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Abstract. We prove the discrete Bethe–Sommerfeld conjecture on the graphene lattice, on
its dual lattice (the triangular lattice), and on the extended Harper lattice. For each of these
lattice geometries, we analyze the behavior of small periodic potentials. In particular, we
provide sharp bounds on the number of gaps that may perturbatively open, we describe sharp
arithmetic criteria on the periods that ensure that no gaps open, and we characterize those
energies at which gaps may open in the perturbative regime. In all three cases, we provide
examples that open the maximal number of gaps and estimate the scaling behavior of the gap
lengths as the coupling constant goes to zero.
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1. Introduction

The Bethe–Sommerfeld conjecture asserts that: for any d ≥ 2 and any periodic function
V : Rd → R, the spectrum of the Schrödinger operator

LV := −∇2 + V

has only finitely many gaps. This was studied by many people with important advances in
[24, 26, 35, 37, 38, 39, 41], and culminating in the paper of Parnovskii [32]. Another way to
think about the (continuum) Bethe–Sommerfeld conjecture is that the interval spectrum of
the free Laplacian is preserved in the regime for which the periodic potential is relatively small
compared to the Laplacian, and this precisely happens in the high energy region. Since discrete
Schrödinger operators are bounded, the appropriate analogy to the high-energy region is the
region of small V . Note that in the discrete setting, the number of gaps is always finite; if a
potential is (p1, p2)-periodic, then the spectrum consists of P = p1p2 bands and hence has at
most P − 1 gaps. Thus, the questions are: if the number of gaps is much smaller than P − 1,
and further, the exact number of possible gaps, the locations at which gaps may open, and
the size of the gaps when they do open. These questions have been answered for the square
lattice Zd in recent papers [28, 12, 21]. Motivated by prominent physical models, most notably
graphene, the aim of the present work is to prove the discrete Bethe–Sommerfeld conjecture
on lattices of relevance to physical investigations: the hexagonal lattice, its dual lattice (the
triangular lattice), and the square lattice with next-nearest-neighbor interactions (which arises
in the extended Harper’s model).
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Figure 1. The square lattice.

1.1. Main Results. Let us now describe more precisely the setting in which we work and the
results that we prove. By a graph, we shall mean a pair Γ = (V, E) where V is a nonempty set
and E is a nonempty subset of V × V with the following properties:

• For no v ∈ V does one have (v, v) ∈ E ;
• If (u, v) ∈ E , then (v, u) ∈ E .

If (u, v) ∈ E , we write u ∼ v and we say that u and v are neighbors or neighboring vertices.
We think of E as the set of directed edges ; (u, v) represents the edge that originates at u and
terminates at v.

Given such a graph, we consider HΓ = `2(V) and the associated graph Laplacian1 ∆Γ : HΓ →
HΓ, which acts via

[∆Γψ]u =
∑

v∼u

ψv, u ∈ V, ψ ∈ HΓ.

By a Schrödinger operator on Γ, we mean an operator of the form HQ = HΓ,Q = ∆Γ + Q,
where Q : V → R is a bounded function that acts on HΓ by multiplication:

[Qψ]u = Q(u)ψu, u ∈ V, ψ ∈ HΓ.

In the present work, we study Z2-periodic graphs. That is, we consider graphs whose vertices V
comprise a subset of R2 and for which there exist linearly independent translations a1,a2 ∈ R2

which leave Γ invariant. That is to say:

• For any vertex v ∈ V, v + aj ∈ V for j = 1, 2;
• For any edge (u, v) ∈ E , (u+ aj , v + aj) ∈ E for j = 1, 2.

We will then be most interested in studying the case when the potential Q is itself periodic. In
general, we will say that Q : V → R is p = (p1, p2)-periodic for some p1, p2 ∈ Z+ if and only if

Q(u+ p1a1) = Q(u+ p2a2) = Q(u), for all u ∈ V.
1.2. The Hexagonal Lattice. One of the most prominent models is supplied by graphene,
a two-dimensional material comprised of carbon atoms located at the vertices of a hexagonal
lattice. The fascinating properties of graphene have led to a substantial amount of attention in
mathematics and physics, see e.g. [2, 3, 5, 7, 11, 13, 14, 15, 23, 29, 31] and references therein. We
are thus naturally led to consider the Bethe–Sommerfeld conjecture on the hexagonal lattice.
To define the hexagonal lattice, let

a1 =

[
1
0

]
, a2 =

1

2

[
1√
3

]
, b± =

1

2

[
3

±
√
3

]
,

1Technically, this is the adjacency operator of the graph. Other authors use ψv −ψu where we have only ψv.
Our convention is slightly more natural for the setting in which we wish to work. Concretely, all of the graphs
that we consider in the present work have uniform degree (all vertices in a given graph have the same number
of incident edges), and hence leaving off the −ψu term merely costs us a multiple of the identity operator, and
it simplifies the appearance of a few calculations.
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b+

b−

Figure 2. A portion of the hexagonal lattice. A fundamental domain is high-
lighted in red.

and

Vhex = {na1 +ma2 : n,m ∈ Z} \ {−a1 + kb+ + `b− : k, ` ∈ Z}.
We define Ehex by declaring u ∼ v for u, v ∈ Vhex if ‖u− v‖2 = 1. See Figure 2.

Theorem 1.1 (Bethe–Sommerfeld for the hexagonal lattice). For all p = (p1, p2) ∈ Z2
+, there

is a constant c = cp > 0 such that, if Q : Vhex → R is p-periodic and ‖Q‖∞ ≤ c, the following

statements hold true for HQ = ∆hex +Q:

(1) σ(HQ) consists of no more than four intervals.

(2) If at least one of p1 or p2 is odd, then σ(HQ) consists of no more than two intervals.

Moreover, gaps may only open at 0 and ±1 in the first case, and only at zero in the second

case.

Moreover, this theorem is sharp in the following sense: there exists a (1, 1)-periodic potential
Q1 which infinitesimally opens a gap at zero, and there is a (2, 2)-periodic potential Q2 which
infinitesimally opens gaps at −1, 0, and 1.

Theorem 1.2. (1) There exists Q1 : Vhex → R2 which is (1, 1)-periodic such that σ(HλQ1)
has exactly two connected components for all λ > 0. Furthermore the gap size at 0 is

of order λ.
(2) There exists Q2 : Vhex → R2 which is (2, 2) periodic such that σ(HλQ2) has exactly four

connected components for any sufficiently small λ > 0. Furthermore the gap size at 0
is of order λ, and the gap sizes at ±1 are of order λ2.

Let us remark that Theorem 1.2.(1) is well-known; we merely list it for completeness. The
example in Theorem 1.2.(2) is novel.

1.3. The Triangular Lattice. The next graph that we consider is the triangular lattice, which
is dual to the hexagonal lattice. The graph has vertices

Vtri = {na1 +ma2 : n,m ∈ Z} ,
where aj are as before. One then declares v ∼ w for v, w ∈ V if ‖v − w‖ = 1. Thus, after
identifying na1+ma2 with the point (n,m) ∈ Z2, we may view the Laplacian on the triangular
lattice as an operator on `2(Z2) via

(1.1) [∆triψ]n,m = [∆sqψ]n,m + ψn−1,m+1 + ψn+1,m−1.
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This correspondence amounts to shearing and stretching the the triangular lattice, and identifies
the triangular lattice with the square lattice equipped with additional skewed next-nearest-
neighbor interactions. See Figures 3 and 4.

Theorem 1.3 (Bethe–Sommerfeld for the triangular lattice). For all p = (p1, p2) ∈ Z2
+, there

is a constant c = cp > 0 such that, if Q : Vtri → R is p-periodic and ‖Q‖∞ ≤ c, the following

hold true for HQ = ∆tri +Q:

(1) σ(HQ) consists of no more than two intervals.

(2) If at least one of p1 or p2 is odd, then σ(HQ) consists of a single interval.

Moreover, the gap in the first setting may only open at the energy E = −2.

This theorem is sharp vis-à-vis the number of intervals in the spectrum and the arithmetic
restrictions on the periods. Concretely, we exhibit a (2, 2)-periodic potential that perturbatively
opens a gap at −2.

Theorem 1.4. There exists Q : Vtri → R which is (2, 2)-periodic, such that σ(HλQ) has exactly
two connected components for any sufficiently small λ > 0. Furthermore the gap size at −2 is

of order λ.

1.4. The EHM Lattice. In addition to the hexagonal and triangular lattices, we also study
the square lattice with next-nearest neighbor interactions, which is motivated by the extended
Harper’s model (EHM). The EHM was proposed by Thouless [40] and has also led to a lot of
study in mathematics and physics [1, 18, 19, 20, 22, 25]; it corresponds to an electron in a square
lattice that interacts not only with its nearest neighbors but also its next-nearest neighbors.
In the following, we will refer to square lattice with next-nearest neighbor interactions as the
EHM lattice, in order to distinguish it from the standard square lattice.

The EHM lattice also has vertex set Vsqn = Z2. However, now, one connects n and n′ if and
only if they are nearest neighbors or next-nearest-neighbors in the square lattice. Equivalently,
one declares

n ∼ n′ ⇐⇒ ‖n− n′‖∞ = 1.

The associated Laplacian acts on `2(Z2) via

[∆sqnψ]n,m = [∆sq]n,m + ψn−1,m−1 + ψn−1,m+1 + ψn+1,m−1 + ψn+1,m+1.

See Figure 5.

Theorem 1.5 (Bethe–Sommerfeld for the EHM lattice). For all p = (p1, p2) ∈ Z2
+, there is a

constant c = cp > 0 such that, if Q : Vsqn → R is p-periodic and ‖Q‖∞ ≤ c, the following hold

true for HQ = ∆sqn +Q:

a2

a1

Figure 3. A portion of the
triangular lattice

Figure 4. The triangular
lattice after shearing.
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Figure 5. A portion of the EHM lattice.

(1) σ(HQ) consists of no more than two intervals.

(2) If at least one of p1 or p2 is not divisible by three, then σ(HQ) consists of a single

interval.

Moreover, the gap in the first setting may only open at the energy E = −1.

This theorem is also sharp:

Theorem 1.6. There exists Q : Z2 → R which is (3, 3)-periodic such that σ(HλQ) has exactly

two connected components for any sufficiently small λ > 0. Furthermore the gap size at −1 is

of order λ.

It is also reasonable to consider an EHM lattice in which the diagonal hopping terms are
different from the cardinal direction hopping terms; for example, one might consider the one-
parameter family

[Hµψ]n,m = [∆sq]n,m + µ(ψn−1,m−1 + ψn−1,m+1 + ψn+1,m−1 + ψn+1,m+1)

with µ ∈ [0,∞); µ = 0 yields the square Laplacian and µ = 1 yields ∆sqn. The authors plan to
address this in a forthcoming work [16].

1.5. Further remarks. Let us mention a closely related work [23]. In [23], Helffer, Kerdelhué
and Royo-Letelier developed a Chambers analysis for magnetic Laplacians on the hexagonal
lattice (and its dual, the triangular lattice) with rational flux. They showed that for a non-
trivial rational flux p/q /∈ Z, the magnetic Laplacians on hexagonal and triangular lattices have
non-overlapping (possibly touching) bands. This recovers a similar feature of the square lattice
[4]. However, unlike the square lattice, which has no touching bands except at the center for q
even [30], they were able to give an explicit example of non-trivial touching bands for hexagonal
and triangular lattices. Indeed they showed that the triangular Laplacian has touching bands at
energy E = −

√
3 for p/q = 1/6, and the hexagonal Laplacian has touching bands at energies

E = ±
√
3 and 0 for p/q = 1/2. Therefore, the underlying geometry is responsible for the

formation of non-overlapping bands. But it has remained unclear whether there will be other
touching bands for different fluxes (and if any, what are the locations).

In our work we are able to give a sharp criterion of the formation of touching bands for the
free Laplacians on these lattices and the EHM lattice. Although the general strategy follows
that of [21], there are several challenges to overcome in the present work:

• The Floquet parameters and perturbation directions that we choose in the perturb-
and-count technique are strongly model-dependent in a subtle fashion. For example,
at non-exceptional energies, we locate Floquet parameters and a perturbation direction
in a way such that the Floquet eigenvalues with vanishing linear terms have quadratic
terms of the same sign along this direction. At the exceptional energy of the triangular
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lattice, we choose two directions such that the eigenvalues with vanishing gradients
have quadratic terms of different signs along the two directions; for a more detailed
discussion, see Remark 3.4. This is similar to what was done in [21] for the square
lattice case. However, for the EHM lattice, any direction will lead to the same number
of positive and negative quadratic terms; see Remark 5.5. This issue is resolved by
a new construction: we find a direction that moves approximately 2/3 of the Floquet
eigenvalues up while the other 1/3 move down. All these constructions depend heavily
on the Floquet representation of the eigenvalues, and thus get more difficult as the
underlying geometry gets more complicated.

