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ABSTRACT. We establish a version of the fractal uncertainty principle, ob-
tained by Bourgain and Dyatlov in 2016, in higher dimensions. The Fourier
support is limited to sets Y < R® which can be covered by finitely many prod-
ucts of §-regular sets in one dimension, but relative to arbitrary axes. Our
results remain true if Y is distorted by diffeomorphisms. Our method com-
bines the original approach by Bourgain and Dyatlov, in the more quantitative
2017 rendition by Jin and Zhang, with Cartan set techniques.

1. INTRODUCTION
Bourgain-Dyatlov [BouDya] proved the following result.

Theorem 1.1. Let X, Y c R and N > 1 be such that (i) X < [-1,1] is §-regular
with constant Cr on scales N~ to 1, (ii) Y = [=N, N], is 6-regular with constant
Cr on scales 1 to N. Then there exist constants 3 > 0, and C' depending on §,Cgr
so that

1 flz2x) < CNP|fllr2w)
for all f € L2(R) with supp(f) C Y.

The d-regularity condition is akin to asking for a Frostman measure at dimen-
sion 9§, see Definition 6.1 below for the precise statement. Theorem 1.1 is most
interesting for § close to 1. For § < %, Cauchy-Schwarz and measure estimates in
phase space suffice. The § was made effective later by Jin and Zhang [JinZha].
Combining this fractal uncertainty principle with earlier results by Dyatlov and
Zahl [DyaZah] led to a breakthrough on the existence for an essential spectral gap
for convex co-compact hyperbolic surfaces. This refers to a strip to the left of the
1/2 line in the complex plane in which the Selberg zeta function has only finitely
many zeros. This result can be reformulated in terms of strips below the real axis in
which the meromorphic continuation of the resolvent of the Laplacian of the hyper-
bolic surface exhibits only finitely many resonances. This in turn can be rephrased
as a decay rate of the resolvent for large energies within such a strip.

For other applications see [BouDya2, DyalJin, DyaJin2], and for a survey [Dya].

It remained an open problem to establish an analogue of Theorem 1.1 in higher
dimensions. This is the main goal of this paper.
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We now present our main results. Let X < [—1,1]¢ be a §-regular set in the
sense of Bourgain-Dyatlov with § € (0,d) and constant Cg, on scales N~! to 1.
In [BouDya| this concept is defined only on the line, but the definition, together
with its main properties, carries over to higher dimensions. Strictly speaking, we
do not need the regularity condition per se, but rather the porosity property of
such sets as stated precisely in Definition 5.1 below. Second, let Y < [-N, N]¢ be
of the form

v —{ia—a—aem}, (L1)
i=1

where €; are unit vectors with |det(é1,...,€4)| = o, a positive constant (possibly
small), and Y; < [-2N, 2N] is a d;-regular set with d; € (0,1) and constant Cr, on
scales 1 to N.

Theorem 1.2. Let X, Y be as in the previous paragraph in dimension d = 2. Then
there exists constant C = C(d, eg,0,01,Cr) > 0 such that for
2d—25+2

oo e[GO )

where ¢ > 0 is a small constant depending on d and o, and for any f € L?(R?)

~

with supp(f) € Y one has

1flz2x) < CNTP| fll2(Ray (1.2)
for sufficiently large N = No(d, 0, 9,61, CRr).

As a corollary of our main theorem, we allow Y to be covered by the union of a
finite number of Y;’s, each satisfying (1.1) but with a uniform &o.

Y c GYJ
j=1

d
Y; = { Z §5.i€5i | € € Ygz}
i=1

Furthermore, the number m of covers can grow in N. To be specific, we prove

(1.3)

Corollary 1.3. Let X be as above and 'Y be as in (1.3). Suppose m grows with N
as follows

m = [N7],
in which 0 < v < B. Then for any f € L*(R?) with supp(f) c Y, and constants
C, B in Theorem 1.2, one has

1fle2x) < ONT7P fll2, (1.4)
for sufficiently large N = Ny(d, €9, 9,d1,CR).

Theorem 1.2 and Corollary 1.3 require that the Fourier support Y may be covered
by products of regular sets in one dimension along lines, cf. (1.3). Our third result
asserts that one may distort these lines by means of diffeomorphisms which are
obtained as follows. Let Wy : [N, N]¢ — [=N, N]? be a diffeomorphism such
that

|D@N e + | D2 oo + N|D* @ |0 < C(d, Do), (1.5)
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where the supremum norm is taken over the cube [—N, N]?. One example of a
diffeomorphism satisfying (1.5) is Uy (x) = N¥y(xz/N), where ¥q is a diffeomor-
phism from [—1,1]? to [~1,1]¢ such that

| D%l + [ D¥G oo + |D*Woloo < Do (1.6)
where the supremum norm is taken over the cube.

Theorem 1.4. Theorem 1.2 remains correct with ®n(Y) in place of Y. Constants
depend on Dy, but not on Uy.

In the following section we demonstrate the Cartan techniques by reproving a
certain step in [BouDya] which was proved there by means of harmonic measure
of the strip with a real line-segment removed. In Section 3 we go beyond the one-
dimensional setting via these Cartan methods. The subsequent sections implement
the argument in analogy with [BouDya] albeit in dimensions two and higher. We
haven striven to present the argument in a modular fashion. In particular, the
delicate Beurling-Malliavin step appears only in Section 6 in order to prove the
existence of damping functions. We do not use a higher-dimensional version of
the Beurling-Malliavin theorem which appears to be unknown. Rather, we reduce
ourselves in that step to the aforementioned product structure of Y (or covers
of finitely many of such products) precisely so as to be able to still use the one-
dimensional construction of such damping functions. Moreover, as in [JinZha] it is
important for us to use the weaker form of the Beurling-Malliavin theorem obtained
via outer functions, see [KhaMasNaz]. Any other construction of damping functions
in Section 6 would lead to different formulations of our main theorems in terms of
the conditions on Y without needing to change anything in the other sections.
Theorem 1.4 is proved in Section 6.4. A FUP for Fourier integral operators is
presented in Section 6.5.

2. L? LOCALIZATION IN ONE DIMENSION

Let us first introduce notations. For & = (&1, &y, ..., &) € RY, let |¢]; := Z?Zl €k ],
|l = Z?:l €62 and (&) = (1 + |¢]2)2. Let e(d) := > For z € R, let
[z] ;= min{n € N: n >z}, and |2| := max{n e N: n < z}.

Throughout, we let R(g) be the rectangle with vertices +iq, 1+iq. We begin with
quantitative bounds on the Schwarz-Christoffel map from the disk onto a rectangle.
The goal is to control this conformal mapping as the eccentricity of R(q) tends to 0.

Lemma 2.1. Let 0 < ¢ < 1 and define ®, to be the unique conformal map,
continuous up to the boundary, which takes the unit disk D onto the rectangle R(q)
and so that ®,(—1) = 0, ®,(+i) = +ig. Then ®,(1) = 1, &, (eT?@) = 1 + iq
where .

0(g) = 8exp (- 271)(1 +0(q)), ¢—0

Moreover,

2y((ar(a) 2@ = [3. 5] a5(0) =1~ 65(0)

with
b1(q) = dexp (— 8%)(1 +0(q)), da2(q) =4exp(— %)(1 +0(q))
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@ g D, (i) = iq B, (D) =1 +4q
s B~ =0s M B 5 (1) =1
e—0(q) O, (—i) = —igq By(e” @) =1 — ig
R(q)

FIGURE 1. Conformal map ®,

as ¢ — 0. Let E < [a1(q),a2(q)] be a measurable set. Then for sufficiently small q
one has |P,(E)| < 202(q)2|E|, where | -| denotes Lebesgue measure.

Proof. Let 0 < k < 1 and consider the elliptic integral of the first kind

® dt
arcsn(z, k) = Imz>0

0 \/(1 — t2)(1 — k2t2)7

which maps the upper half-plane onto the rectangle with vertices +L(k), +L(k) +
iH (k). Here 2L(k) and iH (k) are the periods of the elliptic function sn(z, k) and
satisfy, as k — 0,

1 dt T
L(k) = L NIEE D) =57 O(k?),

L dt _JOO ds
V@D k22 Jo 1+ 82)(1 + k2s?)
=log4 —logk + O(k)

H(k) =

The latter expansion is a standard fact, see for example [AbrSte, Section 17.3.26].

Let g := % and set

i
Fy(z) = —%arcsn(z, k) (2.1)
which maps the upper half-plane onto the rectangle with vertices t+iq, 1 +iq. With
k=e %¢,
‘- Z+0(k?)
log4 + 54+ O(k)
log 16
=011 - O(k
( wl + O ))
and thus
_ 2log4
(=q ' (1= =——q+0(c")

k= dexp (- ;lq)(l +0(q))
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gr(0)

gr(=k71) = gr(k™") =
; —L(k) +iH(k)|  siHK) | L(k)+iH (k)
iB(q) 4
iA(q) gk (+) := arcsn(-, k)
1H (k)
S USSR g (1) = -2 o) = L(®)
Upper half plane gx(0) =0
FIGURE 2. Elliptic integral arcsn(z, k)
Define A(q), B(q) by Fy(iA(q)) = ;. Fy(iB(q)) = §. Thus,
Alq)
| ds — L
0o A/(T+s2)(1+k2s2) 4
B(a)
| - = S0
o A/(1+s2)(1+k2s2) 4
We make the ansatz A(q) = ck~3(1 + &(g)). Then
A(g) 5 A(q)
f s —(+ O(ka))f ds
0 \/(1+82)(1+/€282) 0 V1 + 52

— arcsinh(ck ™3 (1 + £(¢))(1 + O(k?))
= log(2ck™ 3 (1 + &(q)) (1 + O(k?))
~ (o4 ~log k + O(k))
Hence,
log(2¢) — i log & + log(1 + 2(q)) — i(logél “logk + O(k))
c= V2 eg) =0
Ag) = VR (1L+ O(F)
Similarly, with B(q) = ¢k~ 3 (1 + &(q))
log(26) — Z log k + log(1 + 2(q)) = %(1og4 “logk + O(k))(1 + O(k*))
=2, &(q) = O(k?logk)
e B(g) = V2k™%(1+ O(k? log k))

Expressing k in terms of ¢ we obtain

™ 1

Alg) = e (L) 1+ 0(@), Bla) = 5 exp () (1+0(a)
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Next, we conformally map the upper half plane Im z > 0 onto the unit disk |lw| <1

via z = p(w) = ¥ w = 257+ One has ¢o(—1) = 0, p(+i) = F1, o(e?) = k1

with 6 = 2k + O(k3). Furthermore, ¢([a1(q),a2(q)]) = i[A(q), B(q)] where
a0 = G = 124+ Ol )
) = 3 1 =1 2B@ "+ O(B@ )

Setting a;(¢g) = 1 — J,(q) we have

S1la) = 4exp (= )1+ 00). 8a(a) = dexp (= L)1+ 0(a)
as claimed. The final claim of the lemma follows from
|(Fy 0 0)' (w)] < [Fy ()¢ (w)] < 2(1 — |w]) ™
where p(w) = z, w € (0,1). We used here that for z = is, s > 0,
[Fy(2)] = H(k) (1 + [2*) 72 (1 + K22
<HK) '(1+z2)2<1
for small q. O

By a subharmonic function v on a domain 2 < C we mean a function v :
) — [—o0,0), which is upper semi-continuous and satisfies the sub mean-value
property. We recall the basic Riesz representation of subharmonic function on the
disk, albeit with precise quantitative control on the Riesz mass and the harmonic
part. In view of Lemma 2.1 we need to consider the case where the lower bound on

the subharmonic function is attained arbitrarily close to the boundary of the unit
disk.

