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Direct-detection searches for axions and hidden photons are playing an increasingly prominent
role in the search for dark matter. In this work, we derive the properties of optimal electromagnetic
searches for these candidates, subject to the Standard Quantum Limit (SQL) on amplification. We
show that a single-pole resonant search may possess substantial sensitivity outside of the resonator
bandwidth and that optimizing this sensitivity may increase scan rates by up to five orders of mag-
nitude at low frequencies. Additional enhancements can be obtained with resonator quality factors
exceeding one million, which corresponds to the linewidth of the dark matter signal. We present
the resonator optimization in the broader context of determining the optimal receiver architecture
(resonant or otherwise). We discuss prior probabilities on the dark matter signal and their role in
the search optimization. We determine frequency-integrated sensitivity to be the figure of merit in
a wideband search and demonstrate that it is limited by the Bode-Fano criterion. The optimized
single-pole resonator is approximately 75% of the Bode-Fano limit, establishing it as a fundamen-
tally near-ideal, single-moded dark matter detection scheme. Our analysis shows, in contrast to
previous work, that the scanned single-pole resonant search is superior to a reactive broadband
search. Our results motivate the broad application of quantum measurement techniques evading
the SQL in future axion- and hidden-photon dark matter searches.

The existence of dark matter is one of the most com-
pelling pieces of evidence for physics beyond the Stan-
dard Model.[1] Two of the leading candidates for dark-
matter particles are weakly interacting massive particles
(WIMPs) and axions. The axion is a pseudoscalar orig-
inally motivated as a solution to the strong CP prob-
lem [2]. Because of their low (usually sub-eV) mass, and
therefore high number density if they make up a majority
of the dark matter, axions are best described as classi-
cal fields oscillating at a frequency slightly higher than
their rest frequency ν0DM = mDMc

2/h, where mDM is
the rest mass. The observed frequency is slightly higher
than the rest-mass frequency because of the ∼ 10−3c
virial velocity in the Milky Way; the resulting spread
in kinetic energy gives axion dark matter a bandwidth
of ∆νDM ∼ 10−6ν0DM. The objective of axion searches is
to detect this narrowband signal through its coupling to
the Standard Model, either through the strong force [3]
or electromagnetism [4, 5]. We focus on electromagnetic
detection, in which an axion converts to a photon in a
background DC magnetic field.

The hidden photon, a vector, is another well-motivated
field-like dark-matter candidate that couples to electro-
magnetism (via kinetic mixing with the visible photon).
It emerges generically in Standard Model extensions.[6–
8] Additionally, hidden-photon dark matter may be pro-
duced by cosmic inflation.[9]

To date, most direct-detection searches for dark mat-
ter have focused on WIMPs.[10–12] For axions and hid-
den photons, a wide range of masses and couplings (the
axion-photon coupling gaγγ or the hidden photon mixing
angle ε) have not been explored. Accordingly, numer-

ous searches looking for the conversion to photons have
recently been proposed.[13, 14]

Because of the interest in these candidates, it is impor-
tant to investigate the fundamental limits on the sensi-
tivity of searches probing the electromagnetic coupling.
A number of searches are based on tunable resonant
structures.[15–22] When the resonant frequency is tuned
to ∼ ν0DM, the signal induced by dark matter rings up in
the detector. One can conduct a sensitive search for dark
matter by tuning the resonator across the desired search
range. Are single-pole resonators optimal? Or can better
sensitivity, integrated across a search band, be obtained
with a more broadband structure, such as a broadband
LR circuit [23] or a free-space antenna [24]?

The principal purpose of this paper is to determine the
optimal characteristics of a dark matter receiver, sub-
ject to the Standard Quantum Limit (SQL) on phase-
insensitive amplification.[25] The primary conclusion is
that the optimized single-pole resonator is a fundamen-
tally near-ideal, single-moded detector for probing dark
matter across a wide band. We derive the optimized
resonant scan, which exploits the substantial sensitivity
available outside the resonator bandwidth. This opti-
mization can increase scan rates by up to five orders of
magnitude at low frequency. We further show that scan
rate is enhanced by higher resonator quality factor, even
for quality factors exceeding one million, which corre-
sponds to the dark matter bandwidth. See [26] for an
extended discussion of the results presented here.