• Applying the perturb-and-count ideas directly to the hexagonal lattice is quite difficult,
due to the fact that the Floquet eigenvalues do not have simple expressions; compare
(4.3). However, one can relate Laplacians and Floquet matrices for the triangular and
hexagonal lattices in a fairly elegant fashion (see [23] and our (4.2)). Thus, we prove
the Bethe–Sommerfeld conjecture directly for the triangular lattice and then derive the
corresponding statement for the hexagonal lattice via duality.

• Because of the more complicated structure of the lattices involved, constructing poten-
tials that open gaps at the exceptional energies is substantially more difficult than in
the square lattice. In particular, we need to construct (2,2)-periodic potentials that live
on eight vertices for the hexagonal lattice, and (3,3)-periodic potential for the EHM
lattice. In this paper we develop an robust technique to study these finite volume prob-
lems in a sharp way. Indeed, we can not only prove that a gap exists, but also estimate
its size up to a constant factor (see Theorems 3.5, 4.2, and 5.6). In the case of the
triangular lattice, we are even able to use our technique exactly compute the gap, not
only estimate its size (Theorem 3.5).

The remainder of the paper is organized as follows. Section 2 recalls Floquet theory for
Z2-periodic graphs. We work with the triangular lattice in Section 3, proving Theorems 1.3
and 1.4. We then work with the hexagonal lattice in Section 4, proving Theorems 1.1 and 1.2.
Finally, we conclude with the EHM lattice in Section 5, proving Theorems 1.5 and 1.6.

2. Floquet Theory for Periodic Schrödinger Operators on Graphs

Let Γ = (V, E) be a Z2-periodic graph with translation symmetries a1,a2 ∈ R2, and suppose
Q : V → R is p = (p1, p2)-periodic, that is,

Q(u+ pjaj) = Q(u), u ∈ V, j = 1, 2.

We will briefly describe Floquet theory for HQ = ∆Γ + Q, following [27]. The main purpose
of this section is to establish notation, so we do not give any proofs. One may write HQ as a
constant-fiber direct integral over the fundamental domain. Concretely, let

Vf = V ∩ {sa1 + ta2 : 0 ≤ s < p1, 0 ≤ t < p2} .
By periodicity, |Vf | = P := p0p1p2, where

p0 = |V ∩ {sa1 + ta2 : 0 ≤ s, t < 1} |.
Here, and throughout the paper, we use |S| to denote the cardinality of the set S. For each
edge (u, v) ∈ E there exist unique vertices uf , vf ∈ Vf and unique integers n,m, n′,m′ ∈ Z with

u = uf + np1a1 +mp2a2, v = vf + n′p1a1 +m′p2a2,

We then define the index of (u, v) by τ(u, v) = (n′−n,m′−m). Finally, for u, v ∈ Vf , we define
B(u, v) to be the set of all translates of v that connect to u via an edge of Γ:

B(u, v) = {w ∈ V : w ∼ u and w = v + np1a1 +mp2a2 for some n,m ∈ Z} .
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Then, for each θ = (θ1, θ2) ∈ R2, the corresponding Floquet matrix is a self-adjoint operator
on Hf := `2(Vf) = CVf defined by

(2.1) 〈δu, HQ(θ)δv〉 =
∑

w∈B(u,v)

exp
(
i
〈
τ(u,w),θ

〉)
.

In the event that the sum in (2.1) is empty, 〈δu, HQ(θ)δv〉 = 0. Clearly, if θ′j − θj ∈ 2πZ for

j = 1, 2, then HQ(θ) = HQ(θ
′), so HQ(θ) descends to a well-defined function of θ ∈ T2 :=

R2/(2πZ)2 ∼= [0, 2π)2. We will freely use θ ∈ R2 or θ ∈ T2 depending on which is more
convenient in a given setting.

Informally, (2.1) represents the restriction of HQ to the discrete torus

(Za1 ⊕ Za2)/(p1Za1 ⊕ p2Za2) ∼= Zp1 ⊕ Zp2 .

with the following boundary conditions: wrapping once around the torus in the positive a1

direction accrues a phase eiθ1 and wrapping around once in the positive a2 direction accrues
a phase eiθ2 . More precisely, we may view HQ(θ) in the following manner. The operator HQ

acts on the space CV of arbitrary (not necessarily square-summable) functions V → C. When
Q is (p1, p2)-periodic, then for each θ ∈ T2, HQ preserves the subspace

H(θ) =
{
ψ ∈ CV : ψ(u+ pjaj) = eiθjψ(u)

}
.

Then, HQ(θ) is equivalent to the restriction of HQ to H(θ).
For each θ, order the eigenvalues of HQ(θ) as

E1(θ) ≤ · · · ≤ EP (θ)

with each eigenvalue listed according to its multiplicity. Then, for 1 ≤ j ≤ P , the jth spectral
band of HQ is defined by

Fj = Fj(Q) := ran(Ej) =
{
Ej(θ) : θ ∈ T2

}
=
{
Ej(θ) : θ ∈ R2

}
.

Theorem 2.1. With notation as above,

σ(HQ) =
⋃

θ∈T2

HQ(θ) =
P⋃

j=1

Fj .

We will use Theorem 2.1 in the following way. Making the dependence on the potential Q
explicit, one may write

Fj = Fj(Q) = [E−
j (Q), E+

j (Q)].

The key fact is the following: by standard perturbation theory for self-adjoint operators, E±
j (Q)

are 1-Lipschitz functions of Q. Here, one views Q as an element of RP and the perturbation
is measured with respect to the uniform metric thereupon. In particular, if an energy E
satisfies E ∈ int(Fj(Q)), then (E − δ, E + δ) ⊆ Fj(Q) for some positive δ, and it follows that
E ∈ Fj(Q

′) ⊆ σ(HQ′) for any (p1, p2)-periodic Q
′ with ‖Q − Q′‖∞ < δ. Note that here it is

very important that one views the periods as fixed: one may only perturb within RP for a fixed
P . Thus, our analysis revolves around determining for a given energy E, whether E belongs
to the interior of some band of the Laplacian, where the Laplacian is viewed as a degenerate
(p1, p2)-periodic operator.
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3. Triangular Laplacian

We view the triangular Laplacian as acting on the square lattice `2(Z2), but with extra
connections as in (1.1):

[∆triu]n,m = un−1,m + un+1,m + un,m−1 + un,m+1 + un−1,m+1 + un+1,m−1

= [∆squ]n,m + un−1,m+1 + un+1,m−1.

Now, given p1, p2 ∈ Z+, we view ∆tri as a p-periodic operator and perform the Floquet decom-
position. Define P := p1p2 as in Section 2, and put

Λ := Z2 ∩
(
[0, p1)× [0, p2)

)
.

For θ = (θ1, θ2) ∈ R2, it is straightforward to check that

σ(H(θ)) =
{
eΛ` (θ) : ` ∈ Λ

}
,

where ` = (`1, `2) and

eΛ` (θ) = 2 cos

(
θ1 + 2π`1

p1

)
+ 2 cos

(
θ2 + 2π`2

p2

)
+ 2 cos

(
θ1 + 2π`1

p1
− θ2 + 2π`2

p2

)
.

Let us point out that one needs to be somewhat careful at this point; namely, eΛ` (θ) is not a well-
defined function of θ ∈ T2. However, the error incurred in using a different coset representative
of θ ∈ T2 is simply a change in the index `, and one can check that the family

{
eΛ` (θ) : ` ∈ Λ

}

is a well-defined function on T2 (as well it should, since the operator H(θ) is itself a well-defined
function of θ ∈ T2). In any case, the ambiguity disappears when one considers the covering
space R2, which we do for most of the paper. One could also use the minimal covering space
R2/(p1Z⊕p2Z) on which the eΛ` are well-defined, but this does not accrue any benefits vis-à-vis
the present work, so we simply use R2.

As in Section 2, we label these eigenvalues in increasing order according to multiplicity by

EΛ
1 (θ) ≤ EΛ

2 (θ) ≤ · · · ≤ EΛ
P (θ)

and denote the P spectral bands by

FΛ
k =

{
EΛ

k (θ) : θ ∈ R2
}
, 1 ≤ k ≤ P.

Straightforward computations shows that σ(∆tri) = [−3, 6], and thus

P⋃

k=1

FΛ
k = [−3, 6].

Henceforth, we view p1 and p2 as fixed and so we drop Λ from the superscripts. Our main
theorem of this section is the following.

Theorem 3.1. Let p1, p2 ∈ Z+ be given.

1. Each E ∈ (−3, 6) \ {−2} belongs to int(Fk) for some 1 ≤ k ≤ P .
2. If one of the periods p1, p2 is odd, then E = −2 belongs to int(Fk) for some 1 ≤ k ≤ P .

Proof of Theorem 1.3. As already discussed, this follows immediately from Theorem 3.1. �

3.1. Proof of Theorem 3.1. We will divide the proof into two different cases: E 6= −2 and
E = −2. Our general strategy is to argue by contradiction. More specifically, we assume
E = minFk+1 = maxFk for some 1 ≤ k ≤ P − 1, and show that this leads to a contradiction.
We will use the following two lemmas, whose proofs we provide at the end of the present section.
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Lemma 3.2. For any E ∈ [−3, 6], there exist x, y ∈ [0, 2π) such that

cos(x) + cos(y) + cos(x− y) =
E

2
(3.1)

sin(x) + sin(y) = 0.(3.2)

Furthermore, if E ∈ [−3,−2), we have

cos(x) + cos(y) = −1±
√
E + 3 < 0(3.3)

for any x, y that satisfy conditions (3.1) and (3.2), and, if E ∈ (−2, 6], then we have

cos(x) + cos(y) = −1 +
√
E + 3 > 0(3.4)

for any x, y that satisfy conditions (3.1) and (3.2).

Lemma 3.3. Consider the following system:

(3.5)





cos(x) + cos(y) + cos(x− y) = E
2 ,

sin(x) + sin(x− y) = 0,

sin(y)− sin(x− y) = 0.

For any E ∈ (−3, 6) \ {−2}, the solution set of (3.5) is empty. For E = −2, the solutions of
(3.5) in [0, 2π)2 are (0, π), (π, 0) and (π, π).

We will use Lemma 3.2 in the E 6= −2 case, and Lemma 3.3 in the E = −2 case.

3.1.1. E 6= −2.

Proof of Theorem 3.1.1. Let E ∈ (−3, 6) \ {−2} be given and suppose for the purpose of es-
tablishing a contradiction that E = maxFk = minFk+1 for some 1 ≤ k < P . Let (x, y)

denote a solution to (3.1) and (3.2) from Lemma 3.2, and take θ̃ = (θ̃1, θ̃2) ∈ [0, 2π)2 and

`(1) = (`
(1)
1 , `

(1)
2 ) ∈ Λ such that

p−1
1 (θ̃1 + 2π`

(1)
1 ) = x, and p−1

2 (θ̃2 + 2π`
(1)
2 ) = y.

It is clear that θ̃ and `(1) are uniquely determined by x and y. Let us also note that (3.1) is
equivalent to

e`(1)(θ̃) = E.

Define ΛE(θ̃) ⊆ Λ to be the set of all ` ∈ Λ such that e`(θ̃) = E. Then r := |ΛE(θ̃)| is the

multiplicity of E ∈ σ(H(θ̃)) and clearly `(1) ∈ ΛE(θ̃).
Since E ∈ Fk by assumption, let s ∈ Z ∩ [1, r] be chosen so that

Ek−s(θ̃) < Ek−s+1(θ̃) = · · · = Ek(θ̃) = · · · = Ek+r−s(θ̃) < Ek+r−s+1(θ̃).

Since all the eigenvalues are continuous in θ, we can take ε > 0 small enough such that

Ek−s(θ) < Ek−s+1(θ) and Ek+r−s(θ) < Ek+r−s+1(θ)

hold whenever ‖θ − θ̃‖R2 < ε. Our goal is to perturb about the point θ̃ in two directions, one
of which is “generic” and one of which is carefully chosen. The generic perturbation moves half
of the eigenvalues to the right and half to the left, which we shall use to conclude that r = 2s.
The non-generic perturbation is carefully chosen to contradict this.