Lemma 2.2. Let v be subharmonic on a neighborhood of D, with v < M on D, and
assume sup,p v = m for some 0 < p < 1. Let p <ry <r < 1. Then there exist a
nonnegative measure (1 on D, called the Riesz measure, with the property that for
allwerD

v(w) = J log |z — w| p(dz) + h(w) (2.2)
rD
with h harmonic on rD. We have the quantitative bounds on the Riesz mass
M—m
WD) < —- "
log (1;17) (23)

and on the deviations of the harmonic function

log (145 )
(M-t 2N (2.4)
" ros ()

The constant ¢ which minimizes the left-hand side satisfies

1
i h(w) —¢| < =
= e [h(w) = el < 2

c=m—e—log(r+ p)u(rD) (2.5)



A HIGHER DIMENSIONAL BOURGAIN-DYATLOV FUP 7

Proof. We will assume that v is smooth, the general case following by approxima-
tion. The Green function G : D x D — R given by

G(z,w) = iﬂlog‘

satisfies A, G(z,w) = &, and G(z,w) = 0 when |z| = 1.
Let w € D. By Green’s second identity for the domain D, we have

oG
v(w) ff G(z,w)Av(z) Vol(dz) = J v(z)=—(z,w) o(dz),
D oD on
where Vol is the standard volume measure and o is the (unnormalized) arc length
measure on the circle dD. Since v is smooth and subharmonic, Av is a non-negative,
continuous function, call it 2wy, Therefore

v(w) = J 2nG(z,w) p(dz) + ho(w), (2.6)
D
where
ho(w) := J U(Z)E(Z,w) o(dz). (2.7
oD anz
Let 0 < r < 1. On the disk rD we have the Riesz representation
v(w) = J log |z — w| p(dz) + h(w), (2.8)
rD
where
z—w _
h(w) := f log’ 7’ p(dz) — J log |1 — zw| p(dz) + ho(w) (2.9)
D\rD 1—zw rD
is harmonic in rD. Note that %(z, w) is the Poisson kernel whence
1
ho(w) = [ o(e@)Puio -0, w= fu(e). (2.10)
0

We now set out to bound the Riesz measure . Without loss of generality, assume
m = v(p). Then setting w = p in (2.6) yields

[ 108 E=2 ) = o) o) < 21— (2.11)
D |Z P|

in which we used
ho(p) < M. (2.12)

This follows from the maximum principle and the fact that hg is the harmonic
function on D with boundary values v by (2.10). By an elementary calculation,

1 —pz|  1+pr

>1

min =
H<r lz=pl  ptr

for all 0 < p,r < 1. Inserting this bound into (2.11) implies that
M—-m
log (1+p7’) : (2.13)

p+r

pu(rD) <
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Let p <7y <7 < 1. For all we rD we have

h(w) = f 27G(w, z) u(dz) — J log |1 — zw| pw(dz) + ho(w)
D\rD rD

(2.14)
< —log(1 —r*)u(rD) + M =: h*
By Harnack’s inequality on 71D we conclude from this that for any w € r1 D,
r+r
(h* = h(w)) < = (h* = h(p))
r—r
whence
h(w)>r+r1h 2 B
rTr—"Tr1 r—n"r
By (2.8),
(o) = vlp) ~ | togle = plulds) = m ~log(r + D) (219
rD
and thus
h(w) = rn (m —log(r + p)u(rD)) — 2n h* =:h
Tr—r & pIE r—r
In summary,
1
min max |h(w) —c| < = (h™* — hy)
ceR |w|<ry 2
1
-t (h* —m +log(r + p)u(rlD)) (2.16)
2r—nr1
1r+nr T+ p
_ 1 M—m+1 D))
2r—r1( m+og(1_r2)u(r )

Finally, bounded the p-mass by (2.13) finally implies that

min max |h(w) —c| < (M —m)

1
ceR |w|<r, 2

as claimed. Finally, to establish (2.5), we return to (2.15) and note that the left-
hand side at most ¢ + € for ¢ the minimizer in the previous line. Then

czm—log(r+ p)u(rD) —e
Note that one may insert (2.13) on the right-hand side to control the mass. O

We now apply the Cartan estimate for logarithmic potentials to the Riesz rep-
resentation (2.2) in order to derive lower bounds on v up to a small measure of
exceptions.

Corollary 2.3. Let v be as in Lemma 2.2 with p =1—35, 0 < § < % Then for
all 0 < H < 1 there exist disks D(z;,s;) so that

v(z) = m— (M —m)[26~°log(2/6) + 6> log(2¢/H)|
for all z € D\, D(2;,s;) with 3}; s; <5H andri =1—20.
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Proof. By Cartan’s estimate for any H > 0 there exist disks D(z;,s;) such that
2.8 < 5H and

| ozt =2l udw) > wrD)og(i /), VzerD\UD(s)  (2a7)

See [Lev], Theorem 3, Section 11.2. To invoke the measure bound (2.3) we estimate

| (1+pr) I (2—46—1—352)
o =log ("
S\o+r S\ 2w

2
2 —46
since 62 < 1 and log (1 + 22) > x for 0 <z < 1. Consequently,

w(rD) < 672(M —m)

= log (1 + ) = log(1 + 2(52) > 62

Next,
1+ pr 2

T S <000

as well as 5 35
T +’I"1 _ —7 < 26_1
r—1r] 0

whence (2.4) implies

min max |h(w) — c| < e < (M —m)§ 3 log(2/) =: é.

ceR |w|<ry
Finally, by (2.5), one has
czm—e—log(r+ p)u(rD) = m — e —log(2)u(rD)

In view of (2.2) and the preceding estimates we obtain

v(z) = c+ u(rD)log(H/e) — e = m — 2 + log(H/(2¢))u(rD) (2.18)
>m— (M —m)[26?log(2/5) — 62 log(H/(2e))] '
for all z as in (2.17). O

By means of the conformal transformation ®, from Lemma 2.1 we can obtain a
version of the Riesz representation theorem on thin rectangles R(q).

Corollary 2.4. There exists gy € (0,1] with the following property: let u be sub-
harmonic on R(q) for some 0 < q < g4, continuous up to the boundary. Assume

that u < M on R(q) and max wu(x) = m. Then
ze[1/4,3/4]

(@) > m — (M — m) exp (zi;) [log(4) + % texp(— ‘Zi;) log(2¢/H)]  (2.19)
for all x € [1/4,3/A\J; I; where 3, |1;| < 3H exp (i—g).

Proof. Let v =uo ®,, with ®; as in Lemma 2.1. Then v satisfies the assumptions
of Corollary 2.3 with p > 1 — d2(q), and

(2.20)
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provided g is small enough. By Corollary 2.3 we have

v(z) = m— (M —m)exp (2 )[21og(2/6) + dlog(2¢/H)]

=m— (M —m)exp (Z—Z)[log(él) + % +exp (— Z—q) log(2e/H)|

for all z € 1D\U; D(zj, s5), 23; s; < 5H, where r1 = 1 —26. The inverse image of
[1/4,3/4] under @, is [a1(g), az2(q)]. Define I; := R n D(z;,5;), I; = ®,(I;), and
E:=J,1; so that 3}, |I;| < 10H. By Lemma 2.1 we have

|®,(E)| < 20H3>(q) %< 3H exp (%)

as claimed. 0

Next, we apply the previous results on subharmonic functions to log|F|, where
F' is analytic.

Corollary 2.5. Let F be an analytic function on a neighborhood of R(q) with
0 < q < q*, and F not identically equal to zero. Denote

By := ||F||p2([1/4,3/4])5 By := |F||p2(or(q))-

Then for some absolute constant Cy, and all H > 0,

BEH < ™V BY F ()],
(2.21)
holds for any K= exp (z )[log(4) + Z—Z +exp(— z—g) log(2e/H)|

for all x € [1/4,3/4]\U, I; where >, |I;| < 3H exp (i—g)

Proof. We apply our previous results to u(z) := log|F(z)|, which is subharmonic
on a neighborhood of R(g). However, Corollary 2.4 does not apply directly since
we do not have a point wise upper bound on u. Returning to the subharmonic
function v = u o ®; on the unit disk D, we note that the point wise upper bound
M on v only entered through the estimate hg < M, see (2.12), (2.14). The analytic
function F = F o ®, satisfies log |F| = v. Denoting by

1—[wf?
1 —2Jw|cos (27(0 — ¢)) + |w]|?

Pw(de) = le\( (9 ¢))

the Poisson kernel centered at w = |w|e(¢), we estimate ho from (2.11) as follows:
ho(w) = f o(e(6) Puldt) = f log [P (e(0))] Puldo)
< log f |F(e(8))| P de))
<log fo Ble(onas | P90 )

< log(B2) + log (H%Hw(an(q))) + log |

(2.22)

dg '«
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where do denotes arc length measure on dR(q), and the correspondence between
0D and 0R(q) is given by & — ®4(e(£)). On the one hand,

P, (df) 1

” 4o Hoo < 2(1 - |w|)
and on the other hand,

do de |2 Ydo , 1
@ - PN o = ‘7 ‘ d 2.2
ey = | |l o= || ae (223)

Using the notations of Lemma 2.1, the boundary map 0D — 0R(q) induced by &,
is

€= ((€) == iH (k) 'arcsn(x(8), k),
2(€) == p(e(§)) = —cot(n€), 2'(€) =m(1+z(£)*)

where p(w) = z% takes the disk to the upper half-plane. If 0 < 27¢ < 6(q), then
¢(&) =1 +1iy(§) where
@ o 1+ 22 T

1
dgiH(k)\/(xQ—l)(k?xQ—l)ijH(lﬂy x(&) < kL.

Therefore, this region contributes

1
< §kH(k)9(q) <1 uniformly in ¢

to the integral in (2.23). Next, if 0(q) < 27€ < 7/2, then ¢ = u + iq with
‘dﬁ T 1+ a? . _T
dgl H(k) \/(22 = 1)(1 — k222) ~ H(k)’

and so this case contributes < H(k) to (2.23). Finally, the region /2 < 27¢ < 27
similarly adds at most < H (k) to (2.23).
Combining these estimates with (2.22) yields

ho(w) < log(Bz) + log (CH(k)) + log(2/(n(1 — 1))
<log(By) + Coqg™' == M

for all |{w| < r = 1 — ¢ with some absolute constant Cp, cf. (2.20). This bound
replaces (2.12) and (2.14) above.
As for the lower bound m on u, one has m > log(B;) and thus (2.19) holds with

M—m < 10g(Bg/Bl) + Coq_l
Finally, (2.21) follows from (2.19) by exponentiating. O

—kt < 2(6) < -1

(2.24)

Integrating the previous result over a small set of x yields the following localiza-
tion estimate for the L? norm of F.

Proposition 2.6. There exists an absolute constant C; > 0 with the following
property: Let F be an analytic function on a neighborhood of R(q) with 0 < q < ¢*,
and F' not identically equal to zero. Denote

B = HFHL"‘([1/4,3/4])7 By := HFHLZ(aR(q))'
For any J < [1/4,3/4] some Borel set of positive measure,

9 h1k K
B < e By | F|L2 g
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& -1
with 0 < Kk < e a (10g(1/|J\))

Proof. We apply Corollary 2.5 with 3H exp (4—”) = 1]J|. Thus,

BEFN(|71/2)2 <e v BE|F|p20
K = exp () [log() + = 4 exp (— 2T (log(12¢/J]) + 2]
8q 4q 8q 4q
(2.25)
or
Bi<ed (lJ1/2) FBY M|Flfayy, K< (1+K) (2:26)

We write £ < (14 K) ! instead of k = (1 + K) ™!, since we may increase the value
of K. One checks that

log ((17]/2)%) < log (2/171)

e (§7)[log(®) + 5 +exp (= 57) (log(12¢/17]) + 3)] 5 57

<exp(— ?%) < 0.1,

uniformly in 0 < ¢ < 1 and in |J|. Note that

< exp (& )[log( ) + Z—” +exp(— %)(log(me) + 3—2)], if log2 < log(1/]J]) < %
Sexp( )[1 +exp (— q)]log(1/|J|), if max (log2, i—g) < log(1/|J])

<eT log(1/]J|) —
for some absolute constant Co > 0. Taking C := max (2Cy, Cs) and
C
Ko := e a log(1/]J)).
We conclude from (2.25), (2.26) and (2.27) with the estimate K < Ky — 1 that
By <ed LBy Fla gy < e Bl “IENL s K< Kyt
as claimed. 0

We next apply Proposition 2.6 to a band limited L? function in order to obtain
the main result of this section.

Proposition 2.7. Fiz A € (0, 1] and for each integer n let I, < [n,n + 1] be some

Borel set with |I,| = X. Let f € L2(R) be band-limited, i.e., f is of compact support.
Then for each 0 < q¢ < ¢*

1F13am < 12¢75 (ZHqu )) e Fe) 3y (2.28)

5C
with 0 < Kk < 67#(— log \)~ !, and Cy,q* are as in Proposition 2.6.

Proof. Let F' be the entire function with F' = f on the real line. Fix 0 < ¢ < 1 and
define R, +(q) to be the rectangle with vertices n — 1 —t + ig,n + 2 +t + iq. We
claim that by Proposition 2.6 we have

P Y SN 7 (2.29)



A HIGHER DIMENSIONAL BOURGAIN-DYATLOV FUP 13

C —
with k < e_%(log((3 + 2t)/|1.])) ' To see this, we set n = 0 without loss of
generality, translate Ry, 1(q¢) — Rn1(q) + 1 + ¢, and dilate z — 2/(3 + 2t). After
these operations, the transformed interval Iy lies in

[(T+1¢)/(3+2t),(2+1t)/(3+2t)] = [1/4,3/4],

and the height ¢ becomes ¢/(3 + 2t) > ¢/5, whence the claim.
Squaring, summing, and applying Holder’s inequality yields

100 11—k K
1w <7 (S IFBsernnan) (D)

Let E denote the expected value with respect to 0 < ¢t < 1, uniformly distributed.
On the one hand, taking expectations of the previous line yields

O ) (D) @)

[fl2em) <e
On the other hand, since

sup Zﬂ [n—1—tnt24t) <O (2.31)

0<t<1

we have

Z EIF |72 om0 () < BIFC+i0) 72wy + SIF( — i) 2

1 rq (2.32)
+2ZJ f |F(n —t +is)|? dsdt
n Y0 J—¢q
Since | F(- +iq)| r2r) = €72 f(€) ] 12(w), and
1 rq
ZJJ |F(n —t+is)|* dsdt = JJ F(x +is)|? dsdx
n Y0 J—¢q
a . .
= [ [ emaigr azas < 2alem€ )
—qJR
Assuming as we may that ¢* < 3 we infer from (2.32) that
Z [EHFHL2(0'Rn (q) ]‘2“62ﬂq‘5|f( )H%Z(R)
Inserting this into (2.30) concludes the proof. O

3. L? LOCALIZATION IN HIGHER DIMENSIONS

Our goal is to prove a version of Proposition 2.7 for band-limited functions
fe L3(RY), d = 2. For the sake of simplicity, we first limit ourselves to d = 2 and
begin with a Cartan-type estimate for functions on D x D which are subharmonic
relative to each variable.

