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ABSTRACT. We prove the discrete Bethe-Sommerfeld conjecture on the graphene lattice, on
its dual lattice (the triangular lattice), and on the extended Harper lattice. For each of these
lattice geometries, we analyze the behavior of small periodic potentials. In particular, we
provide sharp bounds on the number of gaps that may perturbatively open, we describe sharp
arithmetic criteria on the periods that ensure that no gaps open, and we characterize those
energies at which gaps may open in the perturbative regime. In all three cases, we provide
examples that open the maximal number of gaps and estimate the scaling behavior of the gap
lengths as the coupling constant goes to zero.
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1. INTRODUCTION

The Bethe-Sommerfeld conjecture asserts that: for any d > 2 and any periodic function
V : R% = R, the spectrum of the Schrédinger operator

Ly :=-V*+V

has only finitely many gaps. This was studied by many people with important advances in
[24, 26, 35, 37, 38, 39, 41], and culminating in the paper of Parnovskii [32]. Another way to
think about the (continuum) Bethe-Sommerfeld conjecture is that the interval spectrum of
the free Laplacian is preserved in the regime for which the periodic potential is relatively small
compared to the Laplacian, and this precisely happens in the high energy region. Since discrete
Schrodinger operators are bounded, the appropriate analogy to the high-energy region is the
region of small V. Note that in the discrete setting, the number of gaps is always finite; if a
potential is (p1, p2)-periodic, then the spectrum consists of P = p1ps bands and hence has at
most P — 1 gaps. Thus, the questions are: if the number of gaps is much smaller than P — 1,
and further, the exact number of possible gaps, the locations at which gaps may open, and
the size of the gaps when they do open. These questions have been answered for the square
lattice Z? in recent papers [28, 12, 21]. Motivated by prominent physical models, most notably
graphene, the aim of the present work is to prove the discrete Bethe-Sommerfeld conjecture
on lattices of relevance to physical investigations: the hexagonal lattice, its dual lattice (the
triangular lattice), and the square lattice with next-nearest-neighbor interactions (which arises
in the extended Harper’s model).
1
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FIGURE 1. The square lattice.

1.1. Main Results. Let us now describe more precisely the setting in which we work and the
results that we prove. By a graph, we shall mean a pair I' = (V, ) where V is a nonempty set
and & is a nonempty subset of V x V with the following properties:

e For no v € V does one have (v,v) € &;
o If (u,v) € &, then (v,u) € €.
If (u,v) € €, we write u ~ v and we say that u and v are neighbors or neighboring vertices.
We think of £ as the set of directed edges; (u,v) represents the edge that originates at u and
terminates at v.
Given such a graph, we consider Hr = £2(V) and the associated graph Laplacian® Ar : Hr —
‘Hr, which acts via
[Artly =Y v, uw€V, 1) € Hr.
vy
By a Schrodinger operator on I'; we mean an operator of the form Hg = Hr g = Ar + Q,
where @ : V — R is a bounded function that acts on Hr by multiplication:

[Qw]u = Q(uﬁbm uweV, e Hr.

In the present work, we study Z?-periodic graphs. That is, we consider graphs whose vertices V
comprise a subset of R? and for which there exist linearly independent translations a;, as € R?
which leave I' invariant. That is to say:

e For any vertex v e V,v+a; € V for j =1,2;

e For any edge (u,v) € &€, (u+aj,v+a;) € € for j =1,2.
We will then be most interested in studying the case when the potential @ is itself periodic. In
general, we will say that @ : V — R is p = (p1, p2)-periodic for some pi,p2 € Z4 if and only if

Qu+pirar) = Q(u+ peaz) = Q(u), forall ue V.

1.2. The Hexagonal Lattice. One of the most prominent models is supplied by graphene,
a two-dimensional material comprised of carbon atoms located at the vertices of a hexagonal
lattice. The fascinating properties of graphene have led to a substantial amount of attention in
mathematics and physics, see e.g. [2, 3,5, 7, 11, 13, 14, 15, 23, 29, 31] and references therein. We
are thus naturally led to consider the Bethe—-Sommerfeld conjecture on the hexagonal lattice.
To define the hexagonal lattice, let

A PR

1Technicadly7 this is the adjacency operator of the graph. Other authors use ¥, — 1, where we have only v,,.
Our convention is slightly more natural for the setting in which we wish to work. Concretely, all of the graphs
that we consider in the present work have uniform degree (all vertices in a given graph have the same number
of incident edges), and hence leaving off the —1),, term merely costs us a multiple of the identity operator, and
it simplifies the appearance of a few calculations.
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b_

FIGURE 2. A portion of the hexagonal lattice. A fundamental domain is high-
lighted in red.

and
Viex = {na1 +mag :n,m € Z} \ {—a1 + kb, +¢b_ : k, L € 7}.
We define Eyex by declaring u ~ v for u, v € Vyex if |[u — v]j2 = 1. See Figure 2.

Theorem 1.1 (Bethe-Sommerfeld for the hexagonal lattice). For all p = (p1,p2) € Zﬁ_, there
is a constant ¢ = c¢p > 0 such that, if Q : Vhex — R is p-periodic and ||Q||sc < ¢, the following
statements hold true for Hg = Apex + Q:

(1) o(Hg) consists of no more than four intervals.
(2) If at least one of p1 or pa is odd, then o(Hg) consists of no more than two intervals.

Moreover, gaps may only open at 0 and +1 in the first case, and only at zero in the second
case.

Moreover, this theorem is sharp in the following sense: there exists a (1, 1)-periodic potential
(@1 which infinitesimally opens a gap at zero, and there is a (2, 2)-periodic potential Q2 which
infinitesimally opens gaps at —1, 0, and 1.

Theorem 1.2. (1) There exists Q1 : Vhex — R? which is (1,1)-periodic such that o(Hyg,)
has exactly two connected components for all X > 0. Furthermore the gap size at 0 is
of order A.
(2) There exists Qo : Vhex — R? which is (2,2) periodic such that o(Hxg,) has exactly four
connected components for any sufficiently small X > 0. Furthermore the gap size at 0
is of order X\, and the gap sizes at 1 are of order A\>.

Let us remark that Theorem 1.2.(1) is well-known; we merely list it for completeness. The
example in Theorem 1.2.(2) is novel.

1.3. The Triangular Lattice. The next graph that we consider is the triangular lattice, which
is dual to the hexagonal lattice. The graph has vertices

Viri = {na; + mas :n,m € 2} ,

where a; are as before. One then declares v ~ w for v,w € V if ||[v — w|| = 1. Thus, after
identifying na; +mas with the point (n,m) € Z?, we may view the Laplacian on the triangular
lattice as an operator on (?(Z?) via

(11) [Atriw]n,m = [Asqw]n,m + wnfl,m+1 + d}n+1,m71-
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This correspondence amounts to shearing and stretching the the triangular lattice, and identifies
the triangular lattice with the square lattice equipped with additional skewed next-nearest-
neighbor interactions. See Figures 3 and 4.

Theorem 1.3 (Bethe-Sommerfeld for the triangular lattice). For all p = (p1,p2) € Z3., there
is a constant ¢ = c¢p > 0 such that, if Q : Viri — R is p-periodic and ||Ql| < ¢, the following
hold true for Hg = Agyi + Q:

(1) o(Hg) consists of no more than two intervals.

(2) If at least one of p1 or pa is odd, then o(Hg) consists of a single interval.

Moreover, the gap in the first setting may only open at the energy E = —2.

This theorem is sharp vis-a-vis the number of intervals in the spectrum and the arithmetic
restrictions on the periods. Concretely, we exhibit a (2, 2)-periodic potential that perturbatively
opens a gap at —2.

Theorem 1.4. There exists Q) : Viui — R which is (2, 2)-periodic, such that o(Hyq) has exactly
two connected components for any sufficiently small A > 0. Furthermore the gap size at —2 is
of order A.

1.4. The EHM Lattice. In addition to the hexagonal and triangular lattices, we also study
the square lattice with next-nearest neighbor interactions, which is motivated by the extended
Harper’s model (EHM). The EHM was proposed by Thouless [40] and has also led to a lot of
study in mathematics and physics [1, 18, 19, 20, 22, 25]; it corresponds to an electron in a square
lattice that interacts not only with its nearest neighbors but also its next-nearest neighbors.
In the following, we will refer to square lattice with next-nearest neighbor interactions as the
EHM lattice, in order to distinguish it from the standard square lattice.

The EHM lattice also has vertex set Vsgn = 7?. However, now, one connects n and n' if and
only if they are nearest neighbors or next-nearest-neighbors in the square lattice. Equivalently,
one declares

n~n < |n—n|x =1
The associated Laplacian acts on ¢2(Z?) via

[Asqn¢]n,m = [Asq]n,m + wnfl,mfl + wnfl,m+1 + T;Z)nJrl,mfl + wn+1,m+1-
See Figure 5.
Theorem 1.5 (Bethe-Sommerfeld for the EHM lattice). For all p = (p1,p2) € Z2, there is a

constant ¢ = ¢p > 0 such that, if Q : Vegn — R is p-periodic and ||Q||« < c, the following hold
true for Hy = Agqn + Q:

FIGURE 3. A portion of the FIGURE 4. The triangular
triangular lattice lattice after shearing.
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FIGURE 5. A portion of the EHM lattice.

(1) o(Hg) consists of no more than two intervals.
(2) If at least one of p1 or pa is not divisible by three, then o(Hg) consists of a single
interval.

Moreover, the gap in the first setting may only open at the energy E = —1.
This theorem is also sharp:

Theorem 1.6. There exists Q : Z> — R which is (3,3)-periodic such that o(Hyg) has ezactly
two connected components for any sufficiently small A > 0. Furthermore the gap size at —1 is
of order A.

It is also reasonable to consider an EHM lattice in which the diagonal hopping terms are
different from the cardinal direction hopping terms; for example, one might consider the one-
parameter family

[H;ﬂp]n,m = [Asq]n,m + M(wn—l,m—l + wn—l,m—i-l + wn—i—l,m—l + wn—&—l,m—&—l)

with p € [0, 00); = 0 yields the square Laplacian and p = 1 yields Agqn. The authors plan to
address this in a forthcoming work [16].

1.5. Further remarks. Let us mention a closely related work [23]. In [23], Helffer, Kerdelhué
and Royo-Letelier developed a Chambers analysis for magnetic Laplacians on the hexagonal
lattice (and its dual, the triangular lattice) with rational flux. They showed that for a non-
trivial rational flux p/q ¢ Z, the magnetic Laplacians on hexagonal and triangular lattices have
non-overlapping (possibly touching) bands. This recovers a similar feature of the square lattice
[4]. However, unlike the square lattice, which has no touching bands except at the center for ¢
even [30], they were able to give an explicit example of non-trivial touching bands for hexagonal
and triangular lattices. Indeed they showed that the triangular Laplacian has touching bands at
energy El = —/3 for p/q = 1/6, and the hexagonal Laplacian has touching bands at energies
E = ++/3 and 0 for p/q¢ = 1/2. Therefore, the underlying geometry is responsible for the
formation of non-overlapping bands. But it has remained unclear whether there will be other
touching bands for different fluxes (and if any, what are the locations).

