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Abstract
We study learning-based trading strategies in mar-
kets where prices can be manipulated through
spoofing: the practice of submitting spurious or-
ders to mislead traders who use market informa-
tion. We explore two variations based on the
heuristic belief learning (HBL) trading strategy
(Gjerstad, 2007), which learns transaction prob-
abilities from observed order activity. The first
variation selectively ignores orders at certain price
levels, particularly where spoof orders are likely
to be placed. The second considers the full or-
der book, but adjusts its offer price to correct for
bias in decisions based on the learned heuristic be-
liefs. To evaluate the two proposed variations, we
employ agent-based simulation for several market
settings where background traders can adopt (non-
learning) zero intelligence strategies or HBL, in
basic form or the two variations. We demonstrate
through empirical game-theoretic analysis that
both variations can reduce the learning agents’
vulnerability to spoof orders in equilibrium, and
thereby increase the overall background-trader
surplus in the market.

1. Introduction
The increasing automation of trading and the unprecedented
interconnectedness of trading venues have transformed the
financial market from a human decision ecosystem to an al-
gorithmic one. With trades happening in an extremely short
time scale, often beyond the limit of human decision mak-
ing, traders develop and use autonomous agents controlled
by complex algorithms to extract, process, and react to new
information. While this may reduce transaction costs and
improve efficiency in some respects, the evolution of market
operations and trading technology has also made new forms
of disruptive and manipulative practices possible.

In this paper, we focus on a common form of order-based
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market manipulation, called spoofing. Spoofing refers to the
practice of submitting large spurious orders to buy or sell
some security. The orders are not intended for execution,
but rather to mislead other traders by feigning a strong buy
or sell interest in the market. Spoof orders may persuade
other traders—those who learn from market information—
to believe that prices may soon rise or fall, thus altering their
own behavior in a way that moves the price. To profit on
its feint, the spoofer follows by submitting a real order on
the opposite side of the market and as soon as the real order
transacts, cancels all the spoof orders.

In normal markets, there is real information to be gleaned
from the order book, and thus strategies that learn from
observable market activity have an advantage over those that
neglect such information. The less sophisticated strategies,
however, have the advantage of being oblivious to spoofers,
and thus not manipulable. The question we investigate is
whether learning-based strategies can be made similarly
robust to spoofing, or more broadly how to design strategies
that reasonably trade off effectiveness in non-manipulated
markets for robustness against manipulation. Specifically,
we are interested in exploring strategies by which individual
traders can adopt to learn from market information but in
less vulnerable ways.

We start from the heuristic belief learning (HBL) trading
strategy (Gjerstad, 2007), previously adopted in the agent-
based model of spoofing by Wang & Wellman (2017). We
explore two variations of the original HBL strategy. In the
first, we selectively ignore orders at certain price levels,
particularly where spoof orders are likely to be placed. This
approach is inspired by the cloaking mechanism of Wang
et al. (2018), in which the the market itself hides certain
price levels. Here, the traders themselves decide what prices
to ignore. In a second variation, HBL agents consider the
full order book, but adjust their offer price by a constant
offset. The adjustment serves to correct biases in learned
price beliefs either caused by manipulation or the intrinsic
limitation built in the belief function.

We employ agent-based simulation to evaluate the two pro-
posed variations on HBL under equilibrium settings across
a variety of parametrically distinct market environments
with and without manipulation. The market is populated
with multiple background trading agents and one exploiter,
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trading a single security. The exploiter profits by first buy-
ing the underlying security at low prices and later selling at
higher ones. To increase profit, it can try to manipulate the
market through spoofing after its original purchase. Back-
ground traders with private values are further divided into
non-spoofable agents employing the zero intelligence (ZI)
strategy, and learning agents who employ HBL, either in
its basic form or the two variations introduced here. We
demonstrate that both variations can reduce the learning
agents’ vulnerability to spoof orders, and thus increase the
overall background-trader surplus in the market. Empiri-
cal game-theoretic analysis implied that trading agents can
strategically adapt to the presence of manipulation, even
without any intervention to regulate the market.

