
Adaptive Processing of Spatial-Keyword Data Over a Distributed
Streaming Cluster∗

Ahmed R. Mahmood1, Anas Daghistani1, Ahmed M. Aly2, Mingjie Tang1,
Saleh Basalamah3, Sunil Prabhakar1, Walid G. Aref1

1Purdue University 2Google Inc. 3Umm Al-Qura University
1{amahmoo, tang49, sunil, aref}@cs.purdue.edu, anas@purdue.edu

2aaly@google.com 3smbasalamah@uqu.edu.sa

ABSTRACT

The widespread use of GPS-enabled smartphones along with the

popularity of micro-blogging and social networking applications,

e.g., Twitter and Facebook, has resulted in the generation of huge

streams of geo-tagged textual data. Many applications require real-

time processing of these streams. For example, location-based ad-

targeting systems enable advertisers to register millions of ads to

millions of users based on the users’ location and textual proile.

Existing streaming systems are either centralized or are not spatial-

keyword aware, and hence these systems cannot eiciently support

the processing of rapidly arriving spatial-keyword data streams. In

this paper, we introduce a two-layered indexing scheme for the dis-

tributed processing of spatial-keyword data streams. We realize this

indexing scheme in Tornado, a distributed spatial-keyword stream-

ing system. The irst layer, termed the routing layer, is used to fairly

distribute the workload, and furthermore, co-locate the data objects

and the corresponding queries at the same processing units. The

routing layer uses the Augmented-Grid, a novel structure that is

equipped with an eicient search algorithm for distributing the

data objects and queries. The second layer, termed the evaluation

layer, resides within each processing unit to reduce the processing

overhead. The two-layered index adapts to changes in the workload

by applying a cost formula that continuously represents the pro-

cessing overhead at each processing unit. Extensive experimental

evaluation using real Twitter data indicates that Tornado achieves

high scalability and more than 2x improvement over the baseline

approach in terms of the overall system throughput.

CCS CONCEPTS

· Information systems → Parallel and distributed DBMSs;

Mainmemory engines; Streammanagement; Spatial-temporal

systems; Data streaming;

∗This research was supported in part by the National Science Foundation under Grant
Number III-1815796.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speciic permission
and/or a fee. Request permissions from permissions@acm.org.

SIGSPATIAL ’18, November 6ś9, 2018, Seattle, WA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5889-7/18/11. . . $15.00
https://doi.org/10.1145/3274895.3274932

KEYWORDS

Distributed streaming, Spatial-keyword processing

ACM Reference Format:

Ahmed R. Mahmood, Anas Daghistani, Ahmed M. Aly, Mingjie Tang, Saleh

Basalamah, Sunil Prabhakar, Walid G. Aref. 2018. Adaptive Processing of

Spatial-Keyword Data Over a Distributed Streaming Cluster. In 26th ACM

SIGSPATIAL International Conference on Advances in Geographic Information

Systems (SIGSPATIAL ’18), November 6ś9, 2018, Seattle, WA, USA. ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/3274895.3274932

1 INTRODUCTION

Recently, there has been an unprecedented widespread of GPS-

enabled smartphones and an increased popularity ofmicro-blogging

and social networking applications, e.g., Twitter, Flickr, and Face-

book. In addition, the increased amount of time individuals spend

online motivates advertising agencies to store traces of the trans-

actions performed by internet users for further processing and

analysis. These online traces often include both spatial and textual

attributes. For example, the online trace of a web search includes

both the geo-location and the keywords of each search query. This

resulted in the generation of massive amounts of rapidly-arriving

geo-tagged textual streams, i.e., spatial-keyword data streams. For

example, about 600 million tweets and 5 billion Google searches

are generated every day [2]. These rapid spatial-keyword streams

call for eicient and distributed data processing platforms. Several

applications require continuous processing of spatial-keyword data

streams (in real-time). One example is location-aware ad-targeting,

i.e., publish-subscribe systems [5]. In these systems, millions of

users can subscribe for speciic promotions, i.e., continuous queries.

For example, a user may subscribe for promotions regarding nearby

restaurants and cafes. Every subscription has a speciic spatial range

and an associated set of keywords. Each promotion has a spatial

location and a textual proile that describes it. An e-coupon is quali-

ied for a user when it is located inside the spatial range of the user’s

subscription and when the keywords of the user’s textual proile

overlap the keywords of the user’s subscription. In this application,

the number of users and e-coupons can be very high.

Despite being in the era of big data, existing systems fall short

when processing rapid spatial-keyword streams. These systems

belong to one of three categories: (1) centralized spatial-keyword

systems, e.g., [5], that cannot scale to high arrival rates of data,

(2) distributed batch-based spatial/spatial-keyword systems, e.g., [6,

21], that have high query-latency (where in some cases, it may

require several minutes or even hours to execute a single query),

and (3) non-spatial-keyword streaming systems, e.g., [16, 20], that

do not have direct support for spatial-keyword queries. This calls for

https://doi.org/10.1145/3274895.3274932
https://doi.org/10.1145/3274895.3274932

SIGSPATIAL ’18, November 6ś9, 2018, Seatle, WA, USA A. Mahmood et al.

distributed spatial-keyword streaming systems that are equipped

with eicient spatial-keyword query evaluation algorithms and

structures.

In this paper, we describe Tornado [13] a distributed and real-

time system for the processing of spatial-keyword data streams.

Tornado extends Storm [16]. Storm is a distributed, fault-tolerant,

and general-purpose streaming system. Tornado addresses the fol-

lowing challenges:

(1) Scalability with respect to data and query workload: Tor-

nado scales to process a large number of data objects per second

against a large number of spatial-keyword queries with minimal

latency.

(2) Skewand variability inworkload distribution across time:

It is highly unlikely to have a uniform or a ixed distribution of

the data or the query workload. Tornado achieves load balancing,

and adapts according to changes in the workload (with minimal

overhead).

(3) No downtime: As Tornado adapts to changes in the workload,

it is essential to ensure that Tornado remains functional during the

transitioning phase, and that the query results are correct, i.e., no

missing or duplicate results.

(4) Limited network bandwidth: The underlying network of the

computing cluster can easily become a bottleneck under high ar-

rival rates of the data and queries. Tornado minimizes network

usage to improve the overall system performance.

To address these challenges, Tornado introduces two main pro-

cessing layers, namely: 1) the evaluation layer, and 2) the routing

layer.

The Evaluation Layer is composed of multiple evaluators, where

each evaluator is assigned a spatial region, i.e., a Partition of the

space. The entire space is collectively covered by all the partitions

with each partition covering a non-overlapping rectangle. The eval-

uation layer uses FAST [5], an eicient spatial-keyword index that

has been designed to improve the performance of Tornado.

The Routing Layer distributes data and queries across the pro-

cessing units, i.e., evaluators. The distribution is location-based,

where each evaluator is assigned a spatial region, i.e., a partition

of the space. One can argue that the distribution of the data and

queries can alternatively be text-based. However, text-based distri-

bution is ineicient when compared to location-based distribution.

The reason is that a data object, e.g., tweet, has multiple keywords,

but only one point location. Text-based distribution may forward a

data object to multiple processing units (one per keyword), while

space-based distribution forwards a data object to one and only one

evaluator. The routing layer employs the Augmented-Grid (A-Grid,

for short), a novel spatial grid structure. The A-Grid stores the non-

overlapping rectangular partitions that are assigned to evaluators.