In our work we are able to give a sharp criterion of the formation of touching bands for the
free Laplacians on these lattices and the EHM lattice. Although the general strategy follows
that of [21], there are several challenges to overcome in the present work:

e The Floquet parameters and perturbation directions that we choose in the perturb-
and-count technique are strongly model-dependent in a subtle fashion. For example,
at non-exceptional energies, we locate Floquet parameters and a perturbation direction
in a way such that the Floquet eigenvalues with vanishing linear terms have quadratic
terms of the same sign along this direction. At the exceptional energy of the triangular
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lattice, we choose two directions such that the eigenvalues with vanishing gradients
have quadratic terms of different signs along the two directions; for a more detailed
discussion, see Remark 3.4. This is similar to what was done in [21] for the square
lattice case. However, for the EHM lattice, any direction will lead to the same number
of positive and negative quadratic terms; see Remark 5.5. This issue is resolved by
a new construction: we find a direction that moves approximately 2/3 of the Floquet
eigenvalues up while the other 1/3 move down. All these constructions depend heavily
on the Floquet representation of the eigenvalues, and thus get more difficult as the
underlying geometry gets more complicated.

e Applying the perturb-and-count ideas directly to the hexagonal lattice is quite difficult,
due to the fact that the Floquet eigenvalues do not have simple expressions; compare
(4.3). However, one can relate Laplacians and Floquet matrices for the triangular and
hexagonal lattices in a fairly elegant fashion (see [23] and our (4.2)). Thus, we prove
the Bethe-Sommerfeld conjecture directly for the triangular lattice and then derive the
corresponding statement for the hexagonal lattice via duality.

e Because of the more complicated structure of the lattices involved, constructing poten-
tials that open gaps at the exceptional energies is substantially more difficult than in
the square lattice. In particular, we need to construct (2,2)-periodic potentials that live
on eight vertices for the hexagonal lattice, and (3,3)-periodic potential for the EHM
lattice. In this paper we develop an robust technique to study these finite volume prob-
lems in a sharp way. Indeed, we can not only prove that a gap exists, but also estimate
its size up to a constant factor (see Theorems 3.5, 4.2, and 5.6). In the case of the
triangular lattice, we are even able to use our technique exactly compute the gap, not
only estimate its size (Theorem 3.5).

The remainder of the paper is organized as follows. Section 2 recalls Floquet theory for
Z2-periodic graphs. We work with the triangular lattice in Section 3, proving Theorems 1.3
and 1.4. We then work with the hexagonal lattice in Section 4, proving Theorems 1.1 and 1.2.
Finally, we conclude with the EHM lattice in Section 5, proving Theorems 1.5 and 1.6.

2. FLOQUET THEORY FOR PERIODIC SCHRODINGER OPERATORS ON GRAPHS

Let I' = (V, &) be a Z2-periodic graph with translation symmetries a1, as € R?, and suppose
Q@ :V — Ris p = (p1,p2)-periodic, that is,

Q(u+pja;) =Qu), uveV, j=1,2.

We will briefly describe Floquet theory for Hg = Ar + @Q, following [27]. The main purpose
of this section is to establish notation, so we do not give any proofs. One may write Hg as a
constant-fiber direct integral over the fundamental domain. Concretely, let

Vi=VN{sar+tay:0<s<p, 0<t<ps}.
By periodicity, |Vt| = P := pop1p2, where
po=|VN{sas+tay:0<s,t<1}|

Here, and throughout the paper, we use |S| to denote the cardinality of the set S. For each
edge (u,v) € £ there exist unique vertices ug, v¢ € V¢ and unique integers n,m,n’,;m’ € Z with

u = uf + npray + mpaaz, v =v;+ n'pra; + m'pras,

We then define the index of (u,v) by 7(u,v) = (n’ —n,m'—m). Finally, for u,v € V¢, we define
B(u,v) to be the set of all translates of v that connect to u via an edge of I'":

B(u,v) ={w €V :w ~u and w = v+ np1a; + mpaay for some n,m € Z} .
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Then, for each 8 = (01,6,) € R?, the corresponding Floquet matrix is a self-adjoint operator
on Hy := £2(V;) = CY* defined by

(2.1) (0u, HQ(0)dy) = Z exp (Z’<T(u,w),0>).

weB(u,v)

In the event that the sum in (2.1) is empty, (0u, HQ(6)d,) = 0. Clearly, if 0 — 0; € 27Z for
j = 1,2, then Hg(0) = Hg(0'), so Hg(0) descends to a well-defined function of 8 € T? :=
R%/(27Z)? = [0,27)%. We will freely use § € R? or @ € T? depending on which is more
convenient in a given setting.

Informally, (2.1) represents the restriction of Hg to the discrete torus

(Zay © Zasz)/(p1Zay © palas) = Ly, © Lp,.

with the following boundary conditions: wrapping once around the torus in the positive a;
direction accrues a phase ¢! and wrapping around once in the positive ay direction accrues
a phase €2, More precisely, we may view Hg(0) in the following manner. The operator Hg
acts on the space CY of arbitrary (not necessarily square-summable) functions V — C. When
Q is (p1, p2)-periodic, then for each @ € T2, H preserves the subspace

H(O) = {v € C”: p(u+pja;) = Pp(u)} .

Then, Hg(6) is equivalent to the restriction of Hg to #H(8).
For each 6, order the eigenvalues of Hg(0) as

Ey(0) <--- < Ep(0)

with each eigenvalue listed according to its multiplicity. Then, for 1 < j < P, the jth spectral
band of Hg is defined by

F; = F(Q) :=ran(E;) = {E;(0) : 0 € T*} = {E;(0) : 0 € R?}..

Theorem 2.1. With notation as above,

P
o(Ho) = |J Hal0) = | F.
j=1

0cT?

We will use Theorem 2.1 in the following way. Making the dependence on the potential Q
explicit, one may write

F; = F;(Q) = [E; (Q), Ef (Q)].

The key fact is the following: by standard perturbation theory for self-adjoint operators, EJjE (Q)

are 1-Lipschitz functions of ). Here, one views @ as an element of R” and the perturbation
is measured with respect to the uniform metric thereupon. In particular, if an energy F
satisfies E € int(F}(Q)), then (E —§, E+ §) C F;(Q) for some positive §, and it follows that
E € Fj(Q'") C o(H) for any (p1,p2)-periodic Q' with ||Q — Q'||c < d. Note that here it is
very important that one views the periods as fixed: one may only perturb within R for a fixed
P. Thus, our analysis revolves around determining for a given energy E, whether FE belongs
to the interior of some band of the Laplacian, where the Laplacian is viewed as a degenerate
(p1, p2)-periodic operator.
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3. TRIANGULAR LAPLACIAN

We view the triangular Laplacian as acting on the square lattice ¢?(Z?), but with extra
connections as in (1.1):

[Atriu]n,m = Up—1,m + Un+1im + Unm—1 + Unm+1 + Un—1m+1 + Un+1,m—1
= [Asqu]n,m + Un—1,m+1 + Un+1,m—1-

Now, given p1, ps € Z4, we view Ay as a p-periodic operator and perform the Floquet decom-
position. Define P := p1ps as in Section 2, and put

Ai=220([0,p1) % [0,2) )
For 8 = (01, 0:) € R?, it is straightforward to check that

o(H(8)) = {es(8) : £ €A},
where £ = ({1, f2) and

0 27l (7 27l 0 27/ 0 27/
62\(9)2200s<M>+QCOS<M>+2COS< 1+2ml G2+ 7r2>'

Let us point out that one needs to be somewhat careful at this point; namely, 6?(9) is not a well-
defined function of @ € T?. However, the error incurred in using a different coset representative
of @ € T? is simply a change in the index £, and one can check that the family {e}(0) : £ € A}
is a well-defined function on T? (as well it should, since the operator H() is itself a well-defined
function of @ € T?). In any case, the ambiguity disappears when one considers the covering
space R?, which we do for most of the paper. One could also use the minimal covering space
R?/(p1Z®p2Z) on which the ef are well-defined, but this does not accrue any benefits vis-a-vis
the present work, so we simply use R2.
As in Section 2, we label these eigenvalues in increasing order according to multiplicity by

E}N6) < Ef(0) <--- < EB(0)
and denote the P spectral bands by
Fr={E}O):0cR*}, 1<k<P
Straightforward computations shows that o(A) = [—3, 6], and thus

P
L =1[-3.6].
k=1

Henceforth, we view p; and po as fixed and so we drop A from the superscripts. Our main
theorem of this section is the following.

Theorem 3.1. Let p1,p2 € Z4 be given.

1. Fach E € (=3,6) \ {—2} belongs to int(Fy,) for some 1 < k < P.
2. If one of the periods p1,p2 is odd, then E = —2 belongs to int(Fy) for some 1 < k < P.

Proof of Theorem 1.3. As already discussed, this follows immediately from Theorem 3.1. [

3.1. Proof of Theorem 3.1. We will divide the proof into two different cases: F # —2 and
E = —2. Our general strategy is to argue by contradiction. More specifically, we assume
E = min Fj,1 = max F}, for some 1 < k£ < P — 1, and show that this leads to a contradiction.
We will use the following two lemmas, whose proofs we provide at the end of the present section.
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Lemma 3.2. For any E € [—3, 6], there exist z,y € [0,27) such that

(3.1) cos(z) + cos(y) + cos(x —y) = g
(3.2) sin(z) + sin(y) = 0.
Furthermore, if £ € [—3,—2), we have
(3.3) cos(z) +cos(y) = —1+VE+3<0
for any z,y that satisfy conditions (3.1) and (3.2), and, if E' € (-2, 6], then we have
(3.4) cos(x) +cos(y) = —1+VE+3>0
for any z,y that satisfy conditions (3.1) and (3.2).
Lemma 3.3. Consider the following system:
cos(z) + cos(y) + cos(z —y) = £,

(3.5) sin(z) + sin(z —y) =0,
sin(y) — sin(z — y) = 0.

For any E € (—3,6) \ {—2}, the solution set of (3.5) is empty. For £ = —2, the solutions of
(3.5) in [0,27)? are (0,7), (7, 0) and (7, 7).

We will use Lemma 3.2 in the E # —2 case, and Lemma 3.3 in the F = —2 case.
3.1.1. F# -2.

