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Abstract—Recent advances in machine learning, especially
techniques such as deep neural networks, are promoting a
range of high-stakes applications, including autonomous driving,
which often relies on deep learning for perception. While deep
learning for perception has been shown to be vulnerable to
a host of subtle adversarial manipulations of images, end-to-
end demonstrations of successful attacks, which manipulate the
physical environment and result in physical consequences, are
scarce. Moreover, attacks typically involve carefully constructed
adversarial examples at the level of pixels. We demonstrate the
first end-to-end attacks on autonomous driving in simulation,
using simple physically realizable attacks: the painting of black
lines on the road. These attacks target deep neural network
models for end-to-end autonomous driving control. A systematic
investigation shows that such attacks are surprisingly easy to
engineer, and we describe scenarios (e.g., right turns) in which
they are highly effective, and others that are less vulnerable
(e.g., driving straight). Further, we use network deconvolution
to demonstrate that the attacks succeed by inducing activation
patterns similar to entirely different scenarios used in training.

Index Terms—machine learning, adversarial examples, au-
tonomous driving, end-to-end learning

I. INTRODUCTION

With billions of dollars being pumped into autonomous

vehicle research to reach Level 5 Autonomy, where vehicles

will not require human intervention, safety has become a crit-

ical issue. The remarkable advances in deep learning, in turn,

suggest such approaches as natural candidates for integration

into autonomous control. One way to use deep learning in

autonomous driving control is in an end-to-end (e2e) fashion,

where learned models directly translate perceptual inputs into

control decisions, such as steering angle. Indeed, recent work

demonstrated such approaches to be remarkably successful,

particularly when learned to imitate human drivers [1].

Despite the success of deep learning in enabling greater

autonomy, a number of parallel efforts also exhibited con-

cerning fragility of these approaches to small adversarial

perturbations of inputs, such as images [4], [5]. Moreover,

Fig. 1. (a) Existing attacks on machine learning models in the image [2]
and the physical domain [3]; (b) conceptual illustration of potential physical
attacks in the end-to-end driving domain studied in our work.

such perturbations have been shown to effectively translate

to physically realizable attacks on deep models, such as by

putting stickers on stop signs to cause miscategorization of

these as speed limit signs [3]. Fig. 1(a) offers several canonical

illustrations.

There is, however, a crucial missing link in most adver-

sarial example attacks to date: manipulations of the physical

environment that have a demonstrable physical impact (e.g., a

crash). For example, typical attacks consider only prediction
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error as an outcome measure and focus either on a static

image, or a fixed set of views, without consideration of the

dynamics of closed-loop autonomous control. To bridge this

gap, our aim is to study end-to-end adversarial examples. We

require such adversarial examples to satisfy four criteria: 1)

modify physical environment, 2) be simple to implement, 3)

appear unsuspicious, and 4) have a physical impact, such as

causing a lane violation or a crash. The prevalent attacks that

introduce carefully engineered manipulations fail the simplic-

ity criterion [4], [6], whereas the simpler physical attacks, such

as stickers on a stop sign, are evaluated solely on prediction

accuracy [3].

The particular class of attacks we systematically study

is the painting of black lines on the road, as shown in

Fig. 1(b). These are unsuspicious since they are semantically

inconsequential (few human drivers would be confused) and

similar to common imperfections seen in the wild, such

as tread marks. Furthermore, we demonstrate a systematic

approach for designing such attacks so as to maximize steering

angle, and demonstrate actual physical impact (lane violations

and crashes) over a variety of scenarios, in the context of

state-of-the-art end-to-end deep learning-based controllers. We

consider scenarios where correct behavior involves turning

right, left, and going straight. Surprisingly, we find that right

turns are by far the riskiest; on the other hand, as expected,

going straight is rather robust to our class of attacks.