The paper is structured as follows. In the next section we
present additional background on market manipulation. In
Section 3, we describe the market model and the two varia-
tions of HBL trading strategy in detail. Section 4 presents
experiments and our main findings. Section 5 concludes
with discussions.

2. Background on Market Manipulation
The US Securities and Exchange Commission (SEC) for-
mally defines manipulation as “intentional conduct designed
to deceive investors by artificially affecting the market.”
With the automation of trading, manipulators nowadays em-
ploy automated programs to spread deceitful information
through rapid submission and cancellation of voluminous
orders, as other investors learn from market information
(including the misleading orders) to make trading decisions.
Manipulators in turn profit from investors’ misled beliefs
about supply and demand.

Since 2016, the SEC has brought legal action on over a hun-
dred cases of manipulation (U.S. Securities and Exchange
Commission, 2017; 2018b). In one recent case, a group
of individuals and ten associated entities was charged with
participation in fraudulent schemes that generated over $27
million from unlawful stock sales (U.S. Securities and Ex-
change Commission, 2018a). The manipulation was con-
ducted through a series of illegal promotional activities in a
short period of time to artificially boost each issuer’s stock
price, giving an appearance of active trading volume at cer-
tain prices.

In 2010, the Dodd-Frank Wall Street Reform and Consumer
Protection Act was signed into federal law, outlawing spoof-
ing as a deceptive practice. Given the challenges of directly
detecting disruptive practices, regulators advocate simplify-
ing investment strategies, improving intermediary integrity,
and enhancing financial cybersecurity (Lin, 2015).

Some researchers in computational finance recommend a
systematic imposition of cancellation fees, as this may

render manipulative strategies that involve massive can-
cellations uneconomical (Biais & Woolley, 2012; Prewit,
2012). Opponents argue that cancellation fees could instead
discourage the activity of liquidity providers to minimize
risk from adverse selection and adapt to new information
(Copeland & Galai, 1983; Foucault et al., 2003). Wang &
Wellman (2017) built a computational model of spoofing,
illustrating the strategic interactions between a manipulator
and two groups of background traders: those who use and
do not use market information to trade. In their model, the
designed spoofing strategy is profitable and can effectively
mislead other rational traders. A comparison of equilibrium
outcomes shows that manipulation hurts market welfare and
decreases the number of learning traders. In a follow-up
work, Wang et al. (2018) proposed to deter spoofing through
strategically cloaking certain market information, introduc-
ing risks and difficulties for the manipulator to post mis-
leading bids. Simulation results derived from equilibrium
analysis demonstrate the designed cloaking mechanism can
significantly diminish the efficacy of spoofing, but at the cost
of degrading the general usefulness of market information.

3. Market Model
3.1. Market Mechanism

We build on an existing computational model of spoofing
(Wang & Wellman, 2017) to conduct experiments. Market
prices take on discrete integer values with a tick size of
one. Time is also discrete over a finite trading horizon T .
The fundamental value rt of the traded security changes
throughout the trading period according to a mean-reverting
stochastic process (Chakraborty & Kearns, 2011; Wah et al.,
2017): for t ∈ [0, T ],

rt = max{0, κr̄ + (1− κ)rt−1 + ut} and r0 = r̄, (1)

where κ ∈ [0, 1] specifies the degree to which the time series
reverts back to the fundamental mean r̄. ut ∼ N(0, σ2

s)
represents a systematic random shock upon the fundamental
at time t, where σ2

s is the fundamental shock variance.

Agents trade a single security by submitting limit orders
that specify the maximum (minimum) price at which they
would be willing to buy (sell) some number of units. The
market maintains a limit order book of outstanding orders,
from which traders may learn at their own discretion.

3.2. Agents in the Market

The market is populated with multiple background traders
and one exploiter. Background traders represent investors
with private values which specify preferences on longing or
shorting the underlying security. The exploiter without any
private value seeks to profit by buying at lower prices and
later selling at higher ones. In order to profit more, it can
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manipulate the market with spoof orders to push prices up.

