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ABSTRACT

The widespread use of GPS-enabled smartphones along with the
popularity of micro-blogging and social networking applications,
e.g., Twitter and Facebook, has resulted in the generation of huge
streams of geo-tagged textual data. Many applications require real-
time processing of these streams. For example, location-based ad-
targeting systems enable advertisers to register millions of ads to
millions of users based on the users’ location and textual profile.
Existing streaming systems are either centralized or are not spatial-
keyword aware, and hence these systems cannot efficiently support
the processing of rapidly arriving spatial-keyword data streams. In
this paper, we introduce a two-layered indexing scheme for the dis-
tributed processing of spatial-keyword data streams. We realize this
indexing scheme in Tornado, a distributed spatial-keyword stream-
ing system. The first layer, termed the routing layer, is used to fairly
distribute the workload, and furthermore, co-locate the data objects
and the corresponding queries at the same processing units. The
routing layer uses the Augmented-Grid, a novel structure that is
equipped with an efficient search algorithm for distributing the
data objects and queries. The second layer, termed the evaluation
layer, resides within each processing unit to reduce the processing
overhead. The two-layered index adapts to changes in the workload
by applying a cost formula that continuously represents the pro-
cessing overhead at each processing unit. Extensive experimental
evaluation using real Twitter data indicates that Tornado achieves
high scalability and more than 2x improvement over the baseline
approach in terms of the overall system throughput.
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1 INTRODUCTION

Recently, there has been an unprecedented widespread of GPS-
enabled smartphones and an increased popularity of micro-blogging
and social networking applications, e.g., Twitter, Flickr, and Face-
book. In addition, the increased amount of time individuals spend
online motivates advertising agencies to store traces of the trans-
actions performed by internet users for further processing and
analysis. These online traces often include both spatial and textual
attributes. For example, the online trace of a web search includes
both the geo-location and the keywords of each search query. This
resulted in the generation of massive amounts of rapidly-arriving
geo-tagged textual streams, i.e., spatial-keyword data streams. For
example, about 600 million tweets and 5 billion Google searches
are generated every day [2]. These rapid spatial-keyword streams
call for efficient and distributed data processing platforms. Several
applications require continuous processing of spatial-keyword data
streams (in real-time). One example is location-aware ad-targeting,
i.e., publish-subscribe systems [5]. In these systems, millions of
users can subscribe for specific promotions, i.e., continuous queries.
For example, a user may subscribe for promotions regarding nearby
restaurants and cafes. Every subscription has a specific spatial range
and an associated set of keywords. Each promotion has a spatial
location and a textual profile that describes it. An e-coupon is quali-
fied for a user when it is located inside the spatial range of the user’s
subscription and when the keywords of the user’s textual profile
overlap the keywords of the user’s subscription. In this application,
the number of users and e-coupons can be very high.

Despite being in the era of big data, existing systems fall short
when processing rapid spatial-keyword streams. These systems
belong to one of three categories: (1) centralized spatial-keyword
systems, e.g., [5], that cannot scale to high arrival rates of data,
(2) distributed batch-based spatial/spatial-keyword systems, e.g., [6,
21], that have high query-latency (where in some cases, it may
require several minutes or even hours to execute a single query),
and (3) non-spatial-keyword streaming systems, e.g., [16, 20], that
do not have direct support for spatial-keyword queries. This calls for
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distributed spatial-keyword streaming systems that are equipped
with efficient spatial-keyword query evaluation algorithms and
structures.

In this paper, we describe Tornado [13] a distributed and real-
time system for the processing of spatial-keyword data streams.
Tornado extends Storm [16]. Storm is a distributed, fault-tolerant,
and general-purpose streaming system. Tornado addresses the fol-
lowing challenges:

(1) Scalability with respect to data and query workload: Tor-
nado scales to process a large number of data objects per second
against a large number of spatial-keyword queries with minimal
latency.

(2) Skew and variability in workload distribution across time:
It is highly unlikely to have a uniform or a fixed distribution of
the data or the query workload. Tornado achieves load balancing,
and adapts according to changes in the workload (with minimal
overhead).

(3) No downtime: As Tornado adapts to changes in the workload,
it is essential to ensure that Tornado remains functional during the
transitioning phase, and that the query results are correct, i.e., no
missing or duplicate results.

(4) Limited network bandwidth: The underlying network of the
computing cluster can easily become a bottleneck under high ar-
rival rates of the data and queries. Tornado minimizes network
usage to improve the overall system performance.

To address these challenges, Tornado introduces two main pro-
cessing layers, namely: 1) the evaluation layer, and 2) the routing
layer.

The Evaluation Layer is composed of multiple evaluators, where
each evaluator is assigned a spatial region, i.e., a Partition of the
space. The entire space is collectively covered by all the partitions
with each partition covering a non-overlapping rectangle. The eval-
uation layer uses FAST [5], an efficient spatial-keyword index that
has been designed to improve the performance of Tornado.

The Routing Layer distributes data and queries across the pro-
cessing units, i.e., evaluators. The distribution is location-based,
where each evaluator is assigned a spatial region, i.e., a partition
of the space. One can argue that the distribution of the data and
queries can alternatively be text-based. However, text-based distri-
bution is inefficient when compared to location-based distribution.
The reason is that a data object, e.g., tweet, has multiple keywords,
but only one point location. Text-based distribution may forward a
data object to multiple processing units (one per keyword), while
space-based distribution forwards a data object to one and only one
evaluator. The routing layer employs the Augmented-Grid (A-Grid,
for short), a novel spatial grid structure. The A-Grid stores the non-
overlapping rectangular partitions that are assigned to evaluators.
The A-Grid adopts a new algorithm that uses shortcuts to assign
data and queries to evaluators. We analytically show that using the
A-Grid, the routing time of a query, say g, is O(Np), where N, is
the number of processing units that are relevant to g. To reduce the
network communication overhead, the A-Grid maintains a textual
summary of all the query keywords for every evaluator. Before
transmitting a data object, say O, to an evaluator, say A, the textual
summary of A is checked. If the keywords of A do not overlap the
keywords of O, i.e., O does not contribute to the answer of any
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query, then O is not transmitted. This textual summary is useful

when the keywords of queries are very selective, i.e., not popular.