Given ` ∈ Λ and a unit vector β = (β1, β2), we have

e`(θ̃ + tβ) = e`(θ̃) + tβ · ∇e`(θ̃) +O(t2)(3.6)

= e`(θ̃) + tβ · ∇e`(θ̃)(3.7)
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− t2

2

[
β21
p21

cos
( θ̃1 + 2π`1

p1

)
+
β22
p22

cos
( θ̃2 + 2π`2

p2

)

+
(β1
p1

− β2
p2

)2
cos
( θ̃1 + 2π`1

p1
− θ̃2 + 2π`2

p2

)]
+O(t3).

In particular, we will use (3.6) if β · ∇e`(θ̃) 6= 0, and (3.7) otherwise.
For any vector β ∈ R2 \ {0}, let

(3.8)
J 0
β = J 0

β(θ̃) := {` ∈ ΛE(θ̃) : β · ∇e`(θ̃) = 0},
J ±
β = J ±

β (θ̃) := {` ∈ ΛE(θ̃) : ±β · ∇e`(θ̃) > 0}.
Consequently, we always have

|J 0
β |+ |J +

β |+ |J −
β | = r.(3.9)

We also define J0 as follows

J0 = J0(θ̃) := {` ∈ ΛE(θ̃) : ∇e`(θ̃) = 0}.(3.10)

Since E 6= −2, Lemma 3.3 clearly implies J0 = ∅.
We choose β1 = (β1,1, β1,2) = (p1, p2)/

√
p21 + p22. Then (3.2) is equivalent to

β1 · ∇e`(1)(θ̃) = 0,

hence J 0
β1

6= ∅.
Next we are going to perturb the point θ̃ and count the eigenvalues. Since J0 = ∅, we can

choose a unit vector β2 such that

β2 · ∇e`(θ̃) 6= 0,(3.11)

holds for any ` ∈ ΛE(θ̃). Thus, J 0
β2

= ∅, so one concludes

|J +
β2
|+ |J −

β2
| = r.(3.12)

Perturbation along β2. We first perturb the eigenvalues along the β2 direction. Since J 0
β2

= ∅,
we will always employ (3.6).

For t > 0 small enough, we have the following.

• If ` ∈ J +
β2
, we have

Ek+r−s+1(θ̃ + tβ2) > e`(θ̃ + tβ2) > E = maxFk,

which implies

|J +
β2
| ≤ r − s.(3.13)

• If ` ∈ J −
β2
, we have

Ek−s(θ̃ + tβ2) < e`(θ̃ + tβ2) < E = minFk+1,

which implies

|J −
β2
| ≤ s.(3.14)

In view of (3.12), Equations (3.13) and (3.14) imply

(3.15) |J −
β2
| = s.
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Upon realizing that J 0
−β2

= ∅ and J ±
−β2

= J ∓
β2
, we may apply the analysis above with β2

replaced by −β2 and conclude that

(3.16) |J +
β2
| = |J −

−β2
| = s.

In particular, (3.15) and (3.16) imply

r = 2s.(3.17)

Perturbation along β1. Now we perturb the eigenvalues along β1. Without loss of generality,
we assume E ∈ (−2, 6). The other case can be handled similarly. The case when ` ∈ J ±

β1
is

similar to that of β2. The difference here is J 0
β1

6= ∅.
By Lemma 3.2, we have

cos
( θ̃1 + 2π`1

p1

)
+ cos

( θ̃2 + 2π`2
p2

)
= −1 +

√
E + 3 6= 0(3.18)

for ` = (`1, `2) ∈ J 0
β1
. Thus, by employing (3.7), we obtain

e`(θ̃ + tβ1)

= E − t2

2(p21 + p22)

(
cos
( θ̃1 + 2π`1

p1

)
+ cos

( θ̃2 + 2π`2
p2

))
+O(t3)

= E − t2

2(p21 + p22)

(
− 1 +

√
E + 3

)
+O(t3).(3.19)

Notice that the choice of β1 causes the third t2 term of (3.7) to drop out.
Since E ∈ (−2, 6), (3.19) implies that

e`(θ̃ + tβ1) < E = minFk+1,(3.20)

holds for |t| > 0 small enough and for any ` ∈ J 0
β1
.

Combining (3.20) with (3.6), we have the following.
For t > 0 small enough,

• If ` ∈ J +
β1
, we have

Ek+r−s+1(θ̃ + tβ1) > e`(θ̃ + tβ1) > E = maxFk,

which implies

|J +
β1
| ≤ r − s = s,(3.21)

where the equality follows from (3.17).
• If ` ∈ J 0

β1

⋃J −
β1
, we have

Ek−s−1(θ̃ + tβ1) < e`(θ̃ + tβ1) < E = minFk+1,

which implies

|J 0
β1
|+ |J −

β1
| ≤ s.(3.22)

In view of (3.9) and (3.17), Equations (3.21) and (3.22) yield

(3.23) |J +
β1
| = |J 0

β1
|+ |J −

β1
| = s.

As before, we may observe that J 0
−β1

= J 0
β1

and J ±
−β1

= J ∓
β1
. Then, the analysis above applied

with β1 replaced by −β1 forces

(3.24) |J −
β1
| = |J 0

β1
|+ |J +

β1
| = s.
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Taken together, (3.23) and (3.24) imply |J 0
β1
| = 0, which contradicts J 0

β1
6= ∅.

�

3.1.2. E = −2.
First, we would like to make a remark on our strategy in the proof of the E = −2 case, and

on the importance of one of the periods being odd.

Remark 3.4. We will choose θ̃ = (θ̃1, θ̃2) and `(1) = (`
(1)
1 , `

(1)
2 ) such that e`(1)(θ̃) = −2 and

∇e`(1)(θ̃) = 0. Lemma 3.3 yields three possibilities (p−1
1 (θ̃1+2π`

(1)
1 ), p−1

2 (θ̃2+2π`
(1)
2 )) = (0, π),

(π, 0) or (π, π). The choice of θ̃ depends on which one of p1, p2 is odd; we will choose (0, π)
if p1 is odd and (π, 0) if p2 is odd. This choice guarantees that the only eigenvalue located

at −2 with vanishing gradient is e`(1)(θ̃). Consequently, it suffices to control the second order

perturbation of (a single eigenvalue) e`(1)(θ̃) along a given direction (β1, β2). When p1 is odd,
this is equivalent to controlling the sign of the following expression (compare (3.28)):

−β2
(β1
p1

− β2
p2

)
.

We can easily choose two directions such that the expression above has different signs, which
leads to un-even eigenvalue counts and hence to the desired contradiction.

A posteriori, the existence of a (2, 2)-periodic potential satisfying the conclusion of Theo-
rem 1.4 implies that this argument must fail if both p1 and p2 are even; let us briefly describe
why this must be the case. If both p1, p2 are even, there will be three eigenvalues at −2 with
vanishing gradients, corresponding to all three solutions (0, π), (π, 0), (π, π). Trying to control
the second order perturbations of all these three eigenvalues along (β1, β2) is equivalent to
controlling the signs of the following three expressions simultaneously

−β2
(β1
p1

− β2
p2

)
, β1

(β1
p1

− β2
p2

)
, and β1β2.

A simple inspection of these three expressions yields that two of them are always non-negative
with the other one being non-positive. Therefore we can never choose two different directions
that lead to un-even eigenvalue counts. This explains why at least one of the periods must be
odd for our argument to work.

Proof of Theorem 3.1.2. Now let us give a detailed proof. Without loss of generality, assume
p1 is odd, let E = −2, and assume for the sake of contradiction that E = maxFk = minFk+1

for some k. We choose θ̃ and `(1) via

θ̃1 = 0, `
(1)
1 = 0, (θ̃2, `

(1)
2 ) =





(
0, p22

)
, if p2 is even,(

π, p2−1
2

)
, if p2 is odd.

With these choices of `(1) and θ̃, one can check that e`(1)(θ̃) = −2 = E. As before, let r

denote the multiplicity of E and let ΛE(θ̃) denote the set of ` ∈ Λ with e`(θ̃) = −2. Note that

we also have ∇e`(1)(θ̃) = 0, and thus J0 6= ∅. Moreover, we claim that J0 = {`(1)}. To see

this, suppose there exists ` 6= `(1) in J0. In view of Lemma 3.3, we must have

θ̃1 + 2π`1
p1

= π,

which implies p1 = 2`1, which is impossible, since p1 is odd. Consequently,

J0 = {`(1)}.
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Let us choose β1 = (β1,1, β1,2) = (0, 1) and a unit vector

β2 = (β2,1, β2,2) ∼ (2p1, p2)/
√

4p21 + p22

such that

β2,2

(β2,1
p1

− β2,2
p2

)
> 0,(3.25)

and

β2 · ∇e`(θ̃) 6= 0 holds for any ` ∈ ΛE(θ̃) \ {`(1)}.(3.26)

We will use (3.25) to control the perturbation of e`(1)(θ̃) along the β2 direction. We also
note that (3.26) simply says

J 0
β2

= J0 = {`(1)}.(3.27)

Perturbation along β2. We first perturb the eigenvalues along the β2 direction.

By (3.27), we need only consider first-order perturbation theory as in (3.6) for ` ∈ ΛE(θ̃) \
{`(1)}. Since `(1) ∈ J0, we need to employ (3.7) for e`(1) . Indeed, by (3.7), we have for |t| > 0
small enough,

e`(1)(θ̃ + tβ2) = e`(1)(θ̃)−
t2

2

[
β22,1
p21

−
β22,2
p22

−
(β2,1
p1

− β2,2
p2

)2
]
+O(t3)

= −2− β2,2
p2

(β2,1
p1

− β2,2
p2

)
t2 +O(t3)(3.28)

< −2

= minFk+1,

where we used (3.25) in the last inequality.
For t > 0 small enough, we then have the following.

• If ` ∈ J +
β2
, we have

Ek+r−s+1(θ̃ + tβ2) > e`(θ̃ + tβ2) > E = maxFk,

which implies

|J +
β2
| ≤ r − s.(3.29)

• If ` ∈ J −
β2

⋃J0, we have

Ek−s(θ̃ + tβ2) < e`(θ̃ + tβ2) < E = minFk+1,

which implies

|J −
β2
|+ |J0| ≤ s.(3.30)

Taking (3.9), (3.27), (3.29), and (3.30) into account, we have

|J −
β2
| = s− 1.(3.31)

Replacing β2 by −β2 as in previous phases of the argument, we arrive at

(3.32) |J +
β2
| = s− 1.

Combining (3.31) with (3.32), we arrive at

r = |J +
β2
|+ |J −

β2
|+ |J0| = 2s− 1.(3.33)
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Perturbation along β1. Now we perturb the eigenvalues along β1 = (0, 1). The case when
` ∈ J ±

β1
is similar to that of β2. The difference here is the behavior of perturbations of e`(1) in

the direction β1. Indeed, by (3.7), we have

e`(1)(θ̃ + tβ1) = e`(1)(θ̃)−
t2

2

[
β21,1
p21

−
β21,2
p22

−
(β1,1
p1

− β1,2
p2

)2
]
+O(t3)

= −2 +
t2

p22
+O(t3)

> −2 = maxFk.

Thus, the perturbations of e`(1) in the direction β1 always move up.
For t > 0 small enough,

• If ` ∈ J +
β1

⋃J0, we have

Ek+r−s+1(θ̃ + tβ1) > e`(θ̃ + tβ1) > E = maxFk,

which implies

|J +
β1
|+ |J0| ≤ r − s.(3.34)

• If ` ∈ J −
β1
, we have

Ek−s−1(θ̃ + tβ1) < e`(θ̃ + tβ1) < E = minFk+1,

which implies

|J −
β1
| ≤ s.(3.35)

In view of (3.9), Equations (3.34) and (3.35) yield

|J −
β1
| = s.(3.36)

Applying the usual symmetry argument, we also arrive at |J +
β1
| = s, which leads to

r = |J +
β1
|+ |J −

β1
|+ |J0| = 2s+ 1,

which in turn contradicts (3.33). �

3.2. Proof of Lemmas 3.2 and 3.3.

Proof of Lemma 3.2. Let E ∈ [−3, 6] be given, let x be as-yet-unspecified, set y = 2π − x, and
note that (3.2) holds. Then, using y = 2π − x, we note that

cos(x) + cos(y) + cos(x− y) = 2 cos(x) + cos(2x)

= 2 cos(x) + 2 cos2(x)− 1.

Setting z = cos(x), we seek to solve 2z + 2z2 − 1 = E/2, which gives

z2 + z − 1

2
− E

4
= 0 =⇒ z =

−1±
√
3 + E

2
.