The A-Grid adopts a new algorithm that uses shortcuts to assign

data and queries to evaluators. We analytically show that using the

A-Grid, the routing time of a query, say q, is O(Np), where Np is

the number of processing units that are relevant to q. To reduce the

network communication overhead, the A-Grid maintains a textual

summary of all the query keywords for every evaluator. Before

transmitting a data object, sayO , to an evaluator, say A, the textual

summary of A is checked. If the keywords of A do not overlap the

keywords of O , i.e., O does not contribute to the answer of any

query, then O is not transmitted. This textual summary is useful

when the keywords of queries are very selective, i.e., not popular.

Adaptivity. In Tornado, overloaded evaluators can delay the pro-

cessing and reduce the overall system throughput. Underutilized

evaluators waste processing resources. Hence, Tornado maintains

a balanced distribution of the workload across all the evaluators.

It is expected that the system workload will not be the same at all

times, and hence having a static routing layer can result in poor

system performance. Existing systems, e.g.,[6], address the problem

of adaptive workload-aware processing of big data by providing

mechanisms for updating the partitioning the data. These systems

keep centralized workload statistics, and halt the processing of the

data and queries during the re-partitioning phase. However, in dis-

tributed real-time applications, workload statistics are distributed

across evaluators and it is unacceptable to pause the query process-

ing. This calls for a real-time load-balancing technique that does not

interrupt the query processing. It is challenging to implement such

a distributed and real-time load-balancing mechanism in Tornado

for the following reasons:

• NoGlobal SystemView: In Tornado, the workload statistics are

distributed across evaluators. Sending detailedworkload statistics

from one process to another requires high network overhead. The

load-balancing protocol should minimize the overhead needed

to collect, transfer, and process the workload statistics.

• Correctness of Evaluation: during the re-partitioning phase,

Tornado redeines the boundaries of the evaluators. This requires

moving queries from one evaluator to another. Meanwhile, the

data objects continuously update their locations, and the answer

to each query needs to be continuously updated as well. Hence,

unless the incoming data objects are carefully directed, missing

(or duplicate) results can occur.

• Overhead of Re-partitioning: Moving the queries between

the evaluators incurs network overhead. The re-balancing algo-

rithm should be aware of the re-balancing overhead, and avoid

unnecessary re-balancing.

Tornado employs a load-balancing mechanism, where the choice

of the new spatial boundaries of the evaluators is mostly dele-

gated to the evaluators themselves. This reduces communication

overhead needed to transfer detailed workload statistics and dis-

tributes the computational overhead across the evaluators. The

load-balancing mechanism is incremental, i.e., rather than redein-

ing all the partitions, only a few partitions are updated using simple

shift, split, and merge operations. Furthermore, Tornado ensures

the correctness of evaluation during the transient phase using a

two-stage re-partitioning protocol. In summary, the contributions

of this paper are as follows:

• We present the structure of Tornado, a scalable spatial-

keyword data streaming system that uses an eicient two-

layered indexing scheme.

• We develop an Augmented-Grid structure and an optimal

neighbor-based routing algorithm that minimizes the over-

head of routing the data and queries.

• We present an incremental and adaptiveload-balancing mech-

anism that ensures fairness in the workload distribution

across the evaluators.

Adaptive Processing of Spatial-Keyword Data SIGSPATIAL’18, November 6ś9, 2018, Seattle, WA, USA

o2: café, restaurant, coupon

o1: cinema, hotel

q1: hotel

q2: car, sale

q3: cafe, sale

Figure 1: E-coupon example .

• Using real datasets from Twitter, we show that Tornado

achieves 2x performance gain in comparison to a baseline

approach.

The rest of this paper proceeds as follows. Section 2 presents

the notations used throughout the paper. Section 3 describes the

structure of Tornado. Section 4 describes the load balancing mech-

anism in Tornado. Detailed experimental evaluation is given in

Section 5. The related work is presented in Section 6. Section 7

contains concluding remarks.

2 PRELIMINARIES

In this section, we present the notations that are used throughout

the paper. A spatial-keyword data stream is an unbounded sequence

of spatial-keyword objects. A spatial-keyword object, say O , has

the following format: O = [oid, loc, text , ts], where oid is the

object identiier, loc is the geo-location of the object at Timestamp

ts , and text is the set of keywords associated with the object. We

use Tornado to answer the spatial-keyword ilter query deined as

follows.

A continuous spatial-keyword ilter query, say q, is deined

as q = [qid, MBR, text , t], where qid is the query identiier,MBR

is minimum bounding rectangle representing the spatial range

of the query, and text is the set of keywords of the query. The

continuous query q is registered, i.e., keeps running for a speciic

duration, say t . During t , the query continuously reports the data

objects that satisfy the query’s spatial and textual predicates. To

match a query, a data object needs to be located inside the spatial

range of the query, and needs to contain all query keywords.

Figure 1 gives an example of multiple spatial-keyword ilter

queries from an e-coupon application. In Figure 1, three subscrip-

tions, i.e., queries, q1,q2, and q3 are registered in the system. E-

coupon o1 qualiies for subscription q1 because it is located inside

the spatial range of q1 and the textual content of o1, i.e., łcinema,

hotel" contains the keywords of q1, i.e., łhotel".

3 TORNADO SYSTEM ARCHITECTURE

In this section, we present the architecture of Tornado and its

main components alongside with query processing algorithms. Tor-

nado [13] extends Storm [16]. Storm is a cluster-based, distributed,

fault-tolerant, and general-purpose streaming system that achieves

real-time processing with high throughput and low latency. Storm

provides three abstractions, namely: spout, bolt, and topology. A

spout is a source of input data streams. A bolt is a data processing

unit. A topology is a directed graph of bolts and spouts that resem-

bles a pipeline of streamed data evaluation. Storm is not optimized

for the execution of spatial-keyword queries, simply because it

does not have built-in support for spatial or textual primitives, e.g.,

points, rectangles, or containment of keyword lists.

In order to eiciently support the evaluation of spatial-keyword

queries, we need to guarantee that relevant data and queries are

collocated in the same processing unit, i.e., a Storm bolt. This is

challenging because the system needs to distribute data and queries

across processing units in a way that achieves the following proper-

ties: (1) Optimize the memory usage across the machines by not

storing queries in multiple processing units, (2)Optimize the CPU

usage by checking each data object against as few queries as pos-

sible, and (3) Maintain good load balancing as the workload

changes, and distribute the data and queries across the processing

units while guaranteeing the correctness of evaluation, i.e., without

missing output tuples and without producing duplicate results.

Tornado extends the bolt abstraction from Storm into routing

units and evaluators. The routing units are light-weight components

that are responsible for co-locating the queries and data objects

together. The evaluators are processing units that check the incom-

ing data objects against the continuous queries and produce query

results.

Tornadomakes use of the fact that a data object has a single point

location, but multiple keywords. This is typical in many location

services, e.g., as in tweets, where a tweet is associated with a single

location and multiple keywords. Accordingly, the routing layer in

Tornado partitions the space into non-overlapping MBRs. Every

evaluator is responsible for a single MBR. The beneit of having

non-overlapping MBRs is to optimize the network utilization by

forwarding each data object to a single evaluator.

