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Abstract—Recent advances in machine learning, especially
techniques such as deep neural networks, are promoting a
range of high-stakes applications, including autonomous driving,
which often relies on deep learning for perception. While deep
learning for perception has been shown to be vulnerable to
a host of subtle adversarial manipulations of images, end-to-
end demonstrations of successful attacks, which manipulate the
physical environment and result in physical consequences, are
scarce. Moreover, attacks typically involve carefully constructed
adversarial examples at the level of pixels. We demonstrate the
first end-to-end attacks on autonomous driving in simulation,
using simple physically realizable attacks: the painting of black
lines on the road. These attacks target deep neural network
models for end-to-end autonomous driving control. A systematic
investigation shows that such attacks are surprisingly easy to
engineer, and we describe scenarios (e.g., right turns) in which
they are highly effective, and others that are less vulnerable
(e.g., driving straight). Further, we use network deconvolution
to demonstrate that the attacks succeed by inducing activation
patterns similar to entirely different scenarios used in training.

Index Terms—machine learning, adversarial examples, au-
tonomous driving, end-to-end learning

I. INTRODUCTION

With billions of dollars being pumped into autonomous
vehicle research to reach Level 5 Autonomy, where vehicles
will not require human intervention, safety has become a crit-
ical issue. The remarkable advances in deep learning, in turn,
suggest such approaches as natural candidates for integration
into autonomous control. One way to use deep learning in
autonomous driving control is in an end-to-end (e2e) fashion,
where learned models directly translate perceptual inputs into
control decisions, such as steering angle. Indeed, recent work
demonstrated such approaches to be remarkably successful,
particularly when learned to imitate human drivers [1].

Despite the success of deep learning in enabling greater
autonomy, a number of parallel efforts also exhibited con-
cerning fragility of these approaches to small adversarial
perturbations of inputs, such as images [4], [5]. Moreover,
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Fig. 1. (a) Existing attacks on machine learning models in the image [2]
and the physical domain [3]; (b) conceptual illustration of potential physical
attacks in the end-to-end driving domain studied in our work.

such perturbations have been shown to effectively translate
to physically realizable attacks on deep models, such as by
putting stickers on stop signs to cause miscategorization of
these as speed limit signs [3]. Fig. 1(a) offers several canonical
illustrations.

There is, however, a crucial missing link in most adver-
sarial example attacks to date: manipulations of the physical
environment that have a demonstrable physical impact (e.g., a
crash). For example, typical attacks consider only prediction



error as an outcome measure and focus either on a static
image, or a fixed set of views, without consideration of the
dynamics of closed-loop autonomous control. To bridge this
gap, our aim is to study end-to-end adversarial examples. We
require such adversarial examples to satisfy four criteria: 1)
modify physical environment, 2) be simple to implement, 3)
appear unsuspicious, and 4) have a physical impact, such as
causing a lane violation or a crash. The prevalent attacks that
introduce carefully engineered manipulations fail the simplic-
ity criterion [4], [6], whereas the simpler physical attacks, such
as stickers on a stop sign, are evaluated solely on prediction
accuracy [3].

The particular class of attacks we systematically study
is the painting of black lines on the road, as shown in
Fig. 1(b). These are unsuspicious since they are semantically
inconsequential (few human drivers would be confused) and
similar to common imperfections seen in the wild, such
as tread marks. Furthermore, we demonstrate a systematic
approach for designing such attacks so as to maximize steering
angle, and demonstrate actual physical impact (lane violations
and crashes) over a variety of scenarios, in the context of
state-of-the-art end-to-end deep learning-based controllers. We
consider scenarios where correct behavior involves turning
right, left, and going straight. Surprisingly, we find that right
turns are by far the riskiest; on the other hand, as expected,
going straight is rather robust to our class of attacks.

Our final contribution is to use network deconvolution
to explore the reasons behind successful attacks. Here, our
findings suggest that one of the causes of controller failure is
in partially mistaking painted lines on the road for a barrier
common during left-turn scenarios, thereby causing the car to
steer sharply left when it would otherwise turn right.

II. BACKGROUND AND RELATED WORK
A. Deep Neural Networks for Perception and Control

Neural network (NN) algorithms are loosely modeled after
the human brain which allows them to recognize patterns in
high-dimensional data. To address large complex problems,
Deep Neural Networks (DNNs) are designed with a deeper and
wider hierarchy so that the network model has a larger learning
capability to accommodate diverse inputs with more features.
They have been used to achieve a high level of accuracy in
perception related tasks such as image classification [7] and
semantic segmentation [7].

