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We consider one-dimensional quasi-periodic Schrodinger operators with analytic
potentials. In the positive Lyapunov exponent regime, we prove large deviation
estimates, which lead to refined Holder continuity of the Lyapunov exponents and
the integrated density of states, in both small Lyapunov exponent and large coupling
regimes. Our results cover all the Diophantine frequencies and some Liouville

frequencies.

1 Introduction and the Main Results

In this paper, we study the following one-dimensional discrete quasi-periodic operators
on ¢2(Z):
HXp)n) =pn—-1)+en+1)+vx+nwen), ne’z, (1.1)

where x € T := [0, 1] is called phase, w € T \ Q is called frequency, and the real-valued
analytic function v : T — R is called potential.

For an energy E € R, the Schrédinger equation

om—14+pen+1)+vx+nwen) =Eepn) (1.2)
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2 R.Han and S. Zhang

can be rewritten in the form of the skew-product:

( v+ 1) ):A(a),E;X+na))( () ), (1.3)
p(n) p(n—1)
where
( E—vx) -1 )
Aw, E; x) = . (1.4)
1 0

The dynamical system (w, A(w, E;-)) : T x C?> - T x C?, defined by
(w, A(w,E; ) (x,v) = (x+ 0, A0, E; x)V), (1.5)

is called Schrédinger cocycle.
Let A be defined as in (1.4) and let

M, (0, E;x) =A@, E;x+nw)Aw,E;x+ n - 1Do) - A(w, E; X + w) (1.6)

be the n-step transfer matrix, coming from n iterates of the Schrédinger cocycle (w, A).

Then, in view of (1.3), one clearly has

( v+ 1) ):Mn(a),E;X)( v ) (1.7)
p(n) ¢(0)

Let
1
u, (0, E; x) 1= ﬁlog M, (w, E;x)||, and L,(w,E) := / u, (v, E; x)dx. (1.8)
T

For any irrational w € [0, 1], the translation x — x+w is ergodic. The Furstenberg—Kesten

theorem implies that the following limit exists for a.e. x:
lim u,(w, E;x) = lim L,(»,E) =: L(w, E). (1.9)
n—oo n—oo

The limit L(w, E) is called the Lyapunov exponent. Let us point out that in the definition
of quasi-perodic cocycle, one could in general replace the one-dimensional rotation
number @ € T by a higher dimensional vector » € T¢, and could also replace A by
any m x m matrix-valued function, where m € N. The definition (1.9) then yields the

maximal Lyapunov exponent L(w, 4).
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Deviation Estimates and Holder Regularity 3

Note that for any fixed ¥« > 0, E, w, the a.e. convergence in (1.9) implies
mes{x € T: |u,(»,E;x) — L,(w,E)| >k} - 0 as n — oo. (1.10)

Thus, the question lies in the convergence rate w.r.t. n and the dependence on w, E, and v.
Such estimate is in general known as the Large Deviation Theorem/Principle (LDT/LDP)
in probability theory. In this paper, we shall focus on the LDT for the monodromy
matricies as introduced in (1.8). For the general LDT theory in probability theory, we
refer readers to [15, 30].

Another important quantity in the spectral theory of Schrédinger operators is
the integrated density of states (I.D.S.), denoted by N. It is also a function of the energy
E. The 1.D.S. gives the asymptotic distribution of eigenvalues of H restricted to large

boxes. It is linked to L(E) = L(w, E) via the Thouless formula, see for example, [12],
L(E) = / log |E — E'|dN(E').

The I.D.S. is in general continuous in E, but this does not directly imply the continuity of
the Lyapunov exponent. However, by virtue of the Hilbert transform, Holder regularities
of N(E) and L(E) pass from one to the other. For a proof of this fact, see for example,
[19]. Therefore, we shall focus on the Lyapunov exponent in the rest of this paper.
Large deviation type estimates were introduced to study quasi-periodic
Schrodinger operators in the late 1990s in a series of papers by Bourgain, Goldstein,
and Schlag, [7, 19]. Their method has been well developed ever since and has shown to
be sufficiently robust in the super-critical regime to deal with the following questions

(not only restricted to the one-dimensional quasi-periodic Schrédinger case):

1. Regularity of the L(E) and N(E) in energy E (e.g., [4, 9, 19, 21, 27]),
Localization of the eigenfunctions (e.g., [7, 8, 23, 27]),
Eigenvalue separation and topological structure of the spectrum (e.g., [14,
22, 24]).

In this paper, we will focus on Problem 1. For more details about Problems 2 and 3, we
refer readers to [5, 15, 20, 26] and references therein.

Proving regularity of L(E) and N(E) (in E) is considered difficult for any type of
sequence of potentials, see [13]. Some weak regularity for general ergodic families was
first proved in [12]. For quasi-periodic Schrodinger operators, the 1st breakthrough was

made by Goldstein and Schlag in [19]. They developed a robust scheme, by combining
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4 R. Han and S. Zhang

LDT with Avalanche Principle (AP), see Theorem C.1, to study the regularity problem.
They proved Holder regularity of L(E) and N(E) for typical frequencies in T, assuming
analyticity of the potential and positive Lyapunov exponents. Some weaker Hoélder
regularity was also obtained in the same paper for T¢ with d > 1. Bourgain and
Jitomirskaya proved in [9] that L(w, E) is jointly continuous in (w, E) at any irrational
w € T for analytic potentials; this result was obtained by Bourgain for T¢ with d > 1
in [6]. More delicate estimates on sharp Hoélder regularity for T were obtained by
Goldstein and Schlag in [21]. In a recent monograph by Duarte—Klein [15], this scheme
was extended systematically in depth and breadth, making it applicable to general
cocycles, provided appropriate LDT estimates are available in the given setting.

For a general quasi-periodic analytic cocyle (w, A), where A is an analytic m x m
matrix-valued function, regularity of L(w, A) is formulated in terms of the analytic norm
of A. Joint continuity of L(w, A) in (w, A), without a modulus of continuity, was obtained
in [3, 25] at any irrational w € T. The approaches of [3, 25] do not rely on LDT. Holder
regularity of L(w, A) was obtained by LDT in [15, 16] for Diophantine w € T4, under
the gapped Lyapunov exponent assumption (equivalent to positive (maximal) Lyapunov
exponent when m = 2).

In the subcritical regime with analytic potential, regularity results were proved
often by reducibility method, cf. [1, 2]. In the low-regularity potential regime, fewer
results were obtained with more restrictions on the potential and the frequency, see for
example, [1, 11, 27, 28, 29, 32].

In this paper we follow the scheme developed by Goldstein and Schlag [19],
namely by combining LDT and AP to obtain the Hoélder continuity of L(E) and N(E):

IL(E) — L(E)| + IN(E) - N(E")| < |[E-E|", |[E-E|<1. (1.11)

One of their key estimates for the one-dimensional case is
mes{x € T : |u,(, E; X) — L, (0, E)| > kL(w,E)} < e C@VL*@En, (1.12)

under the positive Lyapunov exponent condition L(w,E) > y > 0, for w satisfying the
strong Diophantine condition (S.D.C.), see (1.14). However, due to the L%(w, E) term in the
exponential estimate on the right-hand side of (1.12), the Holder exponent 7 in (1.11) will

tend to O as the lower bound y approaches 0.
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Deviation Estimates and Holder Regularity 5

In [5], the LDT estimate (1.12) was improved to be
mes{x € T : |u,(w, E;x) — L, (0, E)| > kL(w, E)} < e c@vmL@Bn, (1.13)

in the small Lyapunov exponent regime, under the same assumption on w. (Note that
we use the same symbol c(w, v, «) in both (1.12) and (1.13), but they are not the same
constants.) The improvement implies that the local Hélder exponent is independent of
the lower bound y.

As we mentioned above, both (1.12) and (1.13) were established for w satisfying a
S.D.C., which we define later. Going beyond S.D.C. is considered difficult for establishing
LDT and Hélder continuity of the Lyapunov exponent in general. Our 1st result of this
paper extends the LDT estimates to more frequencies in the best possible regime, see
(1.17). Indeed, Holder continuity fails for generic w, see [2]. (See the paragraph below
Theorem 1.2 of [3], for v = Acos with A # 0, Lyapunov exponent is discontinuous at
rational w's; thus, it is not Holder for w's that are well approximated by rationals.) Thus,
the exponential decay (1.12) or (1.13) cannot hold for all frequencies.

In both (1.12) and (1.13), the dependence of c(w, v, k) on v are not written down
explicitly. In our paper, we incorporate a refined Riesz representation of subharmonic
functions of [21] into the proof of the LDT estimates. This leads to an explicit
dependence of ¢ on v. It turns out that the constant depends on the potential v in a
“sup — sup” form, see (2.5). If v = Af, the “sup —sup” yields a magical cancellation of
A. This leads to the 2nd result of our paper, see Corollary 1.3. Combining with AP, we
obtain, for the 1st time, a A-independent Holder exponent in the large coupling regime
for general non-trivial analytic potentials, see Theorem 1.10. Such kind of result was
previously only known for trigonometric polynomials.

In order to formulate our results, we introduce the following notations: for any
x € R, let ||x||p := inf, .7 |x — n|. For any o € [0,1]1\ Q, let [a,, a,, a3, ...] be its continued
fraction expansion. Let {p,/q,};°; be its continued fraction approximants, defined by
Dps/4qs = laq,ay, ..., agl. It is well known that |gw|t < qs_jl. We say that w satisfies an
S.D.C. (or w is strongly Diophantine), if for some constants a > 1, ¢ > 0, the following

holds for any n > 1,

Inwllp = (1.14)

c
n(l +logn)e’

o

—= foralln > 1 and

(We say that o satisfies a Diophantine condition (D.C.) if |nw| >

some a > 1,c¢ > 0. Note that for any a > 1, a.e. w satisfies a D.C. with some ¢ = ¢(w) > 0.)