Thus, we may take x so that

cos(x) =
−1 +

√
3 + E

2
.

In fact, since −3 ≤ E ≤ 6, we may take 0 ≤ x ≤ 2π/3. Thus, with this choice of x (and
y = 2π − x), we get (3.1).

Finally, suppose x and y solve (3.1) and (3.2) for E 6= −2. From (3.2), we deduce that either
x + y = 2π or |x − y| = π. The second option leads to E = −2, so we must have y = 2π − x.
Solving for cosx as before yields (3.3) when E < −2 and (3.4) when E > −2. �
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q1 = 1 q2 = 1

q3 = 1 q4 = −1

Figure 6. A (2, 2) periodic potential on the triangular lattice with a gap at
E = −2 for all positive coupling constants.

Proof of Lemma 3.3. Suppose that x and y solve

cos(x) + cos(y) + cos(x− y) = λ(3.37)

sin(x) + sin(x− y) = 0(3.38)

sin(y)− sin(x− y) = 0(3.39)

for some λ ∈ (−3/2, 3). Adding (3.38) and (3.39), we arrive at

sin(x) = − sin(y).

For (x, y) ∈ [0, 2π)2, this forces either |x − y| = π or x + y = 2π. In the case |x − y| = π,
substituting in to (3.38) and (3.39) gives sin(x) = sin(y) = 0, forcing x, y ∈ {0, π}. Plugging
the various possibilities into (3.37), one either gets λ = 3 /∈ (−3/2, 3) (when x = y = 0) or
λ = −1 (when at least one of x or y is π).

Alternatively, if x = 2π − y, (3.38) yields sin(x) + sin(2x) = 0, which leads to

sin(x)(1 + 2 cos(x)) = 0.

Setting sin(x) = 0 yields x ∈ {0, π} which leads to the same solutions as before. Setting
1 + 2 cos(x) = 0 yields (x, y) = (2π/3, 4π/3) or (x, y) = (4π/3, 2π/3). Plugging in either
possibility into (3.37) yields

cos(x) + cos(y) + cos(x− y) = −3

2
/∈ (−3/2, 3),

as claimed. �

3.3. Opening a Gap at −2. Let us exhibit a (2, 2)-periodic potential that perturbatively
opens a gap at energy E = −2 for the triangular lattice.

Theorem 3.5. Define

Qn,m = (−1)mn =

{
1 if m or n is even,

−1 if both m and n are odd,
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and denote Hλ = ∆tri + λQ. For all λ > 0, σ(Hλ) has two connected components. Moreover,

for all λ > 0 sufficiently small, the gap that opens about E = −2 is precisely equal to

gλ =
(
−
√

4 + λ2,−2 + λ
)
.

In particular,

|gλ| = λ+
(√

4 + λ2 − 2
)
∼ λ+

λ2

4
,

so the gap opens linearly as λ ↓ 0.

The following lemma will be used:

Lemma 3.6. For all θ ∈ T2 and all 0 ≤ a ≤ 54,

4(sin θ1 + sin θ2 − sin(θ1 + θ2))
2 + a(1 + cos θ1 + cos θ2 + cos(θ1 + θ2)) ≥ 0.

Proof. Define

g(θ1, θ2, a) = 4(sin θ1 + sin θ2 − sin(θ1 + θ2))
2 + a(1 + cos θ1 + cos θ2 + cos(θ1 + θ2)).

We begin by checking the boundary of T2 × [0, 54]. It is easy to see that g ≥ 0 if a = 0. For
a = 54, define h(θ) = g(θ, 54). Using the identities

sinx+ sin y − sin(x+ y) = 4 sin
(x
2

)
sin
(y
2

)
sin

(
x+ y

2

)
,

cosx− cos(x+ y) = 2 sin
(y
2

)
sin
(
x+

y

2

)

sinx+ sin(x+ y) = 2 cos
(y
2

)
sin
(
x+

y

2

)
,

we may simplify ∇h to get

∂h

∂θ1
= 4 sin

(
θ1 +

θ2
2

)[
16 sin

(
θ1
2

)
sin2

(
θ2
2

)
sin

(
θ1 + θ2

2

)
− 27 cos

(
θ2
2

)]
,(3.40)

∂h

∂θ2
= 4 sin

(
θ2 +

θ1
2

)[
16 sin2

(
θ1
2

)
sin

(
θ2
2

)
sin

(
θ1 + θ2

2

)
− 27 cos

(
θ1
2

)]
.(3.41)

Consequently, setting ∇h = 0 leads to four cases. For notational convenience, define

α = arcsin
4

√
27

32
.

Case 1.

sin

(
θ1 +

θ2
2

)
= sin

(
θ2 +

θ1
2

)
= 0.

This implies θ1 +
1
2θ2 ∈ πZ and θ2 +

1
2θ1 ∈ πZ. Solving the resulting systems for solutions in

[0, 2π) yields three points:

θ = (0, 0),

(
2π

3
,
2π

3

)
,

(
4π

3
,
4π

3

)
.

Case 2.

sin

(
θ1 +

θ2
2

)
= 16 sin2

(
θ1
2

)
sin

(
θ2
2

)
sin

(
θ1 + θ2

2

)
− 27 cos

(
θ1
2

)
= 0.

As before, the first condition forces θ1 +
1
2θ2 ∈ πZ. Plugging the various possibilities that this

yields into the second condition gives three solutions:

θ = (π, 0), (2α, 2π − 4α), (2π − 2α, 4α).
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Case 3.

sin

(
θ2 +

θ1
2

)
= 16 sin

(
θ1
2

)
sin2

(
θ2
2

)
sin

(
θ1 + θ2

2

)
− 27 cos

(
θ2
2

)
= 0.

Arguing as in Case 2, there are three solutions:

θ = (0, π), (2π − 4α, 2α), (4α, 2π − 2α).

Case 4.

16 sin2
(
θ1
2

)
sin

(
θ2
2

)
sin

(
θ1 + θ2

2

)
− 27 cos

(
θ1
2

)
= 0(3.42)

16 sin

(
θ1
2

)
sin2

(
θ2
2

)
sin

(
θ1 + θ2

2

)
− 27 cos

(
θ2
2

)
= 0.(3.43)

Multiply (3.42) by sin(θ2/2), multiply (3.43) by sin(θ1/2), and subtract the results to obtain

sin

(
θ1 − θ2

2

)
= 0.

Using this, we see that the solutions are

θ = (π, π), (2α, 2α), (2π − 2α, 2π − 2α)

Evaluating g at these points, we find out maxh(θ) = 216 attained at (0, 0), minh(θ) = 0,
attained at

θ =

(
2π

3
,
2π

3

)
,

(
4π

3
,
4π

3

)
, (π, 0), (0, π), (π, π).

Finally, we need to look at critical points of g in the interior of T2 × [0, 54]. However, this is

easy. Any zero of ∇g must in particular satisfy ∂g
∂a

= 0, which forces

1 + cos θ1 + cos θ2 + cos(θ1 + θ2) = 0,

which clearly implies g ≥ 0. �

Proof of Theorem 3.5. For θ = (θ1, θ2) ∈ T2, denote by Hλ(θ) the Floquet matrix correspond-
ing to Hλ. Ordering the vertices of the 2 × 2 fundamental domain as shown in Figure 6, we
obtain

Hλ(θ)− (−2 + ε)I =




2 + λ− ε 1 + e−iθ1 1 + e−iθ2 1 + e−i(θ1+θ2)

1 + eiθ1 2 + λ− ε eiθ1 + e−iθ2 1 + e−iθ2

1 + eiθ2 e−iθ1 + eiθ2 2 + λ− ε 1 + e−iθ1

1 + ei(θ1+θ2) 1 + eiθ2 1 + eiθ1 2− λ− ε




For θ ∈ T2, λ > 0, and ε ∈ R, define

p(θ, λ, ε) = det(Hλ(θ)− (−2 + ε)I).

After some calculations, one observes that

p(θ, λ, ε) = −λ4 − 4λ3 +X(θ)− 4ελ

(
3− λ2

2
− cos θ1 − cos θ2 − cos(θ1 + θ2)

)

+ 4ε2(3 + 3λ− cos θ1 − cos θ2 − cos(θ1 + θ2))

− 2ε3(4 + λ) + ε4,

where
X(θ) = −4

(
sin θ1 + sin θ2 − sin(θ1 + θ2)

)2

Clearly X(θ) ≤ 0 for all θ, so we have

det(Hλ(θ) + 2I) = p(θ, λ, 0) ≤ −λ4 − 4λ3 < 0
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for all λ > 0; consequently −2 /∈ σ(Hλ) for all λ > 0, which proves the first claim of the
theorem. Introducing W1(λ, ε) := −λ4 − 4λ3 +2ελ3 +12ε2λ− 2ε3(4 + λ) + ε4, we may rewrite
p as

p(θ, λ, ε) = X(θ)− 4ε(λ− ε)(3− cos θ1 − cos θ2 − cos(θ1 + θ2)) +W1(λ, ε).(3.44)

By standard eigenvalue perturbation theory, we know that |g±λ +2| ≤ λ, so we need only concern
ourselves with |ε| ≤ λ. Since X(θ) ≤ 0 for all θ and the second term of (3.44) is nonpositive
whenever 0 ≤ ε ≤ λ, we arrive at

p(θ, λ, ε) ≤ −λ4 − 4λ3 + 2ελ3 + 12ε2λ− 2ε3(4 + λ) + ε4 =W1(λ, ε)

for all θ ∈ T2, all λ > 0, and all 0 ≤ ε ≤ λ. Moreover, we observe that p(0, λ, ε) =W1(λ, ε), so
this bound is sharp. Factoring W1, we arrive at

W1(λ, ε) = (λ− ε)2(ε2 − 8ε− λ2 − 4λ).

Consequently, we see that W1(λ, ε) < 0 for ε ∈ [0, λ), which implies that p(θ, λ, ε) < 0 for all
θ ∈ T2, all λ > 0, and all 0 ≤ ε < λ; consequently, [−2,−2 + λ) ∩ σ(Hλ) = ∅, which is to say:

(3.45) [−2,−2 + λ) ⊆ gλ.

On the other hand, p(0, λ, λ) = 0, so

(3.46) − 2 + λ ∈ σ(Hλ(0)) ⊆ σ(Hλ)

Alternatively, −2 + λ ∈ σ(Hλ) is clear from eigenvalue perturbation theory as soon as one has
[−2, 2 + λ) ∩ σ(Hλ) = ∅.

Now, for −λ ≤ ε ≤ 0, we have to be more careful with the term

q(θ, λ, ε) := −4ε(λ− ε)(3− cos θ1 − cos θ2 − cos(θ1 + θ2)),

as q can be positive when −λ < ε < 0. Naively, one can bound

3− cos θ1 − cos θ2 − cos(θ1 + θ2) ≤
9

2
,

which leads to the upper bound of X(θ) + q(θ, λ, ε) ≤ −18ε(λ − ε). However, the maximum
of q occurs at the global minimum of X, so we can do better. Indeed, for λ > 0 small and
−λ ≤ ε ≤ 0, we have

(3.47) X(θ) + q(θ, λ, ε) ≤ −16ε(λ− ε).

In particular, by Lemma 3.6, the bound in (3.47) holds for all ε such that −λ ≤ ε ≤ 0 as long

as 8λ2 < 54, i.e. 0 < λ < 3
√
3

2 . This then leads us to

p(θ, λ, ε) ≤W2(λ, ε) : = −λ4 − 4λ3 + 2ελ3 + 12ε2λ− 2ε3(4 + λ) + ε4 − 16ε(λ− ε)

=W1(λ, ε)− 16ε(λ− ε)

for λ > 0 small and −λ ≤ ε ≤ 0. Factoring W2 yields

p(θ, λ, ε) ≤W2(λ, ε) = (ε− λ)(ε− λ− 4)(ε2 − 4ε− λ2)

for λ > 0 small and −λ ≤ ε ≤ 0. It is straightforward to find the roots of W2 and to observe
that W2(λ, ε) < 0 when

2−
√

4 + λ2 < ε ≤ 0.

As a result, this implies p(θ, λ, ε) < 0 for all θ, all λ > 0 small, and all ε ∈ (2 −
√
4 + λ2, 0],

which in turn yields

(3.48) (−
√

4 + λ2,−2] ⊆ gλ.
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On the other hand,

p
(
(π, π), λ, 2−

√
4 + λ2

)
=W2

(
λ, 2−

√
4 + λ2

)
= 0,

which leads us to conclude

(3.49) −
√
4 + λ2 ∈ σ(Hλ(π, π)) ⊆ σ(Hλ).