We begin with the definition of a Cartan-2 set, cf. [GolSchl, Definition 8.1]
and [GolSch2, Definition 2.12].

Definition 3.1. We say that B — C? is a Cartan-2 set with parameter H > 0 if for
all (21, 22) € B one has either

o z1€J; D(Gj,85) with 3, s; < 5H,
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e or for all other z;, one has 23 € | J,, D(wg, tp) with >, t, < 5H and (wg, tx)
depend on z;.

Of particular relevance to us with be the fact that a Cartan-2 set has a real
“trace” of small measure.

Lemma 3.1. Let B ¢ H?:1 D(zj0,1) be a Cartan-2 set with parameter H > 0.
Then
B A R?*| < 40H

Proof. Follows from Fubini and |D(¢, s) n R| < 2s for all ¢ € C. O
We can now formulate a Cartan-type bound for pluri-subharmonic functions.

Lemma 3.2. Let v : Dx D — [—00,0) be continuous so that v = v(z1,29) is
separately subharmonic in each variable. Suppose for 0 < p <r <1

max Ll o v(e(01),e(62)) P.,(db1)P.,(doz) < M (3.1)

|z1|<my |22 | <
and

>
e Ve ) 2 m (3.2)

Let p=r(1—38) with 0 < < &. Then for any 0 < H <1 one has
v(z1,22) =m — (M —m)(L +1)?
L :=25"31og(2/0) + 6 *log(2¢/H)

for all (z1,22) € 1D x r1D\B where B is a Cartan-2 set with parameter rH, and
r1 =7r(1—29).

Proof. The function

Wz, ) = Ll  vle0r).€(02) P, (d0)) P, ) (3.4)

(3.3)

is separately harmonic in each variable, is continuous up to d(D x D), and satisfies
v < h pointwise. This latter property follows from the pointwise inequalities

o(z1, 22) <J 021, 0(02)) Py (d6)
51
which holds due to harmonicity of the right-hand side in z5, whence

o(e1, 22) < j v(e(6r), 22) P, (d6y)

o' (3.5)
| o(elO0).(02)) P (08P (d02) = B2

N

as claimed. Define

0(z1) := IIZT;‘Z}; v(z1, 22) (3.6)

Then @ is continuous (by uniform continuity), and subharmonic (as the supremum
of a family of subharmonic functions). It satisfies 0(z1) < M for all |z1]| < r by (3.1)
and (3.5), and max|., <, ¥(z1) = m. The latter follows from

v(21,22) < 0(21)  V]a| <7, |22 <p
and (3.2).
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We apply Corollary 2.3 to v, which requires rescaling from D to rD. Thus, with
p=r(l—30), and r; = r(1 —29),
0(z1) =2m— (M —m)L =: m* (3.7)
for all z; € r1D\ Uj D(¢;, s;) with Zj s; < 5rH. Fix such a good z,. By definition,
there exists 23 with |25| < p and v(21, 25) = m*. On the other hand, v(z1, 22) < M
for all |z5] <r
Once again, by Corollary 2.3 rescaled from D to rD, it follows that

v(z1,20) =2 m* — (M —m™)L
— (M —m)L(2+ L)
for all z € 11D\ |J; D(wj, ;) with >}, ¢; < 5rH. These disks depend on z;. O

(3.8)

By means of Lemma 3.2 we establish a two-dimensional analogue of Proposi-
tion 2.6.

Proposition 3.3. Let F' be an analytic function of two variables on a neighborhood
of R(q) x R(q) with 0 < q < ¢*, and F not identically equal to zero. Denote

Bi = |Flr2quasmxnjasan, B2 i=[Flrz@rg)<or@)-
For any J < [1/4,3/4] x [1/4,3/4] some Borel set of positive measure,

< —K K
Bi < et By | F|f2 5
with0 <Kk <e e (log(1/|J|)) with some absolute constant C.

Proof. Set u(z1,22) := log|F(z1,22)|, which is pluri-subharmonic on a neighbor-
hood of R(g) x R(gq). We pull u back to the polydisk D x D, and define

vz 22) = w(®g(21), Bg(22)) = log [F (21, 22)|,  F(z1,22) = F(®q(21), By(22)).
With h defined as in (3.4), for all |z1],|z2| < 7

2’1,22 f J ) Zl(del) zz(d92)
:L L log | F(e(61), €(62))| P-, (d61) P, (d62)
< log f f |F(e(61), e(62))| Px, (d6:) P, (deg))

<tog( [ [ 1Fct0. o1, |2 d”uwupzzf” )
@),

< log(B3) + 2log (H HLZ(;:R( ))) +2 |sup log H

|<r
< log(Bs) + log (Cq™1) + 2log(2/(1 — 1))
where do denotes arc length measure on dR(q), see (2.24). By Lemma 2.1, we can
apply Lemma 3.2 to v with p = 1 — exp(—A/q) with some absolute constant A,
=log By, M =log(By) + 3Aq™", § = exp(—2A4/q), r = p(1 — 35)~*
and 0 < ¢ < ¢* « 1. Thus, for any H > 0 there exists a Cartan-2 set B with
parameter H such that for

r1 =1—exp(—A/q) < r(l—29),
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and any (21, 22) € 1D x r1D\B, we have
v(2z1,20) =m — (M —m)(L + 1),
where
L =2¢% log(2e7 )+e'i log (2¢/H) < e'i + et log (2¢/H) — 1.

Returning to the original geometry, and analytic function F', we conclude the fol-
A 4A
lowing via Lemmas 2.1 and 3.1: with K := (es + et log(2e/H))2,

3AK
Bt <e"a |F(a1,22)|BY,

for all (z1,x2) € [1/4,3/4] x [1/4,3/4]\E, where £ = R? and |€| < e’ H.
We now pick H so that et H = %|J| and integrate over J, we obtain

BIN(J1/2)% < ™5 BE P12
or

7A
q

By < T (11/2) 5B | Flfagy, k< (+E) (3.10)

We write k < (1 + K)~! instead of K = (1 + K)~! since we could increase K. One
easily checks that (].J|/2)"2 <1, and

- 2
K < % (log(1/17]))? -
with some absolute constant C;. Taking C' := max (44, C}), and
C
Ko i= % (log(1/]]))2.
We conclude from (3.10) with the estimate K < Ky — 1 that
By <evBl™ N F) 525 K< Kt
as claimed. 0

In analogy with the one-dimensional case in Proposition 2.7, we can deduce the
following L? localization result.

Proposition 3.4. Fiz A € (0, %] and for each integers ni,ng let
Iy ny < [n1,n1 + 1] % [n2,n2 + 1]
be some Borel set with |I, n,| = \. Let f € L*(R?) be band-limited, i.c., f is of

compact support. Then for each 0 < q < ¢*

20 Roon 2(1—k
ey < e (% Wl ) TS HDAOISEE (5.1

(nl,n2)€Z2
with 0 <k < e ( log \)~2, and C some absolute constant.

Proof. Let F be the entire function with F' = f on R2. Fix 0 < t1,t2 < 1 and for
J = 1,2 denote R, +,(q) be the rectangle with vertices n —1—1t; £iq, n+2+t; tiq.
We obtain from Proposition 3.3 that for any ny,ng € Z:

”f||L2([n1,n1+1]x[nz,n2+1] € K HFHL2(,972171 () xR (q))HszZ(lnlmq)»

S ng,ta
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with k < e & (log((3+2t1)(342t2)/|In, n,|)) "2, and C being the absolute constant
in Proposition 3.3. Squaring, summing, and applying Holder’s inequality, we have

10C

11—k
11172 (gey < GT( 2 HFH%z(aRm,tl(q)xaan,tz(q)))

(’I’Ll ,n2)€Z2

(Y B

(n1,n2)€Z?

Taking expectation of the previous line with respect to 0 < ¢1,t2 < 1, we obtain

1172 (ge)
10C 1—k K
<e' ( > En[mHF“%%anm,tl(q)xaRnZ,t2<q))) ( 2 Hf|\%2(1nl,n2>) :
(n1,n2)€Z? (n1,n2)€Z?

(3.12)

By decomposing each 0R,, +(q) into its four sides, we decompose

2

Y EuEnlFlZaer,, . (@x0Ruy. @) (3.13)

(n1 ,’ng)EZZ

into the following three parts:

Part 1. Vertical and Horizontal mized terms. This part contains eight terms, each
can be bounded in the same way. Taking the left vertical side of R, 4 (¢) and
upper horizontal side of R, +,(¢) for example, we have

q
Z E., J ]l[n2 17t2,n2+2+t2)[Et1 J- |F(n1 —1—1t1 +is,22 + iq)|2 dsdxs
—4q

TL1 ’I’LQ)EZ2

<5 2 [Etlf J (np —1—t1 +is,29 + iq)|2dsdx2

ni€Z

:5J J\ |F(I1 +'I:S,Z‘2 +Zq)|2 dﬂ?ldl’gds
—q R2

q ~
<5J f MG (¢, )7 e, déads
—q R2

<10g|e*m IS 18D £(6) |72 gay,
in which we used (2.31) in the first step. Hence, part 1 contributes in total at most

80(]H€2ﬂqu£1‘+|§2 ( )HL?([RZ (3.14)

Part 2. Vertical+ Vertical sides. This part contains four terms. Taking the left
vertical sides of R, 1, (¢) and R, +,(¢) for example, we have

[Etl [Etz J f ’I’L1 —1—t1 +1is1,n0o — 1 —to + iSQ)lQ dsydss

(’I’Ll ’ng)EZQ

:J f J |F(SU1 +isl,x2 +7:$2)|2 dxi1dzodsidss
—qJ—q JR?

<4¢? “e%q [€1]+]€2]) ( )HL2 (B2
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Hence, part 2 contributes in total at most

164° eI 18D £(€)]1 22 e (3.15)

Part 8. Horizontal+Horizontal sides. This part also contains four terms. Taking
the upper horizontal sides of R, 1, (¢) and R, 1, (¢) for example, we have

2 [Etl [Etz J . ]]-[nl—1—t1,n1+2+t1):ﬂ-[n2—1—t2,n2+2+t2)|F(x1 + Z'qa T2 + iq)|2d1'1d$2
R

(n1,m2)€2?
<25f |F(z1 + iq, x5 + iq)|*dz1das
R2
<a5e2ala 18D F()[2, o,

in which we used (2.31) in the first step. Hence, the contribution of part (3) is at
most

100H€2m(|51IH&DJE(@H%Z‘(W)- (3.16)

Plugging the estimates in (3.14), (3.15) and (3.16) into (3.13), we obtain

Z [Etl IEt2 HF||%/2((3Rnl,t1 (@)X ORny, 15 (q)) <(4q + 10)2H€27Tq(|§1‘+‘€2|)f‘(§)”%2([}?2)
(n1,n2)€Z?
< 144?08 HED £())3, ey,
(3.17)

for ¢ < 1/2. Plugging (3.17) into (3.12) yields

el R oor 2o 2(1—k
112y < 144€™5 () W Baqe,, o) lePme0eiIe fe) 30,

(’I’Ll ,n2)€Z2

as claimed. 0O

In general dimensions one can proceed similarly. First, we inductively define
Cartan sets in higher dimensions.

Definition 3.2. We say that B c C? is a Cartan-d set with parameter H > 0 if for
all (21, 22,...,2q4) € B one has either

o z1 € J; D(Gj,85) with 35,55 <5H or for all other z; one has
e (29,...,24) belongs to a Cartan-(d—1) set with parameter H > 0 depending
on 2.

By arguments analogous to those used above for d = 2, one can exploit these
Cartan sets in higher dimensions to obtain the following result. We leave the details
to the reader. Throughout, we let C'(d) = 1 be a constant depending only on the
dimension d. It is allowed to change its values from line to line.

Proposition 3.5. Fiz X € (0, %] and for each integer vector n = (ny,...,ng) € 7%,
d>=2, let
d

I, c H[nj,nj +1)
j=1
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be some Borel set with |I,| = X. Let f € L*(R%) be band-limited, i.e., f is of
compact support. Then for each 0 < q < ¢* = ¢*(d) « 1

20(d) Roon 2(1—k
”fHZLQ([Rd) se 9 < Z HfH%mn)) le? qlghf( )HL(z(le (3.18)

nezd

(@)
with 0 < k < e_%(f log \)~%, C(d) = 1 some absolute constant depending on d.

As a precursor to the results of the next section, which involve L? functions with
Fourier support in thin sets, we now establish an uncertainty principle for L2(R%)
functions under a quantitative decay assumption on their Fourier transforms.