Note that for any a > 1, a.e. w satisfies S.D.C. for some ¢ = c(w) > 0. It is also clear from
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6 R.Han and S. Zhang

the definition of S.D.C. that for strong Diophantine w,
qS+l = C_lqs(log qs)a- (115)
Next we introduce an exponential growth exponent 8 defined as follows:

lo
B(w) := lim sup 08s+1
s—>+400 qs

€ [0, oal. (1.16)

It is then clear from (1.15) that S.D.C.C {w : B(w) = 0}. Those w with S(w) > 0 are usually
called Liouville numbers.

Since our potential v(x) is a real analytic function, it has a bounded extension
to a strip |Imz| < p with width denoted by p > 0. Let N, = [-2 — ||V, 2 + ||Vl ] be
the numerical range of the Schrodinger operator H. It is well known that o(H) C N,
and L(E) is a C*™ function outside of the spectrum. Hence, we will only consider E € NV,

throughout the paper.

Theorem 1.1. Letw € R\ Q. There exist constants c(v, p),c(v, p) € (0,1) such that, if
0 < B(w) < c(v,p) inf L(w,E), (1.17)
Ee€la,bl

then there is N = N(w, infEe[a'b]L(a),E),v,p) € N such that for any n > N the following

large deviation estimates hold uniformly in E € [a, b],

(@) If0 < L(w,E) <1, then
1 .
mes [x eT:| u,( Ex)—L,(0,E) |> %L(w,E)] < e Cwpl@Bn (1 1g)
(b) If L(w,E) > 1, then

1 -
mes [x eT: u,(w Ex)—L,(w,E)|> EL(w,E)] < e CwpLi@En (1 19)

Remark 1.2. The parameter 1/20 in Theorem 1.1 can be replaced by any 0 < « < 1.
The new constants ¢, (v, p), C, (v, p) only differ from c(v, p), ¢(v, p) by a constant multiple
of 2. However, in order to apply AP to obtain Hélder continuity, x can be taken to
be at most 1/9 due to technical reasons (see (C10)). We do not intend to improve the
Holder exponents in the paper by getting the best possible «; thus, we take x = 1/20 for

simplicity. See more discussions about the sharp Holder exponents after Theorem 1.5.
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Deviation Estimates and Holder Regularity 7

Corollary 1.3. Let w € R\ Q. Assume that v(x) in (1.1) is given by v(x) = Af(x), where
A is a positive constant. There exist constants 0 < b = b(f,p) < 1,B = B(f,p) > 1, and
% = A(f, p) > 0 with the following properties: for any irrational w with 0 < B(w) < oo,

suppose
A > max(}, (@),

then there is N(w, A, f, p) € N such that for any n > N(w, A, f, p), the following holds
1
mes ix eT:u,(wE x)—L,(w,E)|> 19 loga| < e "blog (1.20)

Remark 1.4. The above exponential decay of the measure estimate w.r.t. log A for large
coupling A is known for the 1st time even for S(w) = 0 or S.D.C. w to the authors’

knowledge.

As mentioned previously in (1.11), a direct consequence of the above large
deviation estimates is the Holder regularity of the Lyapunov exponents. With the refined
parameters in the LDT estimates (1.18)—(1.20), we have the following Ho6lder continuity

of the Lyapunov exponents.

Theorem 1.5. Let c = c(v,p), ¢ = c(v, p) be the constants in Theorem 1.1. There exists
a constant T > 0 depending explicitly (and only) on ¢(v, p) that satisfies the following
property: if (wy, Eg) € (R\ Q) x N, is a point with L(wy,E)) = y > 0, and U x I is a

neighborhood of (wy, Ey) such that L(w, E) € [%y, f—gy], then for any w € U with

1
there is n = n(w, I, vy, v) such that the following holds for any E,E' € I and |E — E'| < 7,
|L(w,E) — L(w,E"| < |E — E'|*. (1.21)

Remark 1.6. By [9], L(w,E) is jointly continuous in (w,E) at (wg, E,). Hence, the

neighborhood U x I always exists.

Remark 1.7. Theorem 1.5 shows that the exponent r is independent of the lower
bound of the Lyapunov exponent y. This generalizes the result in [5] for general analytic

potentials from o satisfying S.D.C. to 0 < S(w) < y.
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8 R.Han and S. Zhang

Remark 1.8. For trigonometric polynomial potentials, there are results on sharp
Ho6lder exponents that only depend on the degree of the polynomial: %—Hélder ifv =
rcos, A #0,1,[2,4]; and (ﬁ—e)-Hélder if vis a small C* perturbation of a trigonometric
polynomial of degree k [21]. Our current approach does not lead to such kind of sharp

exponent for general analytic potentials, even for S.D.C. w.

Remark 1.9. If v is of the form Af, with a general analytic f, in the small coupling
regime A < Aqy(f), %—Hélder exponents were obtained in [2] using a reducibility method.
However, there is no such kind of result for the large coupling regime. (For general
analytic potential v = Af, if one applies the LDT (1.12) in [19] and check all the constants
explicitly, the Holder exponent behaves like O((log1)~!) for large A even for S.D.C. w, see
more explanation in [33].) Our Theorem 1.10 is the 1st one in this regime, by giving a

A-independent Holder exponent for general analytic f.
If v = Af, we have the following:

Theorem 1.10. Under the same condition of Corollary 1.3, let A(f, p), b(f, p), B(f, p) be
the constants given there. There exists a constant 7 > 0 depending explicitly (and only)
on b (hence independent of A) such that for any irrational w with 0 < B(w) < oo, if
A > max(, e?#@) then there exists 7 = j(w, A, f, p) > 0, such that for any E, E' € N;r and

|E — E'| <17, we have

IL(E) — L(E')| < |E — E'|. (1.22)

The rest of the paper is organized as follows: in Section 2, we state all the
important technical lemmas. In Section 3, we prove the three large deviation estimates
using the lemmas in Section 2. Our Hélder continuity follows directly from LDT and a
standard argument combined with the AP. For the sake of completeness, we sketch the
proof in Section 5. Many details of this part are included in the Appendix for the reader’s

convenience.

2 Useful Lemmas

Let N, = [-2 — |V]l 2 + IVlls]; as we mentioned before, we will only consider E € N,
throughout the paper. Recall that u,(w, E; x) is defined as in (1.8).
This section contains lemmas that will be used in the proofs of Theorems 1.1

and 1.3. The proofs of these lemmas will be included in Section 4.
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Let

Simple computations yield that

€Ny

holds uniformlyinw € Tand 1 <n € N.
Since in our model, v is assumed to have bounded analytic extension to T, :=

{z : |Imz| < p}, u,, has subharmonic extension on T, with a uniform upper bound

sup sup U, (@, E; )| ;oo < 108 (3 + 2[|V]izeo(r,)) < 00.
sup 5up [y 0. -

2.1 Estimates of the Fourier coefficients i, (v, E; k)

The function u, (v, E; x) is 1-periodic on R and we denote its Fourier coefficients by
i, (0, E; k) = / u, (o, E; x)e" " kxdx, (2.3)
T

The following estimate of the Fourier coefficient is well known and crucial to estab-
lishing our LDT, see for example, Bourgain's monograph [5, Corollary 4.7]. For a version
of this estimate written precisely in the “sup — sup” form below, see [17, Lemma 2.8].
To obtain this “sup — sup” estimate, one needs to invoke a refined Riesz representation

theorem [21, Lemma 2.2]. See details in Section 4.1.

Lemma 2.1. There is a constant «(p) > 0 depending on p only, such that for any k # 0,

N ) a(p) . .
i, (w,E; k)| < —=| sup u,(w,E;z)— sup u,(E?2)]. (2.4)
Ikl \ jtmzj<p Imz|<p/2
Corollary 2.2. Let
Cv,p):=a(p)sup| sup u,(wE;z)— sup u,(wE;z)|<oo. (2.5)
EeN, \[Imz|<p |Imz|<p/2

We then have that for any k # 0 and E € \V,,,

C(v, p)

(2.6)
L7

|G, (0, E; k)| <
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10 R.Han and S. Zhang

When v is given as Af, we can bound the above constant C(Af, p) by a constant

independent of A. This turns out to be crucial to our proof of Corollary 1.3.

Lemma 2.3. Let C(v, p) be the constant defined in (2.5). Suppose that v = Af. Then
there is Cy(f, p) > 0, independent of A, such that for any 1 > 0,

Besides the Fourier decay estimate in Lemma 2.1, we also prove a new estimate
as follows. This estimate improves that of Lemma 2.1 for small |k| when n is large. It

will play a crucial role in our proof of part (a) of Theorem 1.1.

Lemma 2.4. Let A, be the constant defined in (2.1). We have the following bounds of

the Fourier coefficients, for any k # 0,

A
Uy (@, E; B)| < ot
" 2n) kol

2.2 |lup(®,E;-)|ree(T) under small Lyapunov exponent condition

We present an upper bound of ||u,(», E; x)||, see Lemma 2.6 below. This can be viewed as
a generalization of [5, Lemma 8.18], where a similar bound was proved for Diophantine
w. Compared to a trivial bound |u, (o, E; x| < A, the new bound is much more effective
when the Lyapunov exponent is small.

Compared to [5, Lemma 8.18], our improvement lies in the fact that we can relax
the D.C. on w. Indeed we give explicit dependence of the upper bound on the continued
fraction approximants of w, through the log g, ,/q, term. This improvement enables us
to cover Liouville frequencies.