Proof of Theorem 3.1.1. Let E € (—3,6) \ {—2} be given and suppose for the purpose of es-
tablishing a contradiction that F = max Fy = min Fyq for some 1 < k < P. Let (z,y)

denote a solution to (3.1) and (3.2) from Lemma 3.2, and take 8 = (61,0,) € [0,2m)? and
) = (Egl),égl)) € A such that

pl_l(gl + 2#651)) =z, and pz_l(gg + 2%651)) =y.

It is clear that @ and £1) are uniquely determined by x and y. Let us also note that (3.1) is
equivalent to
ep(0) = E.

Define Ag(@) C A to be the set of all £ € A such that ep(@) = E. Then r := |Ag(0)] is the
multiplicity of F € o(H(0)) and clearly £1) € Ap(8).
Since E € Fj, by assumption, let s € Z N [1,r] be chosen so that

Ek—s(e) < Ek—s—i-l(a) == Ek:(o) == Ek‘-i-r—s(e) < Ek‘—i—r—s—i—l(e)'
Since all the eigenvalues are continuous in 8, we can take £ > 0 small enough such that
Ekfs(0> < Ek75+1<9) and Ek+T*S<0) < EkJrrferl (0)

hold whenever ||@ — 0||g2 < €. Our goal is to perturb about the point 8 in two directions, one
of which is “generic” and one of which is carefully chosen. The generic perturbation moves half
of the eigenvalues to the right and half to the left, which we shall use to conclude that r = 2s.
The non-generic perturbation is carefully chosen to contradict this.

Given £ € A and a unit vector 8 = (31, 52), we have

(3.6) ee(0 +18) = eg(0) + 1B - Veg(0) + O(t?)

(3.7) =eg(0) +tB - Vee(0)
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2| 2 0, +2rl1N 2 0 + 27y
— & | =5 cos <7) + —5 cos (7)
2 | py P y2 P2

2 01 + 2101 Oy + 210
—l—(é—@) COS(1+ w0+ WQ)]_i_O(t?;).
p1 b2 b1 D2

In particular, we will use (3.6) if 8- Veg(0) # 0, and (3.7) otherwise.
For any vector 3 € R?\ {0}, let

T3 =J7J30) = {Lc Ap(8): B Ver(8) =0},
J5 =J5(0):={teAp(0): £B-Vey(8) > 0}.

Consequently, we always have

(3.8)

(3.9) T8+ 1T |+ 1T5 | =7
We also define Jp as follows
(3.10) Jo = Jo(8) :={€ € Ap(6) : Vey(d) = 0}.

Since F # —2, Lemma 3.3 clearly implies Jy = 0.
We choose 81 = (81,1, B1.2) = (p1,p2)//P? + p3. Then (3.2) is equivalent to

B1- Ve (0) =0,
hence jgl £ ().

Next we are going to perturb the point 6 and count the eigenvalues. Since Jy = (), we can
choose a unit vector B2 such that

(3.11) B2 - Veg(0) £ 0,
holds for any £ € Ag(8). Thus, jgz = (), so one concludes
(3.12) Ta| + 15, =T

Perturbation along B2. We first perturb the eigenvalues along the By direction. Since ng =0,
we will always employ (3.6).
For ¢ > 0 small enough, we have the following.

° Ifﬁejﬁt,wehave
Eiir—st1(0 +132) > e(0 +132) > E = max F,
which implies
(3.13) T, <7 —s.
° IfEEJﬁ_Q,We have
Er—o(0+1B2) < eg(0 + tB32) < E = min Fiyy,
which implies
(3.14) |Tg,| < s.
In view of (3.12), Equations (3.13) and (3.14) imply
(3.15) T, = s.
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Upon realizing that j952 =0 and J* , = jﬁt , we may apply the analysis above with G5
replaced by —(@2 and conclude that

(3.16) T =Tl = .
In particular, (3.15) and (3.16) imply
(3.17) r=2s.

Perturbation along 31. Now we perturb the eigenvalues along 3;. Without loss of generality,
we assume E € (—2,6). The other case can be handled similarly. The case when £ € ‘7,6#1 is

similar to that of 39. The difference here is jg ) =+ ().
By Lemma 3.2, we have

01 + 270 0> + 270
(3.18) cos (ﬁ) + cos (M) = 1+ VE+3#0
b1 D2
for £ = (41,09) € ‘7,81' Thus, by employing (3.7), we obtain
ee(0 +t51)
£ 0, + 2l 0o + 27y 5
=E———5—— ) eos (———2) ) + Ot
sl ) reos (F,7)) o)
2

(3.19) )(—1+\/E+3) +O(t?).

2(p? + p}

Notice that the choice of B causes the third #? term of (3.7) to drop out.
Since E € (—2,6), (3.19) implies that

(3.20) ee(6 +tB1) < E = min Fy, 1,

holds for |t| > 0 small enough and for any £ € 7, ,gl'
Combining (3.20) with (3.6), we have the following.
For ¢ > 0 small enough,

° Iffejgl,wehave
Epirs11(0 +181) > €e(0 +tB1) > E = max Fy,
which implies
(3.21) Tl <7 —s=s,

where the equality follows from (3.17).
o If ¢l c ng Ujﬁ_l, we have

Ek—s—1(§+ tﬁl) < 6[(54- t,Bl) < E = min Fj 4,

which implies

(3.22) T8+ 175, < 5
In view of (3.9) and (3.17), Equations (3.21) and (3.22) yield
(3.23) 5.1 = 178, + 1T, = s.

As before, we may observe that J° 8 = *781 and jfﬁl =J ;)Fl . Then, the analysis above applied
with 81 replaced by —3; forces

(3.24) T = T8+ 175, = s.
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Taken together, (3.23) and (3.24) imply \ng\ = 0, which contradicts jgl # 0.
D

3.1.2. E=-2.
First, we would like to make a remark on our strategy in the proof of the £ = —2 case, and
on the importance of one of the periods being odd.

Remark 3.4. We will choose 6 = (6;,65) and £1) = (fgl),ﬁgl)) such that el(l)(g) = —2 and
Veyw (6) = 0. Lemma 3.3 yields three possibilities (pl_l(gl —|—27T€§1)),p2_1(52 —1—277551))) = (0,m),
(w,0) or (m,m). The choice of 0 depends on which one of py,py is odd; we will choose (0, )
if p; is odd and (m,0) if po is odd. This choice guarantees that the only eigenvalue located
at —2 with vanishing gradient is ee(l)(év). Consequently, it suffices to control the second order

perturbation of (a single eigenvalue) e,q)(6) along a given direction (531, 52). When p; is odd,
this is equivalent to controlling the sign of the following expression (compare (3.28)):

(BB
b1 P2

We can easily choose two directions such that the expression above has different signs, which

leads to un-even eigenvalue counts and hence to the desired contradiction.

A posteriori, the existence of a (2,2)-periodic potential satisfying the conclusion of Theo-
rem 1.4 implies that this argument must fail if both p; and py are even; let us briefly describe
why this must be the case. If both pi,ps are even, there will be three eigenvalues at —2 with
vanishing gradients, corresponding to all three solutions (0, 7), (m,0), (7, 7). Trying to control
the second order perturbations of all these three eigenvalues along (51, 82) is equivalent to
controlling the signs of the following three expressions simultaneously

b1 B B B
( ) ) 61 (

=) and B,

A simple inspection of these three expressions yields that two of them are always non-negative
with the other one being non-positive. Therefore we can never choose two different directions
that lead to un-even eigenvalue counts. This explains why at least one of the periods must be
odd for our argument to work.

Proof of Theorem 3.1.2. Now let us give a detailed proof. Without loss of generality, assume
p1 is odd, let £ = —2, and assume for the sake of contradiction that £ = max Fj, = min Fj4

for some k. We choose 8 and £1) via
0, %), if po is even,

=0, () =0, (6s,0") =
! (02,67 T, %), if py is odd.

With these choices of £ and 5, one can check that eem(é) = —2 = E. As before, let r

denote the multiplicity of E and let Ag(0) denote the set of £ € A with eg(@) = —2. Note that
we also have Veyq)(0) = 0, and thus Jy # (). Moreover, we claim that Jy = {eM}. To see
this, suppose there exists £ # £ in Jy. In view of Lemma 3.3, we must have
51 + 27l
n

which implies p; = 2¢;, which is impossible, since p; is odd. Consequently,

Jo = {2(1)}‘

:7‘(‘7
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Let us choose B1 = (f1,1,81,2) = (0,1) and a unit vector

B2 = (B2, B22) ~ (2p1,p2)/1/ 4P} + 13

such that
Bo1 Boo
3.25 —= — == >0,
( ) 522( D1 D2 )
and
(3.26) Ba - Veg(8) £ 0 holds for any £ € Ag(8)\ {1}

We will use (3.25) to control the perturbation of e,u)(@) along the B, direction. We also
note that (3.26) simply says

(3.27) I35, = Jo = {£V}.

Perturbation along B2. We first perturb the eigenvalues along the G2 direction.

By (3.27), we need only consider first-order perturbation theory as in (3.6) for £ € Ag(6) \
{€M1. Since £ € Jy, we need to employ (3.7) for e,q). Indeed, by (3.7), we have for [t| >0
small enough,

2 2
eo (0 +182) = €40 (0) — t; [Bp? - %3’2 - (ﬁpil - %2’2)2 +0(t%)
(3.28) - 2 %;(B;’l - ﬁ;j)# +O(#)
< =2
= min Fy 1,
where we used (3.25) in the last inequality.
For t > 0 small enough, we then have the following.
° Ifeejﬁt,wehave
Eprr—s41(0 +182) > e4(0 +132) > E = max Fy,
which implies
(3.29) |jﬁ+2| <r-—s.
o Iflc ‘75_2 UJ Jo, we have
E—s(0 +tB2) < eg(0 +B2) < E = min Fy 1,
which implies
(3.30) | T, + 10| < s.
Taking (3.9), (3.27), (3.29), and (3.30) into account, we have
(3.31) | Tg,| =5 — 1.
Replacing B2 by —85 as in previous phases of the argument, we arrive at
(3.32) |75, =5 — 1.

Combining (3.31) with (3.32), we arrive at
(3.33) F = T4+ 15+ 1o = 25 — 1.
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Perturbation along (31. Now we perturb the eigenvalues along 31 = (0,1). The case when
L e jﬁil is similar to that of B2. The difference here is the behavior of perturbations of e,u) in
the direction B;. Indeed, by (3.7), we have

- ~ 2B Bia (Bii Pig\2 3
ez(l)(e =+ t,@l) = 64(1)(0> — 5 [p% — E — < 1 — p72> + O(t )
t2 3
= -2+ — + O
2]

> —2 = max Fj.