Adaptivity. In Tornado, overloaded evaluators can delay the pro-

cessing and reduce the overall system throughput. Underutilized

evaluators waste processing resources. Hence, Tornado maintains

a balanced distribution of the workload across all the evaluators.

It is expected that the system workload will not be the same at all

times, and hence having a static routing layer can result in poor

system performance. Existing systems, e.g.,[6], address the problem
of adaptive workload-aware processing of big data by providing
mechanisms for updating the partitioning the data. These systems
keep centralized workload statistics, and halt the processing of the
data and queries during the re-partitioning phase. However, in dis-
tributed real-time applications, workload statistics are distributed
across evaluators and it is unacceptable to pause the query process-
ing. This calls for a real-time load-balancing technique that does not
interrupt the query processing. It is challenging to implement such

a distributed and real-time load-balancing mechanism in Tornado

for the following reasons:

e No Global System View: In Tornado, the workload statistics are
distributed across evaluators. Sending detailed workload statistics
from one process to another requires high network overhead. The
load-balancing protocol should minimize the overhead needed
to collect, transfer, and process the workload statistics.

e Correctness of Evaluation: during the re-partitioning phase,
Tornado redefines the boundaries of the evaluators. This requires
moving queries from one evaluator to another. Meanwhile, the
data objects continuously update their locations, and the answer
to each query needs to be continuously updated as well. Hence,
unless the incoming data objects are carefully directed, missing
(or duplicate) results can occur.

e Overhead of Re-partitioning: Moving the queries between
the evaluators incurs network overhead. The re-balancing algo-
rithm should be aware of the re-balancing overhead, and avoid
unnecessary re-balancing.

Tornado employs a load-balancing mechanism, where the choice
of the new spatial boundaries of the evaluators is mostly dele-
gated to the evaluators themselves. This reduces communication
overhead needed to transfer detailed workload statistics and dis-
tributes the computational overhead across the evaluators. The
load-balancing mechanism is incremental, i.e., rather than redefin-
ing all the partitions, only a few partitions are updated using simple
shift, split, and merge operations. Furthermore, Tornado ensures
the correctness of evaluation during the transient phase using a
two-stage re-partitioning protocol. In summary, the contributions
of this paper are as follows:

e We present the structure of Tornado, a scalable spatial-
keyword data streaming system that uses an efficient two-
layered indexing scheme.

e We develop an Augmented-Grid structure and an optimal
neighbor-based routing algorithm that minimizes the over-
head of routing the data and queries.

e We present an incremental and adaptiveload-balancing mech-
anism that ensures fairness in the workload distribution
across the evaluators.
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02: café, restaurant, coupon
01: cinema, hotel

Figure 1: E-coupon example .

Using real datasets from Twitter, we show that Tornado
achieves 2x performance gain in comparison to a baseline
approach.

The rest of this paper proceeds as follows. Section 2 presents
the notations used throughout the paper. Section 3 describes the
structure of Tornado. Section 4 describes the load balancing mech-
anism in Tornado. Detailed experimental evaluation is given in
Section 5. The related work is presented in Section 6. Section 7
contains concluding remarks.

2 PRELIMINARIES

In this section, we present the notations that are used throughout
the paper. A spatial-keyword data stream is an unbounded sequence
of spatial-keyword objects. A spatial-keyword object, say O, has
the following format: O = [oid, loc, text, ts], where oid is the
object identifier, loc is the geo-location of the object at Timestamp
ts, and text is the set of keywords associated with the object. We
use Tornado to answer the spatial-keyword filter query defined as
follows.

A continuous spatial-keyword filter query, say g, is defined
as q = [qid, MBR, text, t], where qid is the query identifier, MBR
is minimum bounding rectangle representing the spatial range
of the query, and text is the set of keywords of the query. The
continuous query gq is registered, i.e., keeps running for a specific
duration, say t. During t, the query continuously reports the data
objects that satisfy the query’s spatial and textual predicates. To
match a query, a data object needs to be located inside the spatial
range of the query, and needs to contain all query keywords.

Figure 1 gives an example of multiple spatial-keyword filter
queries from an e-coupon application. In Figure 1, three subscrip-
tions, i.e., queries, q1,q2, and g3 are registered in the system. E-
coupon o; qualifies for subscription ¢ because it is located inside
the spatial range of ¢; and the textual content of 01, i.e., “cinema,
hotel" contains the keywords of gz, i.e., “hotel".

3 TORNADO SYSTEM ARCHITECTURE

In this section, we present the architecture of Tornado and its
main components alongside with query processing algorithms. Tor-
nado [13] extends Storm [16]. Storm is a cluster-based, distributed,
fault-tolerant, and general-purpose streaming system that achieves
real-time processing with high throughput and low latency. Storm
provides three abstractions, namely: spout, bolt, and topology. A
spout is a source of input data streams. A bolt is a data processing
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unit. A topology is a directed graph of bolts and spouts that resem-
bles a pipeline of streamed data evaluation. Storm is not optimized
for the execution of spatial-keyword queries, simply because it
does not have built-in support for spatial or textual primitives, e.g.,
points, rectangles, or containment of keyword lists.

