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Abstract

We propose an approach to generate realistic and
high-fidelity stock market data based on genera-
tive adversarial networks (GANs). Our Stock-GAN
model employs a conditional Wasserstein GAN to
capture history dependence of orders. The gener-
ator design includes specially crafted aspects in-
cluding components that approximate the market’s
auction mechanism, augmenting the order history
with order-book constructions to improve the gen-
eration task. We perform an ablation study to ver-
ify the usefulness of aspects of our network struc-
ture. We provide a mathematical characterization
of distribution learned by the generator. We also
propose statistics to measure the quality of gener-
ated orders. We test our approach with synthetic
and actual market data, compare to many baseline
generative models, and find the generated data to
be close to real data.

1 Introduction
Financial markets are among the most well-studied and
closely watched complex multiagent systems in existence.
Well-functioning financial markets are critical to the opera-
tion of a complex global economy, and small changes in the
efficiency or stability of such markets can have enormous
ramifications. Accurate modeling of financial markets can
support improved design and regulation of these critical insti-
tutions. There is a vast literature on financial market model-
ing, though still a large gap between the state-of-art and the
ideal. Analytic approaches provide insight through highly
stylized model forms. Agent-based models accommodate
greater dynamic complexity, and are often able to reproduce
“stylized facts” of real-world markets [LeBaron, 2006]. Cur-
rently lacking, however, is a simulation capable of producing
market data at high fidelity and high realism. Our aim is to
develop such a model, to support a range of market design and
analysis problems. This work provides a first step, learning a
high-fidelity generator from real stock market data streams.

Our main contribution is Stock-GAN: an approach to pro-
duce realistic stock market order streams from real market
data. We utilize a conditional Wasserstein GAN (WGAN)

[Arjovsky et al., 2017] to capture the time-dependence of or-
der streams, with both the generator and critic conditional on
history of orders. The main innovation in the Stock-GAN
network architecture lies in two deliberately crafted features
of the generator. The first is a separate neural network that
is used to approximate the double auction mechanism under-
lying stock exchanges. This pre-trained network enables the
generator to model order processing and transaction genera-
tion. The second feature is inclusion of order-book informa-
tion in the conditioning history of the network. The order
book captures the key features of market state that are not
directly apparent from order history segments.

Our second contribution is a mathematical characterization
of the distribution learned by the generator. We show that
our designed generator models the stock market data stream
as arising from a stochastic process with finite memory de-
pendence. The stochastic process view also makes precise
the conditional distribution that the generator is learning as
well the joint distribution that the critic of the WGAN distin-
guishes by estimating the earth mover’s distance.

Finally, we experiment with synthetic and real market data.
The synthetic data is produced using a stock market simula-
tor that has been used in several agent-based financial studies,
but is far from real market data. The real market data was ob-
tained from OneMarketData, a financial data provider. We
propose five statistics for evaluating stock market data, such
as the distribution of price and quantity of orders, inter-arrival
times of orders, and the best bid and best ask evolution over
time. We compare against other baseline generative models
such as recurrent conditional variational auto-encoder (VAE)
and DCGAN instead of WGAN within Stock-GAN. We per-
form an ablation study showing the usefulness of our gen-
erator structure design as elaborated above. Overall, Stock-
GAN is able to best generate realistic data. An online ap-
pendix provides all additional results and code for our work:
https://bit.ly/2GTgYgA.

2 Related Work and Background
WGAN is a well-known GAN variant [Goodfellow et al.,
2014]. Most prior work on generation of sequences using
GANs has been in the domain of text generation [Press et
al., 2017; Zhang et al., 2017]. However, since the space
of word representations is not continuous, the semantics
change with nearby word representation, and given a lack
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Figure 1: Visual representation and evolution of a limit order book.

of agreement on the metrics for measuring goodness of sen-
tences, producing good quality text using GANs is still an
active area of research. Stock market data does not suffer
from this representation problem but the history dependence
for stock markets can be much longer than for text gener-
ation. In a sequence of recent papers, Xiao et al. [2017;
2018] have introduced GAN-based methods for generating
point processes. The proposed methods generate the time for
when the next event will occur, including application to gen-
erate the time for transaction events in stock markets. Our
problem is richer as we aim to generate the actual limit orders
including time, order type, price, and quantity information.