To support high arrival rates of streamed data, the routing layer

applies replication, i.e., multiple identical routing units are em-

ployed. The routing layer maintains a textual summary for every

evaluator. The textual summary of an evaluator, say E, contains all

keywords of queries stored in E. In the routing units, the textual

summary for an evaluator is stored as a hash set of keywords.

Before forwarding a data object, sayO , to an evaluator, say E, the

textual summary of E is consulted to check if there are some queries

in E that have keywords that overlap the keywords ofO . Figure 2(a)

illustrates how Tornado processes spatial-keyword queries. Once

a query is received, a routing unit is selected at random, and the

query is forwarded to that routing unit, where the latter sends the

query to the spatially relevant evaluator(s). Based on the textual

summary of the evaluators, stored on the routing layer, some data

objects are not forwarded to any evaluator, e.g., o3 in Figure 2(a).

3.1 The Routing Units: The Augmented-Grid
(A-Grid)

The routing layer is composed of multiple identical routing units.

Routing units are used to store and index the non-overlapping spa-

tial partitions of evaluators. Recall that every evaluator, i.e., worker

process, is responsible for a speciic spatial range. In real applica-

tions, the size of the distributed cluster and the number of worker

processes is large, e.g., Yahoo has about 40000 machines running

SIGSPATIAL ’18, November 6ś9, 2018, Seatle, WA, USA A. Mahmood et al.

Query

Source

Data

Source

Final

Output

The routing

layer

q2
o2

q3q1,q3
A B C D

o1

o1

o3

o2

A B

C D

café, sale

café, sale

sandwich, discount, coffee

A B

C D

A B

C D

Worker

processes

The evaluation

layer

(a) The routing units and evaluators.

A B

C D

F

m

E

n

0 1 2 3 4 5 6

6

5

4

3

2

1

0

Routing steps of R

1. A(2,3)

2. F(2,1), B(4,5)

3. [C(4,1)  C(4,3)], B(4,5)

4. D(5,3), B(4,5)

5. E(5,2), B(4,5)

R

Partitions Map (PM)

A (0,2)(3,6)

B (4,4)(6,6)

C (4,0)(4,3)

D (5,3)(6,3)

E (5,0)(6,2)

F (0,0)(3,1)

(b) Neighbor-based query routing in Tornado.

K1 K3

K2 q1

q5

K4 q8

K1

K1

q3

Spatial Pyramid

q1

q3

K5 q9

Adaptive Keyword Index (AKI)

(c) FAST local index in Tornado.

Figure 2: The architecture and system components of Tornado.

Hadoop with a total of 100000 CPU cores [4]. This calls for an

eicient index to store the partitions of evaluators.

An incoming data object or query goes to a random instance of

the routing units to be dispatched to the corresponding evaluator(s).

The smaller the routing time, the higher the throughput of the entire

system. Moreover, having light-weight routing units can save more

resources that can be used for query evaluation rather than for

routing. In Tornado, the location of a data object is represented as a

single point in space. Because the partitions are non-overlapping, a

data object is routed to a single evaluator. This routing is achieved

in O(1) using uniform grid partitioning. However, a query has a

spatial range, that may overlap with multiple partitions, and hence

a query needs to be routed to multiple evaluators.

Definition 1. The Routing Problem Given a rectangular

query-range, say r , and a set, say S , of Ne non-overlapping rect-

angular partitions that cover the entire space, ind the partitions that

overlap r .

We propose theA-Grid and theNeighbor-Based Routing, a routing

technique that requires O(Np) operations to route a spatial range,

where Np is the number of evaluators that overlap the spatial range.

This is lower than the time needed in both the traditional grid, i.e.,

O(m × n) and hierarchical structures, i.e., O(log(Ne) + Np).

The A-Grid stores the non-overlapping rectangular parti-

tions that are assigned to evaluators. The entire space is parti-

tioned into Ne non-overlapping spatial partitions. Initially, the

A-Grid partitions the entire space into a virtual ine grid FG.

Then, the Ne partitions are overlaid on top of FG. Each parti-

tion, say p, corresponds to one evaluator, and is deined as fol-

lows: [pid,xcellmin,ycellmin,xcellmax ,ycellmax], where pid is

the identiier of the partition, xcellmin and ycellmin deine bot-

tom left grid cell of p, xcellmax and ycellmax deine the top right

grid cell of p.

The main idea of neighbor-based search algorithm is to follow

shortcuts to jump directly from dominant cells belonging neighbor-

ing partition.

Definition 2. Dominant cell A dominant cell of a partition, say

A, with respect to a spatial range, say R, is the top left cell of A that

is inside R. Dominant cells are the only cells that need to be visited

while searching the A-Grid.

For example in Figure 2(b), the dominant cell of the Partition A

with respect the spatial range R is (2,5). Observe that each grid cell

is spatially contained inside the spatial range of a single evaluator.

Boundaries of partitions are maintained an a hash table termed the

Partitions Map, PM for short as illustrated in Figure 2(b).

Each grid cell, say c , maintains the identiier of the partition that

contains c . To ind the right dominant cell with respect to a range

R we follow the following steps:(1) ind the right cell RC belonging

to a diferent partition, and (2) ind the dominant cell of RC that is

the top-left of RC belonging to the same partition and inside the

spatial range R.

Refer to Figure 2(b) for illustration. Assume that we need to iden-

tify the right dominant cell, say RC of Cell (2, 5) within Partition A.

From the PM we know that the partitionA spans cells [(0, 2), (3, 6)].

The right cell RC of the cell (2, 5) is of the form (xp,yp), where xp

is the index on the horizontal coordinate that is to the right of cell

(2, 5). The yp is 5 because the Cell RC is to the right of Partition A

and has the same position on the vertical axis. From the PM, the

partitionA ranges from 0 to 3 on the horizontal coordinate, where 0

and 3 are xmin and xmax of the Partition A respectively, the value

xp is equal to 4 that is 1 + xmax . This means that the Cell RC is

(4, 5) that is covered by Partition B. The dominant cell of (4, 5) is

also (4, 5) as this is the top-left cell within R. The same logic applies

when inding the bottom dominant cell.

To route a spatial range, say R, we start from the upper-left

corner of R. We ind the partition that is covered by that corner

(this is trivial because the partition identiier is stored in the cell

corresponding to that corner). Then, we follow the right and bottom

dominant shortcuts of that corner.

We recursively apply this procedure until we reach a cell from

which the pointers lead to a cell that is outside R or to a previ-

ously visited partition. We use a Boolean array to mark the visited

partitions and avoid visiting the same partition more than once.

Refer to Figure 2(b) for illustration. To route the red rectangle,

we start from Cell (2, 5) covered by Partitions A. Then, we follow

the pointers to Cells (4, 5) and (2, 1), covering Partitions F and B,

respectively. Then, we follow the bottom pointer of Cell (2, 1) to

reach Cell (4, 1) inside Partition C . From the PM, we identify that

Cell (4, 3) is the dominant cell of the Partition C with respect to

R. We follow dominant cell shortcuts visiting the following cells:

Cell (5, 3) within Partition D, Cell (5, 2) within Partition E, and Cell

Adaptive Processing of Spatial-Keyword Data SIGSPATIAL’18, November 6ś9, 2018, Seattle, WA, USA

(4, 5) within Partition B. The Pseudocode of the algorithm is given

in Algorithm 1.