In order to efficiently support the evaluation of spatial-keyword
queries, we need to guarantee that relevant data and queries are
collocated in the same processing unit, i.e., a Storm bolt. This is
challenging because the system needs to distribute data and queries
across processing units in a way that achieves the following proper-
ties: (1) Optimize the memory usage across the machines by not
storing queries in multiple processing units, (2) Optimize the CPU
usage by checking each data object against as few queries as pos-
sible, and (3) Maintain good load balancing as the workload
changes, and distribute the data and queries across the processing
units while guaranteeing the correctness of evaluation, i.e., without
missing output tuples and without producing duplicate results.

Tornado extends the bolt abstraction from Storm into routing
units and evaluators. The routing units are light-weight components
that are responsible for co-locating the queries and data objects
together. The evaluators are processing units that check the incom-
ing data objects against the continuous queries and produce query
results.

Tornado makes use of the fact that a data object has a single point
location, but multiple keywords. This is typical in many location
services, e.g., as in tweets, where a tweet is associated with a single
location and multiple keywords. Accordingly, the routing layer in
Tornado partitions the space into non-overlapping MBRs. Every
evaluator is responsible for a single MBR. The benefit of having
non-overlapping MBRs is to optimize the network utilization by
forwarding each data object to a single evaluator.

To support high arrival rates of streamed data, the routing layer
applies replication, i.e., multiple identical routing units are em-
ployed. The routing layer maintains a textual summary for every
evaluator. The textual summary of an evaluator, say E, contains all
keywords of queries stored in E. In the routing units, the textual
summary for an evaluator is stored as a hash set of keywords.

Before forwarding a data object, say O, to an evaluator, say E, the
textual summary of E is consulted to check if there are some queries
in E that have keywords that overlap the keywords of O. Figure 2(a)
illustrates how Tornado processes spatial-keyword queries. Once
a query is received, a routing unit is selected at random, and the
query is forwarded to that routing unit, where the latter sends the
query to the spatially relevant evaluator(s). Based on the textual
summary of the evaluators, stored on the routing layer, some data
objects are not forwarded to any evaluator, e.g., 03 in Figure 2(a).

3.1 The Routing Units: The Augmented-Grid
(A-Grid)

The routing layer is composed of multiple identical routing units.
Routing units are used to store and index the non-overlapping spa-
tial partitions of evaluators. Recall that every evaluator, i.e., worker
process, is responsible for a specific spatial range. In real applica-
tions, the size of the distributed cluster and the number of worker
processes is large, e.g., Yahoo has about 40000 machines running
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(a) The routing units and evaluators.

(b) Neighbor-based query routing in Tornado.

(c) FAST local index in Tornado.

Figure 2: The architecture and system components of Tornado.

Hadoop with a total of 100000 CPU cores [4]. This calls for an
efficient index to store the partitions of evaluators.

An incoming data object or query goes to a random instance of
the routing units to be dispatched to the corresponding evaluator(s).
The smaller the routing time, the higher the throughput of the entire
system. Moreover, having light-weight routing units can save more
resources that can be used for query evaluation rather than for
routing. In Tornado, the location of a data object is represented as a
single point in space. Because the partitions are non-overlapping, a
data object is routed to a single evaluator. This routing is achieved
in O(1) using uniform grid partitioning. However, a query has a
spatial range, that may overlap with multiple partitions, and hence
a query needs to be routed to multiple evaluators.

DEFINITION 1. The Routing Problem Given a rectangular
query-range, say r, and a set, say S, of N. non-overlapping rect-
angular partitions that cover the entire space, find the partitions that
overlapr.

We propose the A-Grid and the Neighbor-Based Routing, a routing
technique that requires O(Np) operations to route a spatial range,
where N, is the number of evaluators that overlap the spatial range.
This is lower than the time needed in both the traditional grid, i.e.,
O(m x n) and hierarchical structures, i.e., O(log(Ne) + Np).

The A-Grid stores the non-overlapping rectangular parti-
tions that are assigned to evaluators. The entire space is parti-
tioned into N, non-overlapping spatial partitions. Initially, the
A-Grid partitions the entire space into a virtual fine grid FG.
Then, the N, partitions are overlaid on top of FG. Each parti-
tion, say p, corresponds to one evaluator, and is defined as fol-
lows: [pid, xcellmin, ycellmin, xcellmax, ycellmax], where pid is
the identifier of the partition, xcellmin and ycellmin define bot-
tom left grid cell of p, xcellmax and ycellmax define the top right
grid cell of p.

The main idea of neighbor-based search algorithm is to follow
shortcuts to jump directly from dominant cells belonging neighbor-
ing partition.

DEFINITION 2. Dominant cell A dominant cell of a partition, say
A, with respect to a spatial range, say R, is the top left cell of A that
is inside R. Dominant cells are the only cells that need to be visited
while searching the A-Grid.

For example in Figure 2(b), the dominant cell of the Partition A
with respect the spatial range R is (2,5). Observe that each grid cell
is spatially contained inside the spatial range of a single evaluator.
Boundaries of partitions are maintained an a hash table termed the
Partitions Map, PM for short as illustrated in Figure 2(b).

Each grid cell, say ¢, maintains the identifier of the partition that
contains c. To find the right dominant cell with respect to a range
R we follow the following steps:(1) find the right cell RC belonging
to a different partition, and (2) find the dominant cell of RC that is
the top-left of RC belonging to the same partition and inside the
spatial range R.

Refer to Figure 2(b) for illustration. Assume that we need to iden-
tify the right dominant cell, say RC of Cell (2, 5) within Partition A.
From the PM we know that the partition A spans cells [(0, 2), (3, 6)].
The right cell RC of the cell (2, 5) is of the form (xp, yp), where xp
is the index on the horizontal coordinate that is to the right of cell
(2,5). The yp is 5 because the Cell RC is to the right of Partition A
and has the same position on the vertical axis. From the PM, the
partition A ranges from 0 to 3 on the horizontal coordinate, where 0
and 3 are xmin and xmax of the Partition A respectively, the value
xp is equal to 4 that is 1 + xmax. This means that the Cell RC is
(4, 5) that is covered by Partition B. The dominant cell of (4, 5) is
also (4, 5) as this is the top-left cell within R. The same logic applies
when finding the bottom dominant cell.

