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Abstract

A critical decision point when training predictors using multiple studies is whether these studies
should be combined or treated separately. We compare two multi-study learning approaches in the
presence of potential heterogeneity in predictor-outcome relationships across datasets. We consider 1)
merging all of the datasets and training a single learner, and 2) cross-study learning, which involves
training a separate learner on each dataset and combining the resulting predictions. In a linear regression
setting, we show analytically and confirm via simulation that merging yields lower prediction error than
cross-study learning when the predictor-outcome relationships are relatively homogeneous across studies.
However, as heterogeneity increases, there exists a transition point beyond which cross-study learning
outperforms merging. We provide analytic expressions for the transition point in various scenarios and
study asymptotic properties.

I. INTRODUCTION

Prediction and classification models trained on a single study often perform considerably worse
in external validation than in cross-validation [1, 2]. Their generalizability is compromised by
overfitting, but also by various sources of study heterogeneity, including differences in study
design, data collection and measurement methods, unmeasured confounders, and study-specific
sample characteristics [3]. Using multiple training studies can potentially address these challenges
and lead to more replicable prediction models. In many settings, such as precision medicine,
multi-study learning is motivated by systematic data sharing and data curation initiatives. For
example, the establishment of gene expression databases such as Gene Expression Omnibus [4]
and ArrayExpress [5] and neuro-imaging databases such as OpenNeuro [6] has facilitated access
to sets of studies that provide comparable measurements of the same outcome and predictors
(even if the original measurements are not be comparable, they can often be made comparable
through preprocessing and normalization procedures [7, 8]). For problems where such a set of
pilable, it is important to systematically integrate information across datasets when
.- pdfe|ement prediction and classification models.

oach is to merge all of the datasets and treat the observations as if they are all from the
for example, see [9, 10]). The resulting increase in sample size can lead to improved
Nd better performance when the datasets are relatively homogeneous. Also, the merged
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dataset is often representative of a broader reference population than any of the individual
datasets. Xu et al. [9] showed that a prognostic test for breast cancer metastases developed from
merged data performed better than the prognostic tests developed using individual studies. Zhou
et al. [11] proposed hypothesis tests for determining when it is beneficial to pool data across
multiple sites for linear regression, compared to using data from a single site.

Another approach is to combine results from separately trained models. Meta-analysis and
ensembling both fall under this approach. Meta-analysis combines summary measures from
multiple studies to increase statistical power (for example, see [12, 13]). A common combination
strategy is to take a weighted average of the study-specific summary measures. In fixed effects
meta-analysis, the weights are based on the assumption that there is a single true parameter
underlying all of the studies, while in random effects meta-analysis, the weights are derived from
a model where the true parameter varies across studies according to a probability distribution.
When learners are indexed by a finite number of common parameters, meta-analysis applied to
these parameters can be used for multi-study learning, with useful results [12]. Various studies
have compared meta-analysis to merging. For effect size estimation, Bravata and Olkin [14]
showed that merging heterogeneous datasets can lead to spurious results while meta-analysis
protects against such problematic effects. Taminau et al. [15] and Kosch and Jung [16] found that
merging had higher sensitivity than meta-analysis in gene expression analysis, while Lagani et al.
[17] found that the two approaches performed comparably in reconstruction of gene interaction
networks. Ensemble learning methods [18], which combine predictions from multiple models,
can also be used to leverage information in a multi-study setting. By combining predictions,
ensembling leads to lower variance and higher accuracy, and is applicable to more general classes
of learners than meta-analysis. Patil and Parmigiani [19] proposed cross-study learning, defined as
weighted average ensembles of prediction models trained on different studies, as an alternative to
merging. They showed empirically that when the datasets are heterogeneous, cross-study learning
can lead to improved generalizability and replicability compared to merging and meta-analysis.

In this paper, we provide theoretical guidelines for determining whether it is more beneficial to
merge or to ensemble. We consider both low-dimensional and high-dimensional linear regression
settings by studying merged and cross-study learners (CSLs) based on ordinary least squares (LS)
and ridge regression. We hypothesize a mixed effects model for heterogeneity and show that
merging has lower prediction error than cross-study learning when heterogeneity is low, but as
heterogeneity increases, there exists a transition point beyond which cross-study learning outper-
forms merging. We characterize this transition point analytically and study it via simulations. We
also compare merging and cross-study learning in practice, using microbiome data.