In order to optimize the receiver and the scan, we take
into account the signal-to-noise ratio (SNR) in the detec-
tion circuit as well as prior information about the dark
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matter signal. Priors can take the form of astrophysical
or direct-detection constraints, preferred search ranges,
or candidate signals. We optimize a value functional,
which is the expectation value of the SNR squared (see
eq. 107 of [26]) :

F [H(ν)] = E[SNR2(H(ν)); ν0DM, gaγγ/ε,Q(~v)], (1)

where H(ν) is a responsivity function describing how
dark matter at frequency ν excites the detector. The
expectation value is taken with respect to user-defined
prior probability distributions over the dark matter mass
mDM (corresponding to frequency ν0DM), coupling gaγγ or
ε, and velocity distribution Q(~v). The frequency ν lies
within the dark matter bandwidth, slightly above ν0DM.

We first develop a circuit model to evaluate H(ν) and
receiver SNR and then return to the subject of priors.
The basic structure of a receiver is displayed in Fig. 1.
The receiver is optimized by simultaneously optimizing
each block and interactions across blocks, subject to pri-
ors. We restrict our attention to linear, passive receiver
circuits.

FIG. 1. Elements of a dark-matter receiver: the signal source,
the matching network, and the readout. Double arrows signify
that signals travel in both directions through the receiver.

The first element of the receiver is the signal source,
which contains an element coupling to the electromag-
netic fields induced by dark matter. The element may be
reactive, e.g. an inductor coupling to the magnetic field
or a capacitor coupling to the electric field. Alternatively,
it may be purely resistive, e.g. a phased antenna array
presenting a real impedance to the electric field signal.

In Sec. II of [26], we show that reactive coupling is su-
perior to resistive coupling. In Sec. III of [26], we show
that inductive coupling is optimal in the regime where the
experimental apparatus is smaller than the dark-matter
Compton wavelength λ0DM = c/ν0DM. In this regime, all
couplings can be treated as reactive, and inductive cou-
pling is always superior to capacitive coupling. When
the apparatus is comparable in size to λ0DM, inductive
and capacitive couplings give comparable sensitivities. In
the particular case of a cavity resonator, we can model
the cavity as an equivalent lumped-element LC circuit.
Then, coupling to the cavity mode through both the elec-
tric and magnetic fields can be modeled as an effective
coupling to either the inductor or capacitor. Because of
this equivalency, we may, without loss of generality, con-
sider a model with only inductive coupling.

Intrinsic to every inductive coupling element L is some
loss R, which produces thermal noise. We thus model
the signal source as a series LR circuit.

The second element of the receiver is an impedance-
matching network. It provides a match between the com-
plex signal source impedance and the input impedance of
the readout, which can be purely real. For example, the
network may be a single-pole resonator (formed by insert-
ing a capacitor), an appropriate model for cavity searches
ADMX[15] and HAYSTAC[16] as well as lumped-element
searches DM Radio[19, 20] and ADMX LC[21]. One may
also consider using a multi-pole resonator. Yet another
architecture is a broadband pickup circuit, for which the
LR signal source is connected directly to the input of a
SQUID amplifier, e.g. as used in ABRACADABRA.[23]

The third and final element of the receiver is a readout
element, which is generically some amplifier or photon
counter. In this work, we consider readout with a phase-
insensitive amplifier, which amplifies both signal quadra-
tures with equal gain. Such amplifiers are subject to the
SQL [25, 27], which dictates that the measurement must
add at least one photon of noise power per unit band-
width. We utilize the convention that one-half photon of
the quantum noise comes from zero-point fluctuations,
while the other half comes from the amplifier’s two effec-
tive noise modes, backaction and imprecision.[28]

We now consider how to calculate detector SNR. Prob-
ing new parameter space at a particular frequency typi-
cally requires integration time much longer than the co-
herence time (∆νDM)−1. In this regime, the signal to be
detected is an incoherent power signal, for which the SNR
is dictated by the Dicke radiometer equation[29, 30]:

SNR =
Psig

Pnoise

√
∆νs · t =

Psig

kTS∆νs

√
∆νs · t, (2)

where Psig (Pnoise = kTS∆νs) is signal (noise) power,
TS is system noise temperature (a function of the phys-
ical and amplifier noise temperatures), ∆νs is effective
dark-matter signal bandwidth when convolved with the
responsivity function H(ν) (see Secs. IV and VI of [26]),
and t is integration time. The system noise tempera-
ture is dependent upon the matching network, because
the noise temperature of the amplifier depends on the
impedance coupled to its input, achieving a minimum
when the impedance is “noise matched.” In order to
fully optimize the third block (and the SNR), we must
then simultaneously optimize the second block.

It is in the second block where priors play a central role.
Most conceivable priors distribute the mass probability
over a wide band. The value functional, eq. (1), is then a
measure of a detector’s frequency-integrated sensitivity.
The significance of this observation can be understood
by considering a single-pole resonator. See Fig. 2. The
dark-matter signal and thermal noise are both rolled off
by the resonator response. As such, the resonator sen-
sitivity to dark matter (i.e. the SNR) remains constant
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well beyond the resonator bandwidth, as long as ampli-
fier noise is subdominant. For instance, the resonator
sensitivity to the on-resonance dark matter signal (“DM
1”), is approximately equal to the sensitivity to a signal
of equal strength off-resonance (“DM 2”). The “sensi-
tivity bandwidth” is the range over which the amplifier
noise is subdominant to thermal noise. This bandwidth
can be increased by strengthening the coupling to the
amplifier until amplifier backaction (not represented in
figure), which degrades SNR, becomes comparable to the
thermal noise. With a widely distributed mass prior, we
must then choose the matching network not to maximize
the on-resonance SNR, but to maximize a weighted prod-
uct of sensitivity bandwidth and in-band SNR, i.e. in-
tegrated sensitivity. The sensitivity bandwidth increases
with decreasing amplifier noise. Thus, for optimization,
we require quantum-limited readout (achieving the SQL
when noise-matched), even when the resonator, of fre-
quency νr, possesses high thermal occupancy, hνr � kT .

FIG. 2. Signal and noise in a resonator circuit. The x-axis is
frequency detuning (arb. units, linear scale), while the y-axis
is power referred to the amplifier input (arb. units, log scale).
Green: thermal noise, red: amplifier noise, black: resonator
line shape. On- and off-resonance dark matter (DM) signals of
equal strength are denoted “DM 1” and “DM 2,” respectively.
The resonator bandwidth is bounded by the dotted purple
lines, and the sensitivity bandwidth is bounded by dashed
blue lines.

Frequency-integrated sensitivity as the figure of merit
for a matching network (resonant or otherwise) is for-
malized mathematically in terms of priors in Sec. V of
[26]. There we further develop a generic “log-uniform”
search, characterized by a set of uninformative priors
in which the probability distribution over mass is log-
uniform. Fixing the LR source properties (the pickup
inductance LPU, resistance R, and pickup volume) and

scaling out constants, eq. (1) reduces to (eq. 113 of [26])

Flog[S21(ν)] =

∫ νh

νl

dν

(
|S21(ν)|2

|S21(ν)|2n(ν) + 1

)2

, (3)

where S21(ν) is the forward transmission through the
matching network and νl and νh are the lower and upper
limits of the search range. n(ν) = 1/(exp(hν/kT )− 1) is
the thermal occupancy of the signal source at frequency
ν. The “+1” term represents the noise at the SQL.
The integrand thus represents SNR, and Flog represents
frequency-integrated sensitivity.

We maximize Flog. The signal source possesses com-
plex impedance, and the quantum-limited amplifier pos-
sesses real noise impedance. If the matching network is
linear, passive, and reciprocal, then the Bode-Fano cri-
terion [31, 32] applies, yielding an upper bound on Flog

(see Sec. V A 2 of [26]),

Flog[S21(ν)]

R/LPU
/

{
0.4, n(νh)� 1

1
4n(νh)

, n(νh)� 1
. (4)

The bound applies to an amplifier that measures forward
power, as well as one that measures voltage or current
(the “op-amp mode” [28]), e.g. a flux-to-voltage amplifier
such as a SQUID; see App. F of [26]. An analogous
bound applies to an RC (resistor and capacitor) source.