To route a spatial range, say R, we start from the upper-left
corner of R. We find the partition that is covered by that corner
(this is trivial because the partition identifier is stored in the cell
corresponding to that corner). Then, we follow the right and bottom
dominant shortcuts of that corner.

We recursively apply this procedure until we reach a cell from
which the pointers lead to a cell that is outside R or to a previ-
ously visited partition. We use a Boolean array to mark the visited
partitions and avoid visiting the same partition more than once.

Refer to Figure 2(b) for illustration. To route the red rectangle,
we start from Cell (2, 5) covered by Partitions A. Then, we follow
the pointers to Cells (4, 5) and (2, 1), covering Partitions F and B,
respectively. Then, we follow the bottom pointer of Cell (2, 1) to
reach Cell (4, 1) inside Partition C. From the PM, we identify that
Cell (4,3) is the dominant cell of the Partition C with respect to
R. We follow dominant cell shortcuts visiting the following cells:
Cell (5, 3) within Partition D, Cell (5, 2) within Partition E, and Cell



Adaptive Processing of Spatial-Keyword Data

(4, 5) within Partition B. The Pseudocode of the algorithm is given
in Algorithm 1.

Algorithm 1: neighborSearch(MBR r)

1 Stack S

2 Cell ¢(x,y)«— TopLeft corner of r

3 S.push(c)

4 while S not empty do

5 cS.pop

6 if c overlaps r and c.partition is not visited then
7 add c.partition to result

8 mark c.partition as visited

9 rightCell = getDom(getRightCell(c.y))
10 bottomCell = getDom(getBottomCell(c.x))
11 S.push(bottomCell),S.push(rightCell)
12 end
13 end

LemMa 1. The neighbor-based routing requires O(Np) and
does not depend on the granularity of the grid
The interconnection between dominant cells in the A-Grid can be
abstracted as a hypothetical Directed Acyclic Graph (DAG). For the
traversal performed by the neighbor-based search algorithm, the num-
ber of nodes V in the hypothetical DAG is Np. The number of the
edges E visited is 2Np because for every node, we follow at most two
pointers. The total traversal time is O(V + E) = O(Ny,). The run time
of the algorithm cannot be less than O(Np) as this is the size of the
output.

The routing units maintains a summary of query keywords
within each evaluator. As described in Section 2, to match a data
object say o with a query say g, the keywords of O need to contain
all the keywords of q. Hence, it is sufficient to store only a single
keyword from q in the textual summary of the evaluator correspond-
ing to q. A data object is spatially assigned to only one evaluator. If
the keywords of the object contain any of the evaluator’s textual
summary keywords, the object is forwarded to that evaluator.

Notice that Tornado maintains multiple identical routing units.
One way to keep track of the query keywords within each evalu-
ator is to broadcast each query to all the routing units. To avoid
unnecessary communication, an incoming query, say g, goes to an
arbitrary instance of the routing units, say U. If ¢ adds new key-
words to any evaluator, say E, then U forwards the added keywords
to the other replicas of the routing units with negligible latency. As
queries expire, the textual summary of the evaluators may contain
redundant keywords. Evaluators periodically inform routing units
with expired keywords to allow routing units to remove redundant
keywords.

3.2 Evaluators

To improve the overall system performance, each evaluator main-
tains a local spatial-keyword index. Evaluators in Tornado use
FAST [5], an efficient spatial-keyword index that requires minimal
memory overhead that has been designed to improve the scalability
of Tornado. FAST integrates the spatial pyramid [7] with a new
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textual index termed the adaptive-keyword-index (AKI). The spatial
pyramid is a multi-resolution spatial index. AKI is a hybrid textual
index that integrates the trie structure [12] with inverted lists [22]
and uses the frequencies of keywords to improve the indexing and
searching performance. FAST uses multiple optimizations to reduce
its overall memory overhead, e.g., avoid query replication by shar-
ing lists of queries among neighboring pyramid cells. Figure 2(c)
illustrates the structure of FAST. The main responsibilities of an
evaluator are as follows:

(1) Store and index continuous queries and drop expired queries.
(2) Process incoming data objects against stored queries.

(3) Keep track of usage and workload statistics.

Continuous queries are persisted in an evaluator by indexing
them in the local instance of FAST that is maintained in the evalua-
tor. To process an incoming data object, say O, we search FAST for
matching continuous queries. The keywords of matching queries
need to be fully contained in the keywords of O. Also, the location
of O needs to be inside the spatial range of a matching query. In-
coming data objects are evicted as soon as they are matched against
the indexed continuous queries.

4 REAL-TIME LOAD BALANCING

In Tornado, each evaluator is responsible for a certain spatial range
that covers a partition in the fine grid FG. To achieve high through-
put, Tornado keeps a balanced distribution of the workload across
the evaluators. To compute the workload corresponding to an eval-
uator, Tornado keeps workload statistics at the same granularity
of FG. For each data object, say Oy, that is received by FG[i][j],
where i and j are the horizontal and vertical coordinates of the Cell
FGli][j], respectively, let q; be the number of queries that contain
any of the keywords of O;.