Deep neural networks and machine learning techniques
have been used on financial data mostly for prediction of
transaction price [Hiransha et al., 2018; Bao et al., 2017;
Qian, 2017] and for prediction of actual returns [Abe and
Nakayama, 2018]. As stated, our goal is not market predic-
tion per se, but rather market modeling. Whereas the prob-
lems of learning to predict and generate may overlap (e.g.,
both aim to capture regularity in the domain), the evaluation
criteria and end product are quite distinct. GANs have been
used for generation of customer buy orders in e-commerce
setting [Shi et al., 2019; Kumar et al., 2018], however, stock
market orders are much more complex with buys, sells, and
cancellations; further we attempt to ensure realism of higher
level dynamics like the best bid and ask evolution over time.

Limit order books Nearly all stock markets follow the con-
tinuous double auction (CDA) mechanism [Friedman, 1993].
Traders submit bids, or limit orders, specifying the maximum
price at which they would be willing to buy a specified quan-
tity of a stock, or the minimum price at which they would
be willing to sell a quantity. The order book is a store that
maintains the set of active orders: those submitted but not yet
transacted or canceled. CDAs are continuous in the sense that
when a new order matches an existing (incumbent) order in
the order book, the market clears immediately and the trade is
executed at the price of the incumbent order—which is then
removed from the order book. Orders may be submitted at
any time, and a buy order matches and transacts with a sell
order when their respective limits are mutually satisfied. For
example, as shown in Fig. 1, if a buy order with price $10.01
and quantity 100 arrives and the best sell offer in the order
book has the same price and quantity, then they match ex-
actly and transact. As shown, the next buy order does not
match any sell, and the following sell order partially matches

what is then the best buy in the order book.
The limit order book maintains the current active orders in

the market (or the state of the market), which can be described
in terms of the quantity offered to buy or sell across the range
of price levels. Each order arrival changes the market state,
recorded as an update to the order book. After processing any
arrived order every buy price level is higher than all sell price
levels, and the best bid refers to the lowest buy price level and
the best ask refers to the highest sell price level. See Fig. 1 for
an illustration. The order book is often approximated by few
(e.g., ten) price levels above the best bid and ten price levels
below the best ask; as these prices are typically the ones that
dictate the transactions in the market. There are various kinds
of traders in a stock market, ranging from individual investors
to large investing firms. Thus, there is a wide variation in the
nature of orders submitted. We aim to generate streams of
orders that are close in aggregate (not per agent) to real order
streams for a given stock.

3 Stock-GAN
We view the stock market orders for a given chunk of time
of day ∆t as a collection of vector valued random vari-
able {xi}i∈N indexed by the limit order sequence number in
N = {1, . . . , n}. {xi} corresponds to the ith limit order, but,
includes more information than the limit order such as the
current best bid and best ask. The components of the random
vector xi include the time interval di, type of order ti, limit
order price pi, limit order quantity qi, and the best bid ai and
best ask bi. The time interval di specifies the difference in
time between the current order i and previous order i− 1 (in
precision of milliseconds); the range of di is finite. The type
of order can be buy, sell, cancel buy, or cancel sell (repre-
sented in two bits). The price and quantity are restricted to lie
within finite bounds. The price range is discretized in units of
US cents and the quantity range is discretized in units of the
equity (non-negative integers). The best bid and best ask are
limit orders themselves and are specified by price and quan-
tity. We divide the time in a day into 24 equal intervals and
∆t refers to the index of the interval. A visual representation
of xi is shown in Fig. 2(a).

3.1 Architecture
The architecture is shown in Fig. 2. We use a conditional
WGAN [Mirza and Osindero, 2014] with both the genera-
tor and critic conditioned on a k length history of xi’s and
the time interval ∆t. We choose k = 20. The history is
condensed to one vector using a single LSTM layer. This
vector and uniform noise of dimension 100 is fed to a fully
connected layer followed by 4 convolution layers (see Ap-
pendix B for a precise description in form of the code for
generator and critic). The generator outputs the next limit
order and the critic outputs a real number. Note that when
training both generator and critic are fed history from real
data, but when the generator executes after training it is fed
its own generated data as history. The generator also outputs
the best bid and ask. Recall from our description of the stock
market that the best bid and ask can be inferred determinis-
tically from the current order and the previous best bid and
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Figure 2: Stock-GAN architecture

ask (for most orders), we use another neural network (with
frozen weights during GAN training) to output the best bid
and ask. We call this the CDA network. The CDA network
has a fully connected layer layer followed by 3 convolutional
layers. Its input is a limit order and the current best bid/ask
and the output is the next best bid/ask. The CDA network is
trained separately using the orders and order-book data using
a standard mean squared error loss (Appendix B has the CDA
network code that precisely describes the structure and loss).

