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Abstract—We investigate a simple model for social learning
with two agents: a teacher and a student. The teacher’s goal is
to teach the student the state of the world ©, however, the teacher
herself is not certain about © and needs to simultaneously learn
it and teach it to the student. We model the teacher’s and the
student’s uncertainty via binary symmetric channels, and employ
a simple heuristic decoder at the student’s end. We focus on two
teaching strategies: a “low effort” strategy of simply forwarding
information, and a “high effort” strategy of communicating the
teacher’s current best estimate of O at each time instant. Using
tools from large deviation theory, we calculate the exact learning
rates for these strategies and demonstrate regimes where the low
effort strategy outperforms the high effort strategy. Our primary
technical contribution is a detailed analysis of the large deviation
properties of the sign of a transient Markov random walk on Z.

Index Terms—Social learning, large deviations, Markov chains

I. INTRODUCTION

Individuals in a society learn about their environments not
only though their own experiences but also from communicat-
ing with other members of the society. This interaction drives
the exchange of ideas, technologies, news, opinions, and is
critically important to the social and economic processes in
a society. Understanding and predicting the effects of social
interaction on society is a hard problem: each individual’s
opinion is dynamic and depends on their biases, observations,
and social interactions. The question of how agents learn
through social interactions has received much attention in the
past few decades, and a number of mathematical models have
been proposed to analyze social learning phenomena [1], [2].

Given a mathematical model for social learning, one is
primarily interested in analyzing the following questions: (a)
Convergence: Does an agent’s opinion eventually converge?;
(b) Agreement: Given convergence, do the agents agree? ;
(c) Learning: Given agreement, is the unanimous opinion the
true state of the world?; and (d) Given learning, how fast
does learning take place? Our work in this paper focuses
on (d) and is most closely related to the papers [3]-[6]. The
specific learning model is motivated by the work in [6], which
analyzed the speed of learning in a two agent model. In a
Bayesian setting, the authors demonstrated the counterintuitive
result that more interaction among agents can in fact impede
learning.

The model is this paper also considers a two agent setting as
in [6], with two key differences. First, the second agent (whose
speed of learning we wish to analyze) does not have any
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private observations that allow them to learn. Any information
they get is via a noisy interaction with the first agent. And
second, the agents are not Bayesian but instead perform a
heuristic calculation to form their opinions. There is a rich
history of studying both Bayesian and non-Bayesian models
in social learning, since the assumption of rationality in the
former is not always suitable for human agents. Similar to the
results in [6], we also demonstrate that certain counterintuitive
phenomena occur in our model as well. In particular, we
observe that “helpful” social interactions actually slow down
the speed of learning.

The main mathematical tools we use in the paper derive
from the theory of large deviations. Our primary technical
contribution is analyzing the large deviation properties of the
sign of a transient Markov random walk on Z. We show the
rate function of this process can be explicitly calculated, and
moreover it has a surprisingly neat closed-form expression.

The structure of the paper is as follows. In Section II we
describe our model in detail and state the problem. In Sections
IIT and IV, we relate the stochastic process generated by social
interaction in our model to the sign of a Markov process and
analyze this process in detail. Finally, we conclude the paper
in Section V with some open problems and discussions.

II. MODEL DESCRIPTION AND PROBLEM STATEMENT

In this paper, we consider a simple model of social learning
with two agents: a teacher and a student. Both agents are trying
to learn an unknown binary random variable © which is called
the state of the world. We assume © takes values in the set
{—1, +1} uniformly at random. At each time ¢ > 1 the teacher
observes a noisy version of © through a binary symmetric
channel with a parameter p € [0,1/2); i.e.,

P(O,=0)=1—-p, and P(O;=-0)=p.

Conditioned on O, the random observations {O;};>1 are
independent and identically distributed as above. The student
does not make any direct observations (noisy or otherwise)
of ©, and may only learn it from the teacher. At each
time ¢, the teacher communicates a binary random variable
X, which is a (possibly random) function of the history
of observations {O;}1<;<; and the student receives a noisy
version of Xi, which we call Z;. The communication channel
from the teacher to the student is assumed to be another
binary symmetric channel with parameter ¢ € [0,1/2). The
student’s estimate of O after observing {Z;},<; is denoted by
0, € {—1,+1}. We refer to the sequence of random variables
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{X;} as the teacher’s strategy, and the decoding rules {©;} as
the student’s learning strategy. For fixed teaching and learning
strategies, the student’s rate of learning is defined as follows:
R = limsup 1 log P (@n #* @) .
n—oo I

Notice that the teacher is assured to the learn the state of the
world eventually owing to her repeated noisy observations of
O. The student’s learning, on the other hand, depends on both
the teacher’s strategy as well as her own decoding strategy. In
this paper, we will largely focus on a fixed student’s strategy
called the majority rule, defined simply as

o, _ [+1 it EEEEED s g
—1  otherwise.

If the student knows the teacher’s strategy, it is optimal for
the student to use the maximum likelihood decoder to arrive
at her estimate of (:)n However, as is well-documented in the
literature on social learning, a fully rational model often places
unreasonable computational demands on Bayesian agents [1].
In such models, assuming non-Bayesian agents serves two
goals: it makes the model more realistic by reducing its
complexity, and in some cases it also helps make the model
mathematically tractable.

In a majority learning model, the student will learn what
they hear most often, and therefore the teacher should try to
teach the “correct lesson” more often than the “wrong lesson”.
What are be some natural strategies that the teacher might
employ?