End-to-end (e2e) learning models comprises DNNs that
accept raw input parameters in one end and directly calculate
the desired output at the other end. Rather than explicitly
decomposing a complex problem into its constituent parts
and solving them separately, e2e models directly generate the
output from the inputs. It is achieved by applying gradient-
based learning to the system as a whole. Recently [8], e2e
models have been shown to have good performance in the
domain of autonomous vehicles, where the forward facing
camera input can be directly translated to control (steer,
throttle and brake) commands.

B. Attacks on Deep Learning for Perception and Control

Attacks or adversarial examples [4], [9] are deliberately
calculated perturbations to the input which result in an error
in the output from a trained DNN model.

The idea of using adversarial examples against static image
classification models has been studied and it has been proved
that DNNs are highly susceptible to carefully designed pixel-
level adversarial perturbations [6], [10]. Perturbed images that
would be easily ignored by humans may not be correctly
recognized by the DNN model. More recently, attacks in
the physical domain have begun to draw more attention.
Studies show that adding stickers to a stop sign in carefully
positioned ways can result in the classification model to mis-
identify the stop sign to be a speed-limit sign. However,
existing investigations on adversarial examples still focus on
classification errors associated with static images and are
conducted in limited experimental environments [3], [5],
[11]. Research considering the learning model in a dynamic
system setting, like on autonomous vehicles in the real world
is sparse [12]. In this paper, we aim to address these current
limitations and provide a methodology to systematically study
physically realizable attacks on the e2e models in realistic
driving conditions.

III. MODELING FRAMEWORK

In this paper, we focus on exploring the influence of a
physical adversary that successfully subverts RGB camera-
based e2e driving models. We define physical adversarial
examples as attacks which are physically realizable in the real
world. For example, deliberately painted shapes on the road
or on stop signs, would be classified as physical adversaries.
Fig. 1(b) displays the conceptual view of such an attack
involving painting black lines. We define prospective adver-
sarial examples as patterns. To create an adversarial example
that forces the e2e model to crash the vehicle, we need to
choose the parameters of pattern’s shape that maximize the
difference between the steering values between the ground
truth (case without an attack) and the one with the attack. For
a particular task where the e2e model has to drive the vehicle
forward while maintaining its own lane, we need to choose
an attack that causes the steering angle value to increase (or
decrease) continuously. This would cause the vehicle to veer
into the wrong lane or go offroad, which we characterize
as a successful attack. Conventional gradient descent based
attack techniques cannot be applied in this domain since the
generated attacks requires pixel-level modifications spanning
the entire input space, which is not physically realizable.
Therefore, our solution is to systematically explore a more
confined search space. We choose regions of interest on the
road where we will create attacks, and we begin by drawing a
simple pattern like a thin black strip with fixed width and
length on those regions. Then we sweep through different
positions and orientations of the pattern to see if exhaustively
going through the search space finds adversarial examples that
cause the vehicle to crash. Note that for the entirety of this
research, we use the right-driving traffic system.
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Fig. 2. Architecture overview of our simulation infrastructure including the interfaces between the CARLA simulator and the pattern generator scripts.
Visualization of the camera and the third person views from one attack episode are also shown.

At the high level, our goal is to paint a pattern (such as
the black strip) somewhere on the track (road) to cause a
crash. We formalize the latter objective as that of maximizing
or minimizing the induced steering angle, since, assuming
acceleration remains the same with an attack as without it, this
is sure to cause the car to veer off the road. Since the problem
is dynamic, we must consider the impact of the object we
paint on the track over a sequence of frames that capture the
track, along with this pattern, as the vehicle moves towards
and, eventually, over the modified track segment. Crucially,
we modify the track itself, which is subsequently captured
in vision, digitized, and used as input into the e2e model’s
controller.