Our final contribution is to use network deconvolution

to explore the reasons behind successful attacks. Here, our

findings suggest that one of the causes of controller failure is

in partially mistaking painted lines on the road for a barrier

common during left-turn scenarios, thereby causing the car to

steer sharply left when it would otherwise turn right.

II. BACKGROUND AND RELATED WORK

A. Deep Neural Networks for Perception and Control

Neural network (NN) algorithms are loosely modeled after

the human brain which allows them to recognize patterns in

high-dimensional data. To address large complex problems,

Deep Neural Networks (DNNs) are designed with a deeper and

wider hierarchy so that the network model has a larger learning

capability to accommodate diverse inputs with more features.

They have been used to achieve a high level of accuracy in

perception related tasks such as image classification [7] and

semantic segmentation [7].

End-to-end (e2e) learning models comprises DNNs that

accept raw input parameters in one end and directly calculate

the desired output at the other end. Rather than explicitly

decomposing a complex problem into its constituent parts

and solving them separately, e2e models directly generate the

output from the inputs. It is achieved by applying gradient-

based learning to the system as a whole. Recently [8], e2e

models have been shown to have good performance in the

domain of autonomous vehicles, where the forward facing

camera input can be directly translated to control (steer,

throttle and brake) commands.

B. Attacks on Deep Learning for Perception and Control

Attacks or adversarial examples [4], [9] are deliberately

calculated perturbations to the input which result in an error

in the output from a trained DNN model.

The idea of using adversarial examples against static image

classification models has been studied and it has been proved

that DNNs are highly susceptible to carefully designed pixel-

level adversarial perturbations [6], [10]. Perturbed images that

would be easily ignored by humans may not be correctly

recognized by the DNN model. More recently, attacks in

the physical domain have begun to draw more attention.

Studies show that adding stickers to a stop sign in carefully

positioned ways can result in the classification model to mis-

identify the stop sign to be a speed-limit sign. However,

existing investigations on adversarial examples still focus on

classification errors associated with static images and are

conducted in limited experimental environments [3], [5],

[11]. Research considering the learning model in a dynamic

system setting, like on autonomous vehicles in the real world

is sparse [12]. In this paper, we aim to address these current

limitations and provide a methodology to systematically study

physically realizable attacks on the e2e models in realistic

driving conditions.

III. MODELING FRAMEWORK

In this paper, we focus on exploring the influence of a

physical adversary that successfully subverts RGB camera-

based e2e driving models. We define physical adversarial

examples as attacks which are physically realizable in the real

world. For example, deliberately painted shapes on the road

or on stop signs, would be classified as physical adversaries.

Fig. 1(b) displays the conceptual view of such an attack

involving painting black lines. We define prospective adver-

sarial examples as patterns. To create an adversarial example

that forces the e2e model to crash the vehicle, we need to

choose the parameters of pattern’s shape that maximize the

difference between the steering values between the ground

truth (case without an attack) and the one with the attack. For

a particular task where the e2e model has to drive the vehicle

forward while maintaining its own lane, we need to choose

an attack that causes the steering angle value to increase (or

decrease) continuously. This would cause the vehicle to veer

into the wrong lane or go offroad, which we characterize

as a successful attack. Conventional gradient descent based

attack techniques cannot be applied in this domain since the

generated attacks requires pixel-level modifications spanning

the entire input space, which is not physically realizable.

Therefore, our solution is to systematically explore a more

confined search space. We choose regions of interest on the

road where we will create attacks, and we begin by drawing a

simple pattern like a thin black strip with fixed width and

length on those regions. Then we sweep through different

positions and orientations of the pattern to see if exhaustively

going through the search space finds adversarial examples that

cause the vehicle to crash. Note that for the entirety of this

research, we use the right-driving traffic system.



Fig. 2. Architecture overview of our simulation infrastructure including the interfaces between the CARLA simulator and the pattern generator scripts.
Visualization of the camera and the third person views from one attack episode are also shown.