Putting together (3.45), (3.46), (3.48), and (3.49), we obtain

gλ =
(
−
√

4 + λ2,−2 + λ
)

for small λ, as promised.
�

The effort involved in proving Lemma 3.6 in order to improve the constant “18” to “16” is
nontrivial, but worthwhile. In particular, this is exactly what enables the exact factorization
of W2 and hence the ability to exactly compute the gap edges.

4. Hexagonal Laplacian

We now continue with the Laplacian on the hexagonal lattice. Let Γhex = (Vhex, Ehex) and

b± =
1

2

[
3

±
√
3

]

be as in the introduction. It is not hard to check that {0,a1} is a fundamental set of vertices
and hence every v ∈ Vhex may be written uniquely as either nb+ +mb− or a1 + nb+ +mb−
for integers n,m, so we have

Vhex = {nb+ +mb− : n,m ∈ Z} ∪ {a1 + nb+ +mb− : n,m ∈ Z} .
Recall that u ∼ v for u, v ∈ Vhex if and only if ‖u − v‖2 = 1. After some calculations, we see
that

[∆hexψ]nb++mb− = ψa1+nb++mb− + ψa1+nb++(m−1)b− + ψa1+(n−1)b++mb−

[∆hexψ]a1+nb++mb− = ψnb++mb− + ψnb++(m+1)b− + ψ(n+1)b++mb−

The formula for ∆hex can be made more compact if we view the associated Hilbert space as

`2(Z2,C2) =

{
Ψ : Z2 → C2 :

∑

n,m

‖Ψn,m‖2 <∞
}
,

where the standard basis of C2 corresponds to the left and right vertices of the fundamental
domain, respectively. More precisely, given ψ ∈ `2(Vhex), define Ψ ∈ `2(Z2,C2) by

Ψn,m =

[
ψnb++mb−

ψa1+nb++mb−

]
.

Identifying `2(Vhex) and `2(Z2,C2) in this fashion, the Laplacian for the hexagonal lattice is
given by

[∆hexΨ]n,m = U(Ψn,m−1 +Ψn−1,m) + L(Ψn,m+1 +Ψn+1,m) + JΨn,m,

where

U =

[
0 1
0 0

]
, L = U> =

[
0 0
1 0

]
, J = U + L =

[
0 1
1 0

]
.

Equivalently, if we denote by S1, S2 : `
2(Z2) → `2(Z2) the shift operators

[S1ψ]n,m = ψn+1,m, [S2ψ]n,m = ψn,m+1,
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we have

∆hexΨ =

[
(S∗

1 + S∗
2 + I)ψ−

(S1 + S2 + I)ψ+

]
for any Ψ =

[
ψ+

ψ−

]
∈ `2(Z2,C2).

Abbreviating somewhat, we write:

(4.1) ∆hex =

[
0 S∗

1 + S∗
2 + I

S1 + S2 + I 0

]
.

Now, let periods p1, p2 ∈ Z+ be given, and viewH = ∆hex as a (p1, p2)-periodic operator. For
this setting, there are two vertices of Vhex in {sb+ + tb− : 0 ≤ s, t < 1}, so our Floquet operator
H(θ) will be a P × P matrix with P = 2p1p2. As usual, define Λ =

(
[0, p1) × [0, p2)

)
∩ Z2,

denote the eigenvalues of H(θ) by

EΛ
1 (θ) ≤ · · · ≤ EΛ

P (θ),

and let FΛ
k for 1 ≤ k ≤ P denote the bands of the spectrum. Our main theorem in this section

is the following result.

Theorem 4.1. Let p1, p2 ∈ Z+ be given.

(1) Every E ∈ (−3, 3) \ {−1, 0, 1} belongs to int(Fj) for some 1 ≤ j ≤ P .
(2) If at least one of p1 or p2 is odd, then −1 ∈ int(Fk) and +1 ∈ int(F`) for some

1 ≤ k ≤ ` ≤ P

Proof of Theorem 1.1. This follows immediately from Theorem 4.1. �

Proof of Theorem 4.1. From (4.1), we have

∆hex =

[
0 S∗

1 + S∗
2 + I

S1 + S2 + I 0

]
,

where Sj : `
2(Z2) → `2(Z2) denote the shifts

[S1ψ]n,m = ψn+1,m, [S2ψ]n,m = ψn,m+1.

It is easy to see that

S1 + S∗
1 + S2 + S∗

2 + S1S
∗
2 + S∗

1S2 = ∆tri,

is the triangular Laplacian. Thus, a simple calculation shows that

(4.2) [∆2
hexΨ]n

[
[∆triψ

+]n + 3ψ+
n

[∆triψ
−]n + 3ψ−

n

]
for Ψ =

[
ψ+

ψ−

]
∈ `2(Z2,C2).

This calculation extends to the Floquet matrices, so we see that for each 1 ≤ k ≤ P , the bands
of H = ∆hex obey

FΛ
k,hex = −FΛ

P+1−k,hex

and

(4.3) FΛ
k,hex =





√
FΛ
k−P

2
,tri

+ 3 P
2 < k ≤ P

−
√
FΛ

P
2
+1−k,tri

+ 3 1 ≤ k ≤ P
2

From this, we deduce that E ∈ (−3, 3) lies in the interior of some Fk,hex if and only if E2 − 3
lies in the interior of some F`,tri. For E ∈ (−3, 3) \ {−1, 0, 1}, E2 − 3 ∈ (−3, 6) \ {−2}, while
(±1)2 − 3 = −2. Thus, the conclusions of the theorem follow from Theorem 3.1.

�
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q1 q2

q3 q4

q5 q6

q7 q8

Figure 7. A portion of the hexagonal lattice. A fundamental domain for a
(2, 2)-periodic potential is highlighted in red.

4.1. Opening gaps at 0 and ±1. Define the (1, 1)-periodic potentialQ1 on Vhex byQ1(0) = 1
and Q1(a1) = −1, that is,

Q1(nb+ +mb−) = 1, Q1(a1 + nb+ +mb−) = −1, n,m ∈ Z.

After identifying `2(Vhex) with `
2(Z2,C2) in the usual way, we get (as an operator) [Q1Ψ]n =

ZΨn, where

Z =

[
1 0
0 −1

]
.

From the calculations ZU = U = −UZ and ZL = −L = −LZ, we deduce that Q1∆hex +
∆hexQ1 = 0, and hence

(∆hex + λQ1)
2 = ∆2

hex + λ2 ≥ λ2.

Consequently, (−λ, λ) ∩ σ(∆hex + λQ1) = ∅ and there is a gap at zero. In particular, the gap
is precisely (−λ, λ), and so opens linearly at the maximal possible rate.

Let us consider the (2, 2)-periodic case. We parameterize our potential as (q1, . . . , q8) ∈ R8

as shown in Figure 7.
We now turn to the construction of a potential that opens gaps at 0, 1, and−1 simultaneously.

We show that it opens gaps linearly at zero, quadratically at ±1. Later on, we will show that
one cannot open gaps linearly at ±1 on both sides.

Theorem 4.2. Order the vertices of a 2×2 fundamental cell of the hexagonal lattice as shown

in Fig. 7, define a (2, 2)-periodic potential Q by

(q1, . . . , q8) = (1,−1, 1, 2,−2,−1, 1,−1),

and denote Hλ = ∆hex + λQ. Then, for |λ| > 0 sufficiently small, σ(Hλ) consists of four

connected components. Moreover, if gE,λ = (g−E,λ, g
+
E,λ) denote the gaps of σ(Hλ) that open at

E = 0,±1, one has

(
± 1− λ2

20
,±1 +

λ2

20

)
⊂ g±1,λ⊆

(
± 1− 1

2
λ2,±1 +

1

2
λ2
)
,
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and (
− λ

5
,
λ

5

)
⊂ g0,λ ⊂

(
− λ

4
,
λ

4

)

for all |λ| > 0 sufficiently small.

Let us point out that we do not carefully optimize the constants in the upper and lower
bounds of the gaps; it is possible to get better constants than 1/20, 1/2, 1/5, and 1/4.

Proof. For θ = (θ1, θ2) ∈ T2, let Hλ(θ) denote the Floquet matrix corresponding to Hλ.
Ordering the vertices of the fundamental domain as in Figure 7, we obtain:

Hλ(θ) =




λ 1 0 e−iθ1 0 e−iθ2 0 0
1 −λ 1 0 1 0 0 0
0 1 λ 1 0 0 0 e−iθ2

eiθ1 0 1 2λ 0 0 1 0
0 1 0 0 −2λ 1 0 e−iθ1

eiθ2 0 0 0 1 −λ 1 0
0 0 0 1 0 1 λ 1
0 0 eiθ2 0 eiθ1 0 1 −λ




(4.4)

First, let us consider the gaps at E = ±1. Calculations yield

det
(
Hλ(θ)− (±1 + sλ2)I

)
= X±

0 (θ) +X±
4 (θ, s)λ4 +X±

6 (θ, s)λ6 +O(λ8),(4.5)

in which

X±
0 (θ) = −4(− sin(θ1) + sin(θ1 − θ2) + sin(θ2))

2

X±
4 (θ, s) = 8(s± 1)(2s∓ 1)(3− cos(θ1)− cos(θ1 − θ2)− cos(θ2))

X±
6 (θ, s) = −1∓ 12s+ 72s2 ∓ 16s3 − 4s2(±4s+ 1)(cos(θ1) + cos(θ1 − θ2) + cos(θ2))

It is clear that

X±
0 (θ) ≤ 0 for all θ ∈ T2.(4.6)

Since cos(θ1) + cos(θ1 − θ2) + cos(θ2) ≤ 3, we also have

X±
4 (θ, s) ≤ 0 for all θ ∈ T2, |s| ≤ 1/2.(4.7)

We also have for |s| ≤ 1/4,

X+
6 (θ, s) ≤ −1− 12s+ 72s2 − 16s3 + 12s2(4s+ 1) =: T (s),

and

X−
6 (θ, s) = X+

6 (θ,−s) ≤ T (−s).
One easily checks that T (s) is decreasing on [−0.05, 0.05], and

T (−0.05) = −0.194.

Hence for |s| ≤ 0.05,

X±
6 (θ, s) ≤ −0.194.(4.8)

Combining (4.6), (4.7), and (4.8), we obtain that for |λ| > 0 sufficiently small, and |s| ≤ 1/20,

det(Hλ(θ)− (±1 + sλ2)I) ≤ −0.1λ6 < 0.

This proves the claimed lower bound on the gaps at ±1.
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On the other hand, let us note that X±
0 (0, 0) = X±

0 (π, π) = 0, while




X+
4 (θ, 0.5) = 0 and X+

6 ((π, π), 0.5) = 12,

X+
4 ((0, 0), s) = 0 and X+

6 ((0, 0),−0.5) = 28,

X−
4 ((0, 0), s) = 0 and X−

6 ((0, 0), 0.5) = 28,

X−
4 (θ,−0.5) = 0 and X−

6 ((π, π),−0.5) = 12.

Thus for small λ > 0, we have




det(Hλ(π, π)− (1 + 0.5λ2)I) > 0,

det(Hλ(0, 0)− (1− 0.5λ2)I) > 0,

det(Hλ(0, 0)− (−1 + 0.5λ2)I) > 0,

det(Hλ(π, π)− (−1− 0.5λ2)I) > 0.

We also easily check that

X±
0

(π
2
, π
)
= −16,

which implies that for small λ > 0, we have

det
(
Hλ

(π
2
, π
)
− (±1± 0.5λ2I)

)
< 0.

We therefore conclude that

±1 + 0.5λ2 ∈ σ(Hλ) and ± 1− 0.5λ2 ∈ σ(Hλ),

which proves the upper bounds on the gaps at ±1.
Now let us consider the gap at E = 0. After calculations, we have

det(Hλ(θ)− sλI) = Y0(θ) + Y2(θ, s)λ
2 + Y4(θ, s) +O(λ6),(4.9)

where

Y0(θ) = 15 + 2 cos(2θ1)− 4 cos(θ1 − 2θ2) + 2 cos(2θ1 − 2θ2)− 4 cos(2θ1 − θ2)

+ 2 cos(2θ2)− 4 cos(θ1 + θ2),

Y2(θ, s) = 2[5− 26s2 + (2 + 4s2)(cos(θ1) + cos(θ1 − θ2) + cos(θ2))],

and

Y4(θ, s) = (1− s2)[−3− 42s2 + 4(2 + s2)(cos(θ1) + cos(θ1 − θ2) + cos(θ2))]

We claim that

(4.10) Y0(θ) ≥ 0 for all θ ∈ T2.