II. PROBLEM DEFINITION

We will use the following matrix notation: Iy is the N x N identity matrix, Onxm is an N x M
matrix of 0’s, Oy is a vector of 0’s of length N, tr(A) is the trace of matrix A, diag(u) is a diagonal
matrix with u along its diagonal, and (A);; is the entry in row i and column j of matrix A. Other
notation introduced throughout the paper is summarized in Table 1 of Appendix C.

we have K comparable studies that measure the same outcome and the same p
.- pdfelement d the datasets have been harmonized so that measurements across studies are on the
or study k, let 1 denote the number of observations, Y, € R™ the outcome vector,
'-*P the design matrix, where the first column of X} is a vector of 1’s if there is an
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intercept. Assume the data are generated from the linear mixed effects model
Yie = XiB + Ziyi + €k (1)

where B € R? is the vector of fixed effects, Z, € R"™*7 is the design matrix for the random
effects obtained by subsetting X, v, € R7 is the vector of random effects with E[v,]| = 0,, and
Cov(Bi) = G = diag(of,...,07) where 07 > 0, e, € R™ is the vector of residual errors with
Elex] = 04, and Cov(ey) = 0?1, and Cov(yx, €x) = Oupxn,- Forj=1,...,q, if (T]-z > 0, then the
effect of the corresponding predictor differs across studies, and if (7]-2 = 0, then the predictor has
the same effect in each study.

The relationship between the predictors and the outcome in a given study can be seen as a
perturbation of the population-level effect vector . The degree of heterogeneity in predictor-
outcome relationships across studies can be summarized by the sum of the variances of the
random effects divided by the number of fixed effects: 02 = tr(G)/p. We are interested in
comparing the performance of two multi-study learning approaches as o2 varies: 1) merging all
of the studies and fitting a single linear regression model, and 2) fitting a linear regression model
on each study and forming a CSL by taking a weighted average of the predictions.

Learners For low-dimensional settings where p < ny for all k, we consider merged and cross-
study learners based on LS. The LS estimator of 8 based on the merged data is

Brsm = (XTX)"1xTy 2)

where Y = (Y],...,Y)T € RE1 ™ and X = [XT|...|XZ] " € REE1 P The LS estimator based
on study k is

Brsi = (X Xio) " X[ Y (3)
and the LS cross-study estimator is
A K P
Brsc =) wiPrsk 4)
k=1

K
where Y w; = 1.
k=1
For high-dimensional settings where p > n; for some k, we consider merged and cross-study

learners based on ridge regression. When n; < p, X,Z X} is not invertible, so B is not estimable
using LS. Ridge regression overcomes the non-invertibility problem [20], which can also arise
in low-dimensional settings with highly correlated predictors, by penalizing the /;-norm of the
coefficient vector. The predictors are typically standardized prior to fitting the model since ridge
regression shrinks all predictors proportionally (for example, Horel and Kennard’s seminal paper
[20] assumes the predictors have mean 0 and variance 1). The coefficient estimates based on the
data are then transformed back to the original scale. Note that ridge regression is
.- pdfe|ement riant [21], so without loss of generality, we assume that the predictors are scaled but
prior to applying ridge regression. We first provide the form of the ridge regression
the case where an intercept is included. Let the scaled versions of X} and X be
x = XSk and X = XS, where Sy, S € RP*? are positive definite scaling matrices.
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If scaling is not necessary or desirable (for example, if the predictors are measured in the same
units), then set Sy = § = I,,. Otherwise, let Sy be diagonal with (Sx)11 = 1 and (Sk);; equal to
the inverse standard deviation of column j of Xj for j > 1 and let S be diagonal with (S);; =1
and (S);; equal to the inverse standard deviation of column j of X for j > 1. The merged ridge
regression estimator of B can be written as

Brm = S(X'X + AL )XY )
= (X'X+AL,s7) XY (6)

where A > 0 is the regularization parameter and I, is obtained from I, by setting (Iy)11 = 0, so
that the intercept is not regularized [21]. The estimator of B from study k is

A~ ~ o~ o T
Bri = Sk (X3 Xic + M, ) 7' Xi Y (7)
= (X5 X+ M, S2) 7 XY (8)
and the CSL estimator is
~ K A
Brc =) wiPrx )
k=1

If there is no intercept, then we set (Sx)11 and (S)i1 to be the inverse standard deviations of the
first columns of Xy and X respectively and replace I, with I, in the expressions above.

For simplicity, we assume the weights wy and the regularization parameters A and A are
predetermined. Note that for linear regression, averaging predictions across study-specific learners
is equivalent to averaging the estimated coefficient vectors across study-specific learners and then
computing predictions. Thus, cross-study learning based on linear regression is similar to meta-
analysis of effect sizes. In particular, when p = 1, calculating ;s ¢ is equivalent to performing
a standard univariate meta-analysis. When p > 1, s c weights each predictor equally in a
given study while meta-analytic approaches, which involve either performing separate univariate
meta-analyses for each predictor or performing a multivariate meta-analysis (for example, see
[22, 23]), do not impose this constraint.

Performance Comparison Given a test set with design matrix Xy, and outcome vector Yy, the
goal is to identify conditions under which cross-study learning has lower mean squared prediction
error (MSPE) than merging, i.e.

E[[[Yo — XoB.,cll3] < E[l|Yo — XoB. mll3]

where the expectations are taken with respect to Yo and ||(u1,...,um)" |2 = /i, u? is the (>
norm.