Thus, the perturbations of e,q) in the direction B; always move up.
For ¢ > 0 small enough,

o If¢lc ‘75_1 U Jo, we have

Epir—s+1(0 +1B1) > es(8 + t31) > E = max Fj,
which implies
(3.34) | T5 |+ |Jo| <7 —s.
° Iffejﬁ_l,wehave
Ej_s_1(0 +181) < ex(6 +tB1) < E = min Fiy 1,

which implies

(3.35) |T5,1 < s.
In view of (3.9), Equations (3.34) and (3.35) yield
(3.36) T51 = s.

Applying the usual symmetry argument, we also arrive at |j’3+1 | = s, which leads to

P = T4+ |5+ 1ol = 25 4+ 1,
which in turn contradicts (3.33). O
3.2. Proof of Lemmas 3.2 and 3.3.

Proof of Lemma 3.2. Let E € [—3,6] be given, let x be as-yet-unspecified, set y = 27 — x, and
note that (3.2) holds. Then, using y = 27 — =, we note that

cos(x) + cos(y) + cos(x — y) = 2 cos(x) + cos(2x)
= 2cos(z) + 2cos’(x) — 1.
Setting 2 = cos(z), we seek to solve 2z + 222 — 1 = E/2, which gives

1 FE -1+ E
P =0 = z:i.
2 4 2
Thus, we may take x so that
-1++V3+FE
cos(a:):f.

In fact, since —3 < F < 6, we may take 0 < x < 27/3. Thus, with this choice of x (and
y =2m —x), we get (3.1).

Finally, suppose x and y solve (3.1) and (3.2) for E' # —2. From (3.2), we deduce that either
x4y =27 or |x —y| = m. The second option leads to £ = —2, so we must have y = 27 — x.
Solving for cosx as before yields (3.3) when E < —2 and (3.4) when F > —2. O
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[
FIGURE 6. A (2,2) periodic potential on the triangular lattice with a gap at
E = —2 for all positive coupling constants.

Proof of Lemma 3.3. Suppose that x and y solve

(3.37) cos(x) + cos(y) + cos(z —y) = A
(3.38) sin(z) +sin(z —y) =0
(3.39) sin(y) —sin(z —y) =0

for some A € (—3/2,3). Adding (3.38) and (3.39), we arrive at
sin(z) = —sin(y).

For (x,y) € [0,2m)2, this forces either |z —y| = 7 or x +y = 27. In the case |z — y| = 7,
substituting in to (3.38) and (3.39) gives sin(z) = sin(y) = 0, forcing =,y € {0,7}. Plugging
the various possibilities into (3.37), one either gets A = 3 ¢ (—3/2,3) (when z = y = 0) or
A = —1 (when at least one of z or y is ).

Alternatively, if x = 27 — y, (3.38) yields sin(z) + sin(2z) = 0, which leads to

sin(x)(1 4 2cos(z)) = 0.

Setting sin(x) = 0 yields z € {0,7} which leads to the same solutions as before. Setting
1+ 2cos(z) = 0 yields (z,y) = (27/3,47/3) or (z,y) = (47/3,27/3). Plugging in either
possibility into (3.37) yields

3
cos() + cos(y) + cos(z — y) = —5 ¢ (~3/2,3),
as claimed. O

3.3. Opening a Gap at —2. Let us exhibit a (2,2)-periodic potential that perturbatively
opens a gap at energy E = —2 for the triangular lattice.

Theorem 3.5. Define

1 if m orn is even,

nm = (—1)™" =
@n, (=1) {—1 if both m and n are odd,
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and denote Hy = Ayi + AQ. For all A > 0, o(H)) has two connected components. Moreover,
for all X > 0 sufficiently small, the gap that opens about E = —2 is precisely equal to

gr = (—\/4 T2, 24 A) .
In particular,

oal = A+ (VA2 - 2) ~A+A42,
so the gap opens linearly as A | 0.
The following lemma will be used:
Lemma 3.6. Forall@ € T2 and all 0 < a < 54,
4(sin 0y + sin Oy — sin(0; + 92))2 + a(1 4 cos by + cos O3 + cos(f1 + 62)) > 0.
Proof. Define
g(61, 05, a) = 4(sin @1 + sin s — sin(f1 + 62))? + a(1 + cos By + cos By + cos(fy + 62)).
We begin by checking the boundary of T? x [0,54]. It is easy to see that g > 0 if a = 0. For
a = 54, define h(0) = ¢g(0,54). Using the identities

sinx + siny — sin(x 4+ y) = 4sin (§> sin (Q) sin <W> ,

2 2 2
. . Y\ . Yy
cosx — cos(z + y) = 2sin (§> sin (x + 5)
sinx + sin(z + y) = 2 cos (%) sin (ac + %) ,

we may simplify VA to get

oh _ . D) . 01 . 2 0 . 01 + 0o )
(3.40) 90, ~ 4 sin (01 + 2> [16 sin (2> sin <2> sin < 5 ) — 27 cos <2> ] ,

oh _, . 2! o (01 . (b2 . (01+0 6,
(3.41) 90, ~ 4sin (02 + 2> [16 sin <2> sin <2> sin <2 ) — 27 cos <2> ] )

Consequently, setting Vh = 0 leads to four cases. For notational convenience, define

=ar in42—7
« = arcs \/32.
. 0 . 0
sin <91—|—22> = sin (02+21> =0.

This implies 61 + %02 € 77 and 09 + %91 € wZ. Solving the resulting systems for solutions in

[0,27) yields three points:
2m 27 4 47w
0= (070)7 <373> j <373> .
Case 2.

; 92 _ 22 01 . 02 . 01 + 92 91 B
sin (91 + 2) = 16sin <2> sin (2> sin ( 5 ) 27 cos <2> =0.

As before, the first condition forces 61 + %02 € 7. Plugging the various possibilities that this
yields into the second condition gives three solutions:

0 = (m,0), (20,27 —4a), (27 —2a,4a).

Case 1.
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: O\ . (01 . of02) . [0+ 02\ _
sin <92 + 2) = 16sin (2) sin <2> sin ( 5 ) 27 cos <2> = 0.

Arguing as in Case 2, there are three solutions:

0= (0,7), (2r—4a,2a), (4da,2m —2a).

Case 3.

Case 4.

(3.42) 16 sin? <921> sin <922> sin <91 —;92> — 27 cos <021> =0
(3.43) 16 sin (%) sin? <022> sin <01 ;92) — 27 cos (922) =0.

Multiply (3.42) by sin(f2/2), multiply (3.43) by sin(61/2), and subtract the results to obtain

. (b —02)
sm< 5 )-O.

Using this, we see that the solutions are
0 =(m7), (20,2c), (27 — 20,27 — 2av)
Evaluating g at these points, we find out maxh(€) = 216 attained at (0,0), minh(8) = 0,

attained at e 4
27 27 T 4m
0 - <3,3>a <3,3>a (7{-30)7 (0377)’ (ﬂ-?ﬂ-)'

Finally, we need to look at critical points of g in the interior of T? x [0, 54]. However, this is
easy. Any zero of Vg must in particular satisfy % = 0, which forces

1+ cosfy + cosfy + cos(61 + 62) =0,
which clearly implies g > 0. ([l
Proof of Theorem 3.5. For @ = (01,05) € T2, denote by H)(0) the Floquet matrix correspond-

ing to Hy. Ordering the vertices of the 2 x 2 fundamental domain as shown in Figure 6, we
obtain

24+A—¢  l+eh L+e 2 14 emi01402)
14 e 24+ N—¢c et it 14 02
14e%2  e7® 4eif2 24 N—¢ 1+ e
14 ei0t02) 1 4 ¢ifa 1+ ettt 2-XA—¢
For @ € T%, A > 0, and ¢ € R, define
p(0, )\, e) = det(H)(0) — (—2 + 2)I).

After some calculations, one observes that

Hy(8) — (—2+¢)] =

2
p(B, )\, €) = =2t —4X3 + X (0) — 42 (3 — % — cos 6y — cos Oy — cos(0; + 92))

+4e%(3 + 3\ — cos Oy — cos By — cos(f1 + 62))
—2e3(4 4+ N) + &4,
where
X(0) = —4(sin6y + sinf — sin(6; + 02))2
Clearly X (0) <0 for all 6, so we have

det(Hy(0) + 2I) = p(0,1,0) < -\ —4X3 <0
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for all A > 0; consequently —2 ¢ o(H)) for all A > 0, which proves the first claim of the
theorem. Introducing Wy (A, e) := =A% — 43 +2eX3 + 122X\ — 2e3(4 + \) + &, we may rewrite
p as

(3.44) p(0, X, e) = X(0) — 4e(X —€)(3 — cos ) — cos by — cos(01 + 02)) + Wi (A, €).
By standard eigenvalue perturbation theory, we know that | gf—|—2| < ), so we need only concern

ourselves with |e| < A. Since X (0) < 0 for all 8 and the second term of (3.44) is nonpositive
whenever 0 < e < )\, we arrive at

(0,0, 6) < —AT —4X3 42603 4 122N —283(4 + \) + et = Wi () €)

for all @ € T2, all A > 0, and all 0 < e < \. Moreover, we observe that p(0, A, &) = Wi(\, ¢), so
this bound is sharp. Factoring Wi, we arrive at

Wi\ e) = (A —e)?(e? — 8 — A% — 4)\).

Consequently, we see that Wi (A, &) < 0 for € € [0, \), which implies that p(@,\,e) < 0 for all
0 € T?, all A > 0, and all 0 < £ < \; consequently, [—2, —2 + \) N o(H,) = 0, which is to say:

(3.45) [—2,—24+\) C ga.
On the other hand, p(0, A, \) = 0, so
(3.46) —2+ A€ 0(H)\(0)) Co(H))

Alternatively, —2 + A € o(H,) is clear from eigenvalue perturbation theory as soon as one has
[—2,2+ \)No(Hy) =0.
Now, for —A\ < e <0, we have to be more careful with the term
q(0, )\, e) == —4e(A —¢)(3 — cos 0y — cos by — cos(01 + 62)),
as q can be positive when —\ < € < 0. Naively, one can bound

9
3 — cos ) — cosby — cos(01 + 02) < 2

which leads to the upper bound of X (0) + ¢(0, )\, ) < —18¢(A — ). However, the maximum

of ¢ occurs at the global minimum of X, so we can do better. Indeed, for A > 0 small and
—A <e <0, we have

(3.47) X(0)+q(0,\¢e) < —16s(\ —¢).