To formalize, we now introduce some notation. Let [ denote
the position on the track where we place the pattern, which
we, in turn, denote by 6. We use L to denote the set of feasible
locations at which we can position the adversarial pattern
0, and S the set of possible patterns (along with associated
modifications; in our case below, for example, we consider
either a single black line, or a pair of parallel black lines,
with modifications involving, for example, length of the line
and its rotation angle). Let x; be the state of the track at
position [, and z; + § then becomes the state of the track
at this same position when the pattern J is added to it. The
state of the track at position [ is captured by the vehicle’s
vision system when it comes into view; we denote the frame
at which this location initially comes into view by f;, and let
A be the number of frames over which the track in position /
is visible to the vehicle’s vision system. Given the track state
x; at position [, the digital view of it in frame f is denoted
by ys(z;). Finally, we let fo.(ys,hs) denote the predicted
steering angle given observed digital image corresponding to
frame f, and prior history of frames, hy. We can formulate

the optimization problem we aim to solve as follows:

A
Collide Right : rrll%xz fsaWpgr(@+0),hyyr) (la)
"or=0

A
Collide Left : Irllianz fsaWpr(@i+0),hyq7) (1b)
=0

subject to: €L, 6€S8.

(Ic)

Essentially, equation la says that to optimize an attack that
causes the vehicle to veer off towards the right and collide, we
need to maximize the sum of steering angles for that particular
experiment for the frames in which the pattern is in view. And
similarly, we need to minimize the steering sum, to make the
vehicle veer left. The validity of this optimization objective is
evaluated in Section V.

IV. EXPERIMENTAL METHODOLOGY

This section introduces the various building blocks that we
used to perform our experiments. Fig. 2 shows the overall
architecture of our experimentation method, including the
CARLA simulator block, the python client block, and how
they communicate with each other to test the patterns on the
simulator.

A. Autonomous Vehicle Simulator

Simulators have been used to test autonomous vehicles
to for the sake of efficiency and safety [13]-[15]. We ran
our experiments on the CARLA [16] autonomous vehicle
simulator. Built using Unreal Engine 4 [17], CARLA has
sufficient flexibility to create reasonably realistic simulated
environments, with a robust physics engine, lifelike lighting,
3D objects including roads, buildings, traffic signs, and non-
player characters including pedestrians and other vehicles.



Fig. 2 shows how the simulator looks in the third person
view. It allows us to acquire sensor data like the camera image
for each frame (camera view), vehicle measurements (speed,
steering angle and brake) and other environmental metrics like
how the vehicle interacts with the environment in the form
of infractions and collision intensity. Since we are using e2e
models that are use only the RGB camera, we disabled the
LiDAR, semantic segmentation, and depth cameras. Steering
angle, throttle and brake parameters are the primary control
parameters for driving the vehicle in the simulation. CARLA
(stable version 0.8.2 as of writing this paper) comes with two
fully built maps: a large training map and a smaller testing
map which were used for training and testing the e2e models
respectively. CARLA also allows the user to run experiments
under various weather conditions like sunset, cloudy and rain,
which are determined by the client input. To keep a consistent
frame rate and execution time, we run CARLA using a fixed
time-step.

B. End-to-end Driving Models

The CARLA simulator comes with two trained end-to-
end models: Conditional Imitation Learning (IL) [18] and
Reinforcement Learning (RL) [16]. Their commonality ends
at using the camera image as the input and producing output
controls that include steering angle, acceleration, and brake.
The IL model uses a trained model consisting of demonstra-
tions of human driving on the simulator. In other words, the
IL model tries to mimic the actions of the expert with whom
it was trained with. RL uses a trained deep network based
on a rewards system, provided by the environment based on
the corresponding actions, without the aid of human drivers.
More specifically, for RL, the asynchronous advantage actor-
critic (A3C) algorithm was used. It is worth mentioning that
IL performed better than RL in untrained scenarios [16].

C. Physical Adversary Generation

To generate physically realizable adversaries in a systematic
manner, we first modify the original CARLA maps so that we
can place the aforementioned patterns wherever we need. We
build a pattern generator that can create different kinds of
shapes (single and double lines with various attributes) using
the pattern parameters. We create a 200 x 200 pixel region on
the road which matches the width of the road. This canvas
is mapped to the pattern file read from the server, and is
placed in the simulation. For the pattern generator, we explore
parameters like the position, width, and rotation of the line.
To generate different variations on the attack, we swept the
pattern from one side of the road to the other (position O
to 200), and varied the rotation between 0 and 180 degrees
for each step. Similarly, we created a more advanced pattern
which involves two parallel black lines we call the double-line
pattern. It comprises the previous parameters, viz., position,
rotation, and width, with the addition of the new gap parameter
which is the distance between the two parallel lines. Fig. 2
shows some examples of the generated double line patterns
which can be seen overlaid on the road in frames 55 and 70.