Algorithm 1: neiдhborSearch(MBR r)

1 Stack S

2 Cell c(x,y)← TopLeft corner of r

3 S.push(c)

4 while S not empty do

5 c←S.pop

6 if c overlaps r and c.partition is not visited then

7 add c.partition to result

8 mark c.partition as visited

9 rightCell = getDom(getRightCell(c.y))

10 bottomCell = getDom(getBottomCell(c.x))

11 S.push(bottomCell),S.push(rightCell)

12 end

13 end

Lemma 1. The neighbor-based routing requires O(Np) and

does not depend on the granularity of the grid

The interconnection between dominant cells in the A-Grid can be

abstracted as a hypothetical Directed Acyclic Graph (DAG). For the

traversal performed by the neighbor-based search algorithm, the num-

ber of nodes V in the hypothetical DAG is NP . The number of the

edges E visited is 2NP because for every node, we follow at most two

pointers. The total traversal time is O(V + E) = O(Np). The run time

of the algorithm cannot be less than O(Np) as this is the size of the

output.

The routing units maintains a summary of query keywords

within each evaluator. As described in Section 2, to match a data

object say o with a query say q, the keywords of O need to contain

all the keywords of q. Hence, it is suicient to store only a single

keyword from q in the textual summary of the evaluator correspond-

ing to q. A data object is spatially assigned to only one evaluator. If

the keywords of the object contain any of the evaluator’s textual

summary keywords, the object is forwarded to that evaluator.

Notice that Tornado maintains multiple identical routing units.

One way to keep track of the query keywords within each evalu-

ator is to broadcast each query to all the routing units. To avoid

unnecessary communication, an incoming query, say q, goes to an

arbitrary instance of the routing units, say U . If q adds new key-

words to any evaluator, say E, thenU forwards the added keywords

to the other replicas of the routing units with negligible latency. As

queries expire, the textual summary of the evaluators may contain

redundant keywords. Evaluators periodically inform routing units

with expired keywords to allow routing units to remove redundant

keywords.

3.2 Evaluators

To improve the overall system performance, each evaluator main-

tains a local spatial-keyword index. Evaluators in Tornado use

FAST [5], an eicient spatial-keyword index that requires minimal

memory overhead that has been designed to improve the scalability

of Tornado. FAST integrates the spatial pyramid [7] with a new

textual index termed the adaptive-keyword-index (AKI). The spatial

pyramid is a multi-resolution spatial index. AKI is a hybrid textual

index that integrates the trie structure [12] with inverted lists [22]

and uses the frequencies of keywords to improve the indexing and

searching performance. FAST uses multiple optimizations to reduce

its overall memory overhead, e.g., avoid query replication by shar-

ing lists of queries among neighboring pyramid cells. Figure 2(c)

illustrates the structure of FAST. The main responsibilities of an

evaluator are as follows:

(1) Store and index continuous queries and drop expired queries.

(2) Process incoming data objects against stored queries.

(3) Keep track of usage and workload statistics.

Continuous queries are persisted in an evaluator by indexing

them in the local instance of FAST that is maintained in the evalua-

tor. To process an incoming data object, say O , we search FAST for

matching continuous queries. The keywords of matching queries

need to be fully contained in the keywords of O . Also, the location

of O needs to be inside the spatial range of a matching query. In-

coming data objects are evicted as soon as they are matched against

the indexed continuous queries.

4 REAL-TIME LOAD BALANCING

In Tornado, each evaluator is responsible for a certain spatial range

that covers a partition in the ine grid FG . To achieve high through-

put, Tornado keeps a balanced distribution of the workload across

the evaluators. To compute the workload corresponding to an eval-

uator, Tornado keeps workload statistics at the same granularity

of FG. For each data object, say Ol , that is received by FG[i][j],

where i and j are the horizontal and vertical coordinates of the Cell

FG[i][j], respectively, let ql be the number of queries that contain

any of the keywords of Ol .

For each grid cell FG[i][j], we deine the workload overhead, i.e.,

the computational cost, as the sum of ql over all the data objects

Ol received by that cell:

cost(FG[i][j]) =
∑

l

ql (1)

Given a partition, say Pw , that is bounded by

[(xmin, ymin), (xmax , ymax)], the overall computational

cost is the sum of the costs of all the grid cells in P , i.e.,

cost(Pw) =
∑

cost(FG[i][j]) (2)

where xmin ≤ i ≤ xmax and ymin ≤ j ≤ ymax .

Below, we describe the load-balancing protocol in Tornado.

4.1 Initialization

Tornado partitions the entire space into Ne partitions, where Ne is

the number of evaluators. To choose the initial boundaries of the

partitions, Tornado uses a sample of the data and query workload,

and calculates the computational cost of each ine grid cell. Let α

be the maximum computational cost of the partition Pw , i.e.,

α = max
Pw
(cost(Pw)) (3)

In the initialization phase, the objective is to minimize α across

all the Ne partitions. The best-case distribution is to have all eval-

uators process equal portions of the workload. The problem of

inding the optimal rectangular partitioning that minimizes α is

SIGSPATIAL ’18, November 6ś9, 2018, Seatle, WA, USA A. Mahmood et al.

A

B

A

B

A B B

A B

A

B
(a) Horizontal shift

(b) Vertical shift

(c) Corner shift

Figure 3: Shift variations.

Usage Statistics

X

Y Z
Aux

Bolt

A

Worker

Processes

Routing

Units

(a) Before split/merge.

Boundary Update

Aux

Bolt

Merge Data

Transfer data

X1

Y Z

X2
X A

Routing

Units
Worker

Processes

(b) Transient phase.

X2X1

YZ

X A

Routing

Units

Worker

Processes

(c) After split/merge.

Figure 4: The split/merge operation.

NP-Hard (see [10]). Tornado employs a hierarchical recursive space

decomposition similar to that of a k-d tree decomposition [6, 14].

In particular, Tornado maintains a priority queue of the partitions

to be split, where the partitions are sorted according to their cost.

First, the entire space represents a single partition that is inserted

into the priority queue. Then, the top partition from the queue, i.e,

the one with the highest cost, is retrieved, and then is split into two

partitions. The split is chosen in a way that minimizes the maxi-

mum cost of the resulting two sub-partitions. Then, the resulting

sub-partitions are inserted into the priority queue. This process is

repeated until a single grid cell is reached (that cannot be split),

or the maximum allowed number of evaluators in the system is

reached. The maximum number of evaluators is a system parameter

that depends on the number of CPU cores in the cluster.

4.2 Adaptivity in Tornado

Due to limited cluster resources, it is important to preserve fairness

in workload distribution while keeping the number of evaluators

ixed. Tornado uses two incremental load-balancing operations,

namely: (1) shift and (2) split/merge.

A shit operation involves a transfer of the workload, i.e., ine grid

cells, from an overloaded evaluator to an underutilized spatially

adjacent evaluator. Shifting to a neighbor evaluator is meant to

prevent excessively fragmenting the indexed queries into multiple

evaluators, hence reducing the overall memory requirements. The

objective is to store queries in the fewest evaluators possible while

maintaining load balancing. Tornado uses three variants of the shift

operation, namely: horizontal, vertical and corner shifts. Refer to

Figure 3 for illustration. The red circle in the igure represents an

area with a high workload. A horizontal shift is applicable to two

evaluators that share a horizontal boundary, e.g., see Figure 3(a).