At the high level, our goal is to paint a pattern (such as

the black strip) somewhere on the track (road) to cause a

crash. We formalize the latter objective as that of maximizing

or minimizing the induced steering angle, since, assuming

acceleration remains the same with an attack as without it, this

is sure to cause the car to veer off the road. Since the problem

is dynamic, we must consider the impact of the object we

paint on the track over a sequence of frames that capture the

track, along with this pattern, as the vehicle moves towards

and, eventually, over the modified track segment. Crucially,

we modify the track itself, which is subsequently captured

in vision, digitized, and used as input into the e2e model’s

controller.

To formalize, we now introduce some notation. Let l denote

the position on the track where we place the pattern, which

we, in turn, denote by δ. We use L to denote the set of feasible

locations at which we can position the adversarial pattern

δ, and S the set of possible patterns (along with associated

modifications; in our case below, for example, we consider

either a single black line, or a pair of parallel black lines,

with modifications involving, for example, length of the line

and its rotation angle). Let xl be the state of the track at

position l, and xl + δ then becomes the state of the track

at this same position when the pattern δ is added to it. The

state of the track at position l is captured by the vehicle’s

vision system when it comes into view; we denote the frame

at which this location initially comes into view by fl, and let

∆ be the number of frames over which the track in position l

is visible to the vehicle’s vision system. Given the track state

xl at position l, the digital view of it in frame f is denoted

by yf (xl). Finally, we let fsa(yf , hf ) denote the predicted

steering angle given observed digital image corresponding to

frame f , and prior history of frames, hf . We can formulate

the optimization problem we aim to solve as follows:

Collide Right : max
l,δ

∆∑

τ=0

fsa(yfl+τ (xl + δ), hfl+τ ) (1a)

Collide Left : min
l,δ

∆∑

τ=0

fsa(yfl+τ (xl + δ), hfl+τ ) (1b)

subject to : l ∈ L, δ ∈ S. (1c)

Essentially, equation 1a says that to optimize an attack that

causes the vehicle to veer off towards the right and collide, we

need to maximize the sum of steering angles for that particular

experiment for the frames in which the pattern is in view. And

similarly, we need to minimize the steering sum, to make the

vehicle veer left. The validity of this optimization objective is

evaluated in Section V.

IV. EXPERIMENTAL METHODOLOGY

This section introduces the various building blocks that we

used to perform our experiments. Fig. 2 shows the overall

architecture of our experimentation method, including the

CARLA simulator block, the python client block, and how

they communicate with each other to test the patterns on the

simulator.

A. Autonomous Vehicle Simulator

Simulators have been used to test autonomous vehicles

to for the sake of efficiency and safety [13]–[15]. We ran

our experiments on the CARLA [16] autonomous vehicle

simulator. Built using Unreal Engine 4 [17], CARLA has

sufficient flexibility to create reasonably realistic simulated

environments, with a robust physics engine, lifelike lighting,

3D objects including roads, buildings, traffic signs, and non-

player characters including pedestrians and other vehicles.



Fig. 2 shows how the simulator looks in the third person

view. It allows us to acquire sensor data like the camera image

for each frame (camera view), vehicle measurements (speed,

steering angle and brake) and other environmental metrics like

how the vehicle interacts with the environment in the form

of infractions and collision intensity. Since we are using e2e

models that are use only the RGB camera, we disabled the

LiDAR, semantic segmentation, and depth cameras. Steering

angle, throttle and brake parameters are the primary control

parameters for driving the vehicle in the simulation. CARLA

(stable version 0.8.2 as of writing this paper) comes with two

fully built maps: a large training map and a smaller testing

map which were used for training and testing the e2e models

respectively. CARLA also allows the user to run experiments

under various weather conditions like sunset, cloudy and rain,

which are determined by the client input. To keep a consistent

frame rate and execution time, we run CARLA using a fixed

time-step.