The position preference of background trader i is captured
by a private value vector Θi of length 2qmax, where qmax is
the maximum number of units one can be long or short at
any time. Element θq+1

i represents the marginal gain from
buying an additional unit, given the current net position q.
We generate Θi from a set of 2qmax values independently
drawn from N(0, σ2

PV ), where σ2
PV denotes the private

value variance. We then sort elements to reflect diminishing
marginal utility and assign θqi accordingly. The trader’s
overall valuation for a unit of the security is the sum of its
private value and the fundamental.

Arrivals of a background trader to the market follow a Pois-
son process with an arrival rate of λa. On each entry, the
trader observes an agent and time specific noisy funda-
mental ot = rt + nt with the observation noise following
nt ∼ N(0, σ2

n), where σ2
n represents the observation vari-

ance. The noisy observation captures different perceptions
of the intrinsic value of the underlying security. As this
noisy observation gives imperfect information about the
fundamental, traders can benefit from considering market
information, which is influenced by the aggregate observa-
tions of all the other traders. To react to a new observation,
the background trader withdraws its previous order (if not
transacted) upon arrival and submits a new single-unit order
to either buy or sell as instructed with equal probability. The
order price is jointly decided by the background trader’s
valuation and trading strategy (see Section 3.3).

3.3. Background Trading Strategies

3.3.1. ESTIMATION OF THE FINAL FUNDAMENTAL

Because holdings of the security are evaluated at the end
of the trading period, background traders estimate the final
fundamental value based on their noisy observations. Given
a new noisy observation ot, a trader estimates the current
fundamental by updating its posterior mean r̃t and variance
σ̃2
t in a Bayesian manner. Let t′ denote the trader’s preced-

ing arrival time. We first update the previous posteriors (r̃t′
and σ̃2

t′ ) by taking account of mean reversion for the interval
since preceding arrival (δ = t− t′):

r̃t′ ← (1− (1− κ)δ)r̄ + (1− κ)δ r̃t′ ;

σ̃2
t′ ← (1− κ)2δσ̃2

t′ +
1− (1− κ)2δ

1− (1− κ)2
σ2
s .

The new posterior estimates at time t are then given by:

r̃t =
σ2
n

σ2
n + σ̃2

t′
r̃t′ +

σ̃2
t′

σ2
n + σ̃2

t′
ot ; σ̃2

t =
σ2
nσ̃

2
t′

σ2
n + σ̃2

t′
.

Based on the posterior estimate of r̃t, the trader computes
r̂t, its estimate at time t of the terminal fundamental rT , by
adjusting for mean reversion:

r̂t =
(
1− (1− κ)T−t)r̄ + (1− κ)T−tr̃t. (2)

3.3.2. ZERO INTELLIGENCE

We employ an extended and parameterized version of zero
intelligence (ZI) as a representative strategy that is non-
spoofable, as it decides order prices without utilizing order
book information. The strategy has been widely adopted in
agent-based finance due to its simplicity and effectiveness
for market modeling (Gode & Sunder, 1993; Farmer et al.,
2005).

The ZI trader computes a limit-order price by shading its val-
uation with a random offset uniformly drawn from [R1, R2].
Specifically, a ZI trader i arriving at time t with position q
generates a limit price by:

pi(t) ∼
{
U [r̂t + θq+1

i −R2, r̂t + θq+1
i −R1] if buying,

U [r̂t − θqi +R1, r̂t − θqi +R2] if selling.

The ZI further takes into account the current quoted price,
controlled by a strategic surplus threshold parameter η ∈
[0, 1]. Before submitting a new limit order, if the ZI could
achieve a fraction η of its requested surplus by accepting
the most competitive order, it would take that quote by
submitting an order at the same price.

3.3.3. VARIATIONS OF HEURISTIC BELIEF LEARNING

We describe in detail the two proposed variations of heuris-
tic belief learning (HBL). The two variations, together with
its basic form, are our representative trading strategies that
learn from the market’s aggregated order book informa-
tion. We are interested in investigating their competitiveness
to other trading strategies and robustness to manipulation
across different market settings.