III. REsuLts

[
| pdfelement two cases for the structure of G: equal variances and unequal variances. Let
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ariance 0(2].). In the equal variances case where r = 1 and 0]2 = o2 for ji=1,...,9,we



provide a necessary and sufficient condition for the CSL to outperform the merged learner. In
the unequal variances case, we provide sufficient conditions under which the CSL outperforms
the merged learner and vice versa. These conditions allow us to characterize a transition point in
terms of 02 between a regime that favors merging and a regime that favors cross-study learning.

In order to present the results more concisely, let R = XX, Ry = XE Xy, M, = Ry + AkIp_ S;Z,
and M = R+ Al S~2. Also, let [(j) € R7*"™ be a matrix where (T'(;)); = 1 if random effect 7 is
the Ith random effect with variance 0(2].) and (T'(j))i = 0 otherwise, so that GT'(j) subsets G to the
columns corresponding to ¢Z,.

Proofs of the results are provided in Appendix A.

i. Least Squares

For the LS results, assume we are in a low-dimensional setting where 1, > p for all k.

i.1 Equal Variances

Definition 1. Define

.9 Yoy wir(R; 'Ro) — tr(R™!Ry)
Ts =0 X = X 1K T T I X > T (10)
p tr(R Y i1 Xk ZkaXkR Ro) — Y1 wktr(ZO Z())
Theorem 1.
Suppose the random effects have equal variances ( 0’]-2 =c*forj=1,...,q) and
K K
tr(R Y X[ Z ZE Xk R 'Roy) — Y witr(Z{Zp) > 0 (11)

k=1 k=1

Then E[HY() — XO,B\LS,C |%] < E[HY() — XOﬁLS,MH%] lf&lﬂd only lfﬁ > TLS.

By Theorem 1, for any fixed weighting scheme that does not depend on G, satisfies Equation
11, and leads to in 175 > 0, 115 represents a transition point from a regime where merging
outperforms cross-study learning to a regime where cross-study learning outperforms merging.
When equal weights are used and Ry is not identical for all k, it follows from Jensen’s operator
inequality [24] that Equation 11 holds and the numerator of 1rs is positive, so the transition point
always exists.

Corollary 1.1.
Suppose the random effects have equal variances and there exist positive definite matrices A1, Ay, Az € RP*P
such that as K — oo,

1. LYK Ry — Aq

2. YRR = Ay

X'72,ZTX, — A
a pdfelement ke ’

3ATRy) — tr(Z5Zp) > 0
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where — denotes almost sure convergence. If we set wy = 1, then

tr(AsRg) — tr(A7'R
ris - 02 x 1 x —trldaRo) = trdy Ro) 12
tT’(Al A3A1 R()) tT(ZOZO)

For example, suppose all study sizes are equal to n, the predictors are independent and
identically distributed within and across studies, and E[Ry], E[R, '], E[X]ZxZ]Xy] € RP*¥
are positive definite. Then Corollary 1.1 applies with A; = E[Ri], A, = E[R;'], and A; =
E(X]Z;ZI X}]. In the special case where p = q = 1 and the predictor follows N(0,v), the limit
becomes

2
0’6
— 1
(n—2)v (13)
and the asymptotic transition point is controlled simply by the variance of the residuals, the
variance of the predictor, and the study sample size.

i.2 Unequal Variances

Definition 2. Define

o? YK, w?tr(R; 'Ro) — tr(R™!Ry)
ws1 = o 1 TIvK T T 7Tw o1 K - 2; (1T 7T (14)
P j:1?.).(,r ﬁj(f?’(R Zkzl Xk Zkl“(j)l”(].)ZkaR Ro) — Zkzl wktr(l"(].)ZO Zgl"(]-)))
o2 Yo wir(R;'Ro) — tr(R™!Ry)
sz =~ 1 TIvK T T 7Tw -1 K 2, (1T 7T (15)
p ]=11?r ﬁj(tT(R Zkzl Xk ZkF(]-)I‘(j)ZkaR Ro) — Zkzl wktr(r(]‘)ZO Zor(,‘)))
Theorem 2.

(a) Suppose

K K
max tr(R™ Y X{ ZiT (hT( Zg Xk R ' Ro) — ) witr(T{;y Zg ZoI () > 0 (16)
T k=1 k=1

Then E[HYO — XQBLSIC |%] Z E[HY() — X()ﬁALSIMH%] when ﬁ < TLS,1-

(b) Suppose

K K
jglunrtr(R—l Y XiZiD ()T ([ ZEXkR ' Ro) — ) witr (T Zg ZoT () > 0 (17)
e k=1 k=1

Then E[HYO — X()BLS’C |%] S E[HYO — XOB\LS,MH%] when ﬁ 2 TLS,2-

a pdfelement
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2. YR = Ay
1 vK T T 7T .
3. & Li=1 Xe ZkL(h L (2 Xk — A(j) forj=1,...,r

and we set wy = +.