Corollary 3.6. Let ©(&) = O(|¢]1) = (log(2 + [€]1))™, 0 < a < 1. Let S :=
U,.eza In be as in Proposition 3.5. Then

Ifl2 < C(d, o, A, N[ £l L2(s) (3.19)
fOT all f € LQ(Rd) wzth ”6 OlIeh f||L2(|Rd) AHf”L2 IRd)'
Proof. With 0 < q small to be determined, we fix R > 1 so that 2mrq = O(R).

Split f fi+ fa, 1(6) = f(O)1 [eh<r]- Then by (3.18), and since 2mq < O(€) for
€l <

(1—
I3 <e (©1€h £ 507

|| L2(S) He
175 ) (Al fl2)2C

with
C(d) 27 C(d)

k=e " (—log\) ¢ =e"Om (—log\)~¢

Moreover, since

1715 = 1113 + [ f215
2C(d) " ke
<e o (|fleas) + 1202 (Al f12)*C ) + | fal13

and .
| f2ll2 < e OFE|O@IL fll, < AemOUDR| £, < 1712

where we chose R large enough depending on A > 1. It follows that
20(d) -~ . ke
115 <2e™5 (| fle2(s) + Ae™ O U0F flla) (A f[2)°0 )

whence
£z < 23 A5 (1 f (s + A O f]1)
= 23 AT 5 | [ 1) + exp (— T(R))[ £
with
T(R) = ©(R)R — C;((‘;) — k tog(v24)
— O(R)R - (Qg(cé)) 0g(v24)) ¢ 5 (—log \)"

In addition to 24 < e®E we require that T(R) = 1. These conditions hold for
sufficiently large R. (]
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The proof of the corollary gives an explicit and effective dependence of the con-
stant C'(d, a, A, A) on A, A, but we have no need for it. Corollary 3.6 follows (per-
haps with a different dependence on the constants) from a quantitative version of
the Logvinenko-Sereda theorem (see e.g. [Kov, MusSch]). The results in the next
section, however, do not.

4. UNCERTAINTY PRINCIPLE WITH THIN FOURIER SUPPORT
We begin with the concept of a damping function.

Definition 4.1. Let © be as in Corollary 3.6, with a € (0, 1) fixed. Let Y < R%. We
say that Y admits a damping function with parameters c1, co, c3, all falling into the
interval (0, 1), if there exists a function ¢ € L?(R?) satisfying

o supp(y) < [~c1, 1],

® H@[’HH ~1,1]4) = C2,

o [P(O)] <& forall (e RY,

o (&) <exp (—csO(€l)[Er) foralle .

Lemma 4.1. Fiz c¢; € (0,1] and for each integer vector n = (ni,...,nq) € 7%,

2
d>=2, let
d
H nj,n]+1

be a square with side length 2c;. Deﬁne S = U,eza In. Suppose Y < R? is such
that Y + [—2,2]? admits a damping function with parameters c1, and cz,c3 € (0,1).
Then every f e L*(RY) with supp(f) € Y satisfies

172 ragey < Cld)ey® (R emot ([ fl5al fIZ S
+ exp(—2¢3kO(R)R) | f1%-4)

C(d)
and Kk = e 03@<R>( dlogci)~4, provided R > (2d/c3)? and 0 < c3 < ci(d) :=2mqx
where qy is as in Proposition 3. 5.

(4.1)

Proof. Let n € [—Z,Q]d. Set f,(z) := e2™@ " f(z), and g, := f, * 1) where 1 is the
2,

damping function as in Definition 4.1 associated with Y + [—2,2]¢. Split
9n =91+ g2,
supp(gi) = {§ € R + [¢|s < R} (4.2)

supp(§2) = {€ € R? : |¢]1 > R}

where 2mq = ¢3O(R). Note that our assumption ¢z < 27g, guarantees that ¢ <
g+ holds for any R > 1. Note also that since supp(y)) < [—c1,c1]¢, we have
Ls' gy = Ls/(Lsfy 1) where 8" := | J,,cz4 I}, with I, a square with the same center
as I,, but half the side length. By Proposition 3.5 with A = c¢ one has

lgnl3 = 9113 + llg=13
2c(d) 9

(4.3)
- 2(1—
<e o (Igullzaesn + lgzl2)* 12 G 1307 1 go)3

with
_cw@ 4 2@ 4
0<k<e @ (—dlogc) @ =e =M (—dlogc;)™ ",
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C(d) some absolute constant. By construction, supp(fn) cY+npcY +[-22]4,
hence

1G] < (@) exp (— cs0(€1)[El) ¥V EeR?

whence
[e?m el gy = (e @PIEh g1y < Sup M N fal r-a < B | foll pr-a
1<
lg2ll2 < sup exp(—csO(I€[1)[E[)E? [ £yl rr-a

[£li=R
< exp(—c3O(R)R)(RY? | f gy

where we used that €]y < |€]1, and that 7 — exp(—c30(r)r){r)? is decreasing for
large r. To be specific,

exp(—c30(r)r)(r)? = exp(—h(r))
h(r) =c3 (log(2+ 7))~ %r — glog(l + %)

Differentiating, we obtain

ar dr
log(2 - —
g2+ 1)1 -

> 0—3 (log(2 4 r))™* — dr=t > 6—3 (log(2 + 7))~ —dr™!

B (r) = c3 (log(2 + 7))~ *[1—

where we used that 52 (log(2 + r))~! < 3 for all 7 > 0. One has u > log(2 + u?)
for u > 2, say. Hence 1f r> (2d/03)2 then

Zog(2+r)t=dr~t>0
2( g

and thus h/(r) > 0. So it suffices to assume that R > (2d/c3)?.
Inserting these bounds into (4.3) yields

I9213 < €5 (1L Folli-o + exp(=esOERRIRY [ fyll-a)* (R [ fyll-a)*" ™
+ exp(—2¢30(R)R)(RY* || f1 13-

Since sup,c[_s o1 [ fol -+ < C(d)| fl -4, we can simplify this further:

(d)

lgnll3 < C(d)(RY? 555 (|1s f25a| FI215") + exp(—2¢31O(R)R) f|?{dg. |
4.4

Finally,
|f||%z([1,1]d><c52f[“ ¢ |2ch ()2 de

< f 7€~ mPIB©)? dnde
[71’1]d [72’2](1
<cg2f f|<f DIRIP(E)[? dedn

[72’2](1
—a? | a3y

[-2.2]¢

)

and we are done. O
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We now remove the localization in Fourier space on the left-hand side of (4.1)
in order to obtain the main result of this section.

Corollary 4.2. Fiz c¢; € (0, %] and for each integer vector n = (ny,...,ng) € 74,
d>=2, let

d
H nj,n]+1

be a square with side length 2c¢; . Deﬁne S :=U,eza In- Suppose Y < [—aq,oq]? =
R with oy = 1 is such that Y + [-2,2]% + 1 admits a damping function with

parameters ¢y, and ca,c3 € (0,1) for each n € [—a; — 1,01 + l]d. Assume further
that 0 < c3 < c¥(d) < 1, with c(d) be as in Lemma 4.1. Then every f € L?(R%)
with supp(f) € Y satisfies

1flz < Cellfllz2s) (4.5)

with constant Cy. depending only on d,c1,ca, cs, a explicitly as in (4.15).

Proof. Let £ € (27)% be such that £+ [—1,1]9 [~ a1, a1]? # & and define fi(z) :=

2™l f(z) so that fo(&) = f(&—0) and supp(fg) c Y + ¢. In order to apply
Lemma 4.1, we also need to ensure that Y +[—2,2]¢ + ¢ admits a damping function.
This, however7 follows from our assumptions. Hence, for each such £,

A _ 4nC(d) 2(1—r
1£122 (o11g0se) < Cld)ez® (RY* €58 (|15 fol5al fol fena™

(4.6)
+ exp(—2¢360(R)R) | fell7-a)

and K = e CSO(R)( dlogcy)~?, provided R > (2d/c3)?. Summing over £ € (2Z)<,
and using Hoélder’s inequality yields
B 4nC(d) . k
1713 < Cd)ey® (R 55 (L5 37115~ + exp(~2csxO(R)R) [ £13)
= Cld)eg (R e 580 15 £330 (4.7)
+ Old)eg? (R 5T =m0 R 2

Suppose further that R satisfies,

0 om0
(7i). exp (41 a)
R > Ro(d,cy1,cz,c3, ) := max < (4). (( dlogci)? )8’ (4.8)
(
(

c3

iv). ( 2C(d)>2,

]

v). (8d)*.
Note that (i), (ii), (iii) of (4.8) imply

27C(d) 1
e P (R+2)1 >1,

O(R)(R+2)% =1, and (4.9)
S (R+2)% =1,

(—dlogcy)d



A HIGHER DIMENSIONAL BOURGAIN-DYATLOV FUP

respectively. Hence multiplying the three inequalities of (4.9) yields

cskO(R)(R+2) > VR+2, or
k= (c3O(RVR+2)71,

and thus
eQCgI{G(R)R > €C3K9(R)(R+2) > 6VR+2.

One also derives from (iv), (v) and (i) that

1 2C(d

-vVR+2>log g),

4 c3

1

5\/R +2 > 2dlog(R + 2) = log(R)*?, and,

1 47 C(d)

“VR+2> ———,

VT2 CeR)

23

(4.10)

(4.11)

(4.12)

respectively. Hence by summing up the three inequalities of (4.12), and exponen-

tiating, we obtain

4nC(d)

eVET2 > 20 (d)cy 2 (RY?® es0(h)

Combining (4.11) with (4.13), we arrive at

C(d)ey? <R>2de% e—20aRO(R)R

DN | =

Thus (4.7) yields
4nC(d) \ 5=
1712 < (2C(d)eg* (R e ) 15 .

Combining the estimate of  in (4.10) with (4.13), we obtain

4rC(d) ﬁ c3O(R)(R+2)
) <e 2 .

(20(d)c2_2 (R)?? ¢=ao(m)
Now we take Ry as in (4.8) and define R; as follows
Ri(d,c1,c2,c3,@) := max ((2d/c3)?, Ro(d, c1, 2, c3, @)
Then
[fl2 < Ci(d;c1,c2,¢3,0) [Ls f]2,
with
Cy(d,c1,c9,c3,a) = ew,

as claimed.

(4.13)

(4.14)

(4.15)
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5. FUP ASSUMING DAMPING FUNCTIONS ON Y

In section we prove, by the same iteration as in [BouDyal, the fractal uncertainty
principle for sets X < [~1,1]? and Y < [-N,N]% On Y we do not impose a
geometric condition. Rather, in this section we still restrict ourselves to assuming
the existence of damping functions living on Y, as well as on sets derived from Y
through translations and dilations, see Definition 4.1. On X we impose a certain
tree structure “with gaps”, cf. [BouDya, Lemma 2.10].

Definition 5.1. We say that X < [—1,1]¢ = R? is porous at scale L = 3 with depth
n, where L is an integer, if the following holds: denote by C, the cubes obtained
from [—1,1]¢ by partitioning it into congruent cubes of side length L=". Thus,
#C, = 2L, The condition on X is that for all Q € C, with Q n X # J, there
exists Q' € C,,11 so that Q' < Q and Q' n X = (.

It is shown in [BouDya] that sets X < R obeying the d-regularity condition on
scales N=1 to 1 (see Definition 6.1) satisfy this porosity property at depth n for
all n > 0 with L™ ™! < N. We include a d-dimensional analogy in Appendix A, see
Lemma A.7. We can now formulate the Fractal Uncertainty Principle, conditionally
on the existence of damping functions in Y. As in [BouDya] the argument is based
on an induction on scales, where at each step a small gain is achieved by means of
Corollary 4.2. Recall that a € (0,1) is the parameter from the damping function.