We first provide a brief description on how the basic HBL
works. The HBL trading strategy is centered on belief func-
tions that traders form on the basis of observed market data
D in memory. Upon arrivals, agents estimate the probability
that orders at various prices would be accepted in the market
according to the heuristic 1:

ft(P |D) =


TBLt(P)+ALt(P)

TBLt(P)+ALt(P)+RBGt(P) if buying,

TAGt(P)+BGt(P)
TAGt(P)+BGt(P)+RALt(P) if selling.

(3)

Based on the interpolated probabilities, an agent chooses a
limit price that maximizes its own expected surplus at the
current valuation estimate. That is,

P∗i (t) =

{
arg maxp(r̂t + θq+1

i − p)ft(p) if buying,
arg maxp(p− θqi − r̂t)ft(p) if selling.

1It uses the observed frequencies of transacted and rejected
orders (T and R), bids and asks (B and A), and orders with prices
less than or equal to and greater than or equal to P (L and G)
within the HBL’s memory. For example, TBLt(P) is the number
of transacted bids found in memory with price less than or equal
to P up to time t.
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HBL with Price Level Blocking. Our first variation of
HBL allows agents to strategically construct D by neglect-
ing limit orders at a certain price level. Specifically, the
strategy extends basic HBL with a blocking parameter L,
which specifies the index of a price level to ignore symmet-
rically from inside of the limit order book. For example,
when L = 1, the trading agent constructs the dataset D by
considering any order but the best bid and asks, whereas
when L = 0, the agent acts as a basic HBL. Trading agents
can use this flexibility to incorporate information that is
more likely to give true insight of the fundamental value.
Therefore, in markets with manipulation, agents may strate-
gically exclude spoof orders appearing at a certain price
level from its belief function.

HBL with Price Offsets. The second variation of HBL
considers all market information, and simply extends the op-
timal price P∗i (t) derived from surplus maximization with a
random offset uniformly drawn from [R1, R2]. Specifically,
a trader i arriving at time t with the calculated price P∗i (t)
submits a limit order for a single unit of the security at price

pi(t) ∼

{
U [P∗i (t)−R1, P∗i (t)−R2] if buying,
U [P∗i (t) +R1, P∗i (t) +R2] if selling.

We explore whether such price offsets can help to overcome
limitations brought by either the designed heuristic belief
function or any market manipulation.

3.4. Exploitation and Spoofing Strategies

The strategy that an exploiter adopts has three stages. At
the beginning of a trading period [0, Tspoof], the exploiter
buys as many units as possible by accepting any sell order
at prices lower than the fundamental mean r̄.

During the second stage [Tspoof, Tsell], if the exploiter manip-
ulates, it submits and maintains spoof buy orders at one tick
behind the best bid with volume Qsp � 1. This spoofing
strategy aims to artificially boost prices, so that units pur-
chased earlier in the first stage can be later sold at higher
prices. If the exploiter does not spoof, it simply waits until
the selling stage.

During the last stage [Tsell, T ], the exploiter begins to sell
by accepting any buy orders at a price higher than r̄. The ex-
ploiter, if also manipulates, continues to spoof until the end
of the trading period T or when all units previous purchased
are sold.

3.5. Surplus

A background trader’s surplus is its net profits from trading
plus the final valuation of holdings at T , whereas a ex-
ploiter’s payoff is its gain or loss from trading. The market’s
final valuation of background trader i with final holdings

H is rTH +
∑k=H

k=1 θki for long position H > 0, or alterna-
tively, rTH −

∑k=0
k=H+1 θ

k
i for short position H < 0.

4. Empirical Game-Theoretic Analysis
We conduct agent-based simulation of the market model de-
scribed in Section 3 to evaluate the two HBL variations over
a range of market environments with and without spoofing.
A game is defined by a specific market environment and a
strategy set from which each background trader can choose.
For each game, we run thousands of simulations to evaluate
any profile of strategy assignment, calculate the average
payoff of agents adopting the same strategy, and derive an
approximate Nash Equilibrium. We are interested in measur-
ing a trading strategy and the market performance in equi-
librium, where agents have no incentive to deviate to other
strategies, given an environment and other players’ choices.