(a) If
max (ir(A A Ay Ro) — (T ZEZoT ) > 0 (18)
then
Trs,1 — o X tr(AzRo) — tr(A;"Ro) 19)
©op o max g(ir(Ar Ag Ay Ro) — ir(T(, Zg ZoT 7))
(b) If
min (tr(Ay A Ay 'Ro) — tr(L(; Zy ZoT ) > 0 20)
then
TLs2 — oe X tr(A2Ro) — tr(Ay "Ro) (21)
’ P min mij(tr(Al_lA(j)AflRO) - tr(l“(T],)Zngl"(j)))

=1,

In the unequal variances scenario, we can establish a transition interval such that the merged
learner outperforms the CSL when ¢? is smaller than the lower bound of the interval and the CSL
outperforms the merged learner when o2 is greater than the upper bound of the interval. Note
that the conditions and results for the equal variances scenario are special cases of the conditions
and results for the unequal variances scenario. When r = 1, we have m; = g, r(1) = I;, and

Ts1 = TLs2 = TLs-

i.3 Optimal Weights

It can be shown (see Appendix A) that the optimal weights for the CSL are given by
_ (r(GZ{Zo) 4 o2tr(R; ' Ry)) !
SR, (1(GZ3 Zo) + 02tr(RRy)) !

where the weight for study k is proportional to the inverse MSPE of the LS learner trained on that
study.

In the equal variances setting, tr(GZ} Zy) = 0tr(Z}Zy). We saw previously that when the
weights satisfy Equation 11 and do not depend on 02, 7.5 characterizes the value of ¢2 beyond
which cross-study learning outperforms merging. The optimal weights depend on ¢?, so T
depends on ¢ under the optimal weighting scheme. Thus, it is difficult to obtain a closed-form
expression for the transition point, though numerical methods can be used to solve for the value of
02 such that 02 = 175. In Appendix A, we provide a closed-form approximation of the transition
hat the transition point under any fixed weighting scheme provides an upper bound
.- pdfe|ement tion point under the optimal weighting scheme. We also remark that in the special
h = 1, the optimally weighted CSL has the same variance as the estimator from the
ffects model. If o2 and ¢2 are known, then the CSL will always be at least as efficient

d learner when p = 1, but in practice, 02 and ¢? need to be estimated.

w

(22)
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ii. Ridge Regression

Below, we present results for ridge regression that are applicable to both low- and high-dimensional
settings.

ii.1 Equal Variances

Definition 3. Define

brc = Bias(XoPrc) = ZkakXOMk IS¢ 2B (23)
brm = Bias(XoBrm) = —AXoM I, S7*B (24)
e 02 (T witr(My ' ReM'Ry) — tr(M ! X ReM ' Ro) ) + bk cbr.c — bk ybrov
p tr(M— Y X ZkZI X M1 Ro) — Ly witr(M ' X[ Z ZI XM, ' Ry)
(25)
Theorem 3.

Suppose the random effects have equal variances and

tr(M~ 'Y X{ZZ{X M 'Ro) — Y_witr(My ' X[ ZxZ{ XkM 'Ro) > 0 (26)
k k

Then E[||Yo — 2] < E[||Yo — XoBrm||3] if and only if 2 > .

ii.2 Unequal Variances

Definition 4. Define

0'2 (Zk w%tr(M‘leM_le) — tT(M_l Zk RkM_lR())) + bITz CbR C — bIEMbR,M

R = 1 - =
pjrzr}??.(’rﬁj( r(M=1Y, XTZkl"(])l"( )ZTXkM 1Ro) — Ly witr(M, XTzkr(,)r( )ZTXkMk Ry))
(27)
3 (Zk w ( leM 1R0) t?’(M_l Y RkM_1R0)> + bITQ CbR Cc— bIT{ MbR,M
R2 = 1 . 1 =
p}fnm m]( r(M-1Y, XTZkl"(])l"(])ZTXkM 1Ro) — Ly witr(M, XTZkl"(])l"(])ZTXkMk Ry))
(28)
Theorem 4.

(a) Suppose

r(MY Xg ZiD (T () Zg XM ' Ro) — ) Switr (M X Z4T ()T () Zi XM, ' Ro) > 0
k k

B pdfelement

(29)
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(b) Suppose
jglunrtr(M*l Y X{ ZiT ()T ([ Zg XkM ' Ro) — ) witr (M ' X{ ZyT (3T () ZE XM, ' Ro) > 0
T k k

(30)

Then E[||Yo — XoBr,c 3] < E[||Yo — XOﬁR,MH%] when 02 > g 5.

Again, the conditions and results for the equal variances scenario are special cases of the
conditions and results for the unequal variances scenario.

iii. Interpretation

The covariance matrices of linear regression coefficient estimators can be written as a sum of two
components, one driven by between-study variability and one driven by within-study variability.
For example, for LS we have

K K
Cov(Brsc) = Y wRTGI" +02 Y wf (X[ X;) !
k=1 k=1

where I' € RP*1 is the matrix such that Z; = X;I', and

K
Cov(Brsm) = (X"X) ™' ) [X{ZkGZp X (XTX) 7! + o2 (XTX) ™!
k=1

Since the merged learner ignores between-study heterogeneity, the trace of its first component is
generally larger than that of the CSL. However, since the merged learner is trained on a larger
sample, the trace of its second component is generally smaller than that of the CSL. The merged
and cross-study learners based on LS are unbiased, so the transition point depends on the trade-off
between these two components. When p = 1, Expression 13 shows that having a higher-variance
predictor favors cross-study learning over merging, since increasing the variance of the predictor
amplifies the impact of the random effect.