Theorem 5.1. Let X < [~1,1]¢ = R? be porous at scale L = 3 with depth n, for
all n = 0 with L"** < N. Suppose Y < [-N, N]?¢ is such that for all n = 0 with
L™ < N one has that for all

ne[-NL™™ -3 NL™" +3]¢
the set
L7"Y + [—4,4]% + 7 (5.1)
admits a damping function with parameters ¢; = (2L)~% € (0, %], and ca,c3 €
(0,1). Assume 0 < ¢z < c§(d) as in Corollary 4.2. Then there exists 8 =
B(L,cy,c3,d,a) > 0 and C = C(L,ca,c3,d,0) > 0 so that any f € L*(R?) with
supp(f) € Y satisfies
Iflz2x) < C'N_/BHJCHH(W) (5.2)
for all N = No(L,co,c3,d, ).
Proof. We pick a nonnegative Schwarz function ¢ in R? with supp(&) c [~1,1]¢
and ¢(0) = 1. With T' € N to be determined, we set ¥(x) := LT¢(LTz) so that
supp(v)) < [-LT, LT]%. Let
S, = U Q
C"L
0 Xio (5.3)
S¥:=S8, +[-L~"/10,L7"/10]*
and define W;, := 1y, * Lgx_ where ¢ (x) := Lkdy)(L*z). There exists a constant
Cy depending only on ¢ such that for any n > 0,

Cy
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Thus, for all m > 1,

O T-1

Moreover, if Q € C,+1 with n > 0 satisfies Q@ N X = ¢, denote by Q* the cube
with the same center as ), but half the side length, i.e., of side length L*(”“)/Z
Denote the collection of all such cubes Q* by U, 1. By the definitions of S}, ; and
Q*, we clearly have

S (tt 4 L0200 10 - 5,

ﬁlwnz (1 G )mJlX. (5.4)
n=0

Then for x € Uy, 41, and a constant ¢4 that depends on ¢ only, we have
Vola) = | Gusr@isy (@ v)dy
Rd n+1

= |, oWLsy (z — L™ y) dy (5.5)

n+1

) dy < —2

S LT-1°

J[Rd\[LTl/lo, LT—=1/10]d

uniformly in n.
Let f € L?(R?) with supp(f) < Y. Then for m > 1,

m—1
fm = n l:[/nT : f
n=0

satisfies
supp(fm) Y + ) supp(¢nr)
n=0
- (5.6)
CY + Y [-LUIT LT —y g, [—1,1]¢
n=0
where .
L™ —1
b = LT ——.
LT -1

One has fi,11 = Yo fm for all m = 0 with fy = f. We claim that there exists
Y0 = Y0(L,d,c1,¢2,¢3) € (0,1) with

I fmslz2 =109 < (X =) fml 221,179 (5.7)
Define g,,(2) := f (L™ 2). Then

supp(gm) © L™™"Y + £, L7 [-1,1]¢ 58)
c L7y 4+ [-2,2]%, '
where we used
LT

LT -1
In particular, assuming also that L™7 < N,

supp(gm) < [-NL™™T NL=™T) 4 [-2,2] = [-NL™™T — 2, NL™™T 1 2]¢,

EmL_mT <

<2

where NL™™T + 2 will be our parameter «; in Corollary 4.2.
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Under this rescaling, the cubes in C,,7 turn into unit cubes. Assuming further
LT+l < N, the porosity condition at scale L with depth mT ensures that we
always have a “missing cube” of side length L~! inside. In view of our definition
of @Q*, we only use the concentric cube of half that side length. In view of the
conditions on Y in the theorem we can apply Corollary 4.2 to g,, to obtain the
following: with all norms being taken locally on [—1,1]¢, and with U,,r41, the
missing cubes of the next generation as above,

1Yt fnll3 < 1Cmr 2| fnl 221100 ) + 1¥mT T gy [l 220r 1)
< ||fm“2L2([_1,1]d\UmT+1) + ”‘I’mTHQLeo(UmTH)HmeQLZ(UmTH)
= [ fmlZeeragey = = 1¥omr | o s 72 )

< (1= 032 (1= /120 | )3

(5.9)
To obtain this estimate, we used that
¢
1ozl <1, Wl e Unren) < T
and
| fmll 22 i) = Ol fml3,
with Cy = Cy(d, L, ¢2, c3, &) by Corollary 4.2. Choosing
1— CZ/LQ(Tfl)
T):= —% 5.10
Y0(T) 2072 ) ( )
and using (1 — 2)"/2 <1 — /2 for 0 < x < 1, we have
1
_ _ 3
(1 —C; 2(1 _ ci/L%T 1))) <1 —(T).
This establishes the claim (5.7).
Applying (5.7) iteratively and using (5.4), we obtain
C —(m+1) ™
Il < (1= 225) 1T 2adlee
n=0
C. \—1 m+1 11
<|(1-77%5) a=2w@)| Il (5:11)
o TH)\ m+1
< (1= 2" g,

In the last inequality we used

1—(T) <1- WoéT) -~ Lffl < (1 - %(T))@ Co )

which requires

2
c
L1 ¢ > 4C4C2, or

— 1
log(2C4C2 + \/m )} (5.12)

T > Ty(d, L, c3, c3,00) := log L
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Finally, for any T > Tp, taking m € N be such that LT+l < N < Lim+DT+1
(5.11) yields (5.2) with

_log (1 —0(T)/2)

— 5.13
e Tlosl (5.13)
and
. TY\ —1/T
¢ = (1 - %) : (5.14)
as claimed. In the current theorem, we could simply choose T' = Tj. The flexibility
of choosing T will simplify our computations in our proof of Theorem 1.2. (I

6. GEOMETRY OF Y AND DAMPING FUNCTIONS

6.1. Regular sets. We will call a set I = [ay,b1] X [ag,b2] X -+ X [ag, bg] of equal
side length a d-dimensional cube in R, we denote its side length by 7.

Recall the notion of §-regularity from [BouDya, Definition 1.1], below is a d-
dimensional analogy.

Definition 6.1. Suppose X < R4 X # (F is closed, and 0 < 6 < d, Cr > 1,
0 < ap < a1 < 0. Then X is §-regular on scales ag to oy, with constant Cg, if
there exists a Borel measure px with the following properties:

e ux is supported on X

o 1ux(I) < Crrd for each d-dimensional cube I of side length ag < r7 < oy

o ux(I) = Cx'rd for each d-dimensional cube I = R?, centered at a point in
X and of side length ag < r; < oy

See [BouDya, Section 2.2] for the geometry of such sets in R. Loosely speaking,
they behave like d-dimensional fractal sets. The properties of J-regular sets carry
over to higher dimensions. We include some properties in Appendix A.

6.2. Geometry of Y and damping functions. Bourgain and Dyatlov observed
that é-regular sets on R admit damping functions as in Definition 4.1 above with
a = (1 +0)/2. They obtained these functions as a consequence of the Beurling-
Malliavin theorem [BeuMal]. However, one does not need the full strength of this
theorem. To be more precise, in place of the original Beurling-Malliavin condition
[(logw)’|lcc < o0, with w the weight, a much easier proof is possible (via outer
functions) if we assume instead that ||(Hlogw)'|s « 1 where H is the Hilbert
transform on R, see [KhaMasNaz, Section 1.14, Theorem 1]. By means of this
technique, Jin and Zhang [JinZha, Lemma 4.1] proved the following quantitative
result on damping functions.

Lemma 6.1. Let S > 1 be a constant. Let Y < [-SN, SN] be d1-regular on scales
2 to N, with constant Cr, 0 < 1 < 1. For any 0 < ¢1 < 1, Y admits a damping
function with o = (1 + 01)/2 and parameters cq,

=18, c3= L010§261(1 —41), (6.1)

where ¢+ > 0 is some small constant that depends on S. Instead of the pointwise
global decay of (¢)~1 in Definition 4.1, we have

[D(6)] < exp(—e3(EHY?) VEeR (6.2)
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In this paper we need a slightly different version, where we have pointwise lower
bound of |¢(§)| on [—3/4,3/4]. The advantage of a pointwise lower bound over a
L? bound is that it leads to a lower bound of the product of several @’s. Let us also
note that in Lemma 4.1 of [JinZhal], S = 1. But it is clear from their proof that it
works for any S > 1. We will briefly discuss the changes of constants caused by S
in Appendix B. We need the extra factor S in our proof of Lemma 6.3.

Lemma 6.2. Let S > 1 be a constant. Assume thatY < [—SN, SN] is a §;-reqular
set with constant Cr on scales 2 to N and 01 € (0,1). Fiz 0 < ¢; < 1, then there
exists a function 1 € L?(R) such that

_a il]
R 107 101"

10(€)] < exp(—ca(&)V?), VEER,

[9(6)] < exp(—cs0(E)¢), VEeY, [¢] = 10,

supp ¢ < [

and

(€)= 2, VE € [-3/4,3/4], (6.3)
with
a=(1+6)/2, ¢ = LC%O, c3 = L61CE251(1 —41),
where v > 0 is some small constant that depends on S.

We include the proof of Lemma 6.2 in Appendix B.

In higher dimensions, we reduce ourselves to this one-dimensional setting by tak-
ing finite unions of products. For simplicity, we restrict ourselves to two dimensions,
although the exact analogue can be done in any finite dimension.

Definition 6.2. Pick some gy € (0,1) and let Y = R? be of the form

m
Y c Y;,
U 64

Y = {&i€j1 +&€50 1 €Y, i=1,2}

Here €}, € S! with |€j.1 - €j2] <1—¢pforall<j<m,andY,,; are d;-regular
on scales ag to oy with constant Cg, where 0 < 1 < 1. In that case Y is called
admissible on scales cg to ai; with parameters §;, Cg,eg, m. In general dimensions,
we require that €;; are unit vectors with | det(€j1,. .., €;q4)| = o, cf. (1.3).

Throughout, we will freeze €y and constants are allowed to depend on it. The
admissible sets on scale 2 to N that are contained in [N, N]¢ carry damping
functions.

We note that for our proof of Theorem 1.2, we only need m = 1. We give a
construction with arbitrary m > 1 here, since the construction itself may be of
independent interest.

Lemma 6.3. LetY < [~ N, N]? be admissible on scales 2 to N as in Definition 6.2.
Then'Y admits a damping function with parameters cq,

cy = L2m+4c%0m+4 m—20m 058(51(1 _ 51))4
C3 =1L1LC m_10§261(1 — (51)

where ¢ > 0 is a small constant that depends on q.
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Remark 6.4. For general dimension d, we can take
cy = me§10m+2)d m10md Cd (5 (1 — )2
c3=1cC1 m710§251(1 — 1)
where 1 > 0 is a small constant that depends on £y and d.
Proof. Let 9;,; be the damping function associated with Y;; < [-SN, SN], with
S = S(g¢) = 1, via Lemma 6.2 with parameters ¢; := e;c;m ™! where ¢; is a small

parameter depending on g, and ¢z, c3 as given by Lemma 6.2, but in terms of ¢;.

ILe.,

co=1e’ei? 'm0 ez =cim e 05251(1 —41),

where ¢ depends 9. We will absorb the constant ;1 into ¢. In the following we will
also allow ¢ to change its value from line to line, as long as it only depends on &g.

Denote the coordinates associated with the basis €} 1, €2 by (§;,1,&;,2). We set,
with € € R?,

=T1%95©, &6 = dya(E)v2(&s2)
j=1

Then
10;(€)] < exp(—cs (€12 ) exp(—cs (€;.2)?)
< exp(—c3(6)?),

where c3, more precisely, ¢, can change its value in the last line depending on &.
Taking products gives

[0(6)] < exp(—mes (€)F) = exp(—c1v (E)?F), v=10x%0(1-8)  (6.6)

In particular, ¢ € L?(R?) as well as ¢; € L?(R?). Since 1; are also compactly
supported functions, ¢; € L'(R?). Hence in the sense of L' functions,

=%, 9

(6.5)

whence
m

supp(t)) = Z supp(;) < Z —eom~ L em TP < [—ep, a]?,
j=1 j=1
where we used that each v;; is a damping function with é; = ercym~ L. Next, if
§ €Y}, then

~

105 (&) < exp (—es0(1&51])1€5,1]) exp (= esO(1€5.2])1€5.2])
exp ((— e30(¢)1)[¢)

where again ¢ is allowed to change in the second line. Since Y is covered by the
union of Y;, we have

<
<

[$(€)] < exp ( —csO(Eh)ll) VEeY (6.7)
Finally, from (6.3), for each 1 < j <
W)J( )| Cgv v'gjylvfjﬂ € [_3/4a 3/4]

Hence,
~ 1
1Yl L2(=1,172) = 3™ E|?,
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where F is the subset of [—1,1]* where all conditions &;,; € [-3/4,3/4], i = 1,2,
1 < j < m, are met. Clearly, |E|% is some number depending on £q. It follows that

|\1ZHL2([—1,1]2) > ,2m C%Omm—QOm (6.8)

where ¢ depends on &g.
We required |1(€)] < (€)™2 in our definition of damping function, see Defini-
tion 4.1. Since for any 0 < p <1

exp (— p&)%) < 5pHE?

It follows from (6.6) that ¢ := +(cv)* is a damping function in the sense of the

definition. Since 1(civ)* < 1, the decay (6.7) remains intact, as does the support

condition. However, (6.8) needs to be modified:

= ] N
‘|¢||L2([_171]2) = 5(011/) L2 C%Omm 20

= —20m =85 L
= 7L2“L+4C%0m+4m 20 C 8( 1( 1)) .

Absorbing the % into ¢, the lemma is proved. (Il
Finally, we need to check that Y remains admissible if it is transformed by the
similarities in (5.1).

Lemma 6.5. Let Y < [N, N]¢ with N > 10 be admissible on scales 2 to N with
parameters 61, Cgr,eq,m. Let L = 4 be an integer. Then for all integers n = 0 with
L™ < N and for all

ne[-NL™™ —3, NL™" +3]*

the set

LY + [—4,4] + nc [-(2NL™™ + 7),2NL™" + 7%
is admissible at scale S(2NL™™ + 7) with parameters §,,5765%2Cr, o, m, where
S = S(eg,d) = 1.
Proof. First,

LY +[-4,4%+nc [-2NL™ - 7,2NL™™ + 7]*
for all ) as above. Second, by (6.4),

LY 4 =44 g e (27 4 4,4 4 ),
j=1

d
LY, = { N &l e LY, k= 1,2,...,d.},
k=1

and
d
Lin}/j+[*4, 4]d+77 c { Z gkgj,k : gk € Lianyk+[*4S, 4S]+7]j7k, k= 1,2, ...,d.},
k=1
where S = S(go,d) = 1 and |n; x| < S(NL™™ + 3). By Lemmas 2.1, 2.2, 2.3 in
[BouDyal, see also Lemmas A.2, A.3, A.4 with d = 1, the sets

L7"Yjp + [—45,45] + njr < [-S2NL™" +7),S2NL™ + 7)]
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are §j-regular with constant 57652Cp on scales 2 to S(2NL™™ + 7). Indeed,
for n > 1, Lemma A.2 implies that L~"Y is d;-regular on scales 20" < 1/2
to L™ N with constant C'g. Lemma A.4 implies that

L™ + [—4S5,45] = L7"Y; ;, + 85[—1/2,1/2]

is d1-regular on scales 1 to L™ N with constant 325Cr. Lemma A.3 allows us to
increase the upper scale from L™"N to 9SL™"N > S(2L~"N + 7), with changing
the constant from 32SCg to 57652Cg. Note that shifting a set does not change its
§1-regularity, hence L="Y; i, +[—45, 45]+n; x is 61-regular with constant 5765%Cp.
The proof for n = 0 is similar.