For each grid cell FG[i][j], we define the workload overhead, i.e.,
the computational cost, as the sum of g; over all the data objects
O received by that cell:

cost(FGIil[j1) = > g1 (1)
l

Given a partition, say P,, that is bounded by
[(xmin, ymin), (xmax, ymax)], the overall computational
cost is the sum of the costs of all the grid cells in P, i.e.,

cost(Pyy) = ) cost(FG[i][j]) )
where xmin < i < xmax and ymin < j < ymax.
Below, we describe the load-balancing protocol in Tornado.

4.1 Initialization

Tornado partitions the entire space into N, partitions, where N, is
the number of evaluators. To choose the initial boundaries of the
partitions, Tornado uses a sample of the data and query workload,
and calculates the computational cost of each fine grid cell. Let
be the maximum computational cost of the partition Py, i.e.,

a= n}}'ax(cosz‘(Pw ) 3)

In the initialization phase, the objective is to minimize & across
all the N, partitions. The best-case distribution is to have all eval-
uators process equal portions of the workload. The problem of
finding the optimal rectangular partitioning that minimizes « is
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NP-Hard (see [10]). Tornado employs a hierarchical recursive space
decomposition similar to that of a k-d tree decomposition [6, 14].
In particular, Tornado maintains a priority queue of the partitions
to be split, where the partitions are sorted according to their cost.
First, the entire space represents a single partition that is inserted
into the priority queue. Then, the top partition from the queue, i.e,
the one with the highest cost, is retrieved, and then is split into two
partitions. The split is chosen in a way that minimizes the maxi-
mum cost of the resulting two sub-partitions. Then, the resulting
sub-partitions are inserted into the priority queue. This process is
repeated until a single grid cell is reached (that cannot be split),
or the maximum allowed number of evaluators in the system is
reached. The maximum number of evaluators is a system parameter
that depends on the number of CPU cores in the cluster.

4.2 Adaptivity in Tornado

Due to limited cluster resources, it is important to preserve fairness
in workload distribution while keeping the number of evaluators
fixed. Tornado uses two incremental load-balancing operations,
namely: (1) shift and (2) split/merge.

A shift operation involves a transfer of the workload, i.e., fine grid
cells, from an overloaded evaluator to an underutilized spatially
adjacent evaluator. Shifting to a neighbor evaluator is meant to
prevent excessively fragmenting the indexed queries into multiple
evaluators, hence reducing the overall memory requirements. The
objective is to store queries in the fewest evaluators possible while
maintaining load balancing. Tornado uses three variants of the shift
operation, namely: horizontal, vertical and corner shifts. Refer to
Figure 3 for illustration. The red circle in the figure represents an
area with a high workload. A horizontal shift is applicable to two
evaluators that share a horizontal boundary, e.g., see Figure 3(a).
Similarly, a vertical shift is applicable to two evaluators that share a
vertical boundary, e.g., see Figure 3(b). A corner shift is applicable
when two neighboring evaluators form a corner shape, e.g., see
Figure 3(c). The corner shift allows a transfer of workload between
two non-mergeable evaluators, i.e., ones that do not share an entire
horizontal or vertical boundary. The details for finding the best
point to shift are described in Section 4.3.

A split/merge operation involves a split of an overloaded evalua-
tor into two evaluators, followed by a merger of two neighboring
underutilized evaluators into a single evaluator. The split is either
horizontal or vertical. The split position is chosen to minimize
the difference in cost between the resulting two partitions. The
details of finding the best point to split an evaluator are given in
Section 4.3. During a split, Tornado transfers some grid cells from
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Figure 4: The split/merge operation.

an overloaded evaluator to an auxiliary evaluator. Refer to Figure 4
for illustration. Figure 4(a) illustrates an overloaded evaluator X
before a split/merge operation. An instance of the routing units
makes a decision to split/merge and initiates a split of Evaluator X
into X; and X7, and a merge of Evaluators Y and Z, as in Figure 4(b).
Observe that, according to the new boundaries, some of the fine
grid cells are being transmitted from evaluator X to an auxiliary
evaluator A. All the fine grid cells that are stored in Evaluator Z
are transferred to Evaluator Y. Figure 4(c) gives the state at the end
of the split/merge operation.

The decision of whether to initiate a rebalancing operation or
not depends on two factors, namely, the cost reduction C, resulting
from the re-balance operation, and the cell transfer overhead C;
involved in the re-balance operation. The cost reduction C, of
a re-balance operation is the difference between the maximum
partition cost before and after the re-balance operation. Consider
the split/merge operation in Figure 4, and assume that Evaluator
X has the highest cost. The cost before split/merge=cost(X). The
cost after split/merge is max(cost(X1), cost(Xz), (cost(Y)+ cost(Z))).
The cost reduction of the split/merge operation is:

Cr(split/merge, X, X1,X2,Y,Z) =

cost(X) — max(cost(X1), cost(X2), (cost(Y) + cost(Z))) )

The above idea applies to the shift operation, where the cost reduc-
tion is computed as the difference between the maximum cost before
and after the shift operation. The cell transfer overhead C; isan
estimate of the overhead of transferring cells during the re-balance
operation. C;(p) = f X queryCount(p), where queryCount(p) is the
number of queries in Partition p, and f is the average time needed to
transfer a query. queryCount(p) is incremented whenever a query
is registered at p, and is decremented whenever a query in p ex-
pires. For example, for the split/merge operation in Figure 4, the
cell transfer overhead of the split/merge operation is calculated as
follows:
Ci(split/merge, X, X1,X2,Y,Z) =

B x (queryCount(Xz) + queryCount(Z)) ©)

Tornado chooses the operation that maximize that value of C, while
having C, > C;.

4.3 Distributed Load-Balancing

Existing load-balancing approaches are centralized [6], i.e., require
having a single unit that receives all the workload statistics. In
contrast, in Tornado, the computation of the costs of the fine grid
cells is distributed across the evaluators as follows. (1) The evaluators
keep detailed workload statistics and choose the split coordinates
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Figure 5: Cost aggregation within an evaluator.

that are needed to perform the shift and split/merge operations
and (2) The routing layer periodically receives a summary of the
workload statistics from the evaluators, and then makes a decision
as to whether to change the partitioning or not.