In particular, by Lemma 3.6, the bound in (3.47) holds for all £ such that —A < e <0 as long
as 8A2 < 54, ie. 0 <\ < % This then leads us to

p(0, ), e) < Wo(\,e): = = AT — 43 + 2603 + 1262\ — 2e3(4 + \) + &t — 16e(\ —¢)
= Wi(\e) — 16e(X —¢)
for A > 0 small and —X < e < 0. Factoring W5 yields
(8, ), 6) <Wa(Ne) = (e — N)(e — A —4)(e* —4e — \?)
for A > 0 small and —\ < e < 0. It is straightforward to find the roots of W5 and to observe

that Wa(A, €) < 0 when
2—vV4+ X2 <e <.

As a result, this implies p(@,\,e) < 0 for all 6, all A > 0 small, and all € € (2 — V4 + \2,0],
which in turn yields

(3.48) (=44 A2, -2 C g,.
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On the other hand,
p ((77-771-)7)\,2_ m) = W2 ()\,2_ m) = 0’
which leads us to conclude

(3.49) —V4+ X eo(Hy(m,m)) Co(H)).
Putting together (3.45), (3.46), (3.48), and (3.49), we obtain

g\ = (—\/m, -2+ )\)

for small A, as promised.
O

The effort involved in proving Lemma 3.6 in order to improve the constant “18” to “16” is
nontrivial, but worthwhile. In particular, this is exactly what enables the exact factorization
of W5 and hence the ability to exactly compute the gap edges.

4. HEXAGONAL LAPLACIAN

We now continue with the Laplacian on the hexagonal lattice. Let I'hex = (Vhex, Ehex) and

b 11 3
T2 V3
be as in the introduction. It is not hard to check that {0,a;} is a fundamental set of vertices

and hence every v € V,ex may be written uniquely as either nby + mb_ or a; + nby + mb_
for integers n, m, so we have

Vhex = {nby +mb_ :n,m € Z} U{a1 +nby +mb_ :n,m € Z}.
Recall that u ~ v for u,v € Vyex if and only if |[u — v||2 = 1. After some calculations, we see
that
[Ahexdj]nlu-i-mbf = wa1+nb++mb, + ¢a1+nb++(m—1)b, + ¢a1+(n—1)b++mb,
[Anex¥]ay +nby+mb_ = Vnby+mb_ + Vnbi+(m+1)b_ T V(nt1)b+mb_

The formula for Ape, can be made more compact if we view the associated Hilbert space as
?(2%,C?) = {\p 225 C Y [T < oo} :
n,m

where the standard basis of C? corresponds to the left and right vertices of the fundamental
domain, respectively. More precisely, given 1 € £?(Vyey), define U € ¢2(Z2,C?) by

\Ij _ wnb.;,_ +mb_
n,m — .
wal +nb+ +mb_

Identifying £?(Vyex) and ¢2(Z2,C?) in this fashion, the Laplacian for the hexagonal lattice is
given by

[Ahequ]n,m = U(\I’n,m—l + \Iln—l,m) + L(\Iln,m—s—l + \Ijn—i-l,m) + J\Iln,n"m

~fo 1 1 Joo B o1
o R N R ]

Equivalently, if we denote by Si, So : £2(Z?) — (?(Z?) the shift operators
[S1¢}n,m = wn+1,ma [S2¢]n,m = ¢n,m+1a

where
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we have
_ ST+ S+ Dy
ApexV = I:(Sl + S9 + ]I)@b"_

Abbreviating somewhat, we write:

} for any WU = [zt] € 2(7%,C?).

B 0 Si+S5+1
(4'1) Ahex = [Sl + Sy +1 0 } )

Now, let periods pi1,p2 € Z4 be given, and view H = Ay as a (p1, p2)-periodic operator. For
this setting, there are two vertices of Vyex in {sby +tb_ : 0 < s,t < 1}, so our Floquet operator
H(0) will be a P x P matrix with P = 2p;py. As usual, define A = ([0,])1) X [0,172)) aWVAS
denote the eigenvalues of H(0) by

ENO) < --- < EB(6),

and let F, ,? for 1 < k < P denote the bands of the spectrum. Our main theorem in this section
is the following result.

Theorem 4.1. Let p1,p2 € Z4 be given.

(1) Every E € (—3,3)\ {—1,0,1} belongs to int(F;) for some 1 < j < P.
(2) If at least one of p1 or py is odd, then —1 € int(F)) and +1 € int(Fy) for some
1<k<{LP

Proof of Theorem 1.1. This follows immediately from Theorem 4.1. O

Proof of Theorem 4.1. From (4.1), we have

0 S+ 85+

Ahex = S1+ 85 +1 0 ’

where S; : 2(Z?) — ¢*(Z?) denote the shifts
[Slqﬂn,m = ¢n+1,ma [S2¢]n,m = ¢n,m+1-

It is easy to see that
S1+ ST+ 8o+ 55+ 5155 + 5752 = Ay

is the triangular Laplacian. Thus, a simple calculation shows that

[Awity]n + 305 _ [
(4.2) (A2, T, [[Atrﬁ/}_]n +3¢7_l] for U = LZ)_] € (2(72,C?).

This calculation extends to the Floquet matrices, so we see that for each 1 < k < P, the bands
of H = Ajpex Obey

A A
Fk,hex - _FP+17k,hex
and
A P
. Fk_%m+3 5 <k<P
(4.3) Fihex =

A P
Y F§+1—k,m t3 1<k<3

From this, we deduce that E € (—3,3) lies in the interior of some Fj peyx if and only if E? — 3
lies in the interior of some F 4. For E € (—3,3) \ {—1,0,1}, E? —3 € (-3,6) \ {—2}, while
(+£1)2 — 3 = —2. Thus, the conclusions of the theorem follow from Theorem 3.1.

U
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FIGURE 7. A portion of the hexagonal lattice. A fundamental domain for a
(2,2)-periodic potential is highlighted in red.

4.1. Opening gaps at 0 and 1. Define the (1, 1)-periodic potential Q1 on Vyex by Q1(0) =1
and Q1(a1) = —1, that is,

Qi1(nby +mb_) =1, Qi(a; +nby+mb_)=—-1, n,meZ.
After identifying £2(Vyex) with £2(Z2,C?) in the usual way, we get (as an operator) [Q1¥], =

ZV,,, where
1 0
z_[o _J.

From the calculations ZU = U = —UZ and ZL = —L = —LZ, we deduce that Q1Apex +
Apex@1 = 0, and hence

(Ahex + A621)2 = AQ + )\2 > )\2-

hex

Consequently, (=, A\) N o(Apex + AQ1) = 0 and there is a gap at zero. In particular, the gap
is precisely (=, A), and so opens linearly at the maximal possible rate.

Let us consider the (2,2)-periodic case. We parameterize our potential as (qi,...,qs) € R8
as shown in Figure 7.

We now turn to the construction of a potential that opens gaps at 0, 1, and —1 simultaneously.
We show that it opens gaps linearly at zero, quadratically at +1. Later on, we will show that
one cannot open gaps linearly at +1 on both sides.

Theorem 4.2. Order the vertices of a 2 x 2 fundamental cell of the hexagonal lattice as shown
in Fig. 7, define a (2,2)-periodic potential Q by

(qla o 7q8> = (17 _17 17 27 _27 _17 17 _1)7

and denote Hy = Apex + AQ. Then, for |A| > 0 sufficiently small, o(H)) consists of four
connected components. Moreover, if gg x = (95 /\,gg y) denote the gaps of o(Hy) that open at
E =0,+1, one has

2 2

A A 1 1
+1-2 41 7) C(il—— 2 414 = 2),
( 20" ) C OIS A ELT A
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(-55) cmc(-3:3)

Let us point out that we do not carefully optimize the constants in the upper and lower
bounds of the gaps; it is possible to get better constants than 1/20, 1/2, 1/5, and 1/4.

and

for all |\ > 0 sufficiently small.

Proof. For @ = (61,02) € T?, let Hy(0) denote the Floquet matrix corresponding to H,.
Ordering the vertices of the fundamental domain as in Figure 7, we obtain:

A 1 0 e g 2 0 0]
1 =) 1 0 1 0 0 0
0 1 A 1 0 0 0 e i
e 0 1 2\ 0 0O 1 0
(4.4) @) =19 1 o 0 -2\ 1 0 e
e2 0 0 0 1 -2 1 0
0 0 0 1 0 1 A 1
L0 0 €% 0 &% 0 1 -\

First, let us consider the gaps at £ = +1. Calculations yield
(4.5) det (H\(6) — (£1 + sA?)I) = X5 (0) + X (0, s)A* + X5 (0, 5)\° + O(\®),
in which
XF(0) = —4(—sin(0y) + sin(6; — 62) + sin(62))?
X:(0,5) =8(s+£1)(25 F 1)(3 — cos(f;) — cos(f; — 2) — cos(62))
XE(0,5) = —1F 125 + 725% F 165 — 45% (445 + 1)(cos(0;) + cos(f; — 02) + cos(62))
It is clear that
(4.6) XE(@) <0 forall €T
Since cos(61) + cos(f1 — 02) + cos(62) < 3, we also have
(4.7) X:(0,5) <0 forall @ €T? |s| <1/2.
We also have for |s| < 1/4,
XF(0,5) < —1—12s+ 725> — 165> + 125%(4s + 1) =: T(s),
and
X5 (0,5) = X5 (0,—s) <T(—s).
One easily checks that T'(s) is decreasing on [—0.05,0.05], and
T(—0.05) = —0.194.
Hence for |s| < 0.05,
(4.8) XE(0,s) < —0.194.
Combining (4.6), (4.7), and (4.8), we obtain that for |\| > 0 sufficiently small, and |s| < 1/20,
det(Hy(0) — (£1 4 sAH)I) < —0.11° < 0.
This proves the claimed lower bound on the gaps at +1.
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On the other hand, let us note that X;(0,0) = X (7, 7) = 0, while
X;(0,05)=0 and X{((m,),0.5) =12,
X;((0,0),s) =0 and X ((0,0),-0.5) = 28,
X;((0,0),5) =0 and X ((0,0),0.5) = 28,
X;(0,-05)=0 and X;((m,7),—0.5)=12.