Equality in eq. (4) is obtained with a narrowband,
multipole LC Chebyshev filter, but such structures are
difficult to implement. Therefore, we ask how close a
single-pole resonator can come to the Bode-Fano limit.

Suppose, having already fixed the LR source proper-
ties, we also fix the resonant frequency νr. The circuit
is then determined by the strength of coupling to the
amplifier, quantified by the ratio of noise impedance to
signal source resistance. Optimizing eq. (3) with respect
to this ratio, (Sec. V A 3 of [26])

F opt
log (νr)

R/LPU
≈

{
8
27 , n(νr)� 1

1
3
√
3n(νr)

, n(νr)� 1
. (5)

Interestingly, we observe that, for optimal integrated sen-
sitivity, the readout is noise-mismatched and dominated
by backaction on resonance. To understand why, we con-
sider readout with a quantum-limited flux-to-voltage am-
plifier (Fig. 3(a)) and the contributions to the input-
referred current noise for n(νr) = 50. In the noise-
matched case of Fig. 3(b), the amplifier noise on res-
onance is minimized, with equal backaction and impreci-
sion. The result is a sensitivity bandwidth (given approx-
imately by the bandwidth for which imprecision is less
than one-half of the total noise[26]) that is 2

√
n(νr) ≈ 14

resonator bandwidths. Now suppose that we couple more
strongly to the amplifier, so that we achieve the optimal
matching maximizing eq. (3). As illustrated in Fig. 3(c),
the backaction noise increases to one-half of the thermal
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noise on resonance, but the imprecision noise drops pro-
portionally. In return for a 50% SNR penalty near reso-
nance, we achieve a much larger sensitivity bandwidth of
2n(νr)

√
3 ≈ 173 resonator bandwidths, yielding a larger

integrated sensitivity in eq. (3).

FIG. 3. (a) RLC search. The flux ΦDM couples to the
pickup inductor, driving a flux ΦSQ in the amplifier, shown
schematically as a dc SQUID. We plot detuning 2Q ν−νr

νr
vs.

input-referred current noise spectral density SII/(hνr/R) in
the (b) noise-matched and (c) optimally-matched circuits for
n(νr) = 50. Blue: thermal + zero-point noise, green: impre-
cision, red: backaction, cyan: total noise. Detunings below
the dashed black line are in the sensitivity bandwidth.

F opt
log (νr) is an increasing function of νr, so an appro-

priate comparison to the Bode-Fano limit (eq. 4) is ob-
tained by taking the limit νr → νh. We then find (eq.
146 of [26]) that the optimized single-pole resonator is
approximately 75% of the Bode-Fano limit. Single-pole
resonators are near-optimal, single-moded detectors for a
search over a wide band. One consequence of this result
is that, in contrast to the claims in [23], a tunable RLC
circuit is superior to a broadband LR circuit, e.g. as used
in ABRACADABRA; see App. G of [26] for details.

We now return to a consideration of priors and dis-
cuss scanning. An optimal search requires scanning for
complete coverage of a search band. Given a fixed to-
tal experiment time, what value function do we use to
distribute time across scan steps? A scan consists of a
set of resonant frequencies {νir}; at each frequency, we
integrate for time τi. For axion searches, the time allo-
cation is optimized by maximizing the weighted area of
the excluded mass-coupling parameter space:

Aa[{νir}, {τi}] =

∫ νh

νl

dν0DM

∫ gmax
aγγ

gmin
aγγ

dgaγγ Wa. (6)

Wa = Wa(ν0DM, gaγγ) is the weighting function, based on
mass and coupling priors introduced for eq. (1). gmin

aγγ =

gmin
aγγ(ν0DM, {νir}, {τi}) is the minimal coupling at ν0DM to

which the search is sensitive, based on the SNR accrued
from integration at each scan step. gmax

aγγ = gmax
aγγ (ν0DM) is

a maximal coupling, based on previous constraints. An
analogous value function, using ε, can be defined for the
hidden photon. For a log-uniform search, in which Wa is
proportional to the product of log-uniform distributions
over mass and coupling, maximizing eq. (6) shows that
equal time should be spent in each octave of frequency
space; see Sec. V B of [26].