For the routing layer to make a decision whether to re-balance
or not, it does not need the detailed costs within every evaluator.
The decision to rebalance can be made using the overall evaluator
costs from Equation 2.

Tornado keeps three aggregates at each evaluator, namely, row,

column, and overall aggregates. Refer to Figure 5 for illustration.
Figure 5(a) gives the initial values of these aggregates. Figure 5(b)
gives the values after processing three data objects O1, O,, and
Os. Oy satisfies one query at Cell (2, 3), and hence the aggregates
of Row 3 and Column 2 are incremented. O satisfies two queries
at Cell (4, 2), and hence the aggregates of Row 2 and Column 4
increase by 2. Os, satisfies one query at Cell (4, 4), and hence the
aggregates of Row 4 and Column 4 are incremented. The overall
cost of the evaluator gets the value of 4. Maintaining these ag-
gregates requires O(1) processing time per data object. Tornado
maintains similar row, column and overall aggregates for the num-
ber of queries within grid cells.
For the split/merge operation, to maximize the cost reduction
resulting from splitting a partition, say X, into X7 and X3, Tornado
tries to minimize the value of |cost(X1) — cost(X2)| by trying all pos-
sible vertical and horizontal splits. If Equation 2 is applied directly,
it requires O(m X n) to find the best split. Instead, Tornado uses
the row and column aggregates to find the best split in O(m + n).
In particular, Tornado scans the column aggregates and keeps a
sum of the scanned aggregates, say S,. Initially, S, = 0, and keeps
accumulating values from the column aggregates as long as S, is
less than half the overall cost of the evaluator, say (Opqarf)- If Sa is
equal to (Opq f), no more aggregates are scanned. If Sq is greater
than (Opqf), then the split position is marked, and the same pro-
cess is repeated, but with the row aggregates. The split position
that minimizes the value of |cost(X1) — cost(X2)| is chosen.

For example, in Figure 5(b), the best vertical split is between
Columns 3 and 4, with a difference of 3 in cost. However, the best
horizontal split is between Rows 2 and 3, with a difference of 0 in
cost. Hence, the horizontal split is chosen.

For the shift operation, we need to distinguish between a corner
shift and a horizontal/vertical shift. In the corner shift in Figure 3(c),
there are no multiple choices for the shift coordinate in A. The
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corner shift coordinate depends on the position of B relative to A.
This allows A to identify the cost of the cells involved in any shift
operation as well as the cell transfer overhead. Notice that there are
at most 8 possible corner shifts for any given evaluator. However,
there is no fixed coordinate for the horizontal/vertical shift in A. The
reason is that the optimal coordinate for a horizontal/vertical shift
depends on the cost of B that is unknown to A. To address this issue,
Tornado delays the choice of the best shift coordinate in A until the
routing unit makes a decision to perform a horizontal/vertical shift.
At the time when the routing unit makes a decision as to whether
to re-balance or not, it has accurate statistics for both the split/merge
and the corner shift operations. The routing unit does not know the
exact cost reduction and cell transfer overhead of horizontal/vertical
shift operations. The routing unit estimates that an optimal hori-
zontal/vertical shift from evaluator A to evaluator B results in an
optimal division of workload between A and B. Thus, the estimated
cost reduction is computed as cost(A) — M. Assuming
uniform query distribution in A, the routing unit estimates the cell
transfer overhead to be proportional to the amount of workload
cost(A)— M Th
cost(A) - Lhen,
the routing unit chooses the re-balancing operation if necessary. If

the re-balancing operation is a horizontal/vertical shift, then the
routing unit informs the evaluators involved in this horizontal/vertical
shift operation with the costs necessary to make an optimal shift
operation similar to finding the optimal split described previously.

transferred, i.e., § X queryCount(A) X

4.4 Correctness during Load-balancing

A rebalancing operation affects both the routing and the evalua-
tion layers. In the routing layer, the partitioning of the evaluators
changes according to the rebalancing operation. In the evaluators,
index cells and queries move from one evaluator, say E1, to another
evaluator, say Ej. It is challenging to guarantee the correctness
during the re-balancing process because data objects and queries
arrive during re-balancing and Tornado cannot afford to halt the
processing until the entire re-balancing is done.

An important question to address is which evaluator should re-
ceive the incoming data objects and queries during the transient phase?
E1, or Ey, or both? Tornado splits the transient phase into two steps.
In every step, we define a set of rules that guarantee correct pro-
cessing in that phase. The steps of the transient phase are: (1) Index
cells transfer phase during which queries from index cells are moved
across evaluators, and (2) Routing unit update phase during which
routing units update their partitioning according to the adaptivity
operation.

Processing during the index cells transfer phase During the
cell transfer phase, all incoming data and queries will be routed to
E; because all routing units use the partitioning before re-balancing.
Incoming queries to the area to be shifted are processed according
to the following steps:

(1) All incoming queries are processed and indexed in E;
(2) If a query arrives at a transmitted cell, forward the query to E;
Incoming data objects are processed in Evaluator Ej.

Processing during the routing update phase, Due to network
delays, it is not possible that all routing units update their parti-
tioning instantaneously. This means that even after the cell transfer
phase, some routing units may send data and queries to E; while
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Table 1: The values of the parameters used in the experimen-
tal evaluation.