For R € N, let uis) be the average of u, along a trajectory with length ~ R,
defined as

R—-|j .
uilR)(a),E; X) = Z Tmun(a),E;X—}-]a)). (2.8)
lj/I<R

Lemma 2.5. Let C(v,p), C3 be the constants in (2.5) and (4.19). Assuming that 0 <
L(w,E) < 1, we have the following upper bound of uﬁlR) (w,E; %),

B (. log gs41
lun” (@, E; lgze(r) < Ln(@,E) + (24 8C(V, p) +4n C4C(v, p)L(w, E) + 1200(v, p)— =,

N

(2.9)
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Deviation Estimates and Holder Regularity 11

which holds for

n > 2A,L(w,E)~2 sup and R > 144L(w,E)~°.

1<lk|<L(o,B)-1 IK@llT

Lemma 2.5 leads to the following

Lemma 2.6. Let C(v,p), C; be the constants in (2.5) and (4.19). Assuming that 0 <

L(w,E) < 1, we have the following upper bound of u,(w, E; x),

_ log sy
1t (@, E; M oo(ry < Ly (@, E) + C,L(w, E) + 120C(v, p)q—, (2.10)

N
which holds for n > Ny(w,L(w, E), v, p), where C; explicitly depends on C(v, p), A, as

C,:=2+A,+8C(v,p)+4rCsC(v, p) (2.11)

and

Ny(w,L(w, E), v, p) := L(w, E) "2 max (2AV sup

’ 49L(a>,E)_4 . (2.12)
1<kl<L(w,E)-! Ikollp

2.3 Two estimates of [[ur (w, E; ) — u'l (@, E; )| (r)

The following lemmas give upper bounds of |u,, — u'P) 1oo(T) under different conditions.

Lemma 2.7. Let A, be the constant defined in (2.1). For any n, R, », we have

(@ By~ uP 0, B | <2n,n
n oM~ Vn

Recall the following uniform convergence in [9].

Lemma 2.8. [9, Corollary 3] Suppose v is analytic. Then

limsup u,, (v, E; x) < L(w, E) (2.13)

n—oo

uniformly in x and E in a compact set.

A direct consequence is the following:
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12 R.Han and S. Zhang

Lemma 2.9. Suppose L(w,E) > 0 for all E € [a, b]. There exists lvo(a), [a, b], v) such that

for any n > lvo(w, [a,bl,v), any x € T and E € [a, b], we have
1
u,(w, E; x) < (1 + %) L(w,E) (2.14)

and

L,(0,E) < (1 + 2—10) L(w, E). (2.15)

A more delicate upper bound of the difference u,, — uﬁlR), when L(w, E) is small,
is given as follows. This upper bound will be the key to Theorem 1.1, part (a). Let N, be

as in (2.12) and N, be as in Lemma 2.9. Define
N, (,[a,bl, L(w, E), v, p) := max(Ny(w, L(w, E), v, p), Ny(o,la,bl,v) + 1). (2.16)

Using Lemmas 2.6 and 2.9, we obtain the following:

Lemma 2.10. Let C;,N; be the constants in (2.11) and (2.16), and C(v,p), A, be
the constants in (2.5) and (2.1), respectively. Suppose 0 < L(w,E) < 1. For R =
1(400 (€, +2)) "' nJ + 1, we have that

log qs+1

N

. ® (1 H 1 1
/Er' - lEr' S L rE _C ’
@ B~ ud @, | < (oo L@ B + 50w, p)

holds for n > N,(w, la, b], L(w, E), v, p), where

Ny (,[a,bl, L(w,E), v, p) := max (150A N, L(w, E) "}, 400(C; 4+ 2)N, + 1). (2.17)

Remark 2.11. We point out that N, (w,la, bl, L(w, E), v, p) is a decreasing function in
the 3rd parameter L(w, E), and so is N,(w,la,bl,L(w, E), v, p). This is clear from the
definitions (2.12), (2.16), and (2.17).
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Deviation Estimates and Holder Regularity 13
3 Large Deviation Estimates.

For simplicity, from this point on, when there is no ambiguity, we will sometimes write
u,(x) =u,(w Ex),L,=L,(0,E), and L = L(w, E).

3.1 Preparation

Let @1, (k) and u%R) (x) be defined as in (2.3) and (2.8). Let

R—1i .
Fr(k) := Z T”'ezﬂlkﬂ“. (3.1)
J/I<R

Let us recall the following estimates of Fg(k) in [5, 9, 33], whose proofs are included in

the Appendix E.

2
0<Fgk) <min(1, — = ), (3.2)
= ( 1+R2||kw||$r)
1
> - s < 2,,%, (3.3)
L+ Rkl
1
> L il wen 8.4
1+ R2[ko| R

|kleleq/4, (L+1)q/4)

in which p/q is any continued fraction approximant of w.

Direct computation shows that

ug?(®) =L, + > f,(k)Fp(k)e® . (3.5)
keZ,k#0
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14 R.Han and S. Zhang

Let ps/qs, Psy1/4s41 be any two consecutive continued fraction approximants of
w.For 0 < § <1, let us consider
Uy (X) — L, = Uy (%) — Uit (%) + Uy (%) — Ly,
R
= Uy () —up” () (=1 U (%)

+ D U (Fr()eP™ (= Uy (x))
1<|k|<é~1

+ D U,(0Fr(EF R (= Uy (x)
§1<|kl<qs/4 (3.6)

+ D a,(RFg(k)EF (= Uy(x))
qs/4<Ik|<gs1/4

+ D U, (RFg()e (= Us(x))
Gs+1/4<Ikl<K

+ D 4, (OFR ()™ ™ (=: Uy (x)).
|k|=K

By Lemma 2.4, we have some refined estimates of U/, (x) and Us(x):

Proposition 3.1. Let A, C(v,p) be given as in (2.1) and (2.5). For any n > 1 and

Re [qs,qsﬂ), we have

(2] <A sup ! (3.7)
2l = 5 1<k<s-1 1K@l '
and
||u3(')||[,00(11‘) <4néC(v,p) (3.8)
Proof. By Lemma 2.4 and (3.2), we have
R A 1 A 1
Iy Ollgoery < D iy (R)] < 2—; > kol = 8_7‘2/ UP el (3.9)
1<|k|<s-1 1<|k|<s-1 T 1<k=s~! T
By Lemma 2.1, (3.2), (3.3), and g4 < R, we obtain
N 1 C(v,p) 1
16 lzem = . 2 il 1+R2|kol2 ~ " _ 2 871 1+ R?|ke|?
§-1<|k|<qs/4 s-1<|kl<qgs/4
) (3.10)
qs
<2C(v,p)-6- Z ———— <4nC(v,p) -6 = < 4nsC(v, p),
2
1<lki=gea L T R IR R

as desired. [ ]
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Deviation Estimates and Holder Regularity 15
We have some general estimates for U/, (x) + Us(x) and Ug(x).
Proposition 3.2. Let C(v, p) be given as in (2.5). Foranyn > 1, and g; <R < q,,; <K,
we have

(3.11)

logg logK
||U4(-)+U5(~)IILOO(T)51200(v,p)( s+1 , 198 )

R

N

and

2
2 2
I (V72 (py = €™V, P) - (3.12)

This part has been proved in [33], but we sketch the proof below for the reader’s

convenience.

Proof. By Lemma 2.1, (3.2), (3.4), and the choice of R € gy, g, ), we have

s Ollgroery <2 D iy (R)]

14 B2 kw2
qs/a<Ikl<gsi1 /4 1 + R?|[ko|T

[gs+1/gs]+1

R 1
<2 > > It (17 t R2||kw|2
=1 |kleltgs/4,(¢+1)qs/4) “lT

[gs+1/gs]+1

1 1
- scw, ) (3.13)
= 8C(v,p) Z Z g, 1+ R2||kwl||?

=1 |klelegs/4,(E+1)gs/4) T

[gs+1/gs]+1 a

< 8C(v, p) ; e_qs(2+4”§)

logqs

N

< 16C(v, p) (1 + 27)

In view of U5, we have by Lemma 2.1 and (3.4) that

R 1
Us ()l ooy < 2 Z |un(k)|m
gs+1/4<|k|<K T
[4K/qs+1]+1 1 1 (3.14)
<8C(v,p) D 2 (dsy 1+ R2|kol/? |
(=1 |kleltqss1/4,(t+1)gs1/4) TS H T
logK

< 16C(v, p) (1 +27) — =

Combining (3.13) with (3.14), and using that 16(1 4+ 27) < 120, we prove (3.11).
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16 R.Han and S. Zhang

For Ug, we have that by Lemma 2.1,

N 1 2
1Us Oz = 20 [0 < C2(w,0) D 25 = C*(W.p) 2, (3.15)
|k|>K |k|>K
as claimed. [ |
3.2 Proof of Theorem 1.1
Let
L(w,la,b]) = Ei?fb]L(w,E), and L(w,[a, b]) = min(L(w, [a, b)), 1). (3.16)
ela,

For simplicity, we will sometimes omit the dependence on w and [a, b] and write L and
L instead.
Recall our notations: N, as in (2.17), and A, C(v, p), C; as in (2.1), (2.5), and (2.11).

We choose ¢ and ¢ in the statement of the theorem as follows:

c(v, p) = (36000C(v, p)) ', (v, p) = (2 x 107(C; +2)C(v, p)) . (3.17)

By our condition,

1
B(w) = lim sup 98 %k+1

k— 00 di

< c(v, p)L(w).