Based on fixed strategy profiles, we also perform controlled
experiments to understand the impact of manipulation and
the performance of different learning strategies. Specifically,
in paired instances, we control all other stochastic factors
(e.g., agent arrivals, fundamental evolution, and private
values), such that any change in agent behavior is caused
by the experimental factor of interest (e.g., the presence of
manipulation and the blocking of a certain price level by
background traders).

The section is structured as follows. Section 4.1 specifies
a set of parametrically defined market settings. Section 4.2
summarizes the empirical game-theoretic analysis (EGTA)
methodology we adopted to identify equilibrium solutions.
In Sections 4.3 and 4.4, we present the EGTA studies and
results on effectiveness and robustness of the two HBL
variations.

4.1. Market Environment

The global fundamental time series is generated accord-
ing to Eq.(1) with a fundamental mean r̄ = 105 and a
mean reversion constant κ = 0.05. Each trading period
lasts T = 10, 000 discrete time steps. We consider three
representative environments listed in Table 1 that vary in
market shock σ2

s and observation noise σ2
n to cover different

market conditions. Specifically, LSHN represents a mar-
ket with low shock and high observation noise, MSMN a
market with medium shock and medium observation noise,
and HSLN a market with high shock and low observation
noise. Intuitively, market shock controls the intensity of fluc-
tuations in the fundamental time series and consequently,
influences the predictability of future price outcomes. Ob-
servation noise limits the extent to which agents can rely
on their own information, and thus encourages the trading
agents to learn from the market’s aggregated order book
information.
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Environment Shock σ2
s Observation Noise σ2

n

LSHN 105 109

MSMN 5× 105 106

HSLN 106 103

Table 1. Market environments considered in the experiments.

Our market is populated with 64 background traders and one
exploiter. Background traders arrive at the market according
to a Poisson distribution with rate λa = 0.005 and observe
a noisy fundamental ot. Private values are drawn from a
Gaussian distribution with zero mean and a variance of
σ2
PV = 5× 106. The maximum number of units that they

can hold at any time is qmax = 10. The background traders
can choose from a restricted strategy set defined in Table 2
to maximize their payoffs.

The exploiter follows the strategy described in Section 3.4.
If it manipulates, the exploiter submits spoof orders with
volume Qsp = 200 at time Tspoof = 1000. Since then, the
exploiter maintains its spoof orders at a tick behind the
market’s best bid to push prices up, until all the earlier
bought units are sold. At time Tsell = 2000, it starts to
liquidate its position by selling units at prices above r̄.

4.2. Empirical Game-Theoretic Analysis

We provide a brief overview of empirical game-theoretic
analysis (EGTA), a methodology for performing strategy
selection to find equilibria in games defined by discretized
strategy space and simulated payoff data. We refer to Well-
man (2016) for detailed descriptions.

EGTA takes an iterative process to identify candidate equi-
libria in subgames (games over strategy subsets), and
searches for potential deviations until a candidate is con-
firmed. Explorations start with subgames where all agents
play a single strategy, and incrementally spread to other
strategies. Equilibria from a subgame are considered as
candidate solutions of the full game, and will be refuted if
there exists a beneficial deviation to a strategy outside the
subgame set. If we examine all deviations without refuting,
the candidate is confirmed. We continue to refine the empir-
ical subgame with additional strategies and corresponding
simulations until at least one equilibrium is confirmed and
all non-confirmed candidates are refuted.

We model the market as a role-symmetric game, which is de-
fined by an environment and agents representing two roles:
background traders and a single exploiter. Since game size
can grow exponentially in the number of players and strate-
gies, we apply the deviation-preserving reduction (DPR)
(Wiedenbeck & Wellman, 2012) technique to approximate
large games with many agents as games with fewer players.
We obtain this approximation through aggregation, which

Figure 1. Comparisons of payoffs achieved by basic HBLs and its
variations that block orders from the first, second, and third price
level respectively across market settings.

preserves payoffs from single-player deviations. To facil-
itate DPR, we choose values to ensure that the required
aggregations come out as integers. For example, in this
study, we choose 64 background traders and one exploiter,
so that a market can be aggregated to a smaller one with four
background traders and one exploiter; as one background
trader deviates to a new strategy, the remaining 63 can be
further reduced to three traders.