The loss function used to train the WGAN is the standard
WGAN loss with a gradient penalty term [Gulrajani et al.,
2017]. The critic is trained 100 times in each iteration. The
notable part in constructing the training data is that for each of
64 data points in a mini-batch the sequence of orders chosen
(including history) is far away from any other sequence in
that mini-batch. This is to break the dependence among data
points for the history dependent stock market data. We make
this mathematically precise in the next section.

3.2 Mathematical Characterization of Stock-GAN
Stock-GAN models stock market orders as a stochastic pro-
cess. Recall that a stochastic process is a collection of ran-
dom variables indexed by a set of numbers. As stated ear-
lier, we view the stock market orders for a given chunk of
time of day ∆t as a collection of vector valued random vari-
able {xi}i∈N indexed by the limit order sequence number in
N = {1, . . . , n}. Following the terminology prevalent for
stochastic processes, the above process is discrete time and
discrete space (note that discrete time in this terminology here
refers to the discreteness of the index set N ).

The k length history we use implies a finite history
dependence of the current output xi, that is, P (xi |
xi−1, . . . ,∆t) = P (xi | xi−1, . . . ,xi−m,∆t) for some m.
Such dependence is justified by the observation that recent or-
ders mostly determine the transactions and transaction price
in the market as orders that have been in the market for long
either get transacted or canceled. Further, the best bid and

best ask serves as an (approximate) sufficient statistic for
events beyond the history length m. While this process is
not a Markov chain, it forms what is known as a higher or-
der Markov chain, which implies that the process given by
yi = (xi, . . . ,xi−m+1) is a Markov chain for any given
time interval ∆t. We assume that this chain formed by yi

has a stationary distribution (i.e., it is irreducible and positive
recurrent). A Markov chain is a stationary stochastic pro-
cess if it starts with its stationary distribution. After some
initial mixing time, the Markov chain does reach its station-
ary distribution, thus, we assume that the process is station-
ary by throwing away some initial data for the day. Also,
for the jumps across two time intervals ∆t, we assume the
change in stationary distribution is small and hence the mix-
ing happens very quickly. A stationary process means that
P (xi, . . . ,xi−m+1 | ∆t) has the same distribution for any i.
In practice we do not know m. However, we assume that our
choice k satisfies k + 1 > m, and then it is straightforward
to check that yt = (xi, . . . ,xi−k) is a Markov chain and the
claims above hold with m− 1 replaced by k.

Given the above stochastic process view of the problem,
we show that the generator aims to learn the real conditional
distribution Pr(xi | xi−1, . . . ,xi−k,∆t). We use the sub-
script r to refer to real distributions and the subscript g to
refer to generated distributions. The real data x1,x2, . . . is a
realization of the stochastic process. It is worth noting that
even though P (xi, . . . ,xi−k | ∆t) has the same distribution
for any i, the realized real data sequence xi, . . .xi−k is cor-
related with any overlapping sequnce xi+k′ , . . .xi−k+k′ for
k ≥ k′ ≥ −k. Our data points for training are sequences
xi, . . .xi−k and as stated earlier we make sure that the se-
quences chosen in a batch are sufficiently far apart. In light
of the interpretation above, this ensures independence of data
points within a batch.

Critic interpretation: When fed real data, the critic can be
seen as a function cw of si = (xi, . . . ,xi−k,∆t), where w
are the weights of the critic network. As argued earlier, sam-



ples in a batch that are chosen from real data that are spaced
at least k apart are i.i.d. samples of Pr. Then for m samples
fed to the critic, 1

m

∑m
i=1 cw(si) estimates Es∼Pr

(cw(s)).
When fed generated data (with the ten price levels deter-
mined from the output order and previous ten levels), by sim-
ilar reasoning 1

m

∑m
i=1 cw(si) estimates Es∼Pg

(cw(s)) when
the samples are sufficiently apart (recall that the history is al-
ways real data). Thus, the critic computes the Wasserstein
distance between the joint distributions Pr(xi, . . . ,xi−k,∆t)
and Pg(xi, . . . ,xi−k,∆t).

Generator interpretation: The generator learns the
conditional distribution Pg(xi | xi−1, . . . ,xi−k,∆t).
Along with the real history, the generator repre-
sents the distribution Pg(xi, . . . ,xi−k,∆t) = Pg(xi |
xi−1, . . . ,xi−k,∆t)Pr(xi−1, . . . ,xi−k,∆t).