Similarly, a vertical shift is applicable to two evaluators that share a

vertical boundary, e.g., see Figure 3(b). A corner shift is applicable

when two neighboring evaluators form a corner shape, e.g., see

Figure 3(c). The corner shift allows a transfer of workload between

two non-mergeable evaluators, i.e., ones that do not share an entire

horizontal or vertical boundary. The details for inding the best

point to shift are described in Section 4.3.

A split/merge operation involves a split of an overloaded evalua-

tor into two evaluators, followed by a merger of two neighboring

underutilized evaluators into a single evaluator. The split is either

horizontal or vertical. The split position is chosen to minimize

the diference in cost between the resulting two partitions. The

details of inding the best point to split an evaluator are given in

Section 4.3. During a split, Tornado transfers some grid cells from

an overloaded evaluator to an auxiliary evaluator. Refer to Figure 4

for illustration. Figure 4(a) illustrates an overloaded evaluator X

before a split/merge operation. An instance of the routing units

makes a decision to split/merge and initiates a split of Evaluator X

intoX1 andX2, and a merge of EvaluatorsY and Z , as in Figure 4(b).

Observe that, according to the new boundaries, some of the ine

grid cells are being transmitted from evaluator X to an auxiliary

evaluator A. All the ine grid cells that are stored in Evaluator Z

are transferred to Evaluator Y . Figure 4(c) gives the state at the end

of the split/merge operation.

The decision of whether to initiate a rebalancing operation or

not depends on two factors, namely, the cost reductionCr resulting

from the re-balance operation, and the cell transfer overhead Ct
involved in the re-balance operation. The cost reduction Cr of

a re-balance operation is the diference between the maximum

partition cost before and after the re-balance operation. Consider

the split/merge operation in Figure 4, and assume that Evaluator

X has the highest cost. The cost before split/merge=cost(X). The

cost after split/merge ismax(cost(X1), cost(X2), (cost(Y)+cost(Z))).

The cost reduction of the split/merge operation is:

Cr (split/merдe,X ,X1,X2,Y ,Z) =

cost(X) −max(cost(X1), cost(X2), (cost(Y) + cost(Z)))
(4)

The above idea applies to the shift operation, where the cost reduc-

tion is computed as the diference between themaximum cost before

and after the shift operation. The cell transfer overhead Ct is an

estimate of the overhead of transferring cells during the re-balance

operation.Ct (p) = β ×queryCount(p), where queryCount(p) is the

number of queries in Partitionp, and β is the average time needed to

transfer a query. queryCount(p) is incremented whenever a query

is registered at p, and is decremented whenever a query in p ex-

pires. For example, for the split/merge operation in Figure 4, the

cell transfer overhead of the split/merge operation is calculated as

follows:

Ct (split/merдe,X ,X1,X2,Y ,Z) =

β × (queryCount(X2) + queryCount(Z))
(5)

Tornado chooses the operation that maximize that value ofCr while

having Cr > Ct .

4.3 Distributed Load-Balancing

Existing load-balancing approaches are centralized [6], i.e., require

having a single unit that receives all the workload statistics. In

contrast, in Tornado, the computation of the costs of the ine grid

cells is distributed across the evaluators as follows. (1) The evaluators

keep detailed workload statistics and choose the split coordinates

Adaptive Processing of Spatial-Keyword Data SIGSPATIAL’18, November 6ś9, 2018, Seattle, WA, USA

0 0 0 000 0

0

0

0

0

0

Column cost aggregates

Overall

cost

R
o

w
 c

o
s
t
a

g
g

re
g

a
te

s
1

2

3

4

1 2 3 654 7

q1<k1>

q2 <k2>

(a) Initial evaluator statistics.

0 1 0 012 0

0

2

1

1

4

Column cost aggregates

Overall

cost

R
o

w
 c

o
s
t
a

g
g

re
g

a
te

s

1

2

3

4

1 2 3 654 7

q1<k1>

q2 <k2>

O1<k1,k3,k4>

O2<k1,k2,k3>

O3<k1,k5>

(b) After data objects arrive.

Figure 5: Cost aggregation within an evaluator.

that are needed to perform the shift and split/merge operations

and (2) The routing layer periodically receives a summary of the

workload statistics from the evaluators, and then makes a decision

as to whether to change the partitioning or not.

For the routing layer to make a decision whether to re-balance

or not, it does not need the detailed costs within every evaluator.

The decision to rebalance can be made using the overall evaluator

costs from Equation 2.

Tornado keeps three aggregates at each evaluator, namely, row,

column, and overall aggregates. Refer to Figure 5 for illustration.

Figure 5(a) gives the initial values of these aggregates. Figure 5(b)

gives the values after processing three data objects O1, O2, and

O3. O1 satisies one query at Cell (2, 3), and hence the aggregates

of Row 3 and Column 2 are incremented. O2 satisies two queries

at Cell (4, 2), and hence the aggregates of Row 2 and Column 4

increase by 2. O3, satisies one query at Cell (4, 4), and hence the

aggregates of Row 4 and Column 4 are incremented. The overall

cost of the evaluator gets the value of 4. Maintaining these ag-

gregates requires O(1) processing time per data object. Tornado

maintains similar row, column and overall aggregates for the num-

ber of queries within grid cells.

For the split/merge operation, to maximize the cost reduction

resulting from splitting a partition, say X , into X1 and X2, Tornado

tries to minimize the value of |cost(X1)−cost(X2)| by trying all pos-

sible vertical and horizontal splits. If Equation 2 is applied directly,

it requires O(m × n) to ind the best split. Instead, Tornado uses

the row and column aggregates to ind the best split in O(m + n).

In particular, Tornado scans the column aggregates and keeps a

sum of the scanned aggregates, say Sa . Initially, Sa = 0, and keeps

accumulating values from the column aggregates as long as Sa is

less than half the overall cost of the evaluator, say (Ohal f). If Sa is

equal to (Ohal f), no more aggregates are scanned. If Sa is greater

than (Ohal f), then the split position is marked, and the same pro-

cess is repeated, but with the row aggregates. The split position

that minimizes the value of |cost(X1) − cost(X2)| is chosen.

For example, in Figure 5(b), the best vertical split is between

Columns 3 and 4, with a diference of 3 in cost. However, the best

horizontal split is between Rows 2 and 3, with a diference of 0 in

cost. Hence, the horizontal split is chosen.

For the shift operation, we need to distinguish between a corner

shift and a horizontal/vertical shift. In the corner shift in Figure 3(c),

there are no multiple choices for the shift coordinate in A. The

corner shift coordinate depends on the position of B relative to A.

This allows A to identify the cost of the cells involved in any shift

operation as well as the cell transfer overhead. Notice that there are

at most 8 possible corner shifts for any given evaluator. However,

there is no ixed coordinate for the horizontal/vertical shift inA. The

reason is that the optimal coordinate for a horizontal/vertical shift

depends on the cost of B that is unknown toA. To address this issue,

Tornado delays the choice of the best shift coordinate in A until the

routing unit makes a decision to perform a horizontal/vertical shift.