Hence, there exists s, = sy(w, [a, b], v, p) such that for any k > s,

log gy
qx

< 2¢(v, p)L(w, [a, b]). (3.18)
Let n > N, with N defined as follows:

(i). 400(C; + 2)gs,,

(ii). Nz(wl [ar b]lL’ v, IO)I
N(w,L, v, p) :== max (3.19)

5 ~—2 1
(it7). 1.6 x 10°7 A ,C(v, p)L SuplgkaOOnC(v,p)L’l TRolT’

(iv). 2 x 107(C, + 2)C(v, p)L ' log (2 % 104C2(v, p)L. % + e) .

This gives four lower bounds of n.

020z AInr 62 uo Jasn ABojouyoa] Jo aymnsu] eibioss) Aq G1.SL¥8S/6 L SZUl/UIWI/EE0 L 0L /10P/10BSqe-0]o1E/ulwl/woo dnooiwapese//:sdiy wol) papeojumoq



Deviation Estimates and Holder Regularity 17
Remark 3.3. By Remark 2.11, N, is decreasing in L. It is also clear that both (iii) and

(iv) are decreasing in L. Hence, N is non-increasing in L.

3.2.1 Parameters for part (a)

In this case, L < 1; hence,

|t

=L (3.20)

In our decomposition of u,(x) — L,, in (3.6), we choose the following parameters:

L
§=—= R = . n +1,
800 C(v, p) 400(C; + 2)

RL
K=|:6Xp(12X104C(V’p)):|: S=maX{S€N: qSER}

(3.21)

It is clear from the choice of s that g; < R < g, . Let us also note that with § defined

above, the lower bound (iii) in (3.19) becomes

200, 1

su . (3.22)
5L yopest kel
Indeed, by (i) of (3.19), we have
R > (400(C, +2)) 'n = g,
By our definition of s, see (3.21), we clearly have s > s,. This, by (3.18), implies
lo
989541 _ 90y, p)L. (3.23)
qs
An upper bound of g, ; could be derived from (3.23). Indeed,
<exp (2¢(v, p)Lg) < exp (2c(v, p)LR) < e LR (3.24)
X v, = ex v, = ex . .
s+1 = &XP PI=ds P pIZ P\ 18 x 10%C(v, p)

By (iv) of (3.19),
n >2 x 107(C, +2)C(v, p)L™};

hence, we have

LR Ln 2 x 107
exp > exp >exp| ——7=) > 16.
1.8 x 10%C(v, p) 7.2 x 108(C; +2)C(v, p) 7.2 x 106
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18 R. Han and S. Zhang

Using the fact that x < x5 — 1, for x > 3, we have

exp LR < exp LR —1<K. (3.25)
1.8 x 10%C(v, p) 1.2 x 10%C(v, p)

Combining (3.24) with (3.25), we arrive at
4541 < K. (3.26)

3.2.2 Proof of part (a)
By (ii) of (3.19) and Remark 2.11, we have

n >N > Ny(w,la,bl,L(w), v, p) > Ny(w,la, bl,L(w, E), v, p).

Hence, by Lemma 2.10, and (3.23), we have,

1 logg,., 1 1 1
u ~ —L C st L c L={—+——)L
U4y Dllgoe(y < 100 + ZCv, p)———— . ~100 + =C(v, p)c(v, p) (100 + 9 x 104)
(3.27)
By Proposition 3.1 and our choice of §, we have
Uy () + Uz Ol u ! +473C(v, p) < ! L,
[ TT —
2 30l = 3 1<k<€  Tkaly ?)= 700 (3.28)
in which we used (iii) of (3.19), see also (3.22),
2004, 1 200A,, 1
n>N> sup > sup .
8L 1Sk58_1 ”ka)”']r SL ISkSS_l ”ka)”T

Note that (3.26) verifies the condition 4,1 < K of Proposition 3.2. Hence,
Proposition 3.2 implies that,

lo logK
1Ua () +Us ()l ry < 1200(v,p)( B+ | 08 ) <120C(v,p) 28011 | L
S R s 100
Taking (3.23) into account, we have
1 1

1000 60
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Deviation Estimates and Holder Regularity 19

Combining (3.27), (3.28), and (3.29) with our choice of ¢(v, p), see (3.17), we have

> 1
D U0 < 5L

J=1 L(T)
By (3.12) and (3.25),
1Us (|22 < C2(v p)E < 2C%*(v,p)exp (- RL
6\/l2(m) = g = ! 1.8 x 10%C(v, p)
nL
2C%(v, — .
< 205w, p) eXp( 107(C, + 2)C(v, p))

(3.30)

(3.31)

Combining (3.6) and (3.30) with (3.31), and using Markov's inequality, we obtain

1 1
mes [X eT: |un(X) —L,| > %L] < mes [x eT: |L{6(X)| > WL]

nL

<2x10*C%(v, p)L 2exp (-
=ex v, p) Xp( 107(C, + 2)C(v, p)

IA

o nL
X —_—
P\ 7 2% 107(¢c, + 2¢m, p)

exp (—c(v, p)nL),
in which we used (iv) of (3.19),
n >2x 107(C, + 2)C(v, p)L " log(2 x 10*C2(v, p)L™2).

This proves part (a) of Theorem 1.1.

3.2.3 Parameters for part (b)

In our decomposition of u,(x) — L,, in (3.6), we choose parameters as follows:

1 nL
§=——, R=|_——|+1,
8007 C(v, p) |:400AV}

RL
K= [exp (1‘2 » 104C(V,p))i|' s=max{s e N: g, <R}.

It is clear that g <R < g, ;.

)

(3.32)
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20 R.Han and S. Zhang

Use the fact that C; > A, see (2.11), andL <1, (3.19) implies
(i'). 400(A, + 1)q, -

n > 1) 2252 sup) s e (3.33)

(iv'). 2 x 107A,C(v, p) log (2 x 10*C2(v, p) + e).
Note that (i) implies that
R > (400A,)"'nL > (400A,) " 'n > g, . (3.34)

By our definition of s, we have s > s;. This, by (3.18), implies

IA

exp (2¢(v, p)Lg) < exp (2¢(v, p)Lg;)

LR ) (3.35)
1.8 x 10%C(v, p) }°

qs+1

IA

exp (2c(v, p)LR) < exp (
By (iv') of (3.33),
n>2x10’A,C(v, p)log (2 x 10*C%(v, p) + ) > 2 x 107A,C(v, p);

hence,

RL L?
exp > exp " > exp e > 16.
1.8 x 10%C(v, p) 7.2 x 108A,C(v, p) 7.2 x 106A,C(v, p)

Thus, similar to (3.25), using the fact x < X% — 1, for x > 3, we have

exp RL < exp RL —1<K. (3.36)
1.8 x 10%C(v, p) 1.2 x 104C(v, p)

Combining (3.35) with (3.36), we obtain, similar to (3.26), that

g5 =K. (3.37)
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Deviation Estimates and Holder Regularity 21

3.2.4 Proof of part (b)

We use the trivial upper bound in Lemma 2.7 for i,

<

< —1 < —1I, 3.38
— 200 + n ~— 100 ( )

R 1 2A
Iy (O llgoo(ry = ZAV;

in which we used, see (i’) of (3.33), that
n > 400(A, + 1)gs, > 400A,L7".
Proposition 3.1 yields that

A 1
Uy () +Us Dl oe ey < =% sup ——— +4xC(v, p)8
2 SIED = sn ) s kol

(3.39)
1 1 1
<-—L+_-—L=—I,
200 200 100
in which we used (iii’) of (3.33),
200A 1 200A
n> Y su > Y su . (3.40)
8 <k=s lkolly 8L ) g<s1 Ikl

Note that we have verified the condition g;,; < K in (3.37); Proposition 3.11

implies that

logq logK
”u4(')+u5(')”Loo('H‘) = 1200(Vr)0)( 89511 + g )

R

N

log g, , 1
<120C(v,p)————— + —1L.
< (v, p) 2 + 100

N

By (3.23), we then have

1 1
Uy () + Us () |70 < 240C(v, o)L+ —L=—L. (3.41)
Uy () +Us ()l oo () = (v, p)e(v, p)L + 100 60
In view of U, (3.12) and (3.36) yield that
[Us O, < C2(v, 0) 2 < 2C3(v, p) exp (- —— ok
6271 (m) = e ’ 1.8 x 104C(v, p)
(3.42)
< ZCZ(V )ex _n—Lz
= PP\ T107A,Cv 0 )
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22 R.Han and S. Zhang

Combining (3.38),(3.39), and (3.41) with (3.42), we get that by Markov's inequality,

1 1
mes [X €T: |u,(x) —L,| > %L] < mes [x eT: [Us®)| > ﬁL}

IA

42 -2 _ nL?
2 x10%C*(v, p)L™“ exp _
107A,C(v, p)

IA

ex nLZ
P\ 2x107A,cv 0 )

in which we used (iv’) of (3.33). Using that C; > A, we obtain
7 -1 7 -1 p
- (2 x 107A,C(v, ,0)) <- (2 x 107(Cy + 2)C(v,p)) = —&(v, p).

Hence,

1 -
mes [X €T: |u,(x) —L,| > EL] < exp (—C(V, p)an),
as claimed.

3.3 Proof of Corollary 1.3

In general, a large uniform norm of v does not guarantee a positive Lyapunov exponent.
However, if the potential function v is of the form Af, then the following well-known
result by Sorets—Spencer [31] gives a lower bound of the Lyapunov exponent in the large

coupling regime.

Theorem 3.4. For any non-constant real analytic potential f with an analytic exten-
sion on {|3z| < p}, there exist constants Ay = A¢(f) > 0 and hy, = hy(f) depending only
on f, such that for all E, w, and A > 1y, the Lyapunov exponent L(w, E) > log A + h,.