Let us see how to use (4.10) to prove the claimed gap at zero and defer the proof of (4.10) for
a moment. Using

cos(θ1) + cos(θ1 − θ2) + cos(θ2) ∈
[
−3

2
, 3

]
,

we obtain that for |s| < 1/5

Y2(θ, s) ≥ 2(5− 26s2 − 3(1 + 2s2)) = 4(1− 16s2) >
36

25
.(4.11)

Combining (4.9) with (4.11), we obtain that for |λ| > 0 sufficiently small

det(Hλ(θ)− sλ I) > λ2.

This proves the claimed lower bound of the gap at 0, modulo the claim that Y0(θ) ≥ 0 for all
θ ∈ T2.
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To prove the upper bound, we compute




Y0
(
2π
3 ,

4π
3

)
= 0,

Y2
((

2π
3 ,

4π
3

)
, s
)
= 4(1− 16s2),

Y4
((

2π
3 ,

4π
3

)
, s
)
= 3(s2 − 1)(16s2 + 5),

which implies that for small λ > 0,

det

(
Hλ

(
2π

3
,
4π

3

)
± 0.25λ I

)
< 0.

We also compute that Y0(0, 0) = 9, which shows for small λ > 0,

det(Hλ(0, 0)± 0.25λ I) > 0.

Thus we conclude that

±0.25λ ∈ σ(Hλ),

which proves the claimed upper bound of the gap at 0.
To complete the argument, all that remains is to show Y0(θ) ≥ 0 for all θ ∈ T2. To that

end, introduce two auxiliary variables

z := cos

(
θ1 − θ2

2

)
, w := cos

(
θ1 + θ2

2

)
,

and write g(z, w) to mean Y0(θ) in the variables z and w. Thus, to optimize Y0(θ) on T2, it
suffices to optimize g(z, w) on the square [−1, 1]2. To execute this change of variables, first
note the following simple consequences of standard identities:

cos(2θ1) + cos(2θ2) = 2(2z2 − 1)(2w2 − 1),

cos(2θ1 − 2θ2) = 2(2z2 − 1)2 − 1,

cos(θ1 + θ2) = 2w2 − 1,

cos(θ1 − 2θ2) + cos(2θ1 − θ2) = 2zw(4z2 − 3).

Putting all this together,

g(z, w) = 15 + 4(2z2 − 1)(2w2 − 1)− 8zw(4z2 − 3) + 2(2(2z2 − 1)2 − 1)− 4(2w2 − 1).

It is easy to check that g ≥ 0 holds on the boundary; concretely,

g(±1, w) = 15 + 4(2w2 − 1)∓ 8w + 2− 4(2w2 − 1)

= 17∓ 8w

≥ 17− 9

> 0.

and

g(z,±1) = 15 + 4(2z2 − 1)∓ 8z(4z2 − 3) + (16z4 − 16z2 + 2)− 4

= 16z4 ∓ 32z3 − 8z2 ± 24z + 9

= (3± 4z − 4z2)2

≥ 0.

So, we now seek zeros of ∇g for |z| < 1 and |w| < 1. One easily computes ∂zg and ∂wg:

∂zg = 8(w − 2z)(3 + 4z(w − z))

∂wg = 8(3z − 4z3 + 4w(z2 − 1)).
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Setting ∂wg = 0 yields

(4.12) w =
4z3 − 3z

4(z2 − 1)
.

Since we are working on the interior of [−1, 1]2, z 6= ±1 and the denominator does not vanish.
Substituting this expression for w into ∂zg and simplifying, we get

∂zg

(
z,

4z3 − 3z

z2 − 1

)
= 2z

(
1

(z2 − 1)2
− 16

)
.

Setting this equal to zero, we obtain three values of z with |z| < 1: 0 and ±
√
3/2. Inserting

these z values into (4.12), the corresponding w values are all readily seen to be zero. Plugging
in the three critical points (0, 0) and (±

√
3/2, 0) into g yields 25 and 16, respectively, which

concludes the proof that g ≥ 0 and hence

Y0(θ) ≥ 0

for all θ ∈ T2, proving (4.10). �

Next, we show that for any (2, 2)-periodic potential, it is impossible that it opens linear
order gaps on both sides of E = ±1 simultaneously.

Theorem 4.3. For any (2, 2)-periodic potential Q and any constant c > 0, the following holds

for all sufficiently small λ > 0:

((−1− cλ,−1 + cλ) ∪ (1− cλ, 1 + cλ)) ∩ σ(Hλ) 6= ∅
Proof. Let (q1, q2, . . . , q8) be the potential on a 2× 2 fundamental cell, as shown in Fig. 7. The
corresponding Floquet matrix Hλ(θ) is

Hλ(θ) =




λq1 1 0 e−iθ1 0 e−iθ2 0 0
1 λq2 1 0 1 0 0 0
0 1 λq3 1 0 0 0 e−iθ2

eiθ1 0 1 λq4 0 0 1 0
0 1 0 0 λq5 1 0 e−iθ1

eiθ2 0 0 0 1 λq6 1 0
0 0 0 1 0 1 λq7 1
0 0 eiθ2 0 eiθ1 0 1 λq8




For 0 < |s| < c, let us consider

det
(
Hλ(θ)− (±1 + sλ)I

)
=

8∑

k=0

X±
k (θ, s)λk.

After a calculation, we obtain

X±
0 (0, s) = X±

1 (0, s) = X±
2 (0, s) = 0 for all s(4.13)

and

X+
3 (0, s) = −X−

3 (0, s) = a0 + a2s
2 + 64s3,(4.14)

where

a0 = −2[(q1 + q2 + q7 + q8)(q4 + q5)(q3 + q6) + (q1 + q8)(q2 + q7)(q3 + q4 + q5 + q6)]

+ 8[(q1 + q8)(q2 + q7) + (q3 + q6)(q4 + q5) + (q1 + q2 + q7 + q8)(q3 + q4 + q5 + q6)]

a2 = −24
8∑

k=1

qk.
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By (4.14), we have

X+
3 (0, s0) = −X−

3 (0, s0) 6= 0

for some s0 such that 0 < |s0| < c. Without loss of generality, we assume

X+
3 (0, s0) > 0 > X−

3 (0, s0).

Combining this with (4.13), we obtain

(4.15) det(Hλ(0)− (1 + s0λ)I) > 0

for small λ > 0. We also have

X±
0 ((π/4, 3π/4), s0) = −4.(4.16)

In particular, (4.16) implies that

det(Hλ(π/4, 3π/4))− (1 + s0λ)I) < 0(4.17)

for all λ ≥ 0 small.
Combining (4.17) with (4.15), for any sufficiently small λ > 0, there exists θ such that

det(Hλ(θ)− (1 + s0λ)I) = 0.

Hence
(1− cλ, 1 + cλ) ∩ σ(Hλ) 6= ∅

as claimed. �

5. Square Laplacian with Next-Nearest Neighbor Interactions

We now turn our attention to the EHM lattice, whose Laplacian is given by

[∆sqnu]n,m = un−1,m + un+1,m + un,m−1 + un,m+1 + un−1,m+1 + un−1,m+1 + un+1,m−1 + un+1,m+1

= [∆squ]n,m + un−1,m−1 + un−1,m+1 + un+1,m−1 + un+1,m+1

= [∆triu]n,m + un−1,m−1 + un+1,m+1.

Now, given p1, p2 ∈ Z+, we define P = p1p2 and Λ = Z2 ∩
(
[0, p1)× [0, p2)

)
as before and view

∆sqn as a (p1, p2)-periodic operator and perform the Floquet decomposition. For θ = (θ1, θ2) ∈
R2, it is straightforward to check that

σ(H(θ)) = {e`(θ) : ` ∈ Λ} ,
where ` = (`1, `2) and

e`(θ) = 2 cos

(
θ1 + 2π`1

p1

)
+ 2 cos

(
θ2 + 2π`2

p2

)
+2 cos

(
θ1 + 2π`1

p1
− θ2 + 2π`2

p2

)

+2 cos

(
θ1 + 2π`1

p1
+
θ2 + 2π`2

p2

)
.

As in Section 2, we label these eigenvalues in increasing order according to multiplicity by

E1(θ) ≤ E2(θ) ≤ · · · ≤ EP (θ)

and denote the P spectral bands by

Fk =
{
Ek(θ) : θ ∈ R2

}
, 1 ≤ k ≤ P.

Straightforward computations shows that σ(∆sqn) = [−4, 8], hence

P⋃

k=1

Fk = [−4, 8].

Our main theorem of this section is
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Theorem 5.1. Let p1, p2 ∈ Z+ be given.

1. Each E ∈ (−4, 8) \ {−1} belongs to int(Fk) for some 1 ≤ k ≤ P .
2. If one of the periods p1, p2 is not divisible by three, then E = −1 belongs to int(Fk) for

some 1 ≤ k ≤ P .

Proof of Theorem 1.5. This follows immediately from Theorem 5.1. �

5.1. Proof of Theorem 5.1. As with the proof of Theorem 3.1, we will divide the proof into
two different cases: E 6= −1 and E = −1 and argue by contradiction. To that end, assume for
the sake of establishing a contradiction that E = minFk+1 = maxFk for some 1 ≤ k ≤ P − 1.

We will use the following lemmas, whose proofs we provide at the end of the present section.

Lemma 5.2. Let us consider the following system:

cos(x) + cos(y) + cos(x− y) + cos(x+ y) =
E

2
(5.1)

sin(x) + sin(x− y) + sin(x+ y) = 0.

For any E ∈ (−4, 8) \ {−1}, the solution set of (5.1) in [0, 2π)2 satisfies

x = 0, 1 + 2 cos(y) =
E + 1

3
,(5.2)

or

x = π, 1 + 2 cos(y) = −(E + 1).(5.3)

Lemma 5.3. Consider the following system:

(5.4)





cos(x) + cos(y) + cos(x+ y) + cos(x− y) = E
2 ,

sin(x) + sin(x− y) + sin(x+ y) = 0,

sin(y)− sin(x− y) + sin(x+ y) = 0.

For any E ∈ (−4, 8)\{0,−1}, the solution set of (5.4) is empty. For E = 0, the unique solution
of (5.4) in [0, 2π)2 is (π, π). For E = −1, the solutions of (5.4) in [0, 2π)2 are (2π/3, 2π/3),
(2π/3, 4π/3), (4π/3, 2π/3) and (4π/3, 4π/3).

We will use Lemma 5.2 in the E 6= −1 case, and Lemma 5.3 in the E = −1 case.

5.1.1. E 6= −1.

Proof of Theorem 5.1.1. Let E ∈ (−4, 8) \ {−1} be given. Define θ̃ = (θ̃1, θ̃2) ∈ [0, 2π)2 and

`(1) = (`
(1)
1 , `

(1)
2 ) ∈ Λ via

θ̃1 = 0, `
(1)
1 = 0,

θ̃2 + 2π`
(1)
2

p2
= arccos

(E − 2

6

)
∈ (0, π).(5.5)

Note that since E ∈ (−4, 8), we have E−2
6 ∈ (−1, 1), hence arccos

(
E−2
6

)
is always well-defined.

Note also that θ̃2 and `
(1)
2 are uniquely determined. Using (5.5), one easily checks that

e`(1)(θ̃) = E,

and

(1, 0) · ∇e`(1)(θ̃) = 0.(5.6)

As in the proof of Theorem 3.1, denote ΛE(θ̃) = {` ∈ Λ : e`(θ̃) = E}, let r := |ΛE(θ̃)| be the

multiplicity of E as an eigenvalue of H(θ̃), and choose s ∈ Z ∩ [1, r] such that

Ek−s(θ̃) < Ek−s+1(θ̃) = · · · = Ek(θ̃) = · · · = Ek+r−s(θ̃) < Ek+r−s+1(θ̃).
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Since all the eigenvalues are continuous in θ, we can take ε > 0 small enough such that

Ek−s(θ) < Ek−s+1(θ), and Ek+r−s(θ) < Ek+r−s+1(θ),

holds whenever ‖θ − θ̃‖R2 < ε. Given ` ∈ Λ and a unit vector β = (β1, β2), we have

e`(θ̃ + tβ) = e`(θ̃) + tβ · ∇e`(θ̃) +O(t2)(5.7)

= e`(θ̃) + tβ · ∇e`(θ̃)(5.8)

− t2

2

[
β21
p21

cos
( θ̃1 + 2π`1

p1

)
+
β22
p22

cos
( θ̃2 + 2π`2

p2

)

+
(β1
p1

− β2
p2

)2
cos
( θ̃1 + 2π`1

p1
− θ̃2 + 2π`2

p2

)

+
(β1
p1

+
β2
p2

)2
cos
( θ̃1 + 2π`1

p1
+
θ̃2 + 2π`2

p2

)]
+O(t3).