Parameter Value
Number of routing units 1,3,5,7,10, 12
Number of queries (million) 5, 10, 20, 30, 40
Number of query keywords 1,2,3,5 7

Spatial side length of a query | .01%,.05%,.1%,.5%,1%,1.5%

others send data and queries to E. To address this issue, we adopt
the following approach during the routing update phase: any data
object or query that is routed to a transmitted cell in E1 is neither
processed nor indexed in E1 and is instantaneously forwarded to Es.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of Tornado. Our ex-
periments are conducted on a cluster of Dell r720xd servers that
have a total of 48 TB of local storage, and a 40 Gigabit Ethernet
interconnect. The cluster runs 5 virtual machines where each vir-
tual machine has 16 cores and 32 GB of memory. Each virtual
machine runs Storm 1.0.0 over Centos Linux 6.5. We evaluate the
performance of Tornado using real datasets and a synthetic query
workload. We use a real dataset from Twitter that is composed of 1
billion tweets with geo-locations inside the US and of size 140 GB.
These tweets are collected from January 2014 to March 2015. The
format of the tweet is "id, geo-location, text". We use these tweets to
simulate a continuous and infinite stream of spatio-textual objects
such that when all the tweets are streamed, we restart streaming
the tweets from the beginning.

We use three query datasets, namely; (1) normal tweets,
(2) spatially-condensed, and (3) textually-selective. The normal tweets
dataset uses the locations and keywords of the tweets as the lo-
cations and the keywords of the query. The spatially-condensed
dataset is used to study the effectiveness of load-balancing tech-
niques by shrinking, i.e., scaling down, the spatial area covered by
the dataset into a smaller range. Hence, creating load imbalance
across evaluators that requires the adaptivity protocol to redis-
tribute the workload. The textually-selective dataset chooses the
keywords of queries based on how frequent the keywords are. To
build this dataset, all the keywords of tweets are sorted based on
their frequencies. Then the keywords of queries are randomly cho-
sen from the k" percentile frequent keywords, where k is the
keyword frequency threshold. For example, setting k to 90%, does
not include the 10% most frequent data objects keywords into query
keywords.

Table 1 summarizes the values of the parameters we use. We
set the default number of query keywords to 3, which resembles
the average number of keywords in web searches [3]. The default
spatial range of queries is .5% of the entire spatial range. For the
A-Grid, we use a 1000x1000 granularity.

5.1 Performance of Tornado

In this experiment, we measure the performance of the following
processing alternatives. (1) Tornado (FAST), where the A-Grid is
used as the routing structure and FAST is used as the local spatial-
keyword inside the evaluators. (2) GI?, where the A-Grid is used
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as the routing structure and GI? [17] is used as the local index
inside the evaluators. The Grid Inverted Index, i.e., GI2, is a spatial-
keyword structure that is used in the PS2Stream [9] distributed
publish-subscribe streaming system. GI? indexes spatial-keyword
queries over a spatial grid where every cell of the spatial grid has
an inverted list to queries. (3) Text-Rout, where the routing units
use keywords of data objects and queries to hash and route data
objects and queries to evaluators, i.e., every evaluator is assigned a
set of keywords. In Text-Rout, FAST is used as the local spatial-
keyword index inside evaluators. (4) Uni-Space-Rout, where the
partitions assigned to evaluators span equal and non-overlapping
spatial ranges. These spatial ranges are derived from a uniform spa-
tial grid partitioning of the entire space regardless of the spatial and
textual distribution of underlying workload. Also, in Uni-Space-
Rout, FAST is used as the local index.

Figures 6 (a) and (b) show that using the Tornado (FAST)
achieves the highest throughput and the least processing latency.
This is due to the efficiency of both A-Grid and FAST. Tornado
(FAST) achieves more than 2X improvement in the overall through-
put than other processing alternatives. The reason is that the A-
Grid ensures fair workload distribution to evaluators with minimal
routing overhead. Also, FAST [5] ensures efficient indexing and
searching performance with low memory overhead.

GI? results in low throughput and high execution latency be-
cause of the underlying local GI? index. GI? suffers from a high
memory overhead due to the replication of queries over spatial grid
cells. Also, the inverted lists inside the spatial grid cells of GI? do
not provide high textual discrimination abilities [12]. This leads to
poor searching performance, low overall system throughput, and
high execution latency.

Text-Rout suffers from poor performance because the text-
based routing replicates data objects and queries to multiple eval-
uators. For example, assume that Evaluator E1 is responsible for
Keyword k1 and Evaluator E2 is responsible for Keyword k2. Any
incoming data object containing Keywords k1 and k2 will be repli-
cated to both Evaluators E1 and E2. This creates a bottleneck in the
network bandwidth and reduces the overall throughput and results
in having a single data object being processed in more than one
evaluator.

The uniform spatial routing, i.e., Uni-Space-Rout, results in a
throughput that is 2 times lower than that of Tornado (FAST).
The reason is that using uniform spatial partitioning does not ac-
count for the skewed spatial distribution of data objects and queries
and results in an unfair workload distribution across evaluators.
This significantly reduces the overall performance due to workload
imbalance.

Also, we measured the performance of a native Storm implemen-
tation that replicates all queries to all evaluators and does not use
any internal spatial keyword indexing. This native storm implemen-
tation resulted in an extremely low throughput, i.e., less than one
thousand objects per second, that is not comparable with Tornado.

Figure 6(c) demonstrates the effectiveness of spatial-keyword
routing against spatial-only routing using the textually-selective
dataset. In this experiment, we vary the frequency of query key-
words from 0%, i.e., least frequent keywords that do not match
any of the keywords of data objects, to 100%, i.e., query keywords
include all popular keywords and follow the same distribution as
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the keywords of data objects. Figure 6(c) illustrates that, as the
keyword frequency percentile of queries decreases, the overall sys-
tem throughput increases. The reason is that, as the frequency
percentile of query keyword decreases, the number of data ob-
jects with keywords overlapping with the textual summaries in
the A-Grid decreases. This results in having fewer data objects
being forwarded to evaluators and hence a reduction of both the
computational overhead in the evaluators and the communication
overhead between the routing units and the evaluators.