Thus for small A > 0, we have

det(Hy(m,m) — (14 0.5A?)I) > 0,

det(H(0,0) — (1 — 0.5A2)I) > 0,

det(H(0,0) — (=1 + 0.5\?)I) > 0,
(H(

det(Hy(m,7) — (=1 — 0.5A2)I) > 0.
We also easily check that

which implies that for small A > 0, we have
det (HA (gﬂ) (1 0.5A211)) <0.
We therefore conclude that
+1+0.50% € o(Hy) and +1—0.5)\% € o(H,)),

which proves the upper bounds on the gaps at +1.
Now let us consider the gap at £ = 0. After calculations, we have

(4.9) det(Hy(8) — sAI) = Yo(0) + Ya(0, 5)A\* + Y4(8,5) + O(\%),
where

Y0(0) = 15 + 2 cos(2601) — 4 cos(61 — 202) + 2 cos(201 — 202) — 4 cos(201 — 03)

+ 2 cos(2602) — 4 cos(61 + 62),
Y2(0,5) = 2[5 — 265% 4 (2 + 45%)(cos(#1) + cos(f; — 62) + cos(6))],

and

Yi(0,5) = (1 — s2)[—3 — 4257 + 4(2 + 5%)(cos(61) + cos(By — 2) 4 cos(62))]
We claim that
(4.10) Yo(6) >0 for all € T2

23

Let us see how to use (4.10) to prove the claimed gap at zero and defer the proof of (4.10) for

a moment. Using

3
cos(01) + cos(01 — 62) + cos(h2) € {—2,3] ,
we obtain that for |s| < 1/5
(4.11) Y2(0,5) > 2(5 — 2652 — 3(1 4 252)) = 4(1 — 1652) > %

Combining (4.9) with (4.11), we obtain that for |A| > 0 sufficiently small
det(Hy(0) — sAT) > A2

This proves the claimed lower bound of the gap at 0, modulo the claim that Y(€) > 0 for all

0 € T2.
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To prove the upper bound, we compute

Y (3.4) =0,
Yo (3,55 5) =401~ 165%)

Vi (%, %),s) =3(s* — 1)(165> + 5),

which implies that for small A > 0,

or 4
det (HA ( ; 3”) +0. 25)\]I>

We also compute that Yy(0,0) =9, which shows for small A > 0,

det(H(0,0) + 0.25AT) > 0.

Thus we conclude that

+0.25) € o(H,y),

which proves the claimed upper bound of the gap at 0.

24

To complete the argument, all that remains is to show Yy(@) > 0 for all @ € T2. To that

end, introduce two auxiliary variables

Z = COS 01 _ 92 w = COS M
= 9 ) = 92 )

and write g(z,w) to mean Yy(@) in the variables z and w. Thus, to optimize Yy(@) on T2, it

suffices to optimize g(z,w) on the square [—1,1]?

cos(2601) + cos(202) = 2(222 1)(2w? — 1),

cos(260) — 26;) = 2(222 —1)? — 1,

cos(f1 + 63) = 2uw? — 1,

cos(f1 — 20) + cos (2601 — B2) = 2zw(42% — 3).

Putting all this together,

g(z,w) = 15 4+ 4(22% — 1)(2w? — 1) — 8zw(42* — 3) +2(2(22* — 1)* — 1) — 4(2w? — 1).

It is easy to check that g > 0 holds on the boundary; concretely,

g(£1,w) = 15+ 4(2w? — 1) F 8w + 2 — 4(2w* — 1)

=17F 8w
>17-9
> 0.

and

gz, 1) = 15 +4(22% — 1) F82(42% — 3) + (162" — 1622 +2) — 4
= 1627 F322% — 822+ 242+ 9
= (3+4z —42%)?
> 0.

So, we now seek zeros of Vg for |z] < 1 and |w| < 1. One easily computes d.g and 0y,¢g:

0.9 = 8(w — 22)(3+ 4z(w — 2))
Owg = 8(32 — 42° + 4w(2* — 1)).

. To execute this change of variables, first
note the following simple consequences of standard identities:
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Setting 9,9 = 0 yields

423 — 3z
4.12 ety
(412) T

Since we are working on the interior of [~1,1]%, z # 41 and the denominator does not vanish.
Substituting this expression for w into d,g and simplifying, we get

423 — 32 1

Setting this equal to zero, we obtain three values of z with |z| < 1: 0 and ++/3/2. Inserting
these z values into (4.12), the corresponding w values are all readily seen to be zero. Plugging
in the three critical points (0,0) and (++v/3/2,0) into g yields 25 and 16, respectively, which
concludes the proof that ¢ > 0 and hence

Yo(6) > 0
for all @ € T2, proving (4.10). O

Next, we show that for any (2,2)-periodic potential, it is impossible that it opens linear
order gaps on both sides of £ = +1 simultaneously.

Theorem 4.3. For any (2,2)-periodic potential Q and any constant ¢ > 0, the following holds
for all sufficiently small X > 0:

((1=ch\, =14+ Ud—cA14+cN)No(Hy) #0

Proof. Let (q1,q2, - -.,qs) be the potential on a 2 x 2 fundamental cell, as shown in Fig. 7. The
corresponding Floquet matrix H)(0) is

A1 1 0 e 0 2 0
1 Mg 1 0 1 0 0 0
0 1 X 1 0 0 0 e 2
e 0 1 A 0 0 1 0
H,(0) = 0 1 0 0 A5 1 0 ™
e 0 0 0 1 Mg 1 0
0 0 0 1 0 1 Ar 1
0 0 €% 0 e o 1 Mg
For 0 < |s| < ¢, let us consider
8
det (Hx(6) — (£1 4 s\I) = Y X;7(6,5)A",
k=0
After a calculation, we obtain
(4.13) XF(0,5) = Xi°(0,5) = X(0,5) =0 for all s
and
(4.14) X$(0,5) = —X3(0,s) = ag + azs® + 64s°,
where

ao = —2[(¢1 + 2+ a7 + q8)(qa + ¢5)(q3 + g6) + (@1 + q8)(q2 + q7) (g3 + @4 + g5 + g6)]
+8[(q1 + a8)(q2 + q7) + (a3 + 46)(qa + a5) + (@1 + @2 + g7 + q8) (43 + @4 + 45 + 6)]

8
as = —24 Z Q-
k=1
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By (4.14), we have
X3(0,80) = —X5(0,80) #0

for some sg such that 0 < |sg| < ¢. Without loss of generality, we assume
X3(0,50) > 0> X5(0,s0).

Combining this with (4.13), we obtain

(4.15) det(H)(0) — (1 + soA)I) > 0

for small A > 0. We also have

(4.16) XE((m/4,3m/4), s0) = —4.

In particular, (4.16) implies that

(4.17) det(Hy(mw/4,37/4)) — (1 + soN)I) < 0

for all A > 0 small.
Combining (4.17) with (4.15), for any sufficiently small A > 0, there exists € such that

det(H)\(B) - (1 + SoA)H) =0.

Hence
(I—c\,14+cA)No(Hy) #0
as claimed. 0

5. SQUARE LAPLACIAN WITH NEXT-NEAREST NEIGHBOR INTERACTIONS
We now turn our attention to the EHM lattice, whose Laplacian is given by
[Asqnu]n,m = Up—1m + Untim + Unm—1 + Unm+1l T Un—1,m+1 + Un—1,m+1 + Un+1m—1 + Un+1m+1
= [Asqu]n,m + Un—1,m—1 + Un—1,m+1 + Un+1m—1 + Un+1m+1
= [Atriu]n,m + Un—1,m—1 + Un+1,m-+1-

Now, given p1,ps € Z,, we define P = p1py and A = Z? N ([O,pl) X [O,pg)) as before and view
Agqn as a (p1, p2)-periodic operator and perform the Floquet decomposition. For 8 = (6, 62) €
R?, it is straightforward to check that

o(H(0)) ={ee(0) : £ € A},
where £ = ({1, (2) and

6@(0) — 9 cos <91 +27T€1) 4 9cos <92 —|—27T£2> 19 cos <91 + 27l4 02 +27T€2)

Y41 p2 p1 p2
0 27l 0 21l
+2cos<1+ Wl—i— 2+ 7r2>.
b1 D2

As in Section 2, we label these eigenvalues in increasing order according to multiplicity by
Ey(0) < E>(0) < --- < Ep(0)
and denote the P spectral bands by
Fy={Ex(0):0cR*}, 1<k<P
Straightforward computations shows that o(Agqn) = [—4, 8], hence

P
U Fe =[-4.8].
k=1

Our main theorem of this section is
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Theorem 5.1. Let p1,p2 € Z4 be given.

1. Each E € (—4,8) \ {—1} belongs to int(F}) for some 1 <k < P.
2. If one of the periods p1,p2 is not divisible by three, then E = —1 belongs to int(Fy) for
some 1 < k < P.

Proof of Theorem 1.5. This follows immediately from Theorem 5.1. g

5.1. Proof of Theorem 5.1. As with the proof of Theorem 3.1, we will divide the proof into
two different cases: E # —1 and F = —1 and argue by contradiction. To that end, assume for
the sake of establishing a contradiction that £ = min Fj,; = max F}, for some 1 <k < P —1.

We will use the following lemmas, whose proofs we provide at the end of the present section.

Lemma 5.2. Let us consider the following system:

(5.1) cos(x) + cos(y) + cos(z — y) + cos(z + y) =

| &

sin(x) + sin(z — y) + sin(z + y) = 0.
For any E € (—4,8) \ {—1}, the solution set of (5.1) in [0, 27)? satisfies

E+1
(5.2) =0, 1+2cos(y) = T+
or
(5.3) r=m, 1+2cos(y)=—(E+1).

Lemma 5.3. Consider the following system:

cos(z) + cos(y) + cos(z + y) + cos(z —y) = £
(5.4) sin(x) + sin(z — y) + sin(z + y) = 0,

sin(y) — sin(x — y) + sin(x + y) = 0.
For any E € (—4,8)\ {0, —1}, the solution set of (5.4) is empty. For E = 0, the unique solution
of (5.4) in [0,27)?% is (7, 7). For E = —1, the solutions of (5.4) in [0,27)? are (27/3,27/3),
(27/3,47/3), (47/3,27/3) and (47 /3,4m/3).

We will use Lemma 5.2 in the E # —1 case, and Lemma 5.3 in the £ = —1 case.
5.1.1. F# —1.

Proof of Theorem 5.1.1. Let E € (—4,8) \ {—1} be given. Define 6 = (61,6,) € [0,27)2 and
e = (1 ¢y € A via

)

0. (1) _
Op 1 2mty~ _ arccos (%) € (0,m).

(5.5) 6, =0, Y =0,
P2

Note that since £ € (—4, 8), we have % € (—1,1), hence arccos (%) is always well-defined.

Note also that 65 and Egl) are uniquely determined. Using (5.5), one easily checks that

€p(1) (0) = Ea

and

(5.6) (1,0) - Ve, (8) = 0.