Unlike LS estimators, ridge regression estimators are biased as a result of regularization. The
transition point for ridge regression depends on the regularization parameters used on the merged
and individual datasets. It also depends on the true coefficient vector  through the squared
bias terms in the MSPEs of the merged and cross-study learners, so an estimate of B is needed
to compute the expressions in Theorems 3 and 4. These expressions can vary considerably for
different choices of regularization parameters and different values of . We did not provide the
asymptotic results for ridge regression as K — oo (with the study sizes held constant) because this
scenario is not entirely fair to the CSL. For p > n; and sufficiently large K, the merged learner will
be in the low-dimensional setting while the CSL will remain in the high-dimensional setting. As
K — 0o, the bias term approaches 0 for the merged learner (assuming A/K — 0) but not for the
CSL, which suggests that when K is sufficiently large, merging will always yield lower MSPE than
earning. Also, due to the squared bias term in the MSPE, it is not straightforward to
.- o7 ) {=1T00=a 1@l al CSL weights for ridge regression.

1, the transition points for LS and ridge regression depend on the design matrix of the
ever, the test design matrix drops out when it is a scalar multiple of an orthogonal
Of example, this occurs when p = 1.
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IV. SIMULATIONS

We conducted simulations to verify the theoretical results for LS and ridge regression and to
compare them to the empirical transition points for three methods for which we could not
find a closed-form solution: LASSO, single hidden layer neural network, and random forest.
We also made performance comparisons with a linear mixed effects model, univariate random
effects meta-analyses, and multivariate random effects meta-analysis. We used the R packages
glmnet, nnet, randomForest, nlme, metafor, and mvmeta for ridge regression/LASSO, neural
networks, random forests, linear mixed effects models, univariate meta-analyses, and multivariate
meta-analyses respectively.

We considered four simulation scenarios corresponding to the settings in Theorems 1, 2, 3,
and 4. We used 4 training studies and 4 test studies of size 40 for all scenarios. We set ¢2 = 1. For
the low-dimensional settings, we set p = 10, ¢ = 5, and generated 5 f’s from N(0,1) and 5 from
N(0,0.012), with 5 of the B’s having random slopes. For the high-dimensional settings, we set
p = 100, ¢ = 10, and generated 30 B’s from N(0,1) and 70 from N(0,0.01?), with 10 of the B’s
having random slopes. For each simulation scenario, we fixed the predictor values in the training
and test sets and the model hyperparameters. Predictor values were sampled from datasets in
the curatedOvarianData R package [25]. Model hyperparameters were tuned once using 5-fold
cross-validation with outcomes generated under o = 0. For various values of ¢2, including 0
and the theoretical transition point, we generated random slopes, residual errors, and outcomes
for each training and test study according to Model (1), then trained and tested the following
approaches: linear mixed effects model, random effects meta-analysis of univariate LS estimates,
random effects multivariate meta-analysis, and merged learners and CSLs based on LS, ridge
regression, LASSO, neural networks, and random forests. For ridge regression and LASSO, the
predictors were standardized prior to model fitting. For linear mixed effects, we fit the true model,
using restricted maximum likelihood to estimate G. For meta-analysis of univariate LS estimates,
we used the DerSimonian and Laird method. For multivariate meta-analysis, we used restricted
maximum likelihood to estimate G, constraining the covariance matrix to be diagonal. LS, linear
mixed effects, and meta-analysis were only applied in the low-dimensional setting. We performed
1000 replicates for each value of 02 and estimated the MSPE of each estimator by averaging the
squared error across replicates.

As seen in Figures 1 and 2, the empirical transition points for LS and ridge regression agree
with the theoretical results from Theorems 1 and 3 (similar figures for Theorems 2 and 4 are
provided in Appendix B). The methods all have similar empirical transition points except for
random forest, which performed considerably worse than all of the other approaches (see Figure 8
in Appendix). The poor performance of random forest could be because the data were generated
from a linear model. The univariate meta-analysis approach also performed poorly 8, which is
unsurprising because the generating model is a multivariate model. The performance of the other
models relative to the data generating model is summarized in Figure 3 for three values of o2.
When 02 = 0, the merged regression learners and multivariate meta-analysis perform as well as
or slightly better than the mixed effects model and outperform the CSLs. The merged neural
ner does slightly worse than the regression learners. At the LS transition point, all
.- pdfelement gl similarly. Beyond the transition point, the models continue to perform similarly
bgeneity is high, all models perform poorly), with the CSLs slightly outperforming
earners and multivariate meta-analysis performing as well the mixed effects model.
e three values of 02, LASSO performed best, even slightly outperforming the mixed
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effects model and multivariate meta-analysis. This is likely because several of the true ’s were

close to 0.
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Figure 3: Performance comparisons for three values of o2 (the random forest and univariate
meta-analysis results are omitted to avoid stretching the y-axis but are provided in Appendix
B). LS,M: merged LS learner; LS,C: CSL based on LS; R,M: merged ridge regression learner; R,C:
CSL based on ridge regression; L,M: merged LASSO learner; L,C: CSL based on LASSO; NN,M:
merged neural network; NN,C: CSL based on neural networks; MA: multivariate meta-analysis.