B. End-to-end Driving Models

The CARLA simulator comes with two trained end-to-

end models: Conditional Imitation Learning (IL) [18] and

Reinforcement Learning (RL) [16]. Their commonality ends

at using the camera image as the input and producing output

controls that include steering angle, acceleration, and brake.

The IL model uses a trained model consisting of demonstra-

tions of human driving on the simulator. In other words, the

IL model tries to mimic the actions of the expert with whom

it was trained with. RL uses a trained deep network based

on a rewards system, provided by the environment based on

the corresponding actions, without the aid of human drivers.

More specifically, for RL, the asynchronous advantage actor-

critic (A3C) algorithm was used. It is worth mentioning that

IL performed better than RL in untrained scenarios [16].

C. Physical Adversary Generation

To generate physically realizable adversaries in a systematic

manner, we first modify the original CARLA maps so that we

can place the aforementioned patterns wherever we need. We

build a pattern generator that can create different kinds of

shapes (single and double lines with various attributes) using

the pattern parameters. We create a 200 x 200 pixel region on

the road which matches the width of the road. This canvas

is mapped to the pattern file read from the server, and is

placed in the simulation. For the pattern generator, we explore

parameters like the position, width, and rotation of the line.

To generate different variations on the attack, we swept the

pattern from one side of the road to the other (position 0

to 200), and varied the rotation between 0 and 180 degrees

for each step. Similarly, we created a more advanced pattern

which involves two parallel black lines we call the double-line

pattern. It comprises the previous parameters, viz., position,

rotation, and width, with the addition of the new gap parameter

which is the distance between the two parallel lines. Fig. 2

shows some examples of the generated double line patterns

which can be seen overlaid on the road in frames 55 and 70.

D. Data Collection and Processing

To ensure a broad scope to test the effectiveness of the

different attacks in various settings, we conduct experiments

by changing various environment parameters like the maps

(training map and testing map), scenes, weathers (clear sky,

rain, and sunset), driving scenarios (straight road, right corner

and left corner), e2e models (IL and RL) and the entire search

space for the patterns. To be able to search the design space

thoroughly, we prepare a CARLA docker which allow us to

run as many as 16 CARLA instances simultaneously, spread

out over 8 RTX GPUs [19]. We choose the baseline scenarios

(no attack) where the e2e models drive the vehicle with

minimal infractions. We ran the experiments at 10 fps, and

collected the following data for each camera frame (a typical

experiment ran between 60 to 100 frames): camera image

from the mounted RGB camera, vehicle speed, predicted

acceleration, predicted steering, predicted braking, percentage

of vehicle on the wrong lane, percentage of the vehicle on the

sidewalk (offroad), and collision intensity. Fig.2 also shows

this dataflow which suffices to assess the ramifications of a

particular pattern in a certain experiment.

V. EXPERIMENTAL RESULTS

Through experimentation, we demonstrate the existence of

conspicuous physical adversaries that successfully break the

e2e driving models. These adversaries do not need to be subtle

or sophisticated modifications. Although they can be easily

distinguished and thus ignored by humans drivers, they are

effective in generating serious traffic infractions for the e2e

autonomous driving models we have evaluated.

A. Summary of Physical Adversaries

We generate two primary sets of adversary patterns: single

line with varying positions and rotation angles, and double

lines with varying positions, rotation angles and distance (gap)

between the lines. In Fig. 3(a), we define different safety

regions of the road in ascending order of risk. We start with

the vehicle’s own lane (safe region), the opposite lane (unsafe),

offroad/sidewalk (dangerous) and regions of collisions (very

dangerous) past the offroad region. Fig.3(b)(c)(d)(e) shows

that by sweeping through the three scenarios (straight road

driving, right corner driving, left corner driving) with the

single and double line patterns, for both the training map and

testing maps, we see that some patterns cause infractions. First,

we observe the transferability of adversaries since some of our

generated adversarial examples cause both IL (Fig.3(b)) and

RL (Fig.3(d)) models to produce infractions. Second, the IL

model performs better than its RL counterpart. Additionally,

we notice that the double line adversarial examples cause more

severe infractions than its single line counterpart. Lastly, we

observe that Straight Road Driving and Left Corner Driving

are more resilient to level 2, and level 3 infractions, hence, in

the next section, we analyze the cases for the Right Corner

Driving case with Imitation Learning more thoroughly.