In particular, we will use (5.7) if β · ∇e`(θ̃) 6= 0, and (5.8) otherwise.
For any vector β ∈ R2 \ {0}, let

(5.9)
J 0
β = J 0

β(θ̃) : = {` ∈ ΛE(θ̃) : β · ∇e`(θ̃) = 0},
J ±
β = J ±

β (θ̃) : = {` ∈ ΛE(θ̃) : ±β · ∇e`(θ̃) > 0}.
By definition, we must have

|J 0
β |+ |J +

β |+ |J −
β | = r(5.10)

for any β. We also define J0 as follows

J0 = J0(θ̃) := {` ∈ ΛE(θ̃) : ∇e`(θ̃) = 0}.(5.11)

If E 6= 0, Lemma 5.3 directly implies J0 = ∅. If E = 0, J0 is also empty. To see this, suppose
on the contrary that ` = (`1, `2) ∈ J0. Lemma 5.3 implies that

(5.12)
θ̃2 + 2π`2

p2
= π,

and (5.5) forces

(5.13)
θ̃2 + 2π`

(1)
2

p2
= arccos

(
−1

3

)
.

Subtracting (5.12) from (5.13) yields

`
(1)
2 − `2
p2

=
1

2π
arccos

(
−1

3

)
− 1

2
.

However, this implies that (2π)−1 arccos (−1/3) is a rational number, which contradicts the
following well-known fact, whose proof we supply at the end of the present section.

Lemma 5.4.
1

2π
arccos

(
−1

3

)
∈ R \Q.

Therefore J0 = ∅ for any E 6= −1.
We choose β1 = (1, 0). Then (5.6) implies `(1) ∈ J 0

β1
, and hence

J 0
β1

6= ∅.(5.14)
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Next we are going to perturb the point θ̃ and count the eigenvalues. Since J0 = ∅, we can
choose a unit vector β2 such that

β2 · ∇e`(θ̃) 6= 0,(5.15)

holds for any ` ∈ ΛE(θ̃). Thus J 0
β2

= ∅ and

|J +
β2
|+ |J −

β2
| = r.(5.16)

Arguing as in the proof of Theorem 3.1.1, we deduce

r = 2s.(5.17)

Perturbation along β1. Now we perturb the eigenvalues along β1 = (1, 0). The case when
` ∈ J ±

β1
is similar to that of β2. The difference here is that, according to (5.14), J 0

β1
6= ∅.

By Lemma 5.2, we have that for (`1, `2) ∈ J 0
β1
,

(E + 1)

[
cos
( θ̃1 + 2π`1

p1

)
+cos

( θ̃1 + 2π`1
p1

− θ̃2 + 2π`2
p2

)
(5.18)

+ cos
( θ̃1 + 2π`1

p1
+
θ̃2 + 2π`2

p2

)]
> 0.

Indeed, if (`1, `2) ∈ J 0
β1
, (x, y) = (p−1

1 (θ̃1 + 2π`1), p
−1
2 (θ̃2 + 2π`2)) is a solution to (5.1). Hence

Lemma 5.2 implies that we have either

θ̃1 + 2π`1
p1

= 0, 1 + 2 cos
( θ̃2 + 2π`2

p2

)
=
E + 1

3
,

or
θ̃1 + 2π`1

p1
= π, 1 + 2 cos

( θ̃2 + 2π`2
p2

)
= −(E + 1).

Clearly, both cases lead to (5.18).
By employing (5.8), we obtain

e`(θ̃ + tβ1) = E − t2

2p21

[
cos
( θ̃1 + 2π`1

p1

)
+ cos

( θ̃1 + 2π`1
p1

− θ̃2 + 2π`2
p2

)
(5.19)

+ cos
( θ̃1 + 2π`1

p1
+
θ̃2 + 2π`2

p2

)]
+O(t3)

for ` ∈ J 0
β1
. Combining this with (5.18), we obtain that for |t| > 0 small enough

e`(θ̃ + tβ1)

{
< E, if E + 1 > 0,

> E, if E + 1 < 0.
(5.20)

Notice that the choice of β1 causes the second t2 term of (5.8) to drop out.
Without loss of generality, we assume E ∈ (−1, 8). The complementary case when E ∈

(−4,−1) can be handled similarly. For E ∈ (−1, 8), (5.20) implies that

e`(θ̃ + tβ1) < E = minFk+1,(5.21)

holds for |t| > 0 small enough and for any ` ∈ J 0
β1
.

Combining (5.21) with (5.7), we have the following.
For t > 0 small enough,
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• If ` ∈ J +
β1
, we have

Ek+r−s+1(θ̃ + tβ1) > e`(θ̃ + tβ1) > E = maxFk,

which implies

|J +
β1
| ≤ r − s = s,(5.22)

where the equality follows from (5.17).
• If ` ∈ J 0

β1

⋃J −
β1
, we have

Ek−s−1(θ̃ + tβ1) < e`(θ̃ + tβ1) < E = minFk+1,

which implies

|J 0
β1
|+ |J −

β1
| ≤ s.(5.23)

In view of (5.10) and (5.17), Equations (5.22) and (5.23) yield

(5.24) |J +
β1
| = |J 0

β1
|+ |J −

β1
| = s.

As before, we may observe that J 0
−β1

= J 0
β1

and J ±
−β1

= J ∓
β1
. Then, the analysis above applied

with β1 replaced by −β1 forces

(5.25) |J −
β1
| = |J 0

β1
|+ |J +

β1
| = s.

Taken together, (5.24) and (5.25) imply |J 0
β1
| = 0, which contradicts (5.14). �

5.1.2. E = −1.
First, we would like to make a remark on our strategy of the proof of the E = −1 case, and

on the importance of one of the period being not divisible by 3.

Remark 5.5. For the exceptional energy E = −1 of the EHM lattice, we cannot use eigenvalues
with vanishing gradients to create un-even eigenvalue counts unless neither p1 nor p2 is divisible

by 3. The reason is the following: suppose only p1 is not divisible by 3 and we choose θ̃ =

(θ̃1, θ̃2) and `(1) = (`
(1)
1 , `

(1)
2 ) such that e`(1)(θ̃) = −1 and ∇e`(1)(θ̃) = 0. Lemma 5.3 yields

four possibilities (p−1
1 (θ̃1+2π`

(1)
1 ), p−1

2 (θ̃2+2π`
(1)
2 )) = (2π/3, 2π/3), (2π/3, 4π/3), (4π/3, 2π/3)

or (4π/3, 4π/3). Without loss of generality, we choose (2π/3, 2π/3), the other three choices

are essentially the same. Since p2 is divisible by 3, there exists `(2), such that (p−1
1 (θ̃1 +

2π`
(2)
1 ), p−1

2 (θ̃2 + 2π`
(2)
2 )) = (2π/3, 4π/3). Hence e`(2)(θ̃) is also located at −1 with vanishing

gradient. Perturbing e`(1)(θ̃) and e`(2)(θ̃) along a given direction (β1, β2) is equivalent to
controlling the signs of the following two expressions:

β1β2 and − β1β2.

This means we can never choose two different directions that lead to un-even counts. Therefore
we need to develop a new argument for this case.

Indeed, when p1 is not divisible by 3, we choose p−1
1 (θ̃1 + 2π`

(1)
1 ) = 2π/3 and θ̃2 such that

p−1
2 (θ̃2+2π`2) /∈ {2π/3, 4π/3} regardless of the choice of `2. Such choices guarantee that there

are in total p2 eigenvalues located at −1, which are {e`(θ̃), `1 = `
(1)
1 }. It then suffices to

control the movements of these eigenvalues along any given direction. A key observation is
that along any direction, approximately 2p2/3 eigenvalues will move up (down) while the other
p2/3 eigenvalues move down (up), see (5.33). This leads to un-even counting that we need.
Let us point out that if both p1, p2 are divisible by 3, this argument does not work (as it must,
given the example constructed in Theorem 1.6): there will be 2p2 eigenvalues located at −1,
and p2 of them move up while the other p2 of them move down along any given direction.
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Proof of Theorem 5.1.2. Without loss of generality, we assume p1 is not divisible by 3. Let

pj = 3p′j + kj , where p
′
j , kj ∈ Z with 0 ≤ kj < 3 and then define θ̃ by

θ̃1 =
2πk1
3

, θ̃2 =
k2 + 1

4
π.

As usual, denote ΛE(θ̃) = Λ−1(θ̃) = {` ∈ Λ : e`(θ̃) = −1}. We first claim that

(5.26) Λ−1(θ̃) =
{
(p′1, `2) : 0 ≤ `2 < p2 and `2 ∈ Z

}
.

Let us consider the trigonometric equation

cos(x) + cos(y) + cos(x− y) + cos(x+ y) = −1

2
=
E

2
.(5.27)

Using the identity cos(x− y) + cos(x+ y) = 2 cos(x) cos(y), we see that (5.27) is equivalent to

(2 cos(x) + 1)(2 cos(y) + 1) = 0,

whose solutions are cos(x) = −1/2 or cos(y) = −1/2. With our choice of θ̃, it is clear that

(5.28)
θ̃1 + 2πp′1

p1
=

2π

3
, cos

(
θ̃1 + 2πp′1

p1

)
= −1

2
.

Consequently,

(5.29) e(p′1,`2)(θ̃) = −1 for every 0 ≤ `2 < p2.

Due to our choice of θ̃2, we get

cos(p−1
2 (θ̃2 + 2π`2)) 6= −1

2
for any `2 ∈ [0, p2) ∩ Z.(5.30)

Indeed, since p−1
2 (θ̃2 + 2π`2) ∈ [0, 2π), cos(p−1

2 (θ̃2 + 2π`2)) = −1/2 would force

θ̃2 + 2π`2
p2

∈
{
2π

3
,
4π

3

}
,

which, after doing some algebra, leads to

3(8`2 + k2 + 1) ∈ {8p2, 16p2},
which is plainly impossible, since `2, p2 ∈ Z and k2 ∈ {0, 1, 2}. Additionally, due to our choice

of θ̃1, we also have

cos(p−1
1 (θ̃1 + 2π`1)) 6= −1/2 for any `1 ∈

(
[0, p1) ∩ Z

)
\ {p′1}.(5.31)

To see this, suppose on the contrary that (5.31) fails. This forces

θ̃1 + 2π`1
p1

=
4π

3

for some 0 ≤ `1 < p1 with `1 6= p′1. Since

θ̃1 + 2πp′1
p1

=
2π

3
,

this implies
2π(`1 − p′1)

p1
=

2π

3
,

which is impossible since p1 is not divisible by 3. Combining (5.30) and (5.31) yields

(5.32) e`(θ̃) 6= −1 for any ` = (`1, `2) ∈ Λ such that `1 6= p′1.

Taken together, (5.29) and (5.32) imply (5.26).



BETHE–SOMMERFELD CONJECTURE FOR TRIANGULAR, SQUARE AND HEXAGONAL LATTICES 32

Let us choose β = (β1, β2) = (1, 0). We have that for any ` ∈ Λ:

p1β · ∇e`(θ̃)

=− sin
( θ̃1 + 2π`1

p1

)
− sin

( θ̃1 + 2π`1
p1

− θ̃2 + 2π`2
p2

)
− sin

( θ̃1 + 2π`1
p1

+
θ̃2 + 2π`2

p2

)

=− sin
( θ̃1 + 2π`1

p1

)[
1 + 2 cos

( θ̃2 + 2π`2
p2

)]
.

By (5.26), (5.28), and (5.30), we have the following for any ` = (`1, `2) ∈ Λ−1(θ̃):

sin
( θ̃1 + 2π`1

p1

)
=

√
3

2
, cos

( θ̃2 + 2π`2
p2

)
6= −1

2
.

This implies

J 0
β = ∅, and J ±

β =

{
` ∈ Λ−1(θ̃) : ∓1

2
∓ cos

( θ̃2 + 2π`2
p2

)
> 0

}
.(5.33)

Hence we expect that |J +
β | ∼ p2/3, and |J −

β | ∼ 2p2/3. More precisely, we note that

J +
β =

{
(p′1, `2) :

2π

3
<

(k2 + 1)π/4 + 2π`2
p2

<
4π

3

}
.