The lemma now follows from Definition 6.2. g

6.3. Proof of Theorem 1.2.

Proof. The proof of Theorem 1.2 is now a corollary to Theorem 5.1 and the con-
siderations in this section, with m = 1. We will keep track of various constants in
order to obtain the effective exponent f.

First, let

L:=[(22v2d + 1CR) 75> 4,

be as in (A.3). Lemma A.7 implies that for all n > 0 with L"** < N, X is porous
at scale L with depth n. This verifies the porosity condition on X in Theorem 5.1.

Combining Lemma 6.3, more specifically Remark 6.4, with Lemma 6.5, we obtain
that for any n € N such that L"*! < N, and for all n € [-L™"N — 3, L "N + 3]4,
the set

LY + [-4,4]% +

admits a damping function with parameters cq,

co = 1c324(5765%CRr) (6, (1 — 61))%,
1e1(57682CR) 7261 (1 — 61),

C3

where ¢ and S are constants depending on £3. We absorb the constant S into ¢,
and allow ¢ to depend on d as well. Hence we can simply write

co = e} O (5,(1 - 61))%,

C3 = LC1C§261<1 — (51)

Note that this verifies the condition on Y in Theorem 5.1.
Before applying Theorem 5.1, let us first determine the constant Cj in
Corollary 4.2 with ¢y, co, c3 defined above. Recall that

c3O(R1)(R1+2)
2

C’*:e ’
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with @ = (1 + §1)/2 and

( c2 =5
exp |:(L6161(1751)) :|
exp (4ﬁ)
<C§<—logc1>d)8
Lc161(1761)

410 (=i’
[ og <Lc§4d(51(1—51))4d)]
(8d)*

Ch
ch(él(lfél))Q

Ry = max (6.9)

be as in (4.14), in which we absorb all the d-dependent constants into ¢.
Now we can apply Theorem 5.1 with

o = @07 = (22l T 10p) 7))

We need to trace out the constant f3.
Plugging ¢; into (6.9), and making ¢ smaller if necessary (depending only on d
and €¢), we have

<o [ (CHO0) ™ o,

This implies
Cy = exp (c1CR201(1 = 61)O(R1)(Ry +2) ) < exp(Ra).

Recall Tp as in (5.12) and ~g as in (5.10). We compute that,

log(2CC3 + \/m)w _2log Cy +log (5C)

Ty =

<2R2 + log (5C) _. T
log L
and
1—¢2/L2(T-1) 1 1
¢
T)=—"+"2> > = —2Ry). 6.11
’YO( 1) QCE 40,;2( 4 exp( RZ) ( )
In both inequalities above, we used Cy < exp
>z for x < 1, we have

(
Recall 8 as in (5.13). Use that —log(1 — x)
log(1 —(T1)/2) _  10(Th)
Tylog L 2T log L’
Combining this with the estimates of T} and ~¢(71) as in (6.10) and (6.11), we have

5> o e (1L

with ¢ being a small constant depending on g9 and d. This finishes the proof. O

Ry).
>
>

B:_

Corollary 1.3 follows from Theorem 1.2 by the triangle inequality.
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Remark 6.6. If we try to combine the construction of a damping function for m
covers as in Lemma 6.3, with Theorem 5.1, we could allow m to grow in N like
log log log N. This is worse than the power law growth obtained via the triangle
inequality.

6.4. Distortion of Y by diffeomorphisms.
Let F5, be the unitary semiclassical Fourier transform on L?(R?) defined by

Fuf(©) =t | ety @) do = h4 e/,

R4
We will use the following proposition which roughly says that the intersection
of an admissible set with a cube is still admissible. We only work with admissible
sets with m = 1 throughout this section.

Proposition 6.7. Let Y < R? be an admissible set on scales N™' to 1 with
parameters 61, Cr,eo. Let Q < RY be a cube of side length rq < rg. Then

C(Eo,d,ro)
YnQc U Wj7
j=1

where each W; is contained in o cube of side length C(eo,d), and is admissible on

scales N~ to 1 with parameters o1, (4C’R)ﬁ03, 0.

Proof. Let Y = {Zg=1 Exer, &k € Yy}, where €, € S and | det(é}, ..., €y)| = g9. We
cover (Q by the smallest parallelepiped CNQ, whose edges are determined by €, ..., €g,
that contain Q. We can write @ = {ZZ:1 Eper, & € @k}

By Lemma A.1, there exist disjoint intervals Jj such that

Y, = U (Yie 0 i o)
Ik, €Tk
__2

(403) =01 |Jk’g| <1 for all Jk’g € Jk,
where (Y N Jy ¢)’s are §;-regular sets with constant Cr = (4CR)ﬁ Cr on scales
N=!to 1. For any £ € N4, let Y := {ZZ=1 Ek€r, &k € Y 0 Jpe ). Hence Yy

is admissible on scales N™! to 1 with parameters 01, Cr,eo. Furthermore, Y; is

contained in a cube of side length C(eg,d). Finally note that @k intersects at most
with finitely many Jj ¢’s, and this number depends only on €¢, d and ro. ]

In this section we prove Theorem 1.4. We need to show that Theorem 1.2 remains
valid if an admissible set Y is distorted by a diffeomorphism @ (z) from the cube
[-N,N]¢ — [N, N]%, cf. (1.5). The argument is related to Section 4 of [BouDya].
Thus, let Y = ®5(Y) where Y < [—N, N]¢ is an admissible set with constants
CR, €0 on scales 1 to N. Suppose f € L?(R?) with supp(f) c Y and set g := fo Dy
so that supp(g) < Y. Furthermore,

f() f 7€ () de = f 2T G (6)) de
[—N, N4 [—N, N

(6.12)
=] ) et (D 0]
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We claim that for some g8 > 0 and C > 0 depending on all the same parameters in
Theorem 1.2 as well as on Dy,

H f[ N,NJ¢ >N 0D B() diy

for all h € L? with supp(ﬁ) c Y, in which ¥ < [-N,N]? is an admissible set
with constants Cg,eo on scales 1 to N. Setting h(n) := g(n) |det(D®n(n))|, we
conclude from (6.13) that

1£lz2(x) < CNPJha < CN=P| flo = CN=8| £

with possibly a different constant. So it remains to prove the claim (6.13). We will
prove it from another statement, namely

H f[ N,NJd i) 15 (n) h(n)

ey SOV PIRl (6.13)

< CN~?|hls (6.14)

L2 (X)
for all h € L?. Notice that by Plancherel we could remove the Fourier transform

from h.

To prove (6.14), divide [-N, N]¢ = | J, Qx into congruent cubes of side length
Ly with %\/N < Ly < V/N. Let {xx}» be a partition of unity adapted to these
cubes. With 7, being the center of Qy,

f STE N () (1) h(n) dn
[-N,N]4

- ZJ PRt xgo(n) Ly () h(n) diy (6.15)
_ ZJ 2ria (@ () + DN () (1=1)) g (2, 17) Ly () h(m) iy = ;(Tkm(@
where
ar(z,n) = XTI x5 ()
Ri(n) := Ll(l — DB (e + (0 — 1)) (1 — )y 7 — i (6.16)

the latter being the error in the second order Taylor expansion (we are suppressing
the parameter N here). Then

HRk”LOO(Suprk) < C = O(d, Do)
|07 ar (2, )| Lo ([—1,17¢ xsuppxs) < C(d; Do, @), diamsuppx < CVN,

for every multi-index . By Hormander’s variable coefficient Plancherel theorem,

(6.17)

max [Ty |22 < C(d, Do) (6.18)

This follows by the usual T*T argument:
HTth% = (T Tih, by

(Tkah J Kk 77 77 )d (6.19)

Kie(n'.n) = J[Rd e (@xm=2x () 10 (1) 15 (') xu () Xk (1) dx
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Since [®x(n) — ®n(7')| = Dgt|n — || in the sense of Euclidean lengths, repeated
integrations by parts yield the decay

\Ki(n',n)| < C(d, Do){n —n/y~**

whence (6.18) follows by Schur’s test. In particular, |1x7k[2—2 < C with the same
constant as in (6.18).

Next, we would like to show that 1x7T} and 1x7y do not interact much for all
cubes @k, Q¢ which are not nearest neighbors. In order to integrate by parts in =z,
cf. (6.19), we need to smooth out 1x at the correct scale. Define

X(N“"2):= X +[-N"2, N 3]4
By [DyaZah, Lemma 3.3] there exists a smooth ¢ taking values in [0, 1] with ¢ =1
on X and with supp(y)) © X(N~2), as well as so that
6391 < C@N'E (6:20)

for all multi-indices. Define Sy := 1) Ty. On the one hand, S} still obeys (6.18). On
the other hand, for any cubes Q, @, which are not nearest neighbors one has

|5 Sella2 < C(d, Do, p) N* dist(Qx, Q)" (6.21)

for every positive integer p. This follows from the fact that the kernel of S}S,
equals

Kro(n',n) = f 2w @xm=2x ) 10 (1) 15 () xk () xe(0) W (2)? d

R4
Using the differential operator

_ 1 Pn(n) — PN (7)
27 | @y (1) — O ()]

: vau
which obeys
E eQTFiJJ‘(‘I)N(U)—‘bN(U/)) — 62ﬂ'i$‘(‘I)N (n)_‘bN (77/))7

repeated integration by parts now yields (6.21). Finally, given any k, only a uni-
formly bounded number of choices of ¢ will satisfy

SkS}k =1 TkTe* P #0

This is due to the fact that xx(17)xe(n) = 0 up to a bounded number of choices of
¢ given k. If we label the cubes by lattice points k € Z%, then n = Lk whence

N2 dist(Qu, Qo) P SN* (Il — )P S k7"
which is summable over Z¢ provided p > d. On the other hand, we also have

ISk S22 < [Skll2m2lSel2me < B, B :=sup|[S)]22
J
Combining these two estimates we infer that for any 0 < & < 1,
|SkSE =2 + 1Sk Sella—z < C(d, Do,e) B> =) — £y~ D)

for all k,£ € Z¢. Note that B < C(d, Dy) by Hérmander’s bound (6.18). Hence by
Cotlar’s lemma,

H J[ N,N]¢ emir N 15(n) h(n) dn

< C(e,d,D Skl1375,.
oy < Clerd Do) max S5 (6.22)
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The claim (6.14) will now follow from (6.22) by applying the fractal uncertainty
principle of Theorem 1.2 to each Sy. For this we need to linearize the phase as
in (6.15) which in turn makes the localization to scales v/N necessary.

To be specific, we reduce (6.14) to the following estimate. Let ¢y be compactly
supported functions satisfying the bounds

l0gb0]lee < CsN® V]al =520 (6.23)

where N > 1 is arbitrary and all constant are independent of N. We assume that
1o is supported in a d-regular set in [—1,1]% on scales 1/N to 1, and with 0 < § < d.
Let

Z=N"'v;

be a rescaled version of an admissible set Y; with constants Cg, d1, g on scales 1 to
N. The point is Y7 is not assumed to be contained in [~N, N]¢, hence Theorem 1.2
does not apply directly. Hence we need to use Proposition 6.7 instead, for which
we need to make assumptions on supp a. Suppose that the symbol a is smooth and
compactly supported with the bounds

105 a(z,&)|lo < C(a) for Vo, and suppa(z,-) c Q, (6.24)

where @ is a cube in R? that is independent of x, and is of side length rg < 7.
Then for some 8 > 0 and C as above,

Hwo Aly hH2 < ONB|h, (6.25)

where
(AR)(e) = N | AN o, ) h(e) de.
Rd
Indeed,

H J{Rd 2w (2N () +DOx (1) (1=18)) 4)y(2) (2, ) 13 (n) h(n) dan
SHLdQM%C¢hﬁwﬁaD¢NOmY‘<+nw1¢mAD¢wa*%)
h(D® N (k)¢ + 1) dCH2

—N%

| et p@ e Nig Ny, (VO RVEE) de .