D. Data Collection and Processing

To ensure a broad scope to test the effectiveness of the
different attacks in various settings, we conduct experiments
by changing various environment parameters like the maps
(training map and testing map), scenes, weathers (clear sky,
rain, and sunset), driving scenarios (straight road, right corner
and left corner), e2e models (IL and RL) and the entire search
space for the patterns. To be able to search the design space
thoroughly, we prepare a CARLA docker which allow us to
run as many as 16 CARLA instances simultaneously, spread
out over 8 RTX GPUs [19]. We choose the baseline scenarios
(no attack) where the e2e models drive the vehicle with
minimal infractions. We ran the experiments at 10 fps, and
collected the following data for each camera frame (a typical
experiment ran between 60 to 100 frames): camera image
from the mounted RGB camera, vehicle speed, predicted
acceleration, predicted steering, predicted braking, percentage
of vehicle on the wrong lane, percentage of the vehicle on the
sidewalk (offroad), and collision intensity. Fig.2 also shows
this dataflow which suffices to assess the ramifications of a
particular pattern in a certain experiment.

V. EXPERIMENTAL RESULTS

Through experimentation, we demonstrate the existence of
conspicuous physical adversaries that successfully break the
e2e driving models. These adversaries do not need to be subtle
or sophisticated modifications. Although they can be easily
distinguished and thus ignored by humans drivers, they are
effective in generating serious traffic infractions for the e2e
autonomous driving models we have evaluated.

A. Summary of Physical Adversaries

We generate two primary sets of adversary patterns: single
line with varying positions and rotation angles, and double
lines with varying positions, rotation angles and distance (gap)
between the lines. In Fig. 3(a), we define different safety
regions of the road in ascending order of risk. We start with
the vehicle’s own lane (safe region), the opposite lane (unsafe),
offroad/sidewalk (dangerous) and regions of collisions (very
dangerous) past the offroad region. Fig.3(b)(c)(d)(e) shows
that by sweeping through the three scenarios (straight road
driving, right corner driving, left corner driving) with the
single and double line patterns, for both the training map and
testing maps, we see that some patterns cause infractions. First,
we observe the transferability of adversaries since some of our
generated adversarial examples cause both IL (Fig.3(b)) and
RL (Fig.3(d)) models to produce infractions. Second, the IL
model performs better than its RL counterpart. Additionally,
we notice that the double line adversarial examples cause more
severe infractions than its single line counterpart. Lastly, we
observe that Straight Road Driving and Left Corner Driving
are more resilient to level 2, and level 3 infractions, hence, in
the next section, we analyze the cases for the Right Corner
Driving case with Imitation Learning more thoroughly.
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B. Analysis of Attack Objectives

To find the optimal adversary which would produce a level
3 infraction, i.e., a collision, for the scenario involving Right
Turn Driving, we have to find a pattern which would minimize
the sum of steering angles as hypothesized in equation (1a).
A positive steering angle denotes steering towards the right
and a negative steering angle implies steering towards the
left. Fig. 4(a)(b) show the steering sum and infraction sums
respectively, over the course of 375 combinations of double
line patterns. The infractions are normalized because collision
data is recorded in SI units of intensity [kg*m/s], whereas
the lane infractions are in percentages of the vehicle area in
the respective regions. It also shows the three lowest points
(minima) for the steering plot and the three highest points
(maxima) for the collisions plot. In Fig. 4(c), we use the
argmin and argmax to observe the shapes of these adversarial
examples. We observe that the patterns that minimize the sum
of steering angle and correspondingly maximize the collision
intensity are very similar.

After gaining an intuition that some patterns perform better
than others, we quantitatively analyze the range of parameters
including rotation angles, position and gap size that will
generate the most robust attacks, i.e., attacks that would
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perform well against different environmental conditions for
the same scenario of right corner driving. Fig. 5 shows a
histogram of the collision amount versus the pattern IDs,
and its corresponding parameters. We detect peaks in the
histogram (Fig. 5(a)) which points out the fact that some
patterns cause more infractions than others. Fig. 5(b) shows
that some parameters play a stronger role than the others
when it comes to generating an adversarial example. For
example, pattern IDs between 180 and 260 are the most robust
adversaries. These adversaries have a narrow range of rotation
angles (90 - 115 degrees). Fig. 5(b) also shows that smaller
gap sizes perform slightly better than larger ones.