Let Ay = Ag(f) be given as in Theorem 3.4. For A > A;(f) := max (e*19h0,3,)\0),
we have
18
L(w,E) > logh + hy > Elogk > 1, (3.43)

holds uniformly in w and E. (A is in general large however for some concrete examples,
e.g., f=cos, iy =2,cf. [9].) Let A, = Akf be defined as in (2.1); we have

20
L@, E) < Az =108 3 + 21 1f e (r)) < Tq 1081 (3.44)

provided that A > A, ([|flleo(r))-
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Deviation Estimates and Holder Regularity 23

Let C(Af, p),c(\f, p) and c(Af, p) be defined as in (2.5) and (3.17). With the help of
Lemma 2.3, we can make the dependence of the three constants on A more explicit.
First, Lemma 2.3 yields that there exists Cy = Cy(f, p) such that

for any A > 0.
Second, plugging (3.44) and (3.45) into our definition of C;, see (2.11), we have,

20
Ci+2=4+ Ay + (B +4nCo)COF p) <4+ J5logh+ (8+47Cy)Cy < 2logh,  (3.46)

provided that A > A5(f, p) := max (A,, exp (%(4 + (8 + 47 C5)Cy)). Thus, putting (3.45) and
(3.46) together, we have that for A > 44,

1

EOf, p) = (2 x 107(C; +2)C(v, p)) " = (4 x 107Cylogr) " (3.47)
Third, note that (3.45) also yields
c(hf, p) = (36000C(Af, p)) ! > (36000C,) . (3.48)

Let us take

A(f,p) :=max (1, A3),

and A > A. We are in the place to apply Theorem 1.1. Let us note that by (3.43), we
always have L(w, E) > 1; hence, we will only apply part (b). One condition of the theorem
is 0 < B(w) < c(Af, p)L(w, E). In view of (3.48) and L(w,E) > % log A, this condition will

always be satisfied if
-118 -1 -1
B(w) < (36000C,) 19 log 2 = (38000C;)" " logA =: B” " log A. (3.49)

Therefore, for A > max (1, exp (BB (w))), part (b) of Theorem (1.1) implies

1 = 2
mes {x € T:| (@, ;%) = Ly(@, E) |> 55L(@,E)| < exp (—c()\f, o)L (a),E)n). (3.50)
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24 R.Han and S. Zhang

Using upper and lower bounds of L(w, E) in (3.44) and (3.43), we obtain from (3.50) that

1
mes [X eT:u,(wE;x)—L,(w,E)|> 1o logA]
1
< mes {X eT:u,(w E;x)—L,(w,E)|> %L(w,E)]

< exp (~2Gf, LA (@, E)n) (3.51)

182(1 2
8-(log 1) n)

< exp (20,07

log i

—— | = —nblogh),
5><107CO) exp (—nblogi)

< exp (—n
in which we used (3.47) in the last inequality.

4 The Proofs of the Lemmas
4.1 Proof of Lemma 2.1

We need the following result.

Lemma 4.1. [21, Lemma 2.2] Let u : Q — R be a subharmonic function on a domain
Q c C. Suppose that 9Q consists of finitely many piecewise C! curves. There exists a
positive measure p on Q such that for any Q; € Q (i.e.,, Q; is a compactly contained

sub-region of Q)
u(z) = [ loglz~ ¢1duc) + hio), 1)
Q1

where h is harmonic on 2, and p is unique with this property. Moreover, 1 and h satisfy
the bounds

w()) < C(Q,2)) (supu — sup u) (4.2)
Q Q1
Hh —sup uH < C(R,2;,2y) (sup u — sup u) (4.3)
ol Loo(22) Q o}
for any 2, € Q.
Note that u,(z) is a bounded subharmonic function on @ := {z : |Rez| <

1, Imz| < p}. We consider the following nested domains @, € Q, € Q; € ,
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where

5 o

Q= 1z:|Rez| < =, [Imz| < -
6 2
4 P

Q, = jz:|Rez| < =, |Imz| < — (4.4)
5 4
3 3 3

Qy=1z:|Rez| < —, Imz| =0 =|——,—|.
4 4 4

Now we apply Lemma 4.1 to u(z) = u,(2) on 2. We have then a positive measure u and
a harmonic function & on 2, satisfying (4.1), (4.2), and (4.3).
Since h — supg, u is a harmonic function, by the Poission integral formula and

(4.3), we have

max (|| dxhll Lo g ||8§h||LOO(QO)) < C(2,92;,2,, QO)(Sls.lzp u— Ssl;p u). (4.5)
1

We only need the bound for 3,k here, we will use the one for 32k in Section 4.3.
Combining (4.1) with the technique in [7], one can then show that for some

absolute constant C, > 0, the following holds for any k # O:

N C
U, (k)| < 22 [ () + 13RI~y + [ — sup u, (4.6)
k| Q 1@
0)
Clearly, (2.4) and (2.5) follow directly from (4.2)—(4.6) by setting
a(p) := C, max (C(Q, Q), C(2, 2, 2y), C(X, 2, 2y, ). (4.7)

This finishes the proof of Lemma 2.1. We will include the proof of (4.6) in Appendix A.

4.2 Proof of Lemma 2.3

On one hand, for any E € N, trivially we have

sup [|14;(E, 2)| < 21Ifll, + 2 < 3AIlf|l,,, provided 1 > 2||f|,"

[Imz|<p
and

sup u,(2) < log (34I1f1l,)-

[Imz|<p
On the other hand, since f is non-constant analytic on |Imz| < p, for § = p/2, there exists
g9 = &o(f) > 0 such that

inf sup inf|f(x+1iy) —E,| > &,.
E1 ye(s/2,8) X
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This implies that for any 1, E, there is y; € (§/2,8) such that vx
|f(x+iyy) — E/A| > .

The computation contained in [7, Appendix] shows that for A > 2851,

IM,, iy, E)|| > ﬁ (lkf(jw+ iyo) — E| — 1) > (,\eo - 1)” > (%Aeo)n. (4.8)
j=1

Therefore,

. 1 . 1
sup u,(2) > u,(yy) = — log|IM,,(iyy, E)|| > log (—18 ) .
[Imz|<p/2 n 2

Clearly, we have that for A > max{2|f],, 3e5'),

6
sup u,(z)— sup u,(2) <log (3x||f||p) —log (l)\,g ) =log (ﬂ)

[Tmz| < p [Imz| < p/2 2 &0

Therefore, by (2.5),

6If1,
0

&

CAf,p) < a(p) log( ) =: Cy(f, p) independent of A,

as desired.

4.3 Proof of Lemma 2.4

We have that by (2.2),

[t - + @) = Uy o)

1
= — [[log 1M, (- + )| = 1og 1My Ol e

A

1
— [log IM, (- + )|l + log My, (- + @)|| +log IM; () = 10g 1My, (- + )| 1o )

24,

IA

n
(4.9)
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This implies

ﬁn(k)eZHikw _ an(k)) ‘/ u, (x + a))e—Zﬂikx dx _/ u(X)e—eriX kX‘
T T

(4.10)
< < 2Ay,
< [upC + o)~ un(‘)”Lw(T) =0
(4.10) implies
A . 2A
2|t (k)| sin (7 [kwllp) < nV;
hence, by sin (7x) > 2x for0 < x < % we get that for k £ 0,
U, (k)| < ———)
n 2n|kollp
as stated.
Before we move on, let us mention a simple consequence of (4.9):
2A, 0]
Uy -+ @) = Uyl gooq) < 2 (4.11)
this estimate will be used in several parts of the argument.
4.4 Proof of Lemma 2.5
Let R > Ry(L) and n > N5(v,w, L), where
Ry := 144L7°, (4.12)
and
) 1
N3 :=2A,L sup (4.13)

1<jki<z-1 Ikl
Lemma 4.1 implies that u,, has a Riesz representation with a positive measure

© and a harmonic function h. Let us take
8= (LR, (4.14)

and

Uy, s(x) = /Q log (]x — w| 4+ §) u(dw) + h(x). (4.15)
1
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28 R.Han and S. Zhang
We then have, pointwisely,
U, (%) < Uy, 5(x). (4.16)

It is clear from our definitions of R, and § that,

L* 1

§< — < —. (4.17)
144 144

4.4.1 Fourier coefficients decay for up,s
The following two inequalities (4.18) and (4.19) are (2.4) and (2.3) of [7] (see also (8.12) of
[5]). We include their proofs in Appendix B.

Lemma 4.2. Let C(v,p) be defined as in (2.5). There exists an absolute constant C;

such that for any k € Z, we have

[ 5(K)| < |0, (k)| + 381logs™ !, (4.18)
and for any k # 0,
~ . 1 1
[, s(k)| < C3C(v, p) min m, 25 (4.19)

holds for k # 0.
Note that (4.18) together with Lemma 2.4 leads to the following corollary.

Corollary 4.3. For k # 0, we have

A
i, (k)| < ——2— +35logs L. 4.20
Ty, (k)| < 2kl + 351og ( )

4.4.2 Proofof Lemma 2.5
Let s € N be such that g; < R < g,,. Recall that our definition of u®, see (2.8). (4.16)
clearly yields

0 < up’ (%) < Uy ().
Let Fr(k) be as in (3.1), invoking (3.5); we have

0 < up’(®) < ubg(®) = f1,5(0) + > Uy s(K)F (k). @.21)

k#0
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We now split the Fourier series in (4.21) into low/high-frequency parts,

(R)(X) = U, 5(0) + Z Uy, 5(k)Fr(k) + Z Uy, s(k)Fg (k)
1<|k|<gs+1/4 |kl>@s41/4 (4.22)

Using the (k?8)~! bound of |, 5(k)| in (4.19) and |F(k)| <1 in (3.2), we have

=8C(v,p)L, (4.23)

Z Cv.p) _8C(v,p) _ 8C(v,p)

S u, s(k
Sl <= D0 byl < B S qns S R

k|>gs+1/4 |kl>gs+1/4

in which we used R < Agi1 and our choice of §, see (4.14).