V. METAGENOMICS APPLICATION

To illustrate in a practical example, we compared the performance of merging and cross-study
learning used datasets from the curatedMetagenomicData R package [26], which contains a col-
lection of curated, uniformly processed human microbiome data. We focused on three gut
microbiome studies that measured cholesterol as well as gene marker abundance in stool, restrict-
ing to samples from female patients: 1) Qin et al.’s 2012 study of Chinese type 2 diabetes patients
and non-diabetic controls (n; = 151 samples from independent female patients) [27], 2) Karlsson
et al.’s 2013 study of middle-aged European women with normal, impaired or diabetic glucose
- 145 samples from independent female patients) [28], and 3) Heintz-Buschart et al’s
- pdfeloment f patients with a 'family history of type 1 di'abetes (n(? = .32 samples fI:OI’n 13 female

. We used merging and cross-study learning to train linear regression models to
sterol, calculated the theoretical transition interval, and evaluated the performance of

oaches.
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We considered two scenarios: 1) training on different subsets of the same study and testing on
a held out subset, and 2) training on different studies and testing on an independent study. In the
first scenario, we randomly split the Qin et al. 2012 samples into five datasets of approximately
equal size, using four for training and the remaining one for testing. We used age and the top
five marker abundances most correlated with the outcome in the training set as the predictors.
In second scenario, we used the Qin et al. 2012 and Karlsson et al. 2013 datasets for training
and the Heintz-Buschart et al. 2016 dataset for testing. We used age and the top twenty marker
abundances most correlated with the outcome in the training set as the predictors. In each
scenario, we fit merged and CSL versions of LS and ridge regression. We estimated G by fitting a
linear mixed effects model using residual maximum likelihood, allowing each predictor to have
a random effect. For the CSLs, we used the optimal weights given by Equation 22, plugging in
the estimate of G. We calculated the theoretical transition bounds from Theorems 2 and 4 and
compared them to the estimate of 02. We evaluated the performance of the models empirically by
calculating the prediction error on the test set.

In the first scenario 02 was estimated to be 0.00472, Trs,1 wWas 0.10182, and TR,1 Was 0.06042,
suggesting that merging was expected outperform cross-study learning. In the test set, the merged
versions of LS and ridge regression both had lower prediction error than the respective CSL
versions (Figure 4). In the second scenario, 02 was estimated to be 18.322, TLs2 Was 15.252, and TR2
was 4.422. In the test set, the CSL versions of LS and ridge regression both had lower prediction
error than the respective merged versions (Figure 5).

150-

RMSPE
=
(=]

50-

LS.M LS.C RM R.C
Learner

Figure 4: Root mean square prediction error (RMSPE) for the first scenario with bootstrap
confidence intervals. LS,M: merged LS learner; LS,C: CSL based on LS; R,M: merged ridge
regression learner; R,C: CSL based on ridge regression.

VI. DiscussioN

a pdfelement
ity of large and increasingly heterogeneous collections of data for training classifiers

g traditional approaches for training and validating prediction and classification
~At the same time, it is also opening opportunities for new and more general paradigms.

The Trial Version

14



50-

RMSPE

30-

LS,M LS.C R.M R.C
Learner

Figure 5: Root mean square prediction error (RMSPE) for the second scenario with bootstrap
confidence intervals. LS,M: merged LS learner; LS,C: CSL based on LS; R,M: merged ridge
regression learner; R,C: CSL based on ridge regression.

One of these is cross-study machine learning via CSLs, motivated by variation in the relation
between predictors and outcomes across collections of similar studies. A natural benchmark for
these methods is to combine all training studies, to exploit the power of larger training sample
sizes. In previous work [19], merged learners perform better than CSLs in low-heterogeneity settings.
As heterogeneity increases, however, our earlier simulations indicated a "transition point" in the
heterogeneity scale beyond which acknowledging cross-study heterogeneity becomes preferable,
and the CSLs outperform the merged learners.

In this paper, we approached this problem analytically for the first time by characterizing
cross-study heterogeneity using a linear mixed effects model. We derived closed-form transition
points for standard and ridge-regularized linear regression models. We confirmed the analytic
results in simulation and demonstrated that when the data are generated by a linear model, the LS
and ridge regression solutions can serve as proxies for the transition point under other learning
strategies (LASSO, neural network) for which closed-form derivation is difficult. Finally, we
estimated the transition point in cases of low and high cross-study heterogeneity in microbiome
data and showed how it can be used as a guide for deciding when and when not to merge studies
together in the course of learning a prediction rule.