At the time when the routing unit makes a decision as to whether

to re-balance or not, it has accurate statistics for both the split/merge

and the corner shift operations. The routing unit does not know the

exact cost reduction and cell transfer overhead of horizontal/vertical

shift operations. The routing unit estimates that an optimal hori-

zontal/vertical shift from evaluator A to evaluator B results in an

optimal division of workload between A and B. Thus, the estimated

cost reduction is computed as cost(A) −
cost (A)+cost (B)

2 . Assuming

uniform query distribution in A, the routing unit estimates the cell

transfer overhead to be proportional to the amount of workload

transferred, i.e., β × queryCount(A) ×
cost (A)−

cost (A)+cost (B)
2

cost (A)
. Then,

the routing unit chooses the re-balancing operation if necessary. If

the re-balancing operation is a horizontal/vertical shift, then the

routing unit informs the evaluators involved in this horizontal/vertical

shift operation with the costs necessary to make an optimal shift

operation similar to inding the optimal split described previously.

4.4 Correctness during Load-balancing

A rebalancing operation afects both the routing and the evalua-

tion layers. In the routing layer, the partitioning of the evaluators

changes according to the rebalancing operation. In the evaluators,

index cells and queries move from one evaluator, say E1, to another

evaluator, say E2. It is challenging to guarantee the correctness

during the re-balancing process because data objects and queries

arrive during re-balancing and Tornado cannot aford to halt the

processing until the entire re-balancing is done.

An important question to address is which evaluator should re-

ceive the incoming data objects and queries during the transient phase?

E1, or E2, or both? Tornado splits the transient phase into two steps.

In every step, we deine a set of rules that guarantee correct pro-

cessing in that phase. The steps of the transient phase are: (1) Index

cells transfer phase during which queries from index cells are moved

across evaluators, and (2) Routing unit update phase during which

routing units update their partitioning according to the adaptivity

operation.

Processing during the index cells transfer phase During the

cell transfer phase, all incoming data and queries will be routed to

E1 because all routing units use the partitioning before re-balancing.

Incoming queries to the area to be shifted are processed according

to the following steps:

(1) All incoming queries are processed and indexed in E1
(2) If a query arrives at a transmitted cell, forward the query to E2
Incoming data objects are processed in Evaluator E1.

Processing during the routing update phase, Due to network

delays, it is not possible that all routing units update their parti-

tioning instantaneously. This means that even after the cell transfer

phase, some routing units may send data and queries to E1 while

SIGSPATIAL ’18, November 6ś9, 2018, Seatle, WA, USA A. Mahmood et al.

Table 1: The values of the parameters used in the experimen-

tal evaluation.

Parameter Value

Number of routing units 1, 3, 5, 7, 10, 12

Number of queries (million) 5, 10, 20, 30, 40

Number of query keywords 1, 2, 3, 5, 7

Spatial side length of a query .01%,.05%,.1%,.5%,1%,1.5%

others send data and queries to E2. To address this issue, we adopt

the following approach during the routing update phase: any data

object or query that is routed to a transmited cell in E1 is neither

processed nor indexed in E1 and is instantaneously forwarded to E2.

5 EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of Tornado. Our ex-

periments are conducted on a cluster of Dell r720xd servers that

have a total of 48 TB of local storage, and a 40 Gigabit Ethernet

interconnect. The cluster runs 5 virtual machines where each vir-

tual machine has 16 cores and 32 GB of memory. Each virtual

machine runs Storm 1.0.0 over Centos Linux 6.5. We evaluate the

performance of Tornado using real datasets and a synthetic query

workload. We use a real dataset from Twitter that is composed of 1

billion tweets with geo-locations inside the US and of size 140 GB.

These tweets are collected from January 2014 to March 2015. The

format of the tweet is "id, geo-location, text". We use these tweets to

simulate a continuous and ininite stream of spatio-textual objects

such that when all the tweets are streamed, we restart streaming

the tweets from the beginning.

We use three query datasets, namely; (1) normal tweets,

(2) spatially-condensed, and (3) textually-selective. The normal tweets

dataset uses the locations and keywords of the tweets as the lo-

cations and the keywords of the query. The spatially-condensed

dataset is used to study the efectiveness of load-balancing tech-

niques by shrinking, i.e., scaling down, the spatial area covered by

the dataset into a smaller range. Hence, creating load imbalance

across evaluators that requires the adaptivity protocol to redis-

tribute the workload. The textually-selective dataset chooses the

keywords of queries based on how frequent the keywords are. To

build this dataset, all the keywords of tweets are sorted based on

their frequencies. Then the keywords of queries are randomly cho-

sen from the kth percentile frequent keywords, where k is the

keyword frequency threshold. For example, setting k to 90%, does

not include the 10% most frequent data objects keywords into query

keywords.

Table 1 summarizes the values of the parameters we use. We

set the default number of query keywords to 3, which resembles

the average number of keywords in web searches [3]. The default

spatial range of queries is .5% of the entire spatial range. For the

A-Grid, we use a 1000×1000 granularity.

5.1 Performance of Tornado

In this experiment, we measure the performance of the following

processing alternatives. (1) Tornado (FAST), where the A-Grid is

used as the routing structure and FAST is used as the local spatial-

keyword inside the evaluators. (2) GI2, where the A-Grid is used

as the routing structure and GI2 [17] is used as the local index

inside the evaluators. The Grid Inverted Index, i.e., GI2, is a spatial-

keyword structure that is used in the PS2Stream [9] distributed

publish-subscribe streaming system. GI2 indexes spatial-keyword

queries over a spatial grid where every cell of the spatial grid has

an inverted list to queries. (3) Text-Rout, where the routing units

use keywords of data objects and queries to hash and route data

objects and queries to evaluators, i.e., every evaluator is assigned a

set of keywords. In Text-Rout, FAST is used as the local spatial-

keyword index inside evaluators. (4) Uni-Space-Rout, where the

partitions assigned to evaluators span equal and non-overlapping

spatial ranges. These spatial ranges are derived from a uniform spa-

tial grid partitioning of the entire space regardless of the spatial and

textual distribution of underlying workload. Also, in Uni-Space-

Rout, FAST is used as the local index.

Figures 6 (a) and (b) show that using the Tornado (FAST)

achieves the highest throughput and the least processing latency.

This is due to the eiciency of both A-Grid and FAST. Tornado

(FAST) achieves more than 2X improvement in the overall through-

put than other processing alternatives. The reason is that the A-

Grid ensures fair workload distribution to evaluators with minimal

routing overhead. Also, FAST [5] ensures eicient indexing and

searching performance with low memory overhead.

GI2 results in low throughput and high execution latency be-

cause of the underlying local GI2 index. GI2 sufers from a high

memory overhead due to the replication of queries over spatial grid

cells. Also, the inverted lists inside the spatial grid cells of GI2 do

not provide high textual discrimination abilities [12]. This leads to

poor searching performance, low overall system throughput, and

high execution latency.

Text-Rout sufers from poor performance because the text-

based routing replicates data objects and queries to multiple eval-

uators. For example, assume that Evaluator E1 is responsible for

Keyword k1 and Evaluator E2 is responsible for Keyword k2. Any

incoming data object containing Keywords k1 and k2 will be repli-

cated to both Evaluators E1 and E2. This creates a bottleneck in the

network bandwidth and reduces the overall throughput and results

in having a single data object being processed in more than one

evaluator.

The uniform spatial routing, i.e., Uni-Space-Rout, results in a

throughput that is 2 times lower than that of Tornado (FAST).

The reason is that using uniform spatial partitioning does not ac-

count for the skewed spatial distribution of data objects and queries

and results in an unfair workload distribution across evaluators.