Here a, n signify the functions on the second line but with the linear isomor-
phism D®x(n)~! and the shift 7, included, and Y; = D@N(nk)(? — 1) is an
admissible set on scales 1 to N with constants that depend on Djy. Note that
1y, (Nzg) = 12(§), with Z = N~2Y; which is an admissible set on scales N2
to 1. By (6.20), ¥o(x) := 9(x) satisfies the required bound, furthermore g is
supported on a X(N_%) which is a § regular set on scales N~2 to 1, see Lemma

A.4. As for the amplitude, and ignoring the distinction between @ and ag,
. 1
ag(w, N2€) i= 7 V20 (N3 ¢)

Ry(Nz¢) = NJ; (1 — t)D>® (s, + L(NZE — 1)) (€ — 71}), € — mpy dt
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where 7}, = N~2n,. Setting a(x,€) = ag(z, N2£), we conclude from (6.17) that a
satisfies (6.24) with constant ro = C, which is an absolute constant. Finally,
d¥ 1
INTh(NZE)|2 =[R2

Thus, we can apply (6.25) with N replaced by Nz to obtain a gain of N=A/2 and
we are done.
It remains to prove (6.25). Note that this is equivalent to proving

HwoAﬂzmQ th < CN7P|nll,. (6.26)

By Proposition (6.7), we can cover Z n Q by C(eg,d,ro) many admissible sets
~ 2
W;’s with constants 61, Cgr := (4Cg) ™51 Cg, &y = &o(€0, Do). Hence, via triangle
inequality, it suffices to prove (6.26) with Z n @ replaced by W;.
If a = 1 on the supp(¢pg) x W, then this follows immediately from Theorem 1.2
by a rescaling. Indeed, one has by that theorem

V[ e o) s (6) i) e

:H Ld 2™ o () T, (§/N) N~ h(¢/N) d5H2

SNPIN2R(E/N)|2 = NP |h]s.

Let us now consider general a satisfying (6.24). Let p € (0,1) with its value
determined later.
Let us note that by the usual A* A argument, we have Hormander’s bound,

| Al22 < C. (6.27)
Next we decompose g A1y, into the following
Yo Alw, = tho Fy ' A1 + As Fr Alw,,
Ay = Lgaw,(v-r) Fn ALw,, Az =t F ' Ly, (v—0),
where h = N~1. Clearly, by (6.27), we have
1Yo Alw;[2-2 S [A1]2—2 + [|A2]2-2. (6.28)
Thus it suffices to bound [|A;]2—2 and ||Az]2—2.
We compute the integral kernel of A;:

Kay(€1) = Lo, 5 €) L () N | 7079z, ) do
R
Note that the Euclidean distance |n — &| = N~ on the support of K 4,. Hence by
repeated integration by parts in x, we obtain that

_[dtio _
K4, (&0)| < Ca N T T — )71

By Schur’s test, we arrive at

d+10
T—p 1 < Cd,pN_lo-

|A1 |22 < CN'. (6.29)
In view of Ay. Note that
Wi(N) e ) W(NTH) +k).

Ikloo <N
kez?
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Note that
N d
Wi(N"H e Wy = {). &ér, &e N1 W,,(2)},
=1

which is an admissible set on scales 2N~! to 1. Thus by Theorem 1.2 and triangle
inequality, we have for f € L2(R%),

|A2f < D] Hlﬁo Fi' le“Wsz

[EI<Nt=r

A

—1
Lsupp o ]:h ﬂWj+k fHQ
[k|<Nt=F

<CN—'8+d(1_p) ||f“27
where h = N~!. Hence for p = 1 — 3/2d,
_B
|Az2]2—2 < CN 2. (6.30)
Combining (6.28), (6.29) with (6.30), we obtain (6.25). This concludes the proof of
Theorem 1.4.

6.5. Fourier integral operator. In this section, we prove a fractal uncertainty
principle for Fourier integral operators on R%. The proof follows that of the one
dimensional case in [BouDya, Section 4], thus we shall be very brief.

Let

(BIf)a) =8 | e 2 e y)f(y) dy, (6.31)

where for some open set U — R2?,

2
deCP(U;R), beCPU), det( (I) ) £0 onU
0% ; 0y,

_ 6.32
) () e

an su - | su < Cy,

Up 8xj8yk Up 8xj0yk ®

for some constant Cg > 1, in which | - | is the matrix norm.

Proposition 6.8. Let X,Y < [—1,1]%. Assume that X is a §-regular set on scales 0
to 1 with constant Cg, and Y is an admissible set on scales 0 to 1 with parameters
91,CR,€0. Assume (6.32) holds. Then there exists § > 0, p € (0,1) depending only
on 9,61,CRr,€0,d,Cg, and C > 0 depending only on 4, d;,Cgr, g, d, P,b such that
for 0 < i < ho(®) < 1,

|Lx (ror2y B Ly (1o | L2 (Re) 120y < CRC.

Proof. As was pointed out in [BouDyal, it is enough to prove Proposition 6.8 under
the assumption that

1<

e
2 . .
det (8%8%)’ <2 onU (6.33)

Let h := h!'/2. Divide [-2,2]% = (U, @& into congruent cubes of side length L with
h/2 < L < h. Let {xx}r be a partition of unity adapted to these cubes. With yy
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being the center of @i, we have

da

] J e~ 2@ v)/hp (g Y) Ly ey (¥) f(y) dy
R4

=Y ht Ld e~ 2@y (2 )k (Y) Ly ey () £ (y) dy
k

_ 2 e—%i@(ﬂc,yk)/ﬁﬁ—% J e—2TriVy‘i’(ac,yk)-(y—yk)/hgk(gg7 y)]ly(hp)(y)f(y) dy

k R4
= ) (Tif)(2),
k
where
bi(@,y) = e 2T IRED/ Ay, (1)b(x, ),

1 (6.34)

V(,y) = fo (1= 0y — o) HO (2, g + 1y — )y — o)),

in which H®(z, -) is the Hessian of ®(z,-) in the y-variable.
We will prove

1 x oy Tl L2 22 < CB, (6.35)

and the estimate for ), 1 X(iw)Tk follows from almost orthogonality and Cotlar’s

lemma, see the proof of Proposition 4.3 in [BouDya].
Let

d(x) == Vy®(x,yp).

By (6.33), the Jacobian matrix J¢ satisfies 1 < |det(J¢(z))| < 2, hence ¢ admits
an inverse function.
We have, by a change variable z — ¢~ 1(x),

125 oy (@) (T f) () 2
=1 (x oy (@) det (Jo " (@) 2

[ om0 @t )y - ()4 ) oo
=y x iy (@) det (T~ (2))[2

J[Rd e~ 2y (671 (@), hy + yk) Ly (hoy—y (hy) F (hy + yi) dy| 12

cd =
<Hﬂqb(x(im)) A(h) 1&71(1/(112/:)_%) lzz—r2 - [R2 f(hy + yi)| 22
:”%(X(ﬁp)) A(h) ]1Y(ﬁ2ﬁ*1)—frlyk ez - [flee,

where

(Am ) = [ e o)1) dy o

bz, y) =| det(Jo™(2))|% b (67 (x), hy + yi)-

Now it suffices to bound

124 (hey) AW Ly a1y —h-1y, |22 L2 (6.37)
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Let X := ¢(X). By our assumption 6.32,

(sup |J¢]) - (sup [(J¢) 7)) < Ca.

Note (6.33) implies C; := sup [J¢| = 1 and hence Cy := sup |[(J¢) | < Cp. By
Lemma A.5, X is d-regular with constant Cr(d Cs)%/? on scales 0 to d='/2C5 .
If d-Y2C5 ' < 1, Lemma A.3 implies X is d-regular with constant

2(d/2Cy)'Cp(d Ca)"? < 24°F CRCy T = O

on scales 0 to 1. If d/2C51 > 1, let Cgr := Cr(dCs)%?. Hence X is always
d-regular with constant CN‘R on scales 0 to 1.

It is also easy to see that ¢(X(h?)) < X(C(®)
depending on ®. For 0 < /i < ho(®), we have C'(P)

fLP), where C'(®) is a constant
h? < h?~1 hence

124 x oy ALy 2oty -1y 22— 02 < NL% G201y AL (y (R2p-1) -1 22022
Next note that

Xmprhe | EW+h)= |J X

jez jez
lil<h®—2 lil<h?—2 (6.38)
Y(R* ) -hTyce ) () -hTly+hp) = | Y
kez kezZ
Ipl|<h®* 2 lpl|<h?—2
Hence, it is eventually reduced to estimating each H]lXjA(h)]lyp lrz—rz.
It is easy to check that by (x,v) satisfy (6.24), hence by (6.25), we have
l1g, ALy, |L2p2 < CRP,
for some 8 > 0. Choosing 2d(p — 1) < /2, we conclude that
=8
H]l)z(fﬁp—l)A(h)ﬂ-(y(;,‘?p—l),ﬁ—lyk) HL2—>L2 < Chz
by triangle inequality. This proves the claimed result. O

APPENDIX A. REGULAR SETS

We show that certain operations preserve the class of §-regular sets if we allow
to increase the regularity constant and shrink the scales.

The first lemma is from [BouDya]. It shows a d-regular set in R*, 0 < § < 1, can
be split into smaller §-regular sets.

Lemma A.1. Let X — R' be a 6-reqular set with constant Cr on scales o to
2

aq, and assume that 0 < 6 < 1 and (4Cr)T™Say < p < ay. Then there exists a

collection of disjoint intervals J such that

__2

X=J&XnT); (4Cr)T5p<|J|<pforall Je T,
JeJ

and each X n J is §-regular with constant Cr := (4C’R)%C'R on scales ag to p.

The rest of this section concerns d-regular sets in RY. We show that certain
operations preserve the class of d-regular sets if we allow to increase the regularity
constant and shrink the scales.
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Lemma A.2. Let X be a §-reqular set with § € (0,d) and constant Cr, on scales
ag to ar. Fiz X >0 and y e R, Then the set X := y + A\X is a §-reqular set with
constant Cr on scales Aag to Aay.

Proof. Taking the measure

pg(A) = Nux (A 1A —y)),

it is easy to verify. (I

Lemma A.3. Let X be a d-reqular set with constant Cr on scales ag to ay. Fix
T > 1. Then X is 6-reqular with constant Cr := 2T%Cr on scales ag to To.

Proof. Let I be a cube such that g < r; < Tay. For ap < r; < oy, the upper
bound is immediate. For a; < r; < T'ay, I can be covered by [T]d < 27 cubes of
side length oy each, therefore

,UX(I) < 2TdC'ROz(1S < éR’I"?.

In view of the lower bound estimate, we assume [ is centered at a point in X.
As before, we may assume o1 < r; < Tay. Let I’ < I be the cube with the same
center and r;» = «;. Then

px(I) = px(I') = Czlad = Cplry,
as claimed. 0

Lemma A.4. Let X be a é-reqular set with constant Cr on scales ag to aq. Fix
T>1.
(1) Suppose a1 = 2aq, the neighborhood X + [~Tag, Tag]? is §-regular with
constant Cg 1= 4%T?Cr on scales 2aq to ay.
(2) Suppose that oy = Toy, then X + [~Tag, Tag]? is §-reqular with constant
Ch = 49Cg on scales Ty to ay.

Proof. Let X := X + [~Tag, Tap]? and define p  supported on X by convolution
1
i (A ::71 ux(A+vy)dy.
X( ) (TQO)d [T, Tagl? ( )
Let I be a cube such that Mag < ry < oy with M > 1. Then
px(l) < QdCRT?’

which proves the upper bound estimates for both cases.

Now assume that I is centered at a point z; € X. Take zo € X such that zo €
71 + [~Tag, Tap]?, and I’ be the cube centered at xq with side length r; = r7/2.
Then

px(I') = Cgt(rr/2)° = 2740 .

Let J = zg — 21 + [—a0/2,a0/2]%, then J n [-Tag, Tap]? contains a cube with
side length at least ag/2. Clearly, I’ ¢ I + y for any y € J. Hence

1 ~_
px(l) = Wﬂx(-’/) > Crp'ry,

which proves the lower bound estimate for (1).
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Let J = g — 21 + [-Tap/2, Tew/2]%, then J n [~Tag, Toy]? contains a cube
with side length at least T'ag/2. Clearly, I’ ¢ I +y for any y € J. Hence

1 -
(D) = ganx(I') = (Cr) 7'y,
which proves the lower bound estimate for (2). O

Lemma A.5. Assume F : R¢ — R? is Ct diffeomorphism. Let Cy := sup,cga |[JF ()]
and Cy := sup cga |[JF~1(z)|, where JF is the Jacobian matriz and |-| is the matriz
norm. Assume that for some constant Cr = 1, we have

C1C; < CF. (A.1)

Let X be a d-regular set with constant Cr on scales agy to o = C’%ozo. Then
F(X) is a 6-reqular set with constant Cr := Cr(dCp)%? on scales d'/>Chayq to
d*1/2C2_1a1.

Proof. Let X = F(X) and define measure 3 supported on X as
_s
s (A) = Cp 3 OF px (F1(A)).
Let I be a cube with side length ry with
d2Crag <rp <d 205 a. (A.2)

Clearly, F~'] is contained in a cube of side length r, where r < Vd Cyr;. Indeed,
let y be the center of I. Then for any x € I, we have

vd
2
Let I be the cube centered at F~'y of side length \/EC’zrf < ay. Then

|F~H(z) = F~H(y)| < Coflw -yl < —-Cory.