As in the proof of Theorem 3.1, denote Ag(0) = {£ € A : e(0) = E}, let v := |Ag(0)| be the

multiplicity of F as an eigenvalue of H(6), and choose s € Z N [1,7] such that

B s(0) < Eg-s41(0) = = Ex(0) = -+ = Egyr—5(0) < Egir—s41(0).
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Since all the eigenvalues are continuous in 8, we can take € > 0 small enough such that
Ey—5(0) < Ex—s41(0), and Eyirs5(6) < Egrr—s11(0),

holds whenever |0 — BNHRa < e. Given £ € A and a unit vector 3 = (1, 52), we have

(5.7) eo(0 4 18) = eg(8) + 3 - Veg(0) + O(?)
(5.8) = e(0) + 13- Vey(6)
2| 2 0, +2ml\ B2 0 + 205
——|—-cos|——— | +—F5cos|——
2 | pi ( P ) 3 ( P2 )
) _ _
+<@_@> COS<91+27r€1 _92+27T€2)
b1 b2 b1 P2
2 01+ 2101 Oy + 210
+<é+@> cos(l+7r1_|_ 2+7T2) +O).
D1 b2 b1 D2

In particular, we will use (5.7) if 8- Veg(0) # 0, and (5.8) otherwise.
For any vector 3 € R?\ {0}, let

J3=J730): = {€ec Ap(6): B-Vey(0) =0},
J5=J50):={LcAp(0): £ Vey(d) > 0}.

By definition, we must have

(5.9)

(5.10) T8 +1TF 1 +1T5 1 =7
for any 3. We also define J as follows
(5.11) Jo = Jo(0) := {€ € Ap(8) : Vey(8) = 0}.

If E # 0, Lemma 5.3 directly implies Jo = 0. If E = 0, Jo is also empty. To see this, suppose
on the contrary that € = (¢1,¢2) € Jy. Lemma 5.3 implies that

52 + 274y

5.12 2T _ o
( ) b2
and (5.5) forces
a. (1)
2 1
(5.13) Op 1 2mty - = arccos (—) .
P2 3

Subtracting (5.12) from (5.13) yields
B2l L s (-1) -1
p2 27 3) 2

However, this implies that (27)~!arccos(—1/3) is a rational number, which contradicts the
following well-known fact, whose proof we supply at the end of the present section.

Lemma 5.4.

1 1
5 arceos <—3> e R\ Q.

™

Therefore Jy = () for any E # —1.
We choose 81 = (1,0). Then (5.6) implies £1) € jgl, and hence

(5.14) T, # 0.
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Next we are going to perturb the point 6 and count the eigenvalues. Since Jy = (), we can
choose a unit vector B2 such that

(5.15) B2 - Veg(0) # 0,
holds for any £ € Ag(8). Thus j& = () and

(5.16) T5,| + T, =
Arguing as in the proof of Theorem 3.1.1, we deduce
(5.17) r=2s.

Perturbation along (31. Now we perturb the eigenvalues along B; = (1,0). The case when
L e jﬁil is similar to that of B2. The difference here is that, according to (5.14), jgl # 0.

By Lemma 5.2, we have that for (¢1,/2) € jgl,

(5.18) (E+1)

01 + 27l; 0, + 210y Oy + 27l
cos <7) + cos < )

b1 p1 - D2

0, + 210y Oy + 27
+cos<1+ﬂ1+ 2+7r2)]>O.
p1 D2

Indeed, if (¢1,42) € Jﬁol, (z,y) = (pfl(gl + 2W€1),p51(§2 + 2mls)) is a solution to (5.1). Hence
Lemma 5.2 implies that we have either

i ~
1+27T€1:O’ 1+2COS<62+2F62>:E+1,
p1 D2 3
or N N
01 + 27l O + 27l
ﬁzﬂ-j 1_,_2(308(@):_(134_1).
P b2

Clearly, both cases lead to (5.18).
By employing (5.8), we obtain

+2 [cos (51 + 27r€1> 4 cos (51 —;127r€1 672 —;227r€2)

5.19 co(0+18)) = FE — ——
(5.19) o B1) 20 o

+0(t?)

0, + 210y Oy + 270
1+ 7r1_|_ 2+ 7T2>

—+ cos (
D1 P2

for £ € jgl. Combining this with (5.18), we obtain that for |¢| > 0 small enough

<E, f E+1>0,

5.20 0+t
(5:20) ee( +ﬁ”{>E,ﬁE+1<a

Notice that the choice of B causes the second t? term of (5.8) to drop out.
Without loss of generality, we assume E € (—1,8). The complementary case when E €
(—4,—1) can be handled similarly. For E € (—1,8), (5.20) implies that

(5.21) ee(0 +tB1) < E = min Fy, 1,

holds for [¢t| > 0 small enough and for any £ € 7, BOI.
Combining (5.21) with (5.7), we have the following.
For ¢t > 0 small enough,
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° Iffejgl,wehave

Epsr—s1(0 +tB1) > eo(0 + 1) > E = max Fy,
which implies
(5.22) T, <7 —s=s,

where the equality follows from (5.17).
o If¢c jﬁol Ujﬁ_l, we have

Ek—s—1(§+ tﬁl) < €g(§+ t,Bl) < E = min Fj 4,

which implies

(5.23) T8+ 175, < 5.
In view of (5.10) and (5.17), Equations (5.22) and (5.23) yield
(5.24) [T5,1 = 173, + 1T, | = 5.

As before, we may observe that J° B = j,gl and jfﬁl =J 5F1 . Then, the analysis above applied
with 81 replaced by —3; forces

(5.25) \T5,1 = 178, + 174, = s.
Taken together, (5.24) and (5.25) imply \jgl\ = 0, which contradicts (5.14). O
51.2. E = —1.

First, we would like to make a remark on our strategy of the proof of the F = —1 case, and

on the importance of one of the period being not divisible by 3.

Remark 5.5. For the exceptional energy F = —1 of the EHM lattice, we cannot use eigenvalues
with vanishing gradients to create un-even eigenvalue counts unless neither p; nor ps is divisible
by 3. The reason is the following: suppose only p; is not divisible by 3 and we choose 6 =
(61,6) and €1 = (Egl),fgl)) such that e£<1)(§) = —1 and Vee(l)(g) = 0. Lemma 5.3 yields
four possibilities (p; (01 +2r0\)), p3 (62 + 276))) = (27/3,27/3), (27 /3,47 /3), (473,27 /3)
or (4w /3,47/3). Without loss of generality, we choose (27/3,27/3), the other three choices
are essentially the same. Since po is divisible by 3, there exists £2), such that (p1_1(§1 +
2#5%2)),]92_1(52 + 27r€g2))) = (27/3,47/3). Hence €£(2)(§) is also located at —1 with vanishing
gradient. Perturbing ez(l)(g) and e£(2)(§) along a given direction (f31,32) is equivalent to
controlling the signs of the following two expressions:

p1f2 and — B1fs.

This means we can never choose two different directions that lead to un-even counts. Therefore
we need to develop a new argument for this case.

Indeed, when p; is not divisible by 3, we choose pl_l(gl + 27r€§1)) = 27 /3 and f5 such that
py (02 + 2mla) ¢ {27/3,47/3} regardless of the choice of £o. Such choices guarantee that there

are in total po eigenvalues located at —1, which are {6@(5), 0 = E(ll)}. It then suffices to
control the movements of these eigenvalues along any given direction. A key observation is
that along any direction, approximately 2py/3 eigenvalues will move up (down) while the other
p2/3 eigenvalues move down (up), see (5.33). This leads to un-even counting that we need.
Let us point out that if both py, po are divisible by 3, this argument does not work (as it must,
given the example constructed in Theorem 1.6): there will be 2ps eigenvalues located at —1,
and po of them move up while the other ps of them move down along any given direction.
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Proof of Theorem 5.1.2. Without loss of generality, we assume p; is not divisible by 3. Let
pj = 3p; + kj, where p’, k; € Z with 0 < k; < 3 and then define by

~ 2k, ~ _ ko +1

91 = 3 s (92 = 1 .
As usual, denote AE(§) = A,l(é) ={LeA: ee(é) = —1}. We first claim that
(5.26) A_l(g) = {(p/1,€2> 0 < ¥y < p2 and ly € Z} .

Let us consider the trigonometric equation

o

(5.27) cos(z) + cos(y) + cos(x — y) + cos(x +y) = —% =

Using the identity cos(z — y) + cos(x + y) = 2 cos(z) cos(y), we see that (5.27) is equivalent to
(2cos(z) +1)(2cos(y) + 1) =0,

whose solutions are cos(z) = —1/2 or cos(y) = —1/2. With our choice of 5, it is clear that
0, +2mp, 2 0, + 27p! 1
(5.28) itimp _ 2mo e (AEET ) 2
D1 3 D1 2
Consequently,
(5.29) e(p’l,fz)(g) = —1 for every 0 < /3 < pa.

Due to our choice of 52, we get
~ 1
(5.30) cos(py (02 + 27l)) # —5 for any ¢9 € [0,p2) N Z.

Indeed, since py (0 + 21ls) € [0, 2), cos(py L (f2 + 27ly)) = —1/2 would force
0o + 270y . {27r 47r}
D2 373 )7
which, after doing some algebra, leads to
3(80y + ko + 1) € {8p2, 16p2},

which is plainly impossible, since f2,ps € Z and ks € {0,1,2}. Additionally, due to our choice
of 61, we also have

(5.31) cos(pfl(gl +27ly)) # —1/2 for any ¢ € ([O,pl) N Z) \ {p}}.
To see this, suppose on the contrary that (5.31) fails. This forces

51 + 27['51 - 47

D1 3
for some 0 < ¢; < p; with ¢; # p}. Since
0, + 2mp) 2
D1 37
this implies
2w (0 —py) 2w

P1 37
which is impossible since p; is not divisible by 3. Combining (5.30) and (5.31) yields
(5.32) eg(é) # —1 for any £ = (¢1,0) € A such that ¢1 # p].

Taken together, (5.29) and (5.32) imply (5.26).
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Let us choose B = (f1, f2) = (1,0). We have that for any £ € A:

P18 - Veg(0)
— dn (91 + 27T€1) _sin ((91 + 27, . 0o + 27T€2) _sin (91 + 27, n 0o + 2’/’1’£2)
4! P P2 Y41 p2
:_Sin<61+27r€1> 1+2COS<92+27‘(’€2) '
Y41 P2

By (5.26), (5.28), and (5.30), we have the following for any £ = ({1, 02) € A_1(0):

sin (51 ;127%1) = v3 cos (52 —;2277£2> #* —%.

77
This implies
~ 1 0 + 270
0_ + _ — 2 2
(5.33) Jg =0, and Jz = {E €A_1(0): ¥5 IFCOS( s ) > O}.

Hence we expect that |7, g | ~ p2/3, and |7, 5 | ~ 2py/3. More precisely, we note that

2 ko + 1)m/4 + 27l 4
Jg:{(p/hfz): < (ko + e/ T <—7r}.