This signiicantly reduces the overall performance due to workload

imbalance.

Also, we measured the performance of a native Storm implemen-

tation that replicates all queries to all evaluators and does not use

any internal spatial keyword indexing. This native storm implemen-

tation resulted in an extremely low throughput, i.e., less than one

thousand objects per second, that is not comparable with Tornado.

Figure 6(c) demonstrates the efectiveness of spatial-keyword

routing against spatial-only routing using the textually-selective

dataset. In this experiment, we vary the frequency of query key-

words from 0%, i.e., least frequent keywords that do not match

any of the keywords of data objects, to 100%, i.e., query keywords

include all popular keywords and follow the same distribution as

Adaptive Processing of Spatial-Keyword Data SIGSPATIAL’18, November 6ś9, 2018, Seattle, WA, USA

 0

 100

 200

 300

 400

 500

 600

 700

 800

Tornado(FAST)

GI2
Text-Rout

Uni-Space-Rout

T
h
ro

u
g
h
p
u
t

 (
th

o
u
sa

n
d
 o

b
je

ct
s/

se
c)

(a) Throughput.

 20

 40

 60

 80

 100

 120

 140

 160

 180

Tornado(FAST)

GI2
Text-Rout

Uni-Space-Rout

E
v
a
la

u
ti
o
n
 t

im
e
 (

µ
se

c)

(b) Evaluation latency.

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

0 10 70 100

T
h
ro

u
g
h
p
u
t

 (
th

o
u
sa

n
d
 o

b
je

ct
s/

se
c)

keyword frequency percentile

Spatial-keyword
Spatial-Only

(c) Efect of keyword frequency.

Figure 6: The performance of routing alternatives.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

36 64 100 250 500 1000

P
o
in

t
R
o
u
ti
n
g
 t

im
e
(n

a
n
o
 s

e
c)

Num of partitions

R-tree
A-Grid

Grid

(a) Point routing time

 0

 5000

 10000

 15000

 20000

 25000

 30000

.01% .5% 1% 1.5% 5%

R
a
n
g
e
 R

o
u
ti
n
g
 t

im
e
(n

a
n
o
 s

e
c)

Spatial range

R-tree
A-Grid

Grid

(b) Range routing time

Figure 7: Spatial routing time for points and

ranges.

 0

 200

 400

 600

 800

 1000

 1200

.01 .5 .1 .5 1 1.5

T
h
ro

u
g
h
p
u
t

 (
th

o
u
sa

n
d
 o

b
je

ct
s/

se
c)

Spatial range of query

Tornado (FAST)
Native-Storm

Text-Rout

(a) Spatial range efect.

 0

 200

 400

 600

 800

 1000

 1200

1 3 5 7

T
h
ro

u
g
h
p
u
t

 (
th

o
u
sa

n
d
 o

b
je

ct
s/

se
c)

Number of query keywords

Tornado (FAST)
Native-Storm

Text-Rout

(b) Number of keywords efect.

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

5 10 20 30 40

T
h
ro

u
g
h
p
u
t

 (
th

o
u
sa

n
d
 o

b
je

ct
s/

se
c)

Num of Queries(millions)

(c) Number of queries efect.

Figure 8: Scalability.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

.4 .5 .6 .7

T
h
ro

u
g
h
p
u
t

 (
th

o
u
sa

n
d
 t

u
p
le

s/
se

c)

Scale factor

Static
Adapative

(a) Hotspots Throughput

 1

 10

 100

 1000

 10000

9 16 25 36

O
v
e
rh

e
a
d
 o

f
st

a
ti
st

ic
s

 (
K
B
)

Num of worker processes

Centralized
Distributed

(b) Statistics overhead.

Figure 9: Adaptivity.

 0

 200

 400

 600

 800

 1000

 1200

1 3 5 7 10 12

T
h
ro

u
g
h
p
u
t

 (
th

o
u
sa

n
d
 o

b
je

ct
s/

se
c)

Num of routing units

Two-layered

Figure 10: Number of routing units efect.

the keywords of data objects. Figure 6(c) illustrates that, as the

keyword frequency percentile of queries decreases, the overall sys-

tem throughput increases. The reason is that, as the frequency

percentile of query keyword decreases, the number of data ob-

jects with keywords overlapping with the textual summaries in

the A-Grid decreases. This results in having fewer data objects

being forwarded to evaluators and hence a reduction of both the

computational overhead in the evaluators and the communication

overhead between the routing units and the evaluators.

5.2 Performance of Routing Layer

In Figure 7, we contrast the performance of the A-Grid against the

performance of traditional uniform Grid and the R-tree. Figure 7(a)

gives the routing times for data points while increasing the number

of partitions. As the number of partitions increases, the routing

time of the data points increases remains constant for both the Grid

and the A-Grid and increases for the R-tree index. Although the

Grid and the A-Grid have similar performance for point routing,

Figure 7(b) shows that the A-Grid outperforms the Grid and R-tree

for range routing as we increase the spatial range of queries from

.1% to 5% of the entire spatial range.

In Figure 10, we study the efect of the number of routing units

on the overall system throughput. Figure 10 gives the throughput

when increasing the number of routing units. If there is only one

routing instance, then the routing layer becomes a bottleneck. As

we increase the number of routing instances, the system throughput

increases. The increase in throughput saturates after 10 routing

instances. After that, the bottleneck moves from the routing layer

to the evaluation layer.

5.3 Scalability

In this experiment, we study the scalability of Tornado under var-

ious query workloads. In Figure 8(a), we vary the spatial range

of the queries from .01% to 1.5% of the maximum spatial range.

Figure 8(a) illustrates that Tornado is scalable and that the system

throughput is stable and is not afected by the increase in the spa-

tial extent of the query. In Figure 8(b), we increase the number of

query keywords from 1 to 7. Figure 8(b) illustrates that Tornado is

scalable and that the system throughput increases with the increase

in the number of query keywords. The reason is that when queries

contain more keywords fewer objects match with queries. This

reduces the number of output tuples generated and improves the

SIGSPATIAL ’18, November 6ś9, 2018, Seatle, WA, USA A. Mahmood et al.

overall throughput. This resembles the same performance trend

found in FAST [5]. To demonstrate the scalability of Tornado, we

increase the number of continuous queries from 5 million queries

to 40 million queries. Figure 8(c), shows that Tornado scales well

when increasing the number of queries. The overall throughput is

slightly reduced due to the increased number of output tuples that

resulted from having more queries in the system. The scalability of

Tornado is due to the scalability of the local spatial-keyword index,

i.e., FAST. Fast is able to index a large number of queries with an

eicient searching performance and a low memory overhead [5]

5.4 Adaptivity

In this experiment, we demonstrate the adaptivity in Tornado using

the spatially condensed dataset. The spatially condensed dataset is

used to introduce hotspots and to direct all workload into a small

subset of evaluators. We vary the scaling factor for shrinking the

dataset’s spatial range from .4 to .7 of the entire spatial range. A

smaller scale factor results in a stronger hotspot that is focused in

a small subset of evaluators. A scale Figure 9(a) illustrates that the

adaptive version of Tornado is able to maintain a stable throughput

in contrast to the static version of Tornado. The smaller the scale

factor, the lower the throughput for static partitioning. The reason

is that, in the static partitioning, fewer evaluators handle the entire

workload. This results in a bottleneck in the evaluation layer.