Using p2 = 3p′2 + k2, we obtain

J +
β =

{
(p′1, `2) : p′2 +

5k2 − 3

24
< `2 < 2p′2 +

13k2 − 3

24

}
.

Consequently,

J +
β =

{
{(p′1, `2) : p′2 ≤ `2 ≤ 2p′2 − 1}, if k2 = 0,

{(p′1, `2) : p′2 + 1 ≤ `2 ≤ 2p′2}, if k2 = 1, 2.
.

Therefore

(|J +
β |, |J −

β |) =





(p′2, 2p
′
2), if k2 = 0,

(p′2, 2p
′
2 + 1), if k2 = 1,

(p′2, 2p
′
2 + 2), if k2 = 2.

(5.34)

Note that p′2 ≥ 1 whenever k2 = 0. Thus, a direct consequence of (5.34) is

|J +
β | 6= |J −

β |.(5.35)

On the other hand, since J 0
β = ∅, following the same argument as in the proof of Theorems 3.1.1

yields |J +
β | = |J −

β |, which contradicts (5.35). �

5.2. Proofs of Lemmas 5.2, 5.3, and 5.4.

Proof of Lemma 5.2. Let x and y solve (5.1) with E 6= −1. The second condition therein yields

sin(x) + 2 sin(x) cos(y) = 0,

leading to two possibilities: sin(x) = 0 or cos(y) = −1/2. If sin(x) = 0, we get x = 0 or x = π,
which yields (5.2) and (5.3) upon plugging into the first condition in (5.1). In the event that
cos(y) = −1/2, we arrive at

cos(x) + cos(y) + cos(x− y) + cos(x+ y) = cos(x) + cos(y) + 2 cos(x) cos(y)

= cos(x)− 1

2
− cos(x)
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= −1

2
,

in contradiction with E 6= −1. �

Proof of Lemma 5.3. Suppose x and y satisfy (5.4). From the proof of Lemma 5.2, the second
condition of (5.4) implies sin(x) = 0 or cos(y) = −1/2. Thus, x = 0, x = π, y = 2π/3, or
y = 4π/3. When sin(x) = 0, the third condition of (5.4) forces sin(y) = 0. The four points
so obtained yield E = 8 when (x, y) = (0, 0), E = −4 when (x, y) = (0, π), (π, 0) and E = 0
when (x, y) = (π, π). Alternatively, when cos(y) = −1/2, the third condition of (5.4) yields
cos(x) = −1/2, which impies x = 2π/3 or x = 4π/3. As in the proof of Lemma 5.2, the four
points corresponding to

x, y ∈
{
2π

3
,
4π

3

}

all yield E = −1. �

Proof of Lemma 5.4. Suppose

cos

(
2πm

n

)
= −1

3
,(5.36)

for m/n ∈ Q. Let Tn(·) denote the n-th degree Cheybeshev polynomial so that

Tn

(
cos

(
2πm

n

))
= cos(2πm) = 1.(5.37)

It is well-known that Tn(x) =
∑n

k=0 akx
k, where an = 2n−1 and ak ∈ Z for any k. Hence (5.36)

and (5.37) imply

2n−1

(
−1

3

)n

+

n−1∑

k=0

ak

(
−1

3

)k

= 1.

Multiplying by (−3)n on both sides of the equation, we obtain

2n−1 − 3
n−1∑

k=0

ak(−3)n−k−1 = (−3)n,

which implies 2n−1 is divisible by 3. Contradiction. �

5.3. Opening a gap at −1.

Theorem 5.6. Enumerate the vertices of a 3 × 3 fundamental cell of the square lattice as in

Figure 8, denote r =
√
4−

√
15, define a (3, 3)-periodic potential Q on Z2 via

(q1, . . . , q9) =
(
− r − 1

r
+ 2, −r, −r + 1

r
− 2, −1

r
, 0, +

1

r
, r − 1

r
− 2, r, r +

1

r
+ 2
)
,

and denote Hλ = ∆sqn + λQ. Then, for all λ > 0 sufficiently small, σ(Hλ) consists of two

connected components. Moreover, if gλ denotes the gap that opens at energy −1, one has
(
−1− λ

10
,−1 +

λ

10

)
⊆ gλ ⊆

(
−1− λ

4
,−1 +

λ

4

)
.

In particular, the gap opens linearly.

Let us observe that the proof below can be refined a bit to yield sharper constants than 1/10
and 1/4.
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Proof. For θ = (θ1, θ2) ∈ T2, let Hλ(θ) denote the Floquet matrix corresponding to Hλ.
Ordering the vertices of the fundamental domain as in Figure 8, we obtain:

Hλ(θ) =




λq1 1 e−iθ1 1 1 e−iθ1 e−iθ2 e−iθ2 e−i(θ1+θ2)

1 λq2 1 1 1 1 e−iθ2 e−iθ2 e−iθ2

eiθ1 1 λq3 eiθ1 1 1 ei(θ1−θ2) e−iθ2 e−iθ2

1 1 e−iθ1 λq4 1 e−iθ1 1 1 e−iθ1

1 1 1 1 λq5 1 1 1 1
eiθ1 1 1 eiθ1 1 λq6 eiθ1 1 1

eiθ2 eiθ2 e−i(θ1−θ2) 1 1 e−iθ1 λq7 1 e−iθ1

eiθ2 eiθ2 eiθ2 1 1 1 1 λq8 1

ei(θ1+θ2) eiθ2 eiθ2 eiθ1 1 1 eiθ1 1 λq9




.

For s ∈ (−1, 1), let us consider

det(Hλ(θ) + (1 + sλ)I) =

9∑

k=0

Xk(θ, s)λ
k.

Our goal is to show det(Hλ(θ) + (1 + sλ)I) never vanishes for sufficiently small λ > 0 and for
|s| < 0.1. Direct computations yield

X0(θ, s) = 4096 sin6
(
θ1
2

)
sin6

(
θ2
2

)

X1(θ, s) = 0

q1 q2 q3

q4 q5 q6

q7 q8 q9

Figure 8. A 3× 3 potential on the square lattice that opens a gap at E = −1
with small positive positive coupling.
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X2(θ, s) = Y2(s) sin
4

(
θ1
2

)
sin4

(
θ2
2

)

X3(θ, s) = Y3(s) sin
4

(
θ1
2

)
sin4

(
θ2
2

)

X4(θ, s) = Y4(s) sin
2

(
θ1
2

)
sin2

(
θ2
2

)

X5(θ, s) = Y5(s) sin
2

(
θ1
2

)
sin2

(
θ2
2

)

X6(θ, s) = Y6,1(s) + Y6,2(s) cos(θ1) + Y6,3(s) cos(θ2)

+ Y6,4(s) cos(θ1) cos(θ2) + Y6,5(s) sin(θ1) sin(θ2)

X7(θ, s) = 0

X8(θ, s) = Y8(s)

X9(θ, s) = Y9(s),

in which

Y2(s) = 512(20− 9s2)

Y3(s) = 256(4− 20s+ 3s3)

Y4(s) = 16(364 + 144s− 504s2 + 81s4)

Y5(s) = 16(64− 196s− 48s2 + 104s3 − 9s5)

Y6,1(s) = 176 + 704s− 3132s2 − 496s3 + 1376s4 − 96s6

Y6,2(s) = −80 + (96
√
15− 320)s+ (1380 + 144

√
15)s2 + 208s3 − (584 + 54

√
15)s4 + 42s6

Y6,3(s) = −80− (320 + 96
√
15)s+ (1380− 144

√
15)s2 + 208s3 − (584− 54

√
15)s4 + 42s6

Y6,4(s) = −16− 64s+ 372s2 + 80s3 − 208s4 + 12s6

Y6,5(s) = 8(2s− 1)3

Y8(s) = 12 + 32s− 360s2 − 512s3 + 1025s4 + 96s5 − 224s6 + 9s8

Y9(s) = 12s+ 16s2 − 120s3 − 128s4 + 205s5 + 16s6 − 32s7 + s9.

One simple observation is that

Y6,1(s) + Y6,2(s) + Y6,3(s) + Y6,4(s) = 0.(5.38)

It is easy to see that for |s| < 0.1,

Y2(s), Y3(s), Y5(s) > 0.

It is easy to compute that

Y ′
9(s) = 12 + 32s− 360s2 − 512s3 + 1025s4 + 96s5 − 224s6 + 9s8 = Y8(s).

Thus,

(5.39) Y ′
9(s) > 12− 32× 0.1− 360× (0.1)2− 512× (0.1)3− 96× (0.1)5− 224× (0.1)6> 4.5 > 0

for |s| < 0.1, which implies

Y9(s) ≥ Y9(−0.1) > −1(5.40)
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for all |s| < 0.1. Carefully estimating Y4(s) and Y8(s) will help us bound the λ6 order term
from below using the AM-GM inequality.

Y4(s) ≥ 16(364− 144× 0.1− 504× (0.1)2−81× (0.1)4) > 5500,(5.41)

Y8(s) ≥ 12− 32× 0.1− 360× (0.1)2 − 512× (0.1)3 − 96× (0.1)5 − 224× (0.1)6 > 4.5.

In fact, since Y8 = Y ′
9 , the second inequality already follows from (5.39). For the Y6,j terms,

we have

(5.42)

Y6,1(s) ≥ 176− 704× 0.1− 3132× (0.1)2 − 496× (0.1)3 − 96× (0.1)6 > 0,

Y6,2(s) ≤ −80 + (96
√
15− 320)× 0.1 + (1380 + 144

√
15)× (0.1)2

+ 208× (0.1)3 + 42× (0.1)6 < 0

Y6,3(s) ≤ −80 + (320 + 96
√
15)× 0.1 + (1380− 144

√
15)× (0.1)2

+ 208× (0.1)3 + 42× (0.1)6 < 0,

Y6,4(s) ≤ −16 + 64× 0.1 + 372× (0.1)2 + 80× (0.1)3 + 12× (0.1)6 < 0,

−14 ≤ Y6,5(s) < 0.

Using (5.38) and (5.42), we obtain

X6(θ) ≥ Y6,1(s) + Y6,2(s) + Y6,3(s) + Y6,4(s) + Y6,5(s) sin(θ1) sin(θ2)

= Y6,5(s) sin(θ1) sin(θ2)

≥ −14| sin(θ1) sin(θ2)|.(5.43)

In particular, the first line uses Y6,2, Y6,3, Y6,4 < 0, the second line uses (5.38), and the final line
uses −14 ≤ Y6,5 < 0.

Now we combine our estimates together. Note that

X0(θ, s) +X2(θ, s)λ
2 +X3(θ, s)λ

3 +X5(θ, s)λ
5 ≥ 0.(5.44)

Using a2 + b2 ≥ 2|ab|, we obtain the following from (5.41)

X4(θ, s)λ
4 +

1

2
X8(θ, s)λ

8 ≥ 2
√
2.25× 5500

∣∣∣∣sin
(
θ1
2

)
sin

(
θ2
2

)∣∣∣∣λ
6.

Using 2| sin(x/2)| ≥ 2| sin(x/2) cos(x/2)| = | sin(x)|, we obtain from above that

X4(θ, s)λ
4 +

1

2
X8(θ, s)λ

8 ≥ 55| sin(θ1) sin(θ2)|λ6.

Combining this with (5.43), we have

(5.45) X4(θ, s)λ
4 +

1

2
X8(θ, s)λ

8 +X6(θ, s)λ
6 ≥ 41| sin(θ1) sin(θ2)|λ6 ≥ 0.

Finally using (5.40) and (5.41), we have

1

2
X8(θ, s)λ

8 +X9(θ, s)λ
9 =

1

2
Y8(s)λ

8 + Y9(s)λ
9 ≥ 2.25λ8 − λ9 > 0.25λ8,(5.46)

provided that λ < 2. Combining (5.44)-(5.46), we have

det(Hλ(θ) + (1 + sλ)I) ≥ 0.25λ8 > 0,

for any θ ∈ T2 and |s| < 0.1. This proves the lower bound on the gap.
For the upper bound, observe that Xj

(
(π, 0), s

)
= 0 for all s and for every 0 ≤ j ≤ 5 and

X6

(
(π, 0),±1/4

)
< −85.

Thus, for small λ > 0,

det
(
Hλ(π, 0) + (1± λ/4)I

)
< −85λ6 +O(λ8) < 0.
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It is also clear that X0((0, 0), s) = 4096, which implies

det
(
Hλ(0, 0) + (1± λ/4)I

)
= 4096 +O(λ) > 0.

Thus we conclude that

1± λ

4
∈ σ(Hλ),

which concludes the proof of the upper bound on the length of the gap. �
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