〈R+R−〉 and 〈R−R+〉 together to compute 〈ρρ〉, as
in (245). In doing so, it is important to treat the poles carefully, giving a small ± imaginary
part to the energy argument of R±. With this prescription, the poles discussed above lead
to δ(E1−E2) contact terms in 〈ρρ〉. One finds that the term (252) and its analog in 〈R−R+〉
lead to the contribution

〈ρ(E1)ρ(E2)〉 ⊃
1

32π2E1E2

(
√
E1 +

√
E2)

2

(
√
E1 −

√
E2)2

cos
[
2πeS0

∫ E1

E2

dEρ0(E)
]

(253)

+ ρtotal0 (E1)δ(E1−E2).

In writing this expression, we used that

∂EDisk(i
√
E) = iπeS0ρ0(E) = iπρtotal0 (E). (254)
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The pole from (250) and (251) corrects the coefficient of the delta function in this expression
slightly, by adding the leading oscillating correction to the density of eigenvalues (195). The
perturbative term (249) adds a term that cancels the double pole in the first line of (253).

Away from E1, E2 = 0, we may simplify our expressions to find the universal sine kernel
formula for the connected pair correlation function in regions of large density. Expanding
the integral

∫ E1

E2
dEρ0(E) ≈ ρ0(E2)(E1 − E2), keeping only the singular parts as E2 → E1

in (253), and subtracting a double pole to account for the perturbative term (249), we find
that for non-coincident points,

〈ρ(E1)ρ(E2)〉conn. ⊃ −
1

2π2(E1 − E2)2
+

1

2π2(E1 − E2)2
cos
[
2πeS0ρ0(E2)(E1 − E2)

]
= −

sin2
[
πeS0ρ0(E2)(E1 − E2)]

π2(E1 − E2)2
, E1, E2 > 0, |E1−E2| � 1. (255)

The full sine-kernel approximation to the pair correlation also includes the leading factorized
piece ρtotal0 (E1)ρ

total
0 (E2). In our present setup, this arises from a nonsingular but large

contribution to 〈R+R+〉 and 〈R−R−〉 in which the derivatives in (247) act on the disk
amplitudes. Including this piece, and the delta function at coincident points, one finds

〈ρ(E1)ρ(E2)〉 ≈ ρtotal0 (E1)ρ
total
0 (E2) + ρtotal0 δ(E1−E2)−

sin2
[
πρtotal0 (E2)(E1−E2)]

π2(E1−E2)2
. (256)

A.3 Forbidden contribution to the resolvent

In this appendix, we will derive the formula (222) from the perspective of a matrix integral.
As a setup for the calculation, suppose that we divide the region of integration of the matrix
eigenvalues into two pieces, an “allowed” region and a “forbidden” region, such that the
probability of an eigenvalue being in the forbidden region is very small (in practice, this
means that we should put the division a finite distance into the E < 0 region). Suppose that,
as a first step, we compute everything by doing the integrals over eigenvalues in the allowed
region, including the integrals in the matrix partition function that normalizes expectation
values. The question is: what do we have to add to the computation of the resolvent in order
to accurately describe the contribution of one eigenvalue being in the forbidden region?

We will get a simple formula for double-scaled matrix integrals, but we will start out with
an unscaled matrix integral with L eigenvalues. It will be useful to define two un-normalized
measures, one for L eigenvalues and one for L− 1:

µL(λ) = ∆2(λ1, ..., λL)e−L
∑L
j=1 V (λj) (257)

µ̃L−1(λ) = ∆2(λ1, ..., λL−1)e
−(L−1)

∑L−1
j=1 Ṽ (λj) (258)

where ∆ is the Vandermonde determinant, and

(L− 1)Ṽ (x) = LV (x). (259)
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A useful relation is that the measure for L eigenvalues is a product of the measure for
L−1 eigenvalues times the square of the determinant operator, viewed as an operator in the
(L− 1)-eigenvalue theory:

µL(λ1...λL) = µ̃L−1(λ1...λL−1)ψ
2(λL). (260)

This implies, for example, that we can write a formula for the density of eigenvalues in the
L ensemble in terms of the determinant operator in the L− 1 ensemble:

〈ρ(E)〉L =
LZL−1
ZL

〈ψ2(E)〉L−1. (261)

We can use this to write a formula for the matrix integral partition function

ZL = Z(0)
L + Z(1)

L + ... (262)

Here the first term represents the contribution with all eigenvalues integrated in the allowed
region:

Z(0)
L =

∫
A

dµL(λ). (263)

The second term represents the contribution with one eigenvalue in the forbidden region:

Z(1)
L = L

∫
A

dµ̃L−1

∫
F

dλLψ
2(λL) = Z(0)

L−1L

∫
F

dλL〈ψ2(λL)〉(0)L−1. (264)

The subscript on the expectation value in the last term means that we are working in the
L − 1 eigenvalue ensemble defined by µ̃L−1, and we are in the zero-instanton sector, where
all eigenvalues are integrated in the allowed region.