4.3. HBL with Price Level Blocking

A learning trader who chooses to ignore certain orders faces
a natural trade-off between losing useful information and
correctly blocking spoof orders, thus being robust to manip-
ulation. We first examine, under non-spoofing environments,
how important are orders at each price level for background
agents to make informed trading decisions. We start with
one equilibrium profile of each market environment where
background traders are restricted to choose from the basic
HBL strategy and five parametrically different ZI strategies
in Table 2. Based on the equilibrium profile, we perform
controlled experiments by letting the learning traders ignore
orders from a selected price level throughout the trading
period. Figure 1 demonstrates the payoffs obtained by basic
HBL and HBLs that respectively block orders at the first,
second and third price level in the order book. We find that
consistently across market settings, HBL agents benefit the
most by learning from market best bids and asks, and can
achieve fairly similar performance even when orders from
the second or third level are ignored.

To understand the learning-and-blocking strategy in the face
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Strategy ZI1 ZI2 ZI3 ZI4 ZI5 HBL1 HBL2 HBL3 HBL4 HBL5 HBL6

L - - - - - 0 1 2 0 0 0
R1 0 0 0 0 0 0 0 0 -10 -20 -40
R2 1000 1000 1000 500 250 0 0 0 0 0 0
η 0.4 0.8 1 0.8 0.8 1 1 1 1 1 1

Table 2. Background trading strategies included in empirical game-theoretic analysis.

(a) Differences in HBL payoffs and the exploiter profit in markets
with and without spoofing.

(b) Transaction price differences in markets with and without
spoofing.

Figure 2. Payoff differences and transaction price rises caused by spoofing across market settings. The group of learning traders chooses
either the basic HBL or HBL that blocks the second price level, where spoof orders are placed.

of manipulation, we further let the exploiter inject spoof
orders at a tick behind the best bid (i.e., the second price
level), and compare the differences in payoffs and trans-
action prices of the paired two markets with and without
spoofing. As what we expect, Figure 2a shows that learn-
ing traders who correctly block spoof orders can achieve
similar payoffs as in markets without manipulation, due to
the robustness to manipulation. However, in markets where
traders adopt basic HBL, the exploiter is able to get much
higher profits, while the background agents suffer from the
spoofed beliefs and obtain lower payoffs. Figure 2b further
demonstrates that if spoof orders can be correctly blocked,
prices in market will be less affected with price rises caused
by manipulation close to zero. However, in markets where
spoof orders are not blocked, transaction prices increase
subsequently to the arrival of spoof orders at T = 1000.

In the final set of experiments, we conduct EGTA to find
Nash equilibria in games where the exploiter is consistently
manipulating and background traders choose any trading
strategies from the ZI family and HBLs that block a selected

price level. We find though both HBL with and without
order blocking can appear at the equilibrium, markets that
populate with learning agents who correctly block spoof
orders at the second price level can achieve much larger
HBL proportions and consequently, higher total surplus in
equilibrium (See Figure 3).

4.4. HBL with Price Offsets

We study the second variation of HBL which works by
adding a price offset to the optimal value learned by the
heuristic belief function. Different from the first variation
which strategically constructs a dataset D by excluding po-
tential spoof order samples, this second HBL variation con-
siders all orders in memory and relies on a price adjustment
to adapt to different market environments. We start the ex-
ploration with a set of offset intervals, ranging from positive
[R1, R2] values that induce more conservative bids to nega-
tive values that bid more aggressively compared to a basic
HBL. Table 2 includes only strategies that are competitive
enough to appear in equilibrium.
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(a) Total HBL (and its level blocking variations) adoption rate
in equilibrium across markets where the exploiter manipulates.

(b) Total background surplus achieved in equilibrium across
markets where the exploiter manipulates.

Figure 3. Learning trader proportion and total background surplus achieved in equilibria in games with manipulation. Each yellow (blue)
marker specifies an outcome at one equilibrium where the group of learning traders does (does not) block orders from the second price
level.