We further decompose S; into

1511

IA

LI S Y |2y, 5 (k) | Fp ()

1<lk|<L-!  L-l<|kl<gs/4 Qqs/A<IkI<gsi1/4 (4.24)

= Sl,l + 81,2 + 81,3‘

By (4.20) and |Fgr(k)| < 1, see (3.2), we have

A
— Y +35logs”
Sis 2 (nnk I 0 )

1<|k|<L™!
< 2 Ay ! + log (RL)
< - sup — log

L\ 2n < kol ' RL

Using a trivial estimate log x < +/x that holds for any x > 0, we obtain

A 1 6
S, < sup + <L (4.25)
H (nL1<k|<L1||kw||T \/_RL3)

in the last step we used R > R, = 144L75 and n > N, see (4.12) and (4.13).
Using the |k|~! bound of |i, s(k)| in (4.19), and non-trivial bound of |F(k)| in

(3.2), we have

1 1
812 <2CCv,pL > ———— < 26,Cv,pL > = —— .
, 2 2 3 2 2
L7l<|k|<gs/4 1+R ”kw”T 1<|k|<gs/4 1+R ”kw”T
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Applying (3.3), we obtain
Sy 4 < 4TC,C(v, p)L% < 47C,C(v, p)L, (4.26)

in which we used g; < R.
The estimate of S ; is similar to that of S, ,, except that we use (3.4) instead of
(3.3). Indeed, by (4.19), (3.2), and (3.4), we have

[@s+1/gs1+1
Sip< > > Uy, s (K)FR(K)]|
=1 |kleltgs/4,(t+1)gs/4)
[gs sl+1 N
- q+1/q 2|un,8(k)|
- Z z 1 +R2||ka)||2
t=1  |kleltqs/4,(t+1)gs/4) T (4.27)
[gs+1/gs1+1
8C(v,
< Z M (2 + 47 &)
Lq, R
=1
lo
< 120C(v, p) 8 9s+1
S
Note that by (4.18) with k = 0, we have
A 1
U, s0) <L, + RL log (RL).
Trivial estimate logx < 4/x for x > 0 implies
. 1 L?
U,50) <L,+—<L,+—— <L, +1L, (4.28)

~RL ~— 12
in which we used R > Ry > 144L % and 0 < L < 1.
Combining (4.21), (4.22), (4.23), (4.24), (4.25), (4.26), and (4.27) with (4.28), we

arrive at

lo
0<uP(x) <L, + (2 +8C(v, p) + 41 CsC(v, p))L + 120C(v, p) —8.Is+1

N

holds uniformly in x.
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4.5 Proof of Lemma 2.6

We apply Lemma 2.5 to R = |3Ln]. The conditions R > Ry and n > Nj, see (4.12) and
(4.13), can be reduced to

1
n > Ny(w,L,v,p) :=L ?max| 2A, sup ——, 49L7%]). (4.29)
1<ikj<c-1 Ikl
Indeed, due to 0 < L < 1, we have
R>3Ln—1>147L7° -1 > 144L7%,
Now for n > N, Lemma 2.5 implies
0 < Up(X) < [Up(X) — U D]+ up (%) (4.30)
®) log gy
= 1Uup(0) = un” (0] + Ly + 2+ 8C(, p) + 47 C5C(v, )L+ 1200(v, p)— =
S
By (4.9), we have
R—j| 2A,jl R -DA
(R) vl v
Uy () —up’ (0] < > =g, <M (4.31)

lil<R
Hence, combining (4.30) with (4.31), we get

log gy

N

O0<u,x)<L,+@2+A,+8C(v,p)+4wC3C(v, p))L + 120C(v, p)

holds uniformly in x.
4.6 Proof of Lemma 2.10
Let
N, = max (150A,N, L™}, 400(C; + 2)N, + 1)

be as in (2.17). Let n > N, and R = [(400(C, + 2))"'n| + 1.
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By (4.11), we have

H U () = U () HLOO(T) : U'IZ<;% = l]l |t ) = upC +jo) | oo
< U% W H ui(- + nw) + u;() Hmer) (4.32)
= %w H f(')HLOO(T)'
By our choice of R and n > N, > 400(C, + 2)N, + 1, we have
n (4.33)

R>———>N,.
400(C, + 2)

We could split the sum in (4.32) into

|
(4.34)

We will use trivial upper bound lujOllgee(ry = Ay, see (2.2), in the 1st summation of

U, () — u(m()”mm U.Z*vl 2Li|(r1L?R; i) ” e )HLoom EWLR 2|jl(:“<R; i) H”f(')HLoom

(4.34). Note that j > N; > N,; hence, we can apply Lemma 2.6 to u; in the 2nd sum. We

have

-

L(T)
-3 28, IR - D > 2|j|(R—[j|)(L G L4 1200, p) gqs+1) (4.35)
T nR? . nR2 1 P %
ljl<Ny Ny <|j|<R
Forj >N, > Kfo + 1, Lemma 2.9 implies L; < 21L/20 < 2L; hence,
un) = w0
- Z 2A,JIR = |jI) N z 2jI(R — [j]) ((c 1)L+ 1200, p) gqs+1) (4.36)
T nR? , nR2 ! p as
Ul<y Ni<l|j|<R

Use that

Z 2[jI(R — [j]) _ oy 2 —DER-2N, +1) _

3y
Ford R2 1 3R2 = M
<lVi
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and

2ljI(R — |j 2(R(R—1)+ (R+ 1)N, — 2N?
> m(R2 D _ g1 -y 2B );RZ )N, — 2NV})

N1 <|jI<R

2(R2—R) 2
<R——(——= -(R—-D.
3R2 3

We could control (4.36) by

3A,N;  2(R-1
< +
LT ~— 4n 3n

g qs+1

N

[ = u 00 ) ((c1 +2)L + 120C(v, p) ——3+L

For the 1st term in (4.37), note that n > N, > 150A,N,L~! implies

3A,0; _ 1
4an 200

For the 2nd term, we plug in R = [400~}(C; + 2)"'n] + 1, then we have

2(C;+2)(R-1
(C1+2)¢( ) 1 1 and
3n = 200
2(R-1 1 4 1 1 1
2R-1) 120C(v, p) 089511 _ C(v,p) logqs,, <Llew o 089s+1
3n qs 15(C; +2) g 5 qs

Incorporating the estimates in (4.38) and (4.39) into (4.37), we have

g qs+1

N

1
un ()~ w0 = 1obt 5C0 it

as stated.

5 Refined Holder Continuity

(4.36)

(4.37)

(4.38)

(4.39)

Holder regularity of L(E) follows from combing LDT with AP. This scheme was developed

by Goldstein and Schlag in [19], and has shown to be not restricted to quasi-periodic

cocycles, see for example, [8] for skew-shift. This scheme was extended to general

cocycles in any dimension, in a recent monograph [15]. Recently, it was also used to

study the one-dimensional Anderson model in [10]. We sketch the proof below in our

setting, making the indenpendence of the Holder exponent explicit.
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5.1 Proof of Theorem 1.5
Fix (wy, Ey) € (R\ Q) x N, with L(wg, Ey) = ¥ > 0. As we explained in Remark 1.6 that the

neighborhood U x I as in Theorem 1.5 always exists. For any (w,E) € U x I

18 < I( E)<20 (5.1)
197 =B =197 '

Let c(v, p) and & = &(v, p) be the constants in Theorem 1.1. Define a subset U of

U as follows:
U:={weR\Q: 0<pw) <c(v,p)y/2}NU. (5.2)

In particular, U contains all the Diophantine numbers in U; thus, mes(U \ U) = 0.
We are going to apply Theorem 1.1 on interval [a, b] = I. Note that for any w € U,
by (5.1), we have

0 < B(w) < %C(V,p)y < c(v,p) iEntI"L(a),E). (5.3)

Hence, the condition of Theorem 1.1 is verified. Let N = N(w,infg;L(w, E), v, p) be as
in (3.19), which is the constant in Theorem 1.1. Let N = N(w, %y,v, 0) be the constant
defined in (3.19) with L = }—Sy. Then by (5.1) and Remark 3.3, we have N > N. Let

Q,(w,E) =1xeT:|u,(w E; x)—L,(w,E) |> %L(w,E)] .
Theorem 1.1 implies that for n > N > N and any (w,E) € U x I, we have
mes (2, (w,E)) < e”ME@E) < g=tny/2, (5.4)
in which we used L(w, E) > %y > %y, see (5.1).
In the rest of the section, we will fix @ € U and denote L(E) = L(w,E),

L,(E) = L,(w,E) for simplicity whenever it is clear. Apply Lemma 2.9 to the interval

I. Let ITIO(w,I, v) be given as in Lemma 2.9. Then for any n > ITTO and E € I, we have
1
L(E) <L,(E) < (1 + %) L(E). (5.5)
Combining (5.5) with the fact that L, (E) < L, (E), we have for all n > ]TIO and E €1,

0 <L,(E)—Ly,(E) < %L(E). (5.6)
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After combining the large deviation estimate (5.4), the initial scale estimate (5.6), and

the AP (Theorem C.1), we obtain the following convergence rate of L,,(E) to L(E).