We focused on deriving analytic results for LS and ridge regression because of the opportunity
to pursue closed-form solutions. Other widely used methods such as LASSO, neural networks,
and random forests are not as easily amenable to a closed-form solution, so we used simulations
to study the performance of merging versus ensembling for these methods. In our simulation
settings, the merged learners based on LS, ridge regression, LASSO, and neural networks had
accuracy, as did the corresponding CSLs. The methods all had similar empirical
ints, perhaps as a consequence of their similar performance. An exception is random
did not reach a transition point within the specified heterogeneity levels, and
Thetrialiversion ed less well in general, as is expected in data generated by linear models. The
ilts for LS/ridge regression could potentially serve as an approximation for other
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methods that perform comparably, though it is important to consider how the reliability of such an
approximation could be affected by the nature of the data and choice of model hyperparameters.

In practice, the analytic transition point and transition interval expressions could be used to
help guide decisions about whether to merge data from multiple studies when there is potential
heterogeneity in predictor-outcome relationships across the study populations. o2 can be estimated
from the training data and compared to the theoretical transition points or bounds for LS and/or
ridge regression. Various methods can be used to estimate ¢2, including maximum likelihood
and method of moments-based approaches used in meta-analysis (for example, see [30]), with the
caveat that estimates will be imprecise when the number of studies is small.

Under Model (1), fitting a correctly specified mixed effects model will generally be more
efficient than both the merged and cross-study versions of LS. However, more flexible machine
learning algorithms can potentially yield better prediction accuracy than the true model. For
example, in the the low-dimensional simulations, the mixed effects model was outperformed by
either the merged learner or CSL based on LASSO for most levels of heterogeneity. Moreover,
fitting a mixed effects model can be computationally difficult when the number of predictors is
large and standard mixed effects models are not appropriate for high-dimensional data, though
there are methods for penalized mixed effects models [31, 32, 33, 34].

A limitation of our derivations is that they treat the following quantities as known: the subset
of predictors with random effects, the CSL weights, and the regularization parameters for ridge
regression. In practice, these are usually selected using statistical procedures that introduce
additional variability. Furthermore, we obtained closed-form transition point expressions for cases
where the CSL weighting scheme does not depend on the variances of the random effects. Such
weighting schemes are generally be sub-optimal (for example, the optimal weights for LS given
by Equation 22 depend on G), so the closed-form results are based on a conservative estimate of
the maximal performance of cross-study learning. Another limitation is the assumption that the
random effects are uncorrelated, which is often not true in practice.

In summary, although this work is predicated upon the assumption that cross-study hetero-
geneity manifests through random effects and assumes that weights and regularization parameters
are known, we believe it provides a theoretical rationale for multi-study machine learning, and a
strong foundation for developing practical rules and guidelines to implement it.
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VII. REPRODUCIBILITY

Code to reproduce the simulations and data application is available at
https://github.com/zoeguan/transition_point
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IX. ArrENDIX A: CALCULATIONS

i. Covariance Matrices and MSPEs

Cov(Yy) = Cov(XyP + Zkyk + €k)
= ZxGZ] + o1,
i1 LS
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i.2 Ridge Regression

Bri = Sk(Xf Xk + M) ' XY
= Sk(SkX,{XkSk + )LkI;)_lst{Yk
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Bias(Brm) = E(M'XTY) — B
=M 'Y X[E(Y) - B
k

=M ) Xy X, B— B
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=M"'RB—B
=AM 'I,;S?)B

Let bR,C = Bi[lS(XoBRlc) and bR,M = BiaS(XOﬁAR’M).
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ii. Theorems

Theorem 1, Corollary 1.1, and Theorem 3 are special cases of Theorem 2, Corollary 2.1, and
Theorem 4 when r = 1, so we provide proofs for Theorems 2 and 4 (the corollaries follow directly
from the theorems).
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ii.1 Theorem 2

r
2
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The sufficiency of 02 > 115, for the CSL outperforming the merged learner can be shown
similarly.
ii.2 Theorem 4
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iii. Optimal Weights

We want to minimize

K K
tr(Cov(XoPpsc)) = Y witr(GZy Zo) + 07 Y witr (R ' Ro)
k=1 k=1

subject to the constraint ) , wy = 1.
Let f(w,..., wk) = tr(Cov(XoﬁLSIC)) and g(wy, ..., wg) = Y&, wy.

can write the problem as

B pdfelement

minimize f(w;, ..., wk) subject to

g(wy, ..., wg) =1
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Using Lagrange multipliers, we get the system of equations

az)kf(wll"'/wK):)\E;:ng(wli---/wK) (fork=1,...,K)
g(wy, ..., wg) =1
Since
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the system of equations leads to
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It follows that
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which is proportional to the inverse MSPE of LS k-
Plugging the optimal weights into the MSPE of the CSL, tr(Cov(Xof Ls,c)), we get
1
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In the equal variances setting,

tr(Cov(Xofys,c)) = !

1
v (aZtr(zg“ Zo) + agtr(R,;lRo))

so tr(Cov(Xoﬁlec)) is approximately linear in 0 when tr(R; 'Ry) is similar across studies or

when ¢? is large.