Our scan optimization also reveals that the SNR im-
proves as the quality factor is increased above QDM =
106, the characteristic quality factor of the dark matter
signal. To explain this result, we return to eq. (2) and as-
sume ν0DM lies near resonance. In a single scan step with
Q > QDM, the signal power is roughly independent of
Q because an increase in Q is compensated by a reduc-
tion in signal fraction within the resonator bandwidth.
The noise power decreases as 1/Q because ∆νs equals
the resonator bandwidth. The integration time also de-
creases as 1/Q because more scan steps are required with
a finer bandwidth. Combining all factors, the SNR from
the single step is roughly independent of Q. Stepping at
one part in ∼ Q, we are sensitive to the same mass over
∼ Q/QDM scan steps. The SNRs from different steps
add in quadrature so the total SNR improves as ∼

√
Q.

In Fig. 4, we plot scan sensitivity to axion-photon cou-
pling. A resonator can probe all frequencies within its
sensitivity bandwidth without SNR degradation. Thus,
relative to a noise-matched scan using only information
in the resonator bandwidth (dark blue with Q = 106),
a scan with optimized integrated sensitivity (light blue
with Q = 106) increases the integration time at frequency
ν0DM by ∼ n(ν0DM). Then, from eq. (2), since signal power
increases as coupling squared[5], the minimum coupling
to which the search is sensitive improves by ∼ n(ν0DM)1/4.
This corresponds to more than an order of magnitude in-
crease in reach at ∼1 kHz, or equivalently, a five order
of magnitude increase in scan rate. Additionally, sensi-
tivity outside of the resonator bandwidth increases the
step size needed for complete coverage of a search band,
enabling significantly coarser tuning. By increasing Q to
108 (pink), we further enhance the reach by a factor of√

10 (100× increase in scan rate).
In summary, we have established the fundamental limit

on electromagnetic searches for axion and hidden-photon
dark matter including the quantum noise from amplifiers
(eq. 4). We have demonstrated that the single-pole res-
onator is a near-ideal single-moded technique for dark
matter searches over a wide band, justifying the approach
of multiple experiments [15, 16, 19, 21]. We have shown
that optimal scan strategies can increase the scan rate
by several orders of magnitude, particularly at low mass.

Fig. 4 demonstrates that, given practical constraints
on experimental volume, temperature, loss, DC mag-
netic field, and integration time, no electromagnetic
receiver subject to the limits established in this paper
may probe the QCD axion band at frequencies .1
MHz, corresponding to masses below a few neV. Similar



5

FIG. 4. Axion search with quantum-limited readout, 1 m3

volume at 10 mK, 4 T magnetic field, and up to 100 days
per e-folding integration time (stopped at the DFSZ axion
model) over 1 kHz-300 MHz. Sensitivity (eq. 197 of [26]) for:
a Q = 106 scan using only information in the resonator band-
width (dark blue), an optimized Q = 106 scan (light blue),
and an optimized Q = 108 scan (pink). We have assumed a
geometry factor of cPU ≈ 0.2, which is reasonable for lumped-
element receivers [19, 20]; see Appendix A of [26]. The QCD
axion band (yellow) is bounded at the top and bottom by the
KSVZ[33, 34] and DFSZ[35, 36] axion models, respectively.

.

challenges exist above several GHz. As such, it is useful
to ask how we may evade the limits established in this
work. One may evade the Bode-Fano constraint, for in-
stance, by using nonlinear or active impedance-matching
circuits; one may also improve upon the constraint using
multi-moded receivers, or more generically, receivers
with multiple signal-source ports. These circuits are
often constrained by more generalized matching criteria
[37, 38] and can be challenging to implement due to
stability and parasitics. The other option is to improve
on these limits by evading the SQL. Due to developments
in quantum metrology, a number of techniques to evade
the SQL (e.g. squeezing, entanglement, backaction
evasion, photon counting) can now be deployed.[39] The
fundamental limit provided in this paper thus motivates
the development of quantum measurement techniques in
light-field dark matter searches.
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