4 Experimental Results
Evaluating generative models is an inherently challenging
task, even in the well-established domain of image generation
[Borji, 2019]. To the best of our knowledge, we are the first to
generate limit order streams in stock market and as part of the
contribution in this paper we propose to measure the quality
of generated data using five statistics. These statistics capture
various aspects of order streams observed in stock markets
that are often studied in finance literature.

Our five proposed statistics are (1) Price. Distribution over
price for the day’s limit orders, by order type. (2) Quantity.
Distribution over quantity for the day’s limit orders, by or-
der type. (3) Inter-arrival time. Distribution over inter-arrival
duration for the day’s limit orders, by order type. (4) Inten-
sity evolution. Number of orders for consecutive T -second
chunks of time. (5) Best bid/ask evolution. Changes in the
best bid and ask over time as new orders arrive.

For each of these statistics, we also present various quanti-
tative numbers to measure the quality. Due to lack of space,
in the main paper the results for price, quantity, inter-arrival
distributions are shown only for buy orders. The results for
the other types are very similar to buy type results and are
presented in the online appendix.

4.1 Synthetic Data
We first evaluate Stock-GAN on synthetic orders generated
from an agent-based market simulator. Previously adopted
to study a variety of issues in financial markets (e.g., mar-
ket making [Wah et al., 2017] and manipulation [Wang et al.,
2018]), the simulator captures stylized facts of the complex
financial market with specified stochastic processes and dis-
tributions [Wellman and Wah, 2017]. However, the simulator
is still very basic and quite far from real market data. For
example, fundamental valuation shocks are generated from a
fixed Gaussian distribution (Fig. 4(a)) and quantity is always
1 (Fig. 4(b)), whereas the real market data distributions can
be seen to be quite non-smooth (Figs. 5(a)- 5(c)). Thus, we
use the output of this basic simulator as our synthetic data
(which we call as real in results below).

We use about 300,000 orders generated by the simulator as
our synthetic data. These orders are generated over a horizon
of 1000 seconds, but the actual horizon length is not impor-
tant for synthetic data as it can be scaled arbitrarily. The price

output by the simulator is normalized to lie in [−1, 1], which
is the reason for negative prices in the synthetic data.

Figure 3: Synthetic inter-arrival dist.

Stock-GAN and
baselines: Our
first results show
the performance of
Stock-GAN (S-GAN
in graphs) and com-
pares it to baselines,
namely to a recurrent
variational autoen-
coder [Chung et al.,
2015] (VAE) and
the same network as
ours, except using a
DCGAN [Radford
et al., 2015] instead
of WGAN. We show
results for price dis-
tribution (Fig. 4(a)),
quantity distribution
(Fig. 4(b)), and inter-
arrival distribution

(Fig. 3—shown in two graphs for clarity). The results show
that VAE and DCGAN produce distributions far from the
real one. We capture these differences quantitatively using
the Kolmogorov-Smirnoff (KS) distance:

Real,S-GAN Real,VAE Real,DCGAN

Price 0.108 0.502 0.284
Inter-arrival 0.18 0.756 0.923

Table 1: KS distances against real (synthetic)

The KS distance always lies between [0, 1]. We skip the
quantity KS distance as the quantity is always trivially one
in the synthetic data. The much smaller KS distance between
real and Stock-GAN supports our claim of better performance
of our approach compared to VAE and DCGAN.

For intensity, we choose T = 100 seconds sized chunks of
time and measure intensity as the number of orders in each
chunk divided by the total number of orders. Fig. 4(c) shows
that VAE completely fails to match the synthetic data inten-
sity. DCGAN has the same flat intensity throughout, whereas
Stock-GAN matches the real intensity very closely.

Ablation: The real and Stock-GAN generated best bid/ask
evolutions are in Fig. 4(d) and 4(e) respectively. We perform
two ablation experiments, one by removing the CDA network
(no cda) and one by removing order-book information (no
ob), shown in Figs. 4(f) and 4(g) respectively. Differences
can be seen in the means of best bid/ask for no cda and no ob
compared to the real and Stock-GAN results, but the main
distinction is in the spectral densities for these time series
shown in Figs. 4(h)–4(k). It can be seen that no cd and no
ob have much fewer higher frequency components as com-
pared to real synthetic spectral density, which can also be seen
by the smoother variation over time in Figs. 4(f) and 4(g).
Stock-GAN’s and the real synthetic spectral density match
more closely.