Approximation of the optimal weights transition point Suppose we are in the equal variances
setting. Let T be the transition point under equal weights. Let C = tr(Z{ Zy), Dy = c?tr(R; 'Ro),
E = 02tr(RRy), and F = tr(R™ ' Y, X1 Z; ZI X, R™1Ry). Using a first order Taylor expansion about

T,
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X. APrPENDIX B: ADDITIONAL PLOTS

Least Squares
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Figure 8: Figure 3 with random forest and univariate meta-analysis results included. LS,M: merged
LS learner; LS,C: CSL based on LS; R,M: merged ridge regression learner; R,C: CSL based on
ridge regression; L,M: merged LASSO learner; L,C: CSL based on LASSO; NN,M: merged neural
network; NN,C: CSL based on neural networks; REM: merged random forest; RF,C: CSL based on
random forests; MA: multivariate meta-analysis; MA2: multiple univariate meta-analyses.
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XI. ArreENDIX C: NOTATION TABLE

Variable Value / Description

K number of training studies

1k sample size in study k (k = 0 corresponds to test dataset)
Y outcome vector for study k

X fixed effects design matrix for study k

Y (YlT Seee, YE )T; outcome vector for merged dataset

X [(xT|... |XE] T; design matrix for merged dataset

p number of predictors (including the intercept)

q number of predictors with random effects

r number of unique variance values for random effects

r (T)i = 1 if predictor i is the I[th predictor with a random effect and (I'); = 0 otherwise; matrix such that X;T

subsets X to the columns with random effects

Zy XkI'; random effects design matrix for study k

B vector of fixed effects

Yk vector of random effects

o? variance of random effect i

G dillg((flz, o, (Tg) ; covariance matrix for random effects

o2 tr(G)/ p; heterogeneity summary measure

€x vector of residual errors for study k

o2 variance of residuals

Brsm (XTX)~1XTY; merged LS estimator

Wy CSL weight for study k

Brs,c i wk(XF X5 ) 1XT Yy CSL LS estimator

Sk I, if scaling is unnecessary, diagonal matrix with (S );; = inverse standard deviation of jth column of X}, otherwise;
scaling matrix for study k

S I, if scaling is unnecessary, diagonal matrix with (S);; = inverse standard deviation of jth column of X otherwise;
scaling matrix for merged data

X Sk Xy; ridge design matrix for study k

X SX; ridge design matrix for merged dataset

I, I, with (Ip)n = 0

BrMm S(XTX + AI, )"1XTY; merged ridge estimator of B

Brx Sk(XI X + /\kIp_)_lffkTYk; ridge estimator of B based on study k

3R,C Zf=1 kaRrk ; CSL ridge estimator of B

Ry XI'X;

R X’%X

My Ry + My S

M R+ AI;S™2

L (T(jy)ir = 1if random effect i is the /th random effect with variance (7(2].) and (I'(j))i = 0 otherwise; matrix such that

Gl"(]-) subsets G to the columns corresponding to 17(2j>
- 02w 1w K witr(Ry ' Ro)—tr(R™'Ry)

s €7 7 w(RVLE XTZ,ZI X, R 1Ro) - L, witr(Z] Zo)
72 Z]Ile wftr(R,?lRo)ftr(R’lRo)

T %
Ls1 P max ,}Tj (tr(RTE, X[ 2L ) [T ZT X R Ro) T, w2tr(T ZT ZoT ))
=1,/ r
TLsa o2 YK | wltr(Ry ' Ro)—tr(R™"Ro)
g 7 in L “1yK T 1T 7T —1 K 2 T 7T ,
P ]fn/m/ Tf (tr(R }:klekal"ml"(].)ZlekR 1;0) Yiot wktr(l"(j)ZOZol"(])))
bR,C BlﬂS(Xoﬂch) = *Zk wk/\ngM,: Ip Sl: ﬂ
bR,M BiaS(X()ﬁR,M) = —)\XoMillgsfzﬂ
- . o2 (T wltr(My ' ReMy ' Ro) —tr(M~1 5 ReM ™ Ro)) +b% br,c—bk pibrm
P tr(M~1 oy X] 2, 2T X M1 Ro) — Ty witr(M ' XL Z Z] X My ' Ro)
- 02 (L whtr(My ' ReMy ' Ro) —tr (M~ £y ReM ™1 Rq) ) +b% bR c =Dk pibr M
. p max % (tr(M—1%, XEZ,(I“(]-)F{].)ZEX,(M*T Ro)—Yx w%tr(M;lx,{zkr(j)r(Tj)z,{XkM,leo))
- o2 (T whtr(My 'R My 'Ro)—tr(M 1 Ty RyM ' Ro))+bk cbr,c—bk pbr M
R2

B — — -1 -1
p_:r?,lirmij(n(M 12kX[Zkr<j)r(Tj)z,{XkM TRg)— L witr(M,, x,{zkr(j)r(Tj)z,{XkMk Ro))

.- pdfelement Table 1: Notation Table
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