As in Section 4.3, we first conduct EGTA in games without
spoofing and let background traders choose from ZI and a set
of HBL with parametrically different price offsets. Figure 5
compares equilibrium outcomes in two non-spoofing mar-
kets, one where background traders are provided the flexibil-
ity to adjust prices with offsets and the other where agents
are restricted to the standard HBL. We find that HBL traders,
by bidding a little bit more aggressively (i.e., adopting neg-
ative price adjustments), can achieve consistently higher
proportions in equilibrium (see Figure 5a). Specifically, this
price adjustment enables learning traders to adapt better to
high shock environments where prices are less predictable
from past observations. Thanks to the overall improved HBL
ratio in equilibrium, total background surplus also increases
across all market environments as shown in Figure 5b.

We, again, perform controlled experiments to investigate
reasons behind the efficacy of including such price offsets.
We focus on environment “MSMN” without spoofing and
start from one found equilibrium where all background
traders adopt HBL6. We are interested in how transaction
volume, spoof order prices, and differences in transaction
prices vary as background traders deviate to HBL adopting
different offsets and the exploiter also spoofs. The results
are shown in Figure 4.

First, we measure the total number of transactions happened
throughout the trading period in markets where HBL traders
adopt different price offsets. As expected, Figure 4a shows
that as traders submit orders at more aggressive prices, the

market tends to have more transactions. We then let the
exploiter manipulate, holding the remaining environment
parameters and background strategy profiles unchanged. We
are interested in comparing the price of spoof orders in those
different market settings. We find, perhaps surprisingly, that
the spoof-order prices are generally lower in markets where
HBL traders bid more aggressively by adopting negative
offsets (see Figure 4b). This may be because as more bids
and asks result in transactions, the outstanding best bids are
actually lower than those of markets where agents adopt
basic HBL and submit orders at more conservative prices.
Consequently, spoof orders are submitted at lower prices
to avoid being transacted in the markets. This is further
confirmed in Figure 4c, which demonstrates transaction
price differences caused by manipulation. It shows though
market populated with HBL of price offsets has a transaction
price rise after the exploiter starts to spoofing at T = 1000,
differences in transaction prices quickly decay compared to
those of markets populated with basic HBLs.

Finally, we investigate the performance of the second HBL
variation in games with spoofing. We find in the face of
manipulation, markets where trading agents are provided
options of HBL with price offsets remain to achieve larger
HBL adoption rates and higher surplus than those in mar-
kets where agents are restricted to standard HBL. However,
manipulation does decrease social welfare, due to the con-
sideration of spoof orders in the belief function.
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(a) Number of transactions. (b) Average prices of spoof orders. (c) Differences in transaction prices.

Figure 4. The accumulated number of transactions, the average price of spoof orders, and the transaction price rises caused by spoofing
throughout the trading period across markets where background agents adopt basic HBL and its variations with different price offsets.

(a) Total HBL adoption rate at equilibrium in markets without
and with spoofing.

(b) Total background surplus achieved at equilibrium in markets
without and with spoofing.

Figure 5. The total adoption rate of HBL strategies and background surplus achieved in equilibria in games with and without spoofing.
Markets represented in shaded background indicate that agents are restricted to the basic HBL strategy. Each yellow (blue) marker
specifies an outcome at one equilibrium found in a specific game environment with (without) spoofing.

5. Conclusion
We study learning-based trading strategies by which indi-
vidual traders can adopt to exploit market information but
in less vulnerable ways in the face of market manipulation.
We explored two variations based on the original HBL strat-
egy that learns from the full order book. The first variation
selectively blocks orders at certain price levels, particularly
where spoof orders are likely to be placed. The second

considers the full order book, but adjusts the offer price
by an offset, aiming to correct any biases in the learning
process. We employ agent-based simulation to evaluate the
two proposed variations on HBL under equilibrium settings
in markets where background traders can adopt the non-
learning ZI and the HBL strategies, both in its basic form
and the two variations. We demonstrate that both variations
can reduce the learning agents’ vulnerability to spoof orders,
and thus increase the overall background-trader surplus in
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the market. Empirical game-theoretic analysis implied that
trading agents can strategically adapt to the presence of
manipulation, even without any intervention to regulate the
market.
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