Fig. 3. Comparison of the infractions caused by different patterns. (a) Driving
Infraction regions; (b)(c) Infraction percentages for IL; (d)(e) Infraction
percentages for RL; NA - No Attack, SL - Single Line pattern, DL - Double
Lines pattern; Straight - Straight Road Driving, Right - Right Corner Driving,
Left - Left Corner Driving

B. Analysis of Attack Objectives

To find the optimal adversary which would produce a level

3 infraction, i.e., a collision, for the scenario involving Right

Turn Driving, we have to find a pattern which would minimize

the sum of steering angles as hypothesized in equation (1a).

A positive steering angle denotes steering towards the right

and a negative steering angle implies steering towards the

left. Fig. 4(a)(b) show the steering sum and infraction sums

respectively, over the course of 375 combinations of double

line patterns. The infractions are normalized because collision

data is recorded in SI units of intensity [kg*m/s], whereas

the lane infractions are in percentages of the vehicle area in

the respective regions. It also shows the three lowest points

(minima) for the steering plot and the three highest points

(maxima) for the collisions plot. In Fig. 4(c), we use the

argmin and argmax to observe the shapes of these adversarial

examples. We observe that the patterns that minimize the sum

of steering angle and correspondingly maximize the collision

intensity are very similar.

After gaining an intuition that some patterns perform better

than others, we quantitatively analyze the range of parameters

including rotation angles, position and gap size that will

generate the most robust attacks, i.e., attacks that would

Fig. 4. Adversary against ’Right Corner Driving’. (a) Adversarial examples
significantly changes the steering control. (b) Some patterns cause minor
infractions whereas others cause level 3 infractions. (c) The patterns that cause
the minimum steering sum and maximum collisions look similar.

Fig. 5. (a) Histogram showing strong adversaries. (b) Depiction of range of
rotation, position and gap parameters for the most robust adversaries.

perform well against different environmental conditions for

the same scenario of right corner driving. Fig. 5 shows a

histogram of the collision amount versus the pattern IDs,

and its corresponding parameters. We detect peaks in the

histogram (Fig. 5(a)) which points out the fact that some

patterns cause more infractions than others. Fig. 5(b) shows

that some parameters play a stronger role than the others

when it comes to generating an adversarial example. For

example, pattern IDs between 180 and 260 are the most robust

adversaries. These adversaries have a narrow range of rotation

angles (90 - 115 degrees). Fig. 5(b) also shows that smaller

gap sizes perform slightly better than larger ones.

To get a stronger, underlying understanding of why these

attacks work in the first place, and why some of them work

better than the others, we peel through the layers of the e2e

imitation learning network.



Fig. 6. Attacks against Right Corner Driving: The top row shows the camera input while the bottom deconvolution images show that the reconstructed inputs
from the strongest activations determine the steering angle. (a) Right Corner Driving without attack, (b) Right Corner Driving with attack and (c) Left Corner
Driving without attack for comparison