(a) Synthetic price distribution (b) Synthetic quantity distribution (c) Synthetic intensity

(d) Synthetic best bid/ask (e) Stock-GAN best bid/ask (f) no CDA network best bid/ask (g) no order book best bid/ask

(h) Synthetic spectral density (i) Stock-GAN spectral density (j) no CDA spectral density (k) no order book spectral density

Figure 4: A comparison of different statistics for generated and real synthetic limit orders. Additional results are in appendix.

4.2 Real Data
We obtained real limit-order streams from OneMarketData,
who provided access to their OneTick database for selected
time periods and stocks. The provided data streams comprise
order submissions and cancellations at millisecond granular-
ity. In experiments, we evaluate the performance of Stock-
GAN on a large capitalization stock, Alphabet Inc (GOOG).
We also tried a small capitalization stock Patriot National
(PN), which has much fewer orders than GOOG. After pre-
processing, the PN daily order stream has about 20,000 orders
and GOOG has about 230,000. Hence, naturally PN is not a
good fit for learning using data hungry neural networks and
our results for PN validate this claim. We show the results for
PN in the appendix.

Relative to synthetic data, the real market data is very noisy
including many orders at extreme prices far from the range
where transactions occur. Since our interest is primarily on
behavior that can affect market outcomes, we focus on orders
in the relevant range near the best bid and ask. Specifically,
in a preprocessing step, we eliminate limit orders that never
appear within ten levels of the best bid and ask prices. In
the experiment here, we use historical market data of GOOG
during one trading day in Aug 2017. Our results for GOOG

follow the same evaluation metrics as for synthetic data.

Stock-GAN and baselines: We show the performance of
Stock-GAN and compare it to VAE and DCGAN variant of
our network. We show these results for price distribution
(Fig. 5(a)), quantity distribution (Fig. 5(b)), and inter-arrival
times (Fig. 6). As earlier, we capture these differences quan-
titatively using the KS distance:

Real,S-GAN Real,VAE Real,DCGAN

Price 0.126 0.218 0.181
Quantity 0.182 0.248 0.471
Inter-arrival 0.066 0.835 0.154

Table 2: KS distances against real (GOOG)

Similar to synthetic data results, the numbers above reveal
that Stock-GAN is able to model GOOG data better than the
baselines. Intensity is measured in the same way as synthetic
data, except that we choose T = 1000 seconds sized chunks
of time due to the longer horizon of GOOG data. Fig. 5(c)
shows much smoother intensity produced by VAE and DC-
GAN as opposed to Stock-GAN which is much closer to the
real intensity.



(a) GOOG price distribution (b) GOOG quantity distribution (c) GOOG intensity

(d) GOOG best bid/ask (e) Stock-GAN best bid/ask (f) no CDA network best bid/ask (g) no order book best bid/ask

(h) GOOG spectral bid/ask (i) Stock-GAN spectral density (j) no CDA spectral density (k) no order book spectral density

Figure 5: A comparison of different statistics for generated and real GOOG limit orders. Additional results are in appendix.

Figure 6: GOOG inter-arrival dist.

Ablation: The real
and StockGAN gen-
erated best bid/ask
evolution are in
Figs 5(d) and 5(e)
respectively. As for
synthetic data, we
perform two ablation
experiments, one
by removing the
CDA network (no
cda) and one by
removing order-book
information (no ob),
shown in Fig 5(f)
and 5(g) respectively.
The main distinction
again is seen in the
spectral densities
for these time series

shown in Figs. 5(h)-5(k). However, unlike the synthetic data,

here it can be seen that no cda has more higher frequency
components that real data, which can also be seen by the
high variation over time in Fig 5(f). On the other hand,
no ob has less higher frequency (or even lower frequency)
components which results in the flat shape in Fig. 5(g). The
Stock-GAN spectral density, while closest to real one among
all alternatives, also misses out on some low frequency
components. Nonetheless, Stock-GAN is closest to real data
due to our novel structural approach of the CDA network and
use of order-book data.

5 Conclusion
We showed the superior performance of Stock-GAN in pro-
ducing realistic market order streams. However, we point out
that we chose our data for dates in which there were no ex-
ternal events, such as financial performance report. Thus, we
did not model the effect of exogenous factors on stock mar-
ket, which we believe is technically possible by just adding
another condition for the generator. Notwithstanding these
effects, we demonstrated that stock market data can be gener-
ated with high fidelity.
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