To get a stronger, underlying understanding of why these
attacks work in the first place, and why some of them work
better than the others, we peel through the layers of the e2Ze
imitation learning network.
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C. Interpreting Attacks with DeConvNet

To better understand the working mechanisms of the suc-
cessful attack to the underlying imitation learning algorithm,
the activities of feature maps inside the network need to be
interpreted. Interpreting the activations requires mapping the
feature maps to the input layer, hence we adopt a state-
of-the-art technique, DeConvNet [20] to perform the map-
ping. We attach each CONV block to a DeConv counterpart,
since the backbone of the imitation learning algorithm is a
convolutional neural network which consists of eight CONV
blocks for feature extraction and two fully connected (FC)
blocks for classification. Each DeConv block uses the same
filters, batchnorm parameters and activation functions as the
CONYV block except the operations are reversed. In this paper,
DeConvNet is used merely as a probe to the already trained
imitation learning network: it provides a continuous path to
map high-level feature maps down to the input image. To
interpret the network, the imitation learning network first
processes the input image and computes the feature maps
throughout the network layers. To view selected activations
in the feature maps of a layer, other activations are set to
zero, and the feature maps backtrack through the rectification,
reverse-batchnorm and transpose layers. Then, activations that
contribute to the chosen activations in the lower layer are
reconstructed. The process is repeated until the input pixel
space is reached. Finally, the input pixels which give rise to
the activations are visualized. In this experiment, we chose the
top-200 strongest/largest activations in the fifth convolution
layer and mapped these activations down to the input pixel
space for visualization. The reasons behind this choice are
twofold: 1) The strongest activations stand out and dominate
the decision-making in NNs and the top-200 activations are
sufficient to cover the important activations. 2) Activations
of the fifth CONV layer are more representative than other

layers, since going deeper would mean that the amount of
non-zero activations reduces significantly which invalidates the
deconvolution operations, while shallow layers fail to fully
capture the relation between different extracted features.

We conduct a case study to understand why an attack works.
Specifically, we take a deeper look inside the imitation network
when adversaries are attacking the autonomous driving model
for the scenario: right corner driving. The baseline case
without any attack is depicted in Fig. 6(a) while the one with
double-line attack is shown in Fig. 6(b). In the first row of
Fig.6, the input images from the front camera mounted on the
vehicle are displayed, which are fed to the imitation learning
network. In Fig. 6(a), the imitation learning network guides the
vehicle to turn right at the corner, as the steering angle output
is set to a positive value (steering +0.58). The highlighted
green regions in the reconstructed inputs in the corresponding
second row show the imitation network makes this steering
decision mainly following the curve of the double yellow line.
However, when deliberate attack patterns are painted on the
road as shown in Fig. 6(b), the imitation network fails to
perceive the painted lines which could be easily ignored by
a human; instead, the network regards the lines as physical
barriers and guides the vehicle to steer left (steering -0.18) to
avoid a collision, leading to a catastrophe. The reconstructed
image below confirms that the most outstanding features are
the painted adversaries instead of the central double yellow
lines. We speculate that the vehicle recognizes the adversaries
as the road curb. And Fig. 6(c) confirms our speculations. In
this case, the vehicle is turning left and the corresponding
reconstructed image shows the curb would contribute the
strongest activations in the network which will make the
steering angle a negative value (steering -0.24) to turn left.
The similarity of the reconstructed inputs between cases (b)
and (c) suggests that the painted attacks are misrecognized as a
curb which leads to an unwise driving decision. To summarize,



the deliberate adversaries that mimic important road features
are very likely to be able to successfully attack the imitation
learning algorithm. This also emphasizes the importance of
taking more diverse training samples into consideration when
designing autonomous driving techniques. Note that since the
imitation learning network makes driving decisions solely
based on current camera input, using one frame per case for
visualization is enough to unravel the root causes of an attack’s
success.

VI. CONCLUSION

In this paper, we develop a versatile modeling framework
and simulation infrastructure to study adversarial examples
on e2e autonomous driving models. Our model and simu-
lation framework can be applied beyond the scope of this
paper, providing useful tools for future research to expose
latent flaws in current models with the ultimate goal of
improving them. Through comprehensive experiment results,
we demonstrate that simple physical adversarial examples
that are easily realizable, such as mono-colored single-line
and double-line patterns, not only exist, but can be quite
effective under certain driving scenarios, even for models that
perform robustly without any attacks. Our analysis using the
DeConvNet method offers critical insights to further explore
attack generation and defense mechanisms. We plan to open-
source our pattern generator upon the publication of this paper.
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