5.2 Performance of Routing Layer

In Figure 7, we contrast the performance of the A-Grid against the
performance of traditional uniform Grid and the R-tree. Figure 7(a)
gives the routing times for data points while increasing the number
of partitions. As the number of partitions increases, the routing

Num of Queries(millions)

(c) Number of queries effect.

Scale factor Num of worker processes

(a) Hotspots Throughput (b) Statistics overhead.

Figure 9: Adaptivity.

time of the data points increases remains constant for both the Grid
and the A-Grid and increases for the R-tree index. Although the
Grid and the A-Grid have similar performance for point routing,
Figure 7(b) shows that the A-Grid outperforms the Grid and R-tree
for range routing as we increase the spatial range of queries from
.1% to 5% of the entire spatial range.

In Figure 10, we study the effect of the number of routing units
on the overall system throughput. Figure 10 gives the throughput
when increasing the number of routing units. If there is only one
routing instance, then the routing layer becomes a bottleneck. As
we increase the number of routing instances, the system throughput
increases. The increase in throughput saturates after 10 routing
instances. After that, the bottleneck moves from the routing layer
to the evaluation layer.

5.3 Scalability

In this experiment, we study the scalability of Tornado under var-
ious query workloads. In Figure 8(a), we vary the spatial range
of the queries from .01% to 1.5% of the maximum spatial range.
Figure 8(a) illustrates that Tornado is scalable and that the system
throughput is stable and is not affected by the increase in the spa-
tial extent of the query. In Figure 8(b), we increase the number of
query keywords from 1 to 7. Figure 8(b) illustrates that Tornado is
scalable and that the system throughput increases with the increase
in the number of query keywords. The reason is that when queries
contain more keywords fewer objects match with queries. This
reduces the number of output tuples generated and improves the
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overall throughput. This resembles the same performance trend
found in FAST [5]. To demonstrate the scalability of Tornado, we
increase the number of continuous queries from 5 million queries
to 40 million queries. Figure 8(c), shows that Tornado scales well
when increasing the number of queries. The overall throughput is
slightly reduced due to the increased number of output tuples that
resulted from having more queries in the system. The scalability of
Tornado is due to the scalability of the local spatial-keyword index,
i.e., FAST. Fast is able to index a large number of queries with an
efficient searching performance and a low memory overhead [5]

5.4 Adaptivity

In this experiment, we demonstrate the adaptivity in Tornado using
the spatially condensed dataset. The spatially condensed dataset is
used to introduce hotspots and to direct all workload into a small
subset of evaluators. We vary the scaling factor for shrinking the
dataset’s spatial range from .4 to .7 of the entire spatial range. A
smaller scale factor results in a stronger hotspot that is focused in
a small subset of evaluators. A scale Figure 9(a) illustrates that the
adaptive version of Tornado is able to maintain a stable throughput
in contrast to the static version of Tornado. The smaller the scale
factor, the lower the throughput for static partitioning. The reason
is that, in the static partitioning, fewer evaluators handle the entire
workload. This results in a bottleneck in the evaluation layer.

In Figure 9(b), we compare the communication overhead between
the distributed and the centralized load balancing approaches. In the
centralized load-balancing approach detailed workload statistics are
transmitted to the routing layer. However, in the distributed load-
balancing approach only summaries of statistics are transmitted
to the routing layer. Figure 9(b) illustrates that the communication
overhead of the distributed load-balancing is much less than the
overhead of the centralized load-balancing approach.

6 RELATED WORK

The work related to Tornado can be categorized into three main cate-
gories: 1) Centralized spatial and spatial-keyword query-processing,
2) Distributed query-processing, and 3) Adaptive query-processing.
Centralized spatial-keyword systems: Several centralized
spatial-keyword indexes have been proposed to process spatial-
keyword queries e.g., [5, 8, 18]. These access methods integrate
a spatial index, e.g., the R-tree [11] or the Quad-tree [15] with a
keyword index, e.g., Inverted lists [22]. These access methods are
centralized and do not scale across multiple machines. FAST [5]
is a centralized spatial-keyword index that has been designed as a
local index for Tornado.

Distributed Query-Processing: Many systems have been devel-
oped to process large-scale datasets. Batch-based systems, e.g.,
Apache Hadoop [1], are designed to process large amounts of data
in an offline manner (i.e., on disk). In these systems, a single job can
take several minutes or even hours to complete. Apache Spark [19]
has been introduced to improve the latency of Hadoop. Streaming
systems, e.g., Storm[16], process data streams of high arrival rates
in real-time. However, none of the aforementioned systems is op-
timized for processing spatial-keyword queries. PS2Stream [9] is
a distributed location-aware publish/subscribe streaming system.
PS2Stream uses the Grid Inverted Index, i.e., GI2. PS2Stream does

A. Mahmood et al.

not use newly optimized spatial-keyword indexes, e.g., [5, 18] that
improve the overall system performance.
Adaptive Query-Processing: AQWA [6] is an adaptive spatial-
only processing system that is based on Hadoop. AQWA executes
snapshot spatial queries over static data.

7 CONCLUSIONS

In this paper, we present Tornado, a distributed system for the
processing spatial-keyword data streams. We use Tornado to real-
ize a location-aware publish/subscribe application. Tornado uses
several optimizations, e.g., global routing, neighbor-based spatial
routing, to alleviate performance bottlenecks in the system. Tor-
nado is adaptive to changes in data distribution and query workload
and is able to preserve the system throughput under varying work-
loads. Tornado achieves 2x improvements over the performance of
the baseline approaches.
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