3 D2 3
Using p2 = 3p), + k2, we obtain
5k2 -3 13]62 -3
+ _ / . / /
‘-7,3 - {(plaEQ) Pyt T < £2 < 2p2 + T}
Consequently,
j+ _ {(pll’EQ) : pl2 < £2 < 2])/2 — 1}, if ]432 = 0,
. {(Ph,02) : Ph+ 1<ty <2ph}, ifky=1,2.
Therefore

(p/27 2p/2)a if k2 — 0,
(5:34) (T3 1T5 1) = (Phs 205 + 1), if ky =1,
(ply, 2phy +2), if kg = 2.

Note that p), > 1 whenever ks = 0. Thus, a direct consequence of (5.34) is

(5.35) T3 | # 175 |-
On the other hand, since 7, [[3) = (), following the same argument as in the proof of Theorems 3.1.1
yields ]jg| = |Jg |, which contradicts (5.35). O

5.2. Proofs of Lemmas 5.2, 5.3, and 5.4.
Proof of Lemma 5.2. Let x and y solve (5.1) with E # —1. The second condition therein yields
sin(x) 4 2sin(z) cos(y) = 0,

leading to two possibilities: sin(z) = 0 or cos(y) = —1/2. If sin(x) =0, we get z =0 or z = T,
which yields (5.2) and (5.3) upon plugging into the first condition in (5.1). In the event that
cos(y) = —1/2, we arrive at

cos(z) 4 cos(y) + cos(z — y) + cos(z + y) = cos(z) + cos(y) + 2 cos(x) cos(y)

= cos(z) — 5 cos(x)
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in contradiction with E # —1. O

Proof of Lemma 5.3. Suppose x and y satisfy (5.4). From the proof of Lemma 5.2, the second
condition of (5.4) implies sin(z) = 0 or cos(y) = —1/2. Thus, x = 0, x = 7, y = 27/3, or
y = 47/3. When sin(z) = 0, the third condition of (5.4) forces sin(y) = 0. The four points
so obtained yield F = 8 when (z,y) = (0,0), E = —4 when (z,y) = (0,7),(7,0) and E = 0
when (z,y) = (m, 7). Alternatively, when cos(y) = —1/2, the third condition of (5.4) yields
cos(z) = —1/2, which impies x = 27/3 or x = 47/3. As in the proof of Lemma 5.2, the four

points corresponding to
c 21 Arw
Zz, 0 ' 9
Y1303

all yield £ = —1. O
Proof of Lemma 5.4. Suppose
2mm 1
5.36 — | =—=
(5.36) cos < " > 3

for m/n € Q. Let T,,(-) denote the n-th degree Cheybeshev polynomial so that

(5.37) T, <cos (27;:”)) — cos(2mm) = 1.

It is well-known that T,,(z) = Y p_, axz®, where a,, = 2"~ and aj, € Z for any k. Hence (5.36)

and (5.37) imply
n n—1 k
1 1
L > — ) =1

Multiplying by (—3)™ on both sides of the equation, we obtain
n—1
2n—1 _ 3Zak(_3)n—k—1 — (_3)71,
k=0

which implies 271 is divisible by 3. Contradiction. O

5.3. Opening a gap at —1.

Theorem 5.6. Fnumerate the vertices of a 3 X 3 fundamental cell of the square lattice as in
Figure 8, denote r = \/4 — \/15, define a (3,3)-periodic potential Q on Z* via

1 1 1 1 1 1
(qlv"‘vqg):<_7ﬁ_7+2a -, —T+*—2, 7 07 +*,T—*—2, T7T+7+2>7
T T T T T T

and denote Hy = Agqn + AQ. Then, for all X > 0 sufficiently small, c(H)) consists of two
connected components. Moreover, if gy denotes the gap that opens at energy —1, one has

A A Y A
-2 i+ e (12 —142).
< 10° +10>—9A—< 4 +4>

In particular, the gap opens linearly.

Let us observe that the proof below can be refined a bit to yield sharper constants than 1/10
and 1/4.
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Proof. For @ = (01,02) € T?, let H)\(0) denote the Floquet matrix corresponding to H).

Ordering the vertices of the fundamental domain as in Figure 8, we obtain:

Aq1
1
101

For s € (—1,1), let us consider

ei(el +02)

1
Aq2

€—i91 1
1 1
)\qg it
e~ Aqq
1 1
1 it
e*i(el —62) 1
etf2 1
102 101

1 e—iel 6—1'92 —ify

1 1 e—i@g e—i6'2

1 1 ei(91792) —i0o

1 e it 1 1
Ags 1 1 1

1 A 't 1

1 e \gr 1

1 1 1 s

1 1 it 1

det(HA(0) + (1 + sM)) = > Xi(6,5)A".

k=0

6—’i(91 +02)7
6—i02
€7i92
e—i91

1
1
671'91
1
Agy |

Our goal is to show det(H)(0) + (1 + sA)I) never vanishes for sufficiently small A > 0 and for
|s| < 0.1. Direct computations yield

Xo(0, s) = 4096 sin® (921> sin® (022>

X1(0,s) =0

XK

FIGURE 8. A 3 x 3 potential on the square lattice that opens a gap at £ = —1

with small positive positive coupling.
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X3(0,s) = Y3(s)sin <921> sind <922>
4yl
X5(0,5) = Ys(s) sin <921> 2 <022>

X6(0,5) =Ys1(s) + Ys,2(s) cos(01) + Yg.3(s) cos(02)
+ Y5.4(s) cos(61) cos(62) + Ys 5(s) sin(6;) sin(62)

) 4
X4(0,5) = Yy(s)sin?
) 2

X7(0,8) ==
XS(B,S) = 1/8(5)
Xo(0,5) = Yo(s),

in which
Ya(s) = 512(20 — 9s?)
Y3(s) = 256(4 — 20s + 3s°)
Yi(s) = 16(364 4 144s — 504s> 4 81s%)
Ys(s) = 16(64 — 1965 — 485> 4 104s> — 9s°)
Ys.1(s) = 176 + 704s — 31325 — 4965> + 13765 — 965°
Ys2(s) = —80 4 (96v/15 — 320)s + (1380 4 144v/15)s% + 2085% — (584 + 54v/15)s* + 425°
Ys3(s) = —80 — (320 + 96v/15)s + (1380 — 144/15)s% + 2085% — (584 — 54v/15)s* + 425°
Ys.4(s) = —16 — 645 4 37252 + 805> — 2085 + 125°
Yo,5(5) = 8(25 — 1)°
Ys(s) = 12 4 325 — 360s? — 5125% 4 10255 4 965> — 22455 + 9s°
Yo(s) = 125 + 165> — 1205 — 1285* 4 2055° + 1655 — 325" + 5°.

One simple observation is that
(5.38) Yo,1(s) + Ys2(s) + Yo,3(s) + Ys.4(s) = 0.
It is easy to see that for |s| < 0.1,
Ya(s), Y3(s), Y5(s) > 0.
It is easy to compute that
Yy(s) = 12 + 325 — 360s% — 5125 + 10255 + 965° — 2245 + 95% = Yg(s).
Thus,

35

(5.39) Yg(s) >12—32x0.1—360 x (0.1)% =512 x (0.1)> =96 x (0.1)®> — 224 x (0.1)°> 4.5 > 0

for |s| < 0.1, which implies
(5.40) Yo(s) > Yo(—0.1) > —1
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for all |s| < 0.1. Carefully estimating Y4(s) and Yg(s) will help us bound the A% order term
from below using the AM-GM inequality.

(5.41) Yi(s) > 16(364 — 144 x 0.1 — 504 x (0.1)*—81 x (0.1)*) > 5500,
Ya(s) > 12 — 32 x 0.1 — 360 x (0.1)% =512 x (0.1)> — 96 x (0.1)% — 224 x (0.1)® > 4.5.

In fact, since Yg = Yy, the second inequality already follows from (5.39). For the Yg ; terms,
we have

Ys.1(s) > 176 — 704 x 0.1 — 3132 x (0.1)% — 496 x (0.1)*> — 96 x (0.1)® > 0,
Y2(s) < —80 4 (96v/15 — 320) x 0.1 + (1380 + 144v/15) x (0.1)?
4208 x (0.1)® + 42 x (0.1)° < 0
(5.42) Y3(s) < =80 + (320 + 96v/15) x 0.1 + (1380 — 144V/15) x (0.1)?
+208 x (0.1)* +42 x (0.1)® < 0,
Ys.4(s) < —16 + 64 x 0.1 + 372 x (0.1)> +80 x (0.1)* + 12 x (0.1)° < 0,
—14 < Yg5(s) < 0.
Using (5.38) and (5.42), we obtain
X6(0) > Ys1(s) + Ys,2(5) + Yo,3(5) + Ys.4(s) + Y,5(s) sin(61) sin(6s)
= Y5.5(s) sin(f;) sin(62)
(5.43) > —14]sin(6;) sin(6s)].

In particular, the first line uses Y52, Y5 3, Y64 < 0, the second line uses (5.38), and the final line
uses —14 < Y55 < 0.
Now we combine our estimates together. Note that

(5.44) X0(0,5) + X2(0,5)\* + X3(0, 5)\* + X5(8,5)\° > 0.
Using a? + b% > 2|ab|, we obtain the following from (5.41)
1 0 0
X4(0,5)\* + 5 s (6. $)A® > 2v/2.25 x 5500 |sin (;) sin (;) ‘ S,

Using 2|sin(x/2)| > 2|sin(x/2) cos(x/2)| = |sin(x)|, we obtain from above that

X4(0,5)\* + %Xs(a, $)A® > 55| sin(0;) sin(6a)|\°.
Combining this with (5.43), we have
(5.45) X4(0, )\ + %Xg(e, SIAB 4 Xg(0,5)A0 > 41 sin(6;) sin(62)|A° > 0.
Finally using (5.40) and (5.41), we have
(5.46) %Xg(o, $)A® + Xo(0, 5)\ = %Yg(s))\g + Yo(s)A\? > 2.250% — A9 > 0.25)\%,
provided that A < 2. Combining (5.44)-(5.46), we have

det(Hx(0) + (14 s\)I) > 0.250% > 0,

for any @ € T? and |s| < 0.1. This proves the lower bound on the gap.
For the upper bound, observe that Xj((ﬂ', 0), s) =0 for all s and for every 0 < 7 <5 and

Xe((m,0),£1/4) < —85.
Thus, for small A > 0,
det (Hy(m,0) + (1 £ A/4)I) < —85X° + O(\®) < 0.
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It is also clear that X((0,0),s) = 4096, which implies
det (Hx(0,0) 4 (1 £ A/4)I) = 4096 + O(X) > 0.
Thus we conclude that
1+ % € o(Hy),
which concludes the proof of the upper bound on the length of the gap. ]
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