C. Interpreting Attacks with DeConvNet

To better understand the working mechanisms of the suc-

cessful attack to the underlying imitation learning algorithm,

the activities of feature maps inside the network need to be

interpreted. Interpreting the activations requires mapping the

feature maps to the input layer, hence we adopt a state-

of-the-art technique, DeConvNet [20] to perform the map-

ping. We attach each CONV block to a DeConv counterpart,

since the backbone of the imitation learning algorithm is a

convolutional neural network which consists of eight CONV

blocks for feature extraction and two fully connected (FC)

blocks for classification. Each DeConv block uses the same

filters, batchnorm parameters and activation functions as the

CONV block except the operations are reversed. In this paper,

DeConvNet is used merely as a probe to the already trained

imitation learning network: it provides a continuous path to

map high-level feature maps down to the input image. To

interpret the network, the imitation learning network first

processes the input image and computes the feature maps

throughout the network layers. To view selected activations

in the feature maps of a layer, other activations are set to

zero, and the feature maps backtrack through the rectification,

reverse-batchnorm and transpose layers. Then, activations that

contribute to the chosen activations in the lower layer are

reconstructed. The process is repeated until the input pixel

space is reached. Finally, the input pixels which give rise to

the activations are visualized. In this experiment, we chose the

top-200 strongest/largest activations in the fifth convolution

layer and mapped these activations down to the input pixel

space for visualization. The reasons behind this choice are

twofold: 1) The strongest activations stand out and dominate

the decision-making in NNs and the top-200 activations are

sufficient to cover the important activations. 2) Activations

of the fifth CONV layer are more representative than other

layers, since going deeper would mean that the amount of

non-zero activations reduces significantly which invalidates the

deconvolution operations, while shallow layers fail to fully

capture the relation between different extracted features.

We conduct a case study to understand why an attack works.

Specifically, we take a deeper look inside the imitation network

when adversaries are attacking the autonomous driving model

for the scenario: right corner driving. The baseline case

without any attack is depicted in Fig. 6(a) while the one with

double-line attack is shown in Fig. 6(b). In the first row of

Fig.6, the input images from the front camera mounted on the

vehicle are displayed, which are fed to the imitation learning

network. In Fig. 6(a), the imitation learning network guides the

vehicle to turn right at the corner, as the steering angle output

is set to a positive value (steering +0.58). The highlighted

green regions in the reconstructed inputs in the corresponding

second row show the imitation network makes this steering

decision mainly following the curve of the double yellow line.

However, when deliberate attack patterns are painted on the

road as shown in Fig. 6(b), the imitation network fails to

perceive the painted lines which could be easily ignored by

a human; instead, the network regards the lines as physical

barriers and guides the vehicle to steer left (steering -0.18) to

avoid a collision, leading to a catastrophe. The reconstructed

image below confirms that the most outstanding features are

the painted adversaries instead of the central double yellow

lines. We speculate that the vehicle recognizes the adversaries

as the road curb. And Fig. 6(c) confirms our speculations. In

this case, the vehicle is turning left and the corresponding

reconstructed image shows the curb would contribute the

strongest activations in the network which will make the

steering angle a negative value (steering -0.24) to turn left.

The similarity of the reconstructed inputs between cases (b)

and (c) suggests that the painted attacks are misrecognized as a

curb which leads to an unwise driving decision. To summarize,



the deliberate adversaries that mimic important road features

are very likely to be able to successfully attack the imitation

learning algorithm. This also emphasizes the importance of

taking more diverse training samples into consideration when

designing autonomous driving techniques. Note that since the

imitation learning network makes driving decisions solely

based on current camera input, using one frame per case for

visualization is enough to unravel the root causes of an attack’s

success.

VI. CONCLUSION

In this paper, we develop a versatile modeling framework

and simulation infrastructure to study adversarial examples

on e2e autonomous driving models. Our model and simu-

lation framework can be applied beyond the scope of this

paper, providing useful tools for future research to expose

latent flaws in current models with the ultimate goal of

improving them. Through comprehensive experiment results,

we demonstrate that simple physical adversarial examples

that are easily realizable, such as mono-colored single-line

and double-line patterns, not only exist, but can be quite

effective under certain driving scenarios, even for models that

perform robustly without any attacks. Our analysis using the

DeConvNet method offers critical insights to further explore

attack generation and defense mechanisms. We plan to open-

source our pattern generator upon the publication of this paper.
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