In Figure 9(b), we compare the communication overhead between

the distributed and the centralized load balancing approaches. In the

centralized load-balancing approach detailed workload statistics are

transmitted to the routing layer. However, in the distributed load-

balancing approach only summaries of statistics are transmitted

to the routing layer. Figure 9(b) illustrates that the communication

overhead of the distributed load-balancing is much less than the

overhead of the centralized load-balancing approach.

6 RELATED WORK

Thework related to Tornado can be categorized into threemain cate-

gories: 1) Centralized spatial and spatial-keyword query-processing,

2) Distributed query-processing, and 3) Adaptive query-processing.

Centralized spatial-keyword systems: Several centralized

spatial-keyword indexes have been proposed to process spatial-

keyword queries e.g., [5, 8, 18]. These access methods integrate

a spatial index, e.g., the R-tree [11] or the Quad-tree [15] with a

keyword index, e.g., Inverted lists [22]. These access methods are

centralized and do not scale across multiple machines. FAST [5]

is a centralized spatial-keyword index that has been designed as a

local index for Tornado.

Distributed Query-Processing:Many systems have been devel-

oped to process large-scale datasets. Batch-based systems, e.g.,

Apache Hadoop [1], are designed to process large amounts of data

in an oline manner (i.e., on disk). In these systems, a single job can

take several minutes or even hours to complete. Apache Spark [19]

has been introduced to improve the latency of Hadoop. Streaming

systems, e.g., Storm[16], process data streams of high arrival rates

in real-time. However, none of the aforementioned systems is op-

timized for processing spatial-keyword queries. PS2Stream [9] is

a distributed location-aware publish/subscribe streaming system.

PS2Stream uses the Grid Inverted Index, i.e., GI2. PS2Stream does

not use newly optimized spatial-keyword indexes, e.g., [5, 18] that

improve the overall system performance.

Adaptive Query-Processing: AQWA [6] is an adaptive spatial-

only processing system that is based on Hadoop. AQWA executes

snapshot spatial queries over static data.

7 CONCLUSIONS
In this paper, we present Tornado, a distributed system for the
processing spatial-keyword data streams. We use Tornado to real-
ize a location-aware publish/subscribe application. Tornado uses
several optimizations, e.g., global routing, neighbor-based spatial
routing, to alleviate performance bottlenecks in the system. Tor-
nado is adaptive to changes in data distribution and query workload
and is able to preserve the system throughput under varying work-
loads. Tornado achieves 2x improvements over the performance of
the baseline approaches.

REFERENCES
[1] 2018. Hadoop. http://hadoop.apache.org/.
[2] 2018. Internet live stats. https://internetlivestats.com/.
[3] 2018. Keyword search statistics. http://www.keyworddiscovery.com/

keyword-stats.html.
[4] 2018. The size of Hadoop clusters in Yahoo! https://wiki.apache.org/hadoop/

PoweredBy.
[5] Ahmed M. Aly Ahmed R. Mahmood and Walid G. Aref. 2018. FAST: Frequency-

Aware Indexing for Spatio-Textual Data Streams. In ICDE.
[6] Ahmed M Aly, Ahmed R Mahmood, Mohamed S Hassan, Walid G Aref, Mourad

Ouzzani, Hazem Elmeleegy, and Thamir Qadah. 2015. AQWA: adaptive query
workload aware partitioning of big spatial data. PVLDB 8, 13 (2015), 2062ś2073.

[7] Walid G Aref and Hanan Samet. 1990. Eicient processing of window queries in
the pyramid data structure. In PODS. ACM, 265ś272.

[8] Lisi Chen, Gao Cong, Christian S Jensen, and Dingming Wu. 2013. Spatial
keyword query processing: An experimental evaluation. In VLDB, Vol. 6. 217ś
228.

[9] Zhida Chen, Gao Cong, Zhenjie Zhang, Tom ZJ Fuz, and Lisi Chen. 2017. Dis-
tributed publish/subscribe query processing on the spatio-textual data stream. In
ICDE. IEEE, 1095ś1106.

[10] Michelangelo Grigni and Fredrik Manne. 1996. On the complexity of the general-
ized block distribution. In Parallel Algorithms for Irregularly Structured Problems.
Springer, 319ś326.

[11] Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial searching.
Vol. 14. ACM.

[12] Zeinab Hmedeh, Harris Kourdounakis, Vassilis Christophides, Cédric Du Mouza,
Michel Scholl, and Nicolas Travers. 2012. Subscription indexes for web syndica-
tion systems. In EDBT. ACM, 312ś323.

[13] Ahmed R Mahmood, Ahmed M Aly, Thamir Qadah, El Kindi Rezig, Anas Daghis-
tani, Amgad Madkour, Ahmed S Abdelhamid, Mohamed S Hassan, Walid G
Aref, and Saleh Basalamah. 2015. Tornado: A distributed spatio-textual stream
processing system. PVLDB 8, 12 (2015), 2020ś2023.

[14] Beng Chin Ooi, Ken J McDonell, and Ron Sacks-Davis. 1987. Spatial kd-tree: An
indexing mechanism for spatial databases. In IEEE COMPSAC, Vol. 87. 85.

[15] Hanan Samet. 1990. The design and analysis of spatial data structures. Vol. 85.
Addison-Wesley Reading, MA.

[16] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,
et al. 2014. Storm@ twitter. In SIGMOD. ACM, 147ś156.

[17] Subodh Vaid, Christopher B Jones, Hideo Joho, and Mark Sanderson. 2005. Spatio-
textual indexing for geographical search on the web. In Advances in Spatial and
Temporal Databases. 218ś235.

[18] Xiang Wang, Ying Zhang, Wenjie Zhang, Xuemin Lin, and Wei Wang. 2015.
Ap-tree: Eiciently support continuous spatial-keyword queries over stream. In
ICDE. 1107ś1118.

[19] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: cluster computing with working sets. , 10ś10 pages.

[20] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. 2013. Discretized streams: Fault-tolerant streaming computation at
scale. In ACM Symposium on Operating Systems Principles. ACM, 423ś438.

[21] Yu Zhang, Youzhong Ma, and Xiaofeng Meng. 2014. Eicient Spatio-textual
Similarity Join Using MapReduce. In IAT, Vol. 1. 52ś59.

[22] Justin Zobel and Alistair Mofat. 2006. Inverted iles for text search engines. ACM
computing surveys 38, 2 (2006), 6.

http://hadoop.apache.org/
https://internetlivestats.com/
http://www.keyworddiscovery.com/keyword-stats.html
http://www.keyworddiscovery.com/keyword-stats.html
https://wiki.apache.org/hadoop/PoweredBy
https://wiki.apache.org/hadoop/PoweredBy

	Abstract
	1 Introduction
	2 Preliminaries
	3 Tornado System Architecture
	3.1 The Routing Units: The Augmented-Grid (A-Grid)
	3.2 Evaluators

	4 Real-time Load Balancing
	4.1 Initialization
	4.2 Adaptivity in Tornado
	4.3 Distributed Load-Balancing
	4.4 Correctness during Load-balancing

	5 Experimental Evaluation
	5.1 Performance of Tornado
	5.2 Performance of Routing Layer
	5.3 Scalability
	5.4 Adaptivity

	6 Related Work
	7 Conclusions
	References