Proposition 5.1. There exists N, € N explicitly depends on N, IVO, A,.c(v, p), and y. For
any n > N, and (»,E) € U x1,

| L(E) + L,,(E) — 2Ly, (E) | < e ¢VPn/5, (5.7)

Proposition 5.1 can be derived from an induction method developed by Goldstein
and Schlag in [19] (see also in [5, 33]). For sake of completeness, we include the proof in
Appendix C.

Another key ingredient for the proof of Theorem 1.5 is the following control on

dgL,, (w, E) with respect to y.

Proposition 5.2. There exists Ny € N explicitly depends on KTO,AV,E‘(V, p) and y. For
any n > N and (0, E) € UxI,

|0gL,, (E)| < 2™, (5.8)

Proposition 5.2 is essentially contained in [5]; we include the proof in
Appendix D with these specific parameters.
Now we are in the place to complete the proof of Theorem 1.5 by using (5.7) and

(5.8). For short hand we will write ¢(c, p) as ¢, and denote
Co := €+ 20. (5.9)
Let Ng = max{N,, N5} and
n := min (e*ZVsto/f’, 8*45‘0/5) <1 (5.10)

Now for any E,E’ € I such that |[E — E'| < n, let

2{_510g|E—E’|J 5.11)
Vao
Using the 1st term in (5.10), it is easy to check that
—51 E—-FE —51 E—F
oglE—E]| . Z5logl > Ny = max (v, Ny). (5.12)

vCo 2y ¢
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Now we can apply Propositions 5.1 and 5.2 to the above n, E, E’ to obtain

|L(E) — L(E")| < |L(E) 4 Ly,(E) — 2Ly, (E)| + |L(E") 4+ L,(E") — 2L, (E")|
+ |Ly(E) — L, (E")| + 2|Ly,, (E) — Ly, (E)|
<2~ /5 L 462 |E —E'| 4 2¢*" |E — E/|

<2e /5 4 e E — E/|. (5.13)
In view of the upper and lower bound of n in (5.12), we have
e < |E—E'|%%, (5.14)

and
e ™ < |E— E'|5/20), (5.15)

By (5.13), (5.14), and (5.15), we have that forallw € U, E,E' eI and [E—E'| <n <1,

IL(E) _L(E/)| < 2|E_E/|E'/(26‘0) + 6|E _El|1—20/&0
= 2|E — E'|€/¢) 4 g|E — E'|¢/% (5.16)

< 8|E — E'|¢/2%),
Using the 2nd term in (5.10), we have
8 < n~¢/4%) _ |g _ g/|~6/@4%0),
Plugging it into (5.16), we obtain
|L(E) — L(E')| < |E — E/|%/*0) —. |[E — E'|". (5.17)
This proves Theorem 1.5.

5.2 Proof of Theorem 1.10

Let A, b, B and N = N(w, A, f,p) be given as in Corollary 1.3. Assume that A >
max{x, e8F@)}. Corollary 1.3 implies that for any n > N, we have

1
mes {x € T:| u,(w, E;x)—L,(0,E) | > Elogk] < g nblogh (5.18)
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In view of (3.43) and (3.44), we have that forn > N,
18 20 2
Elog)\ <L,(E) < I logh, 0 <L,(E)—Ly,(E) < Elog)\. (5.19)

By (5.18), (5.19), and the same reasoning for Proposition 5.1, we have the

following:

Proposition 5.3. Assume that f(w) < oo and A > max{A, e®#(®)}. There exists N, € N
depending explicitly on A and b such that forany n > N, and E € N,\f,

| L(E) + L,,(E) — 2L, (E) | < e~ 3"blog?, (5.20)

By the trivial bound sup sup sup u,(x) < A, < 2logx, we have for any n, x and
neN xeT EeNy

E EN)\.f’

n
Oz log | My, (w, E; x) || < 195M, (0, E; 0)|| < D |IM,,_j(x+jo; B)|| - |M;_, (0, E; x)|| < ne?™1°8%,
j=1
which implies

|95L, (w, E)| < e108%, (5.21)

Clearly, by (5.20) and (5.21) and the same argument from (5.10) to (5.17), we can
prove (1.22). More precisely, for all E, E’ € N, satisfying

|E _ E/| < 'ﬁ' = min{e72(12+b)N7(10g)»)/3, 574(12+b)/b}l (522)

_ -1
8log E-E'l | ‘Then we have

set n = | o502+

1

|L(E)—L(E/)| < ze—snblogk+3e4n10gA|E_E/|
< 5|E—F|:E
b ~
< |E—E'|5zt) =: |[E — E'|". (5.23)

This completes the proof of Theorem 1.10.
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A Proof of (4.6)

The proof is essentially contained in [7, Section IIl; we include a proof here for

completeness.

Proof of (4.6).

nx) =11,

Then it is easy to see that

[ 3
suppn C | —

32(x —

4'4

[32(x + 2)%,
1-32(x+1)°,

1-32(x— 1),

).

SeZ

|
o el T[S N[V
INIA

|
IA
>
A

NN

IA
>
A

IA
>
A

Let us pick a bump function n(x) defined as follows:

X
A
[

o
A

|
Al Nl

S

Blw N~

, > . nx+s) =1, and

0<nx) <1, | <6, In"(x)| <48 forall x € R.

(A.1)

(A.2)

Let w(x) := le log|x —¢|du(¢) and ¢ := supgq, u,(2). Since u,(x) is 1-periodic on

R, we have

Uy (k)

= (U, - DK

N~

= [ (w,(x) — e 2T dx

/ (U, (x) — Dy(x)e > dx
R

i —2mikx
— | 3, (wn)e VX dx

i

27k R

L —2mikx
ok /R nx)d, w(x)e dx

i o
+ ﬂ/RW(X)aXn(X)e 2mikx qx

i
+27‘[k R

n(x)0,h(x)e 27 kx dx

i —2mikx
e /R ax((w(x) T h(x) — t)n(x))e dx

ax((h _ t)n)e’z”ikx dx

L _ —2mikx
+27‘rk/R(h(X) t)o,n(x)e dx.

(A.3)

(A.4)

(A.5)

(A.6)
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Clearly, (A.5) and (A.6) can be bounded by
|(A.5)] + |(A.6)] < #(na Rllzs () + BIR = 5UP Uyl gy ). (A.7)
= 2n|k| X (€20) o n (£20)

It is enough to estimate (A.3) and (A.4) by (4.1). The bound for (A.4) is trivial since

s/ /1 |10g 1x — ¢1]dx du(z)
Q, J-1

1
6 du(s‘)SUP/ [ 10g1x — ¢1|ax
Q e J -1

IA

| / w(x) 3, (x)e” 27k dx|
R

A

A

2
< 6u<szl>/_2 |1og Ix1|dx

(2410g 2)(Q)).

The bound for (A.4) follows from the direct computation in [10]:

/ /X Re¢ 2nikxn(X)dde(§)‘
@ JR

|x — §|2
).

‘ / 1(x)0, w(x)e 2Tikx dx‘
R

/ X——Rege_znikxn(x)dx‘ du(2)

— Re{ . .
< w@psup || ———e T Fn)dx| < Cuu(R)),
e IR |X - {'
where C, > 0 is some absolute constant given as in [10] such that
— Re .

sup / X—ge*Z”lkxn(X)dX < C,.

e IR |X - §|
This finishes the proof. n

B Proof of Lemma 4.2

Let n(x) be the bump function defined as in (A.1). Then

(i 5 (k) — Qi ()| = /R | log (W)e””‘xn(x) p(dw) dx‘

|x — w|
< / /log (W)e_zmkxn(x) dx‘ u(dw) (B.1)
o |x — w]

< (@) sup

we |X - |

S )
/log(|X Wit )e‘z’”kxn(x) dx‘
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By Lemma 4.1, we already have control of u(£2;); thus, it suffices to estimate the

following term for w = w +iw, € Q;:

|x —w|+6
|x —w|

)eZTTian(X) dX'

3/4+w 5 N (B.2)
= / log [1+ ———= | 2™ *n(x + w;) dx|,

—3/4+w; [ x2 + W%

in which we used supp() C [—3/4, 3/4]. Next use the fact that |n(x)| < 1 for any x € R

and the integrand is monotone decreasing in x; we have

/3/4+W1 1 8 2mikx dx
ogll+ ——|e nx+wy)
—3/4+w /x2 + W%
3/4 S
5/ log[1+ ———| dx

-3/4 /%2 + wi
3/4 s
< 2/ log (1 + —) dx
0 X

3 ) 3
=25logs~! + Elog (1 + ?) +2810g( +8)

Use that § < see (4.17), and that the following holds:

144'
3 45 3 ,
Elog 1+? + 28 log 1—1—8 < 8logé™", for 0 <68 <0.15;

we obtain that

3/4+w; 5 X
/ log|1l+ —— e 2Tk (x 4 wy) dx| <38 logs1; (B.3)

—3/4+w /x2 + w2

(4.18) follows from combining (B.1) and (B.2) with (B.3).

The proof of (4.19) follows from a similar idea to that of (2.1); the difference is
that we need to do integration by parts twice in order to get (k28)~! Fourier decay. Let
us mention that one needs the control of ||8§h||LOO(QO), which is provided in (4.5), as well
as |n”(x)] < 48 as in (A.2).
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C Proof of Proposition 5.1

Theorem C1 (AP, [23]). Let By,---,B,, be a sequence of unimodular 2 x 2-matrices.

Suppose that

min Bl = n>m and (C.1)
1<j<m
1 1 1 ! 1
max log 1B, || +10g Bl — log 1B, B;ll < 5 log . (C.2)
Then
m—1 m—1
| 10g 1By ---Byl| + D log |Bjll — > log|1B;,B;ll I< cA : €3
Jj=2 j=1

where C, is an absolute constant.