Similarly, we can write a formula for an un-normalized version of the resolvent:∫
A+F

dµL(λ)

E − λ1
=

∫
A

dµL(λ)

E − λ1
+

∫
F

dλLψ
2(λL)

∫
A

dµ̃L−1(λ)

(
L− 1

E − λ1
+

1

E − λL

)
. (265)

In the second term on the RHS, we are including the possibility that one of the L eigenvalues
is in the forbidden region. This could be any of the eigenvalues. In L− 1 of the L possible
cases, this special eigenvalue is not the eigenvalue λ1 that appears in the denominator in the
LHS. In one of the L cases, it is that eigenvalue. The two possibilities are represented in the
two terms in parentheses.

We can rewrite the second term in (265) as an expectation value in the L−1 ensemble:∫
A+F

dµL(λ)

E − λ1
=

∫
A

dµL(λ)

E − λ1
+ Z(0)

L−1

∫
F

dλ

〈
ψ2(λ)

(
R(E) +

1

E − λ

)〉(0)

L−1
. (266)
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The properly normalized resolvent is L/ZL times this expression. Using (262) and (264), we
find that at one-eigenvalue-instanton precision, this is

〈R(E)〉L = 〈R(E)〉(0)L

(
1− Z

(1)
L

Z(0)
L

)
+ L
Z(0)
L−1

Z(0)
L

∫
F

dλ

〈
ψ2(λ)

(
R(E) +

1

E − λ

)〉(0)

L−1
(267)

= 〈R(E)〉(0)L + L
Z(0)
L−1

Z(0)
L

∫
F

dλ

[〈
ψ2(λ)R(E)

〉(0)
L−1,conn.

+

〈
ψ2(λ)

E − λ

〉(0)

L−1

]
(268)

+
Z(1)
L

Z(0)
L

(
〈R(E)〉(0)L−1 − 〈R(E)〉(0)L

)
. (269)

Here we are defining 〈ψ2R〉conn. = 〈ψ2R〉 − 〈ψ2〉〈R〉.
So far, the discussion has been for a regular (unscaled) matrix integral. But in a double-

scaled theory, we get a somewhat simpler expression. One reason is that in a double-scaled
theory, the difference of expectation values on the final line (269) vanishes. Intuitively, this
is because in a double-scaled matrix integral, L is taken to infinity, so changing it by one has
no effect on normalized quantities. Another nice feature of the double-scaled case is that we
can write a simple leading-order formula for the connected correlator 〈ψ2R〉conn.. We use

〈R(E(z)) Tr log(E(z1)−H)〉conn. =

∫ z1

∞
dE(z′)R0,2(E(z), E(z′)) =

1

2z(z + z1)
(270)

to find that 〈
ψ2(E(z1))R(E(z))

〉(0)
L−1,conn.

=
1

z(z + z1)

〈
ψ2(E(z1))

〉(0)
L−1

. (271)

This term combines nicely with the 〈ψ2(λ)/(E − λ)〉 term in (268) and we find

〈R(E)〉 = 〈R(E)〉(0) + L
Z(0)
L−1

Z(0)
L

∫
F

dλ〈ψ2(λ)〉L−1

√
λ

E

1

E − λ
. (272)

Finally, using (261), we find

〈R(E)〉 = 〈R(E)〉(0) +

∫
F

dλ 〈ρ(λ)〉
√
λ

E

1

E − λ
. (273)

This expression answers the question we posed at the beginning of this appendix.
When one applies this to the contour in figure 4, one finds a distinct semiclassical con-

tribution from the saddle point at λ = −1
4
. In the leading semiclassical approximation, this

gives a pole at E = −1
4
. This agrees with the ZZ brane result in (206), although here we get

a prediction for the (imaginary!) numerical coefficient after plugging in (158).
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