_s
px(l) < px(I) < Cp? C{Cr(VA Corp)’ = Cr(d Cp) 2.

If, in addition, y € X. Let y = F(2), where z € X. Then the cube @ centered at
z of side length r = d_%C’flri > qyp is contained in F~1(I). Indeed, for any = € @Q,

we have
Vd ri
|F(z) — F(2)|| < 7017« = 51

Hence

(D) = O30y (F (D)) > Co2 00 (d 3 C ) = O (d Cp) 30
px(I) =Cp*Ciux(F~(1)) = Cp>CiCR( L 15)’ =Cr (dCp) 21},
This proves the claim. O

Lemma A.6. Let X be a d-reqular set with constant Cr on scales ag to aq, and
0 < é < d. Fix an integer

L> (2Y%V2d + 1Cg) 7. (A.3)

Assume that I is a cube with oy < r7/L < r; < oy and Iy, ..., Ia is the partition
of I into cubes of side length r;/L. Then there exists ¢ such that X n I, = .
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Proof. Using Lemma A.2, it suffices to consider I = [0,L]?, agp < 1 < L < .
We argue by contradiction. Assume that each I, intersects X. Then I := I, +
[-1/2,1/2]¢ contains a unit cube centered at a point in X and thus

px(I)) = Cg', V1 <t< L%
On the other hand,

L d
1 1
| 1, = [—2,L+ 2] ,
=1

and each point in [—1/2, L + 1/2] can be covered by at most 2d + 1 of the cubes
I;. Therefore

Le d
1 1
CRILY< ) px(I)) < (2d + 1)MX( [—Q,L + 2] ) < (2d + 1)CRr(L + 1)°,
=1
which contradicts (A.3). O

Recall our definition of C,, and porosity in Definition 5.1.

Lemma A.7. Let X < [—1,1]¢ be a 6-reqular set with constant Cr on scales ag to
ay. Let L satisfy (A.3), and take n € Z such that ag < L™" ' < L™ < ;. Then
X is porous at scale L with depth n.

Lemma A.8. Let X be a §-reqular set with constant Cr on scales g to . Let
C >>=1 be a constant. Let I be a cube of side length r; satisfying ag < r; < Cag.
Let p > 0 satisfy ag < p < min(ry,aq). Then there exists a non-overlapping *
collection J of Ny cubes of side length p each such that

d §

Xnlc|JJ Ny< <6F’+CD 2 <”) .

2 p
JeJ

We will only use this lemma in dimension 1. Note that in [BouDyal, this is

formulated with C' = 1. We use this form with a constant C' in the proof of Lemma
6.2.

Proof. Let J consist of all cubes of the form x¢_, p[jk, jx + 1], (j1, 2, --s ja) € Z,
which intersect X nI. Then X nI UJEJ J. Next, we will prove the upper bound
on Nj.

For each J € 7, let J' © J be the cube with the same center and is of side length
2p. Since J intersects X, J' contains a cube of side length p centered at a point in
X. Therefore

px(J') = Crlp’.
It is also clear that | ;. , J' = I(2p), and each point lies in at most 3¢ of the cubes
J'.

Ifr; < aq, I(%p) can be covered by 4¢ cubes of side length r7. If oy < 77 < Cay,
I(2p) can be covered by 29[3£€]4
have

cubes of side length «;. Therefore, we always

_ 3+Cc\?
Ny -Cg'p’ < Z px (7)) < 3%y (U J/> < (6{ 5 D Crrd,

JeJ JeJ

LA collection of cubes is non-overlapping if the intersection of each two different cubes has
empty interior.
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this proves the upper bound on N. ([

APPENDIX B. PROOF OF LEMMA 6.2

We follow the proofs of Theorem 3.2 and Lemma 4.1 in [JinZha]. Let us start
with introducing some notations.

B.1. Hilbert transform. Let Hy be the standard Hilbert transform defined as
convolution with p.v.-=: For f € C{(R), (or more generally, f € L*(R,{(z)~" dx))

1 f®)
=—1 dt.
HO(f)(QZ') ™ s—l>rél+ Ja:t}e T —t
Let H be the modified Hilbert transform with the integral kernel that decays like
|z|~2 as |z| — oo:
1 1 t

H(f)(@) = — lim ‘I_t‘zsf(t)(m ¥ )t e LR @) 2 do).

The advantage of H is that it applies to a larger space that contains L*(R) as well
as functions the grow like |z|'~€ as |x| — oo.

If fe LY(R,{(xz)~!dx), then H(f) differs from Ho(f) by a constant. Moreover, we
have the inversion formula for all f € L'(R,{(z)~2dxz) with H(f) € L' (R,{x)~2 dx):

HM(f)) = —f +c(f), (B.1)

where ¢(f) is a real constant depending on f.
We will use the following example later in the proof.

Ezample B.1. [JinZha, Example 2.3] Let f(x) = log(z? + 1), then we can compute
2
H(f) (x) = Ho(f) (@) = EPCEEE
B.2. Hardy space and outer functions. We recall the definition of Hardy space
on the real line

(B.2)

H? = HX(R) = { € L*(R) : supp f = [0,0)}.

If fe L3(R), then f + iHo(f) € H*(R).
The space of modulus of functions in H? can be characterized by the logarithmic
integral: for w e L?, w > 0, we define

L(w) = J{R logw(®) .

1+ 22

Theorem B.2. [HavJor, Sec.1.5] If f € H?, and L(|f]) = —o0, then f =0. On the
other hand, if w € L?, and L(w) > —o0, then there exists a function f € H? with
|f] = w, unique up to a multiplication by a complex constant with unit modulus.

If L(w) > —c0. Let @ = —logw, then Q € L'(R,{z)"dx). Therefore we can
define Q = H(€2) and take

f = ae~ @+ la| = 1. (B.3)

We call functions of the form (B.3) for general Q € L'(R,(x)~2dz) outer functions.
The class of outer functions is closed under multiplications. Moreover if two outer
functions have the same modulus, then they differ by a complex constant with unit
modulus.
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The following lemma gives a sufficient condition of a function to be the modulus
of the Fourier transform of a function supported in [0, o].

Lemma B.3. [KhaMasNaz, Theorem 1] Assume that w = e~ € L? and L(w) >
—o0. In addition, we assume that w?e®™% is an outer function. Then there exsits
Y € L? with suppt < [0,0] and || = w.

B.3. An effective multiplier theorem. We prove an effective multiplier theo-
rem. This proof is essentially in [JinZha, Section 3], the only change we make lies
in the definition of k(x) below. Our modified definition makes sure that k(z) is a
constant function in a neighborhood of 0, which leads to a pointwise lower bound
of 1(x) on the whole interval [—3/4,3/4].

Theorem B.4. Assume that 0 < w < 1 satisfies L(w) > —o0, and
™
@)l < 2o,
where 0 < o < 1/10, = —logw. Then there exists 1 € L*(R) with

suppy < [0,0], [¢] <w,

and
~ 510
W] = Wwa on [—3/4,3/4].
Proof. We first set
w(x
(o) = 3 e Doa) = ~log (o),

with constant T' that will be specified later. We then have
Qo = Q + 5log (2% + T?).

‘We compute

1 t
1 2472 =1 log(t* + T*)( — — ——
Hllog (a® + T2))(0) = lim | log( + T%)( = = 7).

in which the Integrand is an odd function. Hence the integration is zero. Therefore
we have

H(Q0)(0) = H(2)(0) + 5H(log (z* + T?)) = H(2)(0). (B.4)
By (B.2), we compute
2 2\y/ _ -1 2 ’. __r
H(log(x® + T%)) =T~ H(log(x* + 1))'(-/T) = o oL
Thus if we choose T' = % > % > 60, we have
|H(Q0) |22 < [H(Q) Lo + 5|H(log(z® + T?))'| = < 7o (B.5)

Let us define
so(z) = mox + H(Qo) (x).
Hence by (B.4),

depending only on w.
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Let s(x) be defined as follows

s(x) = so(x) — mh(x) — g,
in which
l807(rw)L if SOT@ € [%7 %] mod 1,
by - (B.6)
lso7(rx) — 1, ifs"T(O)E [0,H)U(3,1) mod 1,

Note that our definition of k(x) is different from that in [JinZha]. We modify the
definition in order to make sure k() is a constant near = 0. This will be explained
and used later in the proof.

By (B.5), so(z) is a non-decreasing function and so is k. Note also that by our
definition of s(z), we have

Is|Le < . (B.7)

Let m = e=™ where M = H(s). Next, we will estimate M (x) = H(s)(x). We
split the integral into three parts M (z) = Ji(z) + Jo(x) + J3(z), where
1 t) —
PYRNEY QST U
T Jo—t|<1z @ —1
1 t
)= [ s
T Jomtj<12 241

1 t
Ja(w) = — Lm/z s(t)(r — o 1) dt.

We estimate Jo and J5 in the same way as in [JinZha]. By (B.7), we have

1 1

[fa(@)] < — - [s]z= - 5 < (B.8)

1
2 2

Also, we have

1
|h@ﬂ<*ﬁﬂmj
0 |z—t|>1/2

Finally, we need to bound |J;]. By (B.5), so(z) = mox + H(Qp)(z) is non-
decreasing with ||s)|L» < 27o. Since we assume 0 < o < 1/10, we have

1 t

—— 4+ ——| dt <61 2). .
| A< ooalel 42 (BY)

H’]T_ISBHLOC < g
This leads to the following
o if 77 150(0) € [1/4,3/4] mod 1,

s0(2) 5
- €(0,1) mod 1, Vxe[ 4,4].

o if 7 150(0) € [0,1/4)J(3/4,1) mod 1,

so(z) 1 55
- 26(0,1) mod 1, Vxe[ 71l
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Recall our definition of k(z) in (B.6), we know in each case k(z) is a constant
function on the interval [—5/4,5/4].
Thus for z € [—3/4,3/4], we have

B T

1
dt < —|stlr= < 20. :
L solee <20 (B10)
For all x, we only have a lower bound of J;. Since k is non-decreasing, we have

Ji(z) = lf Solt) = %0(@) 4y o 9, (B.11)
T Jio—t|<1/2 z—t

Now combining (B.8), (B.9) with (B.10), we have the following estimate of M
on [—3/4,3/4]:

1 11
| M (z)] <20+§+610gZ <T. (B.12)
Using (B.11) instead of (B.10), we obtain that for all z,
1
M(z) = —20 — 3~ 6log (|z] +2) > —1 — 6log(|z| + 2). (B.13)

Next we will apply Lemma B.3 to w = %mwo. We check that w satisfies all the
assumptions. First, by (B.13), we have

w
x2 4+ T2

0<®< g(m +2)5wp <

Hence 0 < & < w and @ € L2. Moreover
L(@) = L(m/3) + L(wg) > —00.
By the construction M = H(s) and the inversion formula (B.1), we have
H(—2M — 2Qg) = 2s — 2H(Qp) — 2¢(M) = 27ox — 27k(x) — 7 — 2¢(M),

where k(x) € Z and ¢(M) is a real constant. Therefore for some constant a with
la| = 1, we have

C:)QGQWiUI _ 1672M72Qg+27r750':1: _ 3672M72QUJr'i7~£(72M72Qo)7
which shows ©2e2™7 is an outer function. R
By Lemma B.3, there exists 1 € L? with supp(¢) < [0,0] and |[¢] < @ < w.
Furthermore, on [—3/4,3/4], by (B.12), and since T = 22, we have
~ 1 o0
[U(x)] = @(x) = g(l +T2) e Tw(x) = mw($)7
as claimed. O

B.4. Multiplier adapted to the regular sets. Now we are in the place to finish
the proof of Lemma 6.2.

Proof. The proof is the essentially same as Lemma 4.1 of [JinZha]. We briefly go
through the various constants below.

We define n; € N by 2™ < Sa; < 2m*tl For 1 < n < nq, let 4, =
[—2n+l —2n](J[27, 2" 1], then by Lemma A.8, we have a collection J, of N,
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intervals of size p, = n 597 guch that each element is of the form 4,7 + 1],
j € Z, intersects A,, and
Y n A, c U J.

JeTn
Moreover, the number N,, satisfies
ny 8
N, <6 [“Sw 2 <> 6 [“Sw 20002 (B.14)
2 Pn 2

Following the proof of [JinZha], we a weight function w such that
w(€) = exp(=(§)"?) > 0.3, VEe[-1,1],
w(€) < exp(=()"?), VEER,
w(§) < exp(=O([§)IEN), VEeY, [¢] =10,
LI0%
5 (1—61)’
where 0 < ¢ < 1 is a constant depending only on S. The dependence comes from
the upper bound of N,, in (B.14).

Applying Theorem B.4 to w® with

C1 m

7T 8T

[H (@)L <

L010§251(1 — (51) < 1.
We obtain ¢ with
c
suppy < [0, gl] )

10
9(0)] > mewl@) > omel®, Ve [-3/4,3/4],
[9(€)] < exp(—e3(&)?), VEER,
[(€)] < exp(—csO(IE])E]), VEeY, [¢ = 10.
Finally, shifting ¢ by ¢1/10 yields the desired function. O

~
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