For any n > N(w, %y,v,p) and E €1, set
Q,() = [X eT: un(x—f- G- l)nw) —L,(E) |> %L(E)}
1
Q,, () = [x eT:| uZn(er G- l)na)) — Ly, (E) |> %L(E)]

Q= UZ Q,0) JU 2,00

(5.4) implies that mesQ,() < e 28wy mesQ,,(j) < e VP Take m =
[n~1 exp(3E(v, p)ny)l and n; = mn, then (2n)~!exp(3(v,p)ny) < m < ny < ealv.pny,

Therefore,

mesQ < 2me~ 26PNy _ 9 gEW.ony (C.4)

provided exp(i&(v, ony) > 2n.

For any x ¢ Q,
‘ (x+(; - l)nw) L (E)‘ < —L(E) 2 soln®, J=1-.m, (C.5)
. 1 1 .
[Un (X + G = Do) = Lo, )] < SoLE) < osLoy(E), j=1,,m—1. (C.6)
Thus,
L) < uy( nw) < o~L,, () 7
20n <u,x+ (G- nw<20n , .
19 21
—Ly,(E) < Uy, (x+ (j— Dnw) < L2n(E) (C.8)

20
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Denote B; = M, (x + (j — 1)nw), then
. 1 . 1
U,(x+(J—Dnow) = ;108 IM,(x+ (- Dno)|| = Elog I1B;ll,
. 1 . 1
Upp(X + ( — Dnw) = = log [|Myy, (x + ( — Dnw)|| = = log 1B, ,B;l.
2n 2n
Notice that ¢(v, p) < 1; by (C.7) and the choice of m,
IB;ll > e2nLn(®) 5 L) . "> e 5 @Iy m, j=1,---,m. (C.9)
By (5.6), (C.5), and (C.6),
log B, Il + log |B;]| — log [IB; Bl (C.10)

< |log|Bji, |l = nLy(E) | + | log|IB;ll — nL,(E) |

+ | 2nL,,(E) — 2nL,,(E) | + | 2nL,,(E) — log|B;,,B;| |

" LE) + LLE) + 2PLE) + 2 LE)
< JE— JE— — —
20 20 20 20

6 nL(E) 6 20 lo 1 lo (C.10)
20 20 19 8K T 08K

Now (C.1) and (C.2) required by AP are fulfilled. Apply Theorem C1 to B;,j = 1,---,m;

we have

m—1 m—1

m

| log B, - -~ Byl + E log |IB;ll — E log B, Bl 1< CA;'
j=2 j=1

Recall n; = mn; clearly

| og 134, Gx + (G — Ly | + - mz_l L log IM,,(x + ( — Dno)|
n; & ™ @ mj_zn & n @
2 mil L log 1M, (x+ G — ) )||‘ c, ™ _ Ca (C.11)
- — — - Dno)|l| < C,— < —=. :
mj:1 m g lliMpy, Anlﬂ "

Denote the sum of the left side of (C.11) by F(x); we have got the above bound of |F(x)|
outside the set Q. For those x € @, we use the upper bound (2.2) such that

sup |[F(x)| < 4A,. (C.12)
Q
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Integrate F(x) over T, by (C.4) and (C.9); for n > max{ﬁo(a),l, v),N(w,y/2,v, p)},

and E € I, we have

m—2 2(m — 1)
Ly, (E) + — Ln(E)—TLZH(E)‘z /T F(X)dx'
Ca
< £ 4+4A, mesQ (C.13)
nw
1 —Lew
< —e~5¢vony.
20
provided
n log(40C,) + 20 log(320A,)
> -, < .
7¢(v, p)y & A7 T &, p)y & v

By (C.13), (5.5), and (5.6) and the choice of m,

2 1 1
| Ly, (E) + Ly (E) — 2Ly, (E) | < m | L,(E) — Ly, (E) | —i-%e_gc(v'p)ny

1 -
< Ee—%“"mny (C.14)

provided
c(v, p)ny > 20log(80ny).

Take n = 2n, = 2mn, the above argument also shows that

1 -
| Ln, (B) + Ly (B) = 2Ly (B) | < e 357 (C.15)
Therefore,
2 1 1 1
—5C(v,p)

| Lony (E) = Ly, (E) |< £5e” 860 < oy < L L(E), (C.16)

provided n > 5(¢(v, p)y) "' log(8y1).

Letny=nandfors=0,1,---, let

Ng 1 = ns[ngleié(""))”sy]. (C.17)

Inductively, we can prove that:

Proposition C.2 (Iteration of L, (E)).

ls
1 .
| Ly (E) + Ly, (E) — 2Ly, (E) |< Ee—éC(V,ﬂ)nsy,
1 ~
| Lang,, (B) + Ly, (E) = 2Lop, (E) | < ﬁe‘é"(v'”w. (C.18)
25

2 1~ 1 1
—Lew.pns
| Long,, (B) = Ln,., (E) |< { e sC(V.PINsy 57 < 5oL® (C.19)
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35

1 -
|L,,. (E)— L, (E) |< Ee—%“V'M”HV, ng = n. (C.20)

Ns+1

Once we have 1571,2571, we prove 1° first as (C.14) and (C.15). Then 2° directly

follows from 1° as (C.16). By 15 and 257!, we get 3% as follows:

| Ly, (E) = Ly (E) < | L, (E) + L, (E) = 2Ly, (E) | +2 | L, (E) — Ly, (E) |

Ns+1

e 5CW.pInsy | 4 e~ 5C.PNs 1y
0 10

<

1=
e 5Cvions_1y. 0

1
1
<_
2

When the iteration is established for all s > 1, it is easy to check n,_; > sn by
(C.17); we have then

o
|L(E) =Ly, (B) | < D | Ly, (B) =L, (E) |
s=1
1 1
- —5C(v,p)ns—1y
< 13 etmon
s=1
1 e—%é(V,P)nV
< -——_—
T 2 _ g sy
9 1
< e stwony (C.21)
- 10
provided e~ 5oy %.
By (C.14), we have
| L(E) + L,,(E) — 2L, (E) | < e~ 5y (C.22)
D Proof Proposition 5.2
It is enough to show that for n large
sup |dg log | M, (w0, E; x) ||| < 2ne?™ . (D.1)

xeT

Lemma 2.9 and (5.1) imply that for n > IVO, foranyx € Tand E €1,
u,(w, E; x) <2y, (D.2)
that is, | M;(o, E; %)|| < e?™ for j > N,. For j < N,, we use the trivial bound

1M (0, E; %)) < et < Mot = ¢y, (D3)
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Direct computation shows that for any x € T, and n > 2C;N, > 2N,,
05 10g My, (0, E: )| < 19M,, (@, E; )]
n
< D M, j(x+jo; )| - IM;_, (e, E; )|
j=1
No n—No n

J=1 j=No+1 j=n—No+1

Ny TI,*I’\'IO n
< S g 4 S 2y 20y Y g g2y
Jj=1 j=No+1 j=n—No+1

< 2ne*™,

E Proofs of (3.2),(3.3), and (3.4)

Proof of (3.2). First, trivially we have Fg(k) < 1. Direct computation shows

sin? (7 Rkw sin? (7R |k sin® (7R||kw
0 < Fa(k) = '(2 ) _ .(2 lkollT) < (2 Il 2||1r),
R2sin® (tkw)  RZsin? (| kw||) 4R? | kol|

in which we used sin (7x) > 2x for0 <x < 1/2.
Distinguishing the cases R| kol > 1 and R|kw||; < 1, one can easily prove the

stated bound. [ |

Proofs of (3.3) and (3.4):

Since g is a continued fraction approximant of w, we have |w — l—‘;l < qlz. This
implies that for any 0 # |k| < g, ‘kw — %p < qﬁz < ﬁ, and hence
kp 1
lkwllr = lkp/qlt — 'kw— —| = —. (E.1)
T T q 2q

If we take j; # j, € (O,%] € Z, then clearly |j; £ j,| < %1. Thus, by (E.1),

. . . . . . . .. . 4]
‘”]160”']1* - ||J260||11“ > min (|(G; +j)llr. 1G; +i)ellr) > 21_q This implies that {||k60||11*}k4=1
1
2q
increasing order and label them as ||k, wllp < [[kyollp < -+ < [lkjg/q@ll7, then |Ksollr = %1.

are zl—q departed, and by (E.1) the smallest one is > . If we rearrange them in the

Hence, /4]

q e’}
D SN D ) . 2T
s 1 + R2||kw||2 g 1+ R kol } S 1+RAE) R Jy 1+x R
SiRl<z =k<z

this proved (3.3).
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For ¢ > 1,letI, := [3¢, (¢ + 1)) N Z,¢ = 1. We divide I, into two disjoint sets,
S, = {k € I, |kw — [kw]| < 0.5}, Sy = {k € I, |kw — [kw]| > 0.5}. Then for j;, # j, € I,
belonging to the same subset (either S; or S,), we have )||j1a)||T — ||j261)||'1[" =G, —J2)@llT.
Since clearly |j; —j,| < %, by (E.1), we have || (j, —j) ol > 2 . This implies that {||ko|I1}gcs,
are zl—q apart from each other, and the same holds for S,. Thus, we could arrange the

terms {||ko|l1}kes, in the increasing order and label them as ||kl < kol <

(orS>)
—1
Ik g@lir, and we have |ksollp > s‘z—q. Hence,

1 1
- - _9 - -
2 1+ R2| ka2 ZHRZkaHT 2% 2, 1+R2||kw||T

|kleld1,4(1+1)) kel, keSy  keS;
[q/4]
1 4 dx
<2y —— <2420 [ E g4l
SR RJo 1+x R

this proves (3.4).
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