Don’t teach: A lazy strategy for the teacher is to put
X,- = Oy; i.e., simply forward the teacher’s observation to
the student. The student then receives Z,, which is effec-
tively a noisy observation of © through a BSC(p * q), where
pxq=p(l—q)+q(l —p)=pg+ gp. The optimal decision
rule for the student in this case is simply using the majority
rule and declaring (:)n to be +1 if there were more +1’s in
{Z;}1<i<n, and declare —1 otherwise. The learning rate for
this strategy is given by D(1/2||p x ¢), where D(allb) =
alog(a/b) + alog(a/b) is the Kullback Leibler divergence
between the Bernoulli(a) and the Bernoulli(b) distributions [7].
The rate of learning for this “lazy” or “low-effort” strategy
will be the benchmark against which we want to compare the
“helpful” or “high-effort” strategy described below.

Teach the current best guess: In contrast to the lazy
strategy of not teaching, the teacher might follow a strategy of
always teaching the teacher’s current best estimate of ©, which
is obtained by applying the majority rule to her observations
{O;}1<i<n- Analyzing the learning rate for this strategy is the
main problem we tackle in this paper.

Notice that the high-effort strategy clearly satisfies the
property that after some finite time, the process {Xn} is
identically equal to ©. The lazy-strategy never converges in
such a manner, and thus the teacher is correct more often in
the high-effort strategy. This is the intuitive reason one might
expect the high-effort strategy to dominate. In what follows,
we calculate the exact learning rate for this strategy.

ITI. ANALYZING THE SIGN OF A RANDOM WALK

Assume that © = +1. The teacher’s strategy is a majority
rule applied to her observations {O; }1<;<p; i.e., her response
X,, equals the sign of 3", O;. The random process X, :=
>, O; may be modeled as a random walk Z with transition
probabilities as follows:

p(Xny1 =i+ 1]X, =i) =1—p,and
p(Xn+l =17— 1|X7,l = z) =p,

where p < 1/2. Notice that this random walk is transient;
i.e. for every ¢ € Z, the random walk visits state ¢ finitely
many times with probability 1. Since p < 1/2, the random
walk eventually runs off to +oo. Denote the process X, as

follows: +1 if X,, > Oa

X, =4 -1 if X, <0,
Xno1  if X, = 0.

Let M, be the number of times the teacher is correct up
to time n; ie., M, := > 1(X; = +1). Our goal is to
explore the large deviations behavior of M,,. In particular, we
are interested in the probability P(M,,/n ~ 1 — §), which
calculates how often the teacher is correct up to time n. We
expect this probability to be approximately equal to e~"/(9)
for some suitable exponent f(d), and we would like to pinpoint

f(9) in terms of p and 0.
A. Preliminary calculations for {X,}

The random walk {X,,} is transient, and thus there is some
probability of never returning to state ¢ starting from state 4.
This probability is independent of ¢, and it is an easy exercise
to show that this equals 1 — 2p.

The next quantity we focus on is the sojourn time 7', which
we define as the time of first return to O starting from 0. We use
the convention that 7" is positive if the random walk is positive
during the sojourn, and otherwise 7' is negative. Notice that
sojourn times can only take even values: 7" = 2k when the
random walk takes k positive steps and k£ negative steps in
total, with only the endpoints of the sojourn being at 0. The
probability may be calculated by finding all such paths and
multiplying the result by p*5*. The number of such paths is
seen to be the k — 1-th Catalan number [8], C_1 = %(Qkk':f).
The distribution of 7" is now given by

PP TR i 0 < [k| < oo,
BT = 2k) = 40 if k=0,

1-2p if k= o0,

0 if k= —oo.

We are interested in the random variable T' conditioned on the
event that |T| < oo, which we call T It is easy to see that
ET = 0, and

- oo k =k 0 kt1_k+1
ET =Y 220 ¢ k=230 "P
p p

2
k=1 k=0

Cr-(k+1).

The generating function of Catalan numbers is given by

> . 1-y/1-14
f(x) = kZ:oCkxk = I — x_
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Thus, 77, Cr(k + 1)a* = L(zf(z)) = 1_4:6. Substi-

tuting © = pp, we conclude that E|T| = ,pr). Another

important quantity we will need is the moment generating

function of the random vector (T',|T'|). Using the generating

function as above, this can be explicitly calculated:

2 — /1 — dppe2(Ca+22) — /1 — dppe2Pa—21)
4p

EeM T+x2ITl _

Define the log moment generating function as L(A1, A2) =
log EeM T+ The domain of L is given by the set D =
{(x1,22) | |z1]| + z2 < D(1/2||p)}. Outside of this set, the
function takes the value 4+o0o. We state a lemma that can be
easily proved:

Lemma 1: For (A1, \2) € D, we have L(\1, \2) < log %.

Finally, the last ingredient we need is number of returns
of the random walk {X,} to 0. This is a geometric random
variable with distribution given by

P(G =1i) = (2p)'(1 = 2p), >0,

B. Large deviation properties of M,

Let B be the random variable indicating the final visit to
state 0. We break up the probability as follows:

n/2
M,
— < - = n< - 9 S7 =
P(n <1 5) qE:OIP’(M <n(l1-9),B<n,G=yg)

+P(M, <n(1-96),B>n).

Note that there are less than n terms in this sum, and the
largest among these terms will dictate the exponential growth
rate of the sum. The final term can be expressed as P(B >
n)P(M,, < n(l — §)|B > n). Notice that conditioned on the
event {B > n}, the random variable M, /n has a symmetric
distribution around 1/2. This is because the mirror image of
every path up to time n has the exact same probability as the
original path when conditioned on the event {B > n}. We
have the bounds 1/2 < P(M,, < n(l —¢)|B >n) <1, and
thus the final term is ©(P(B > n)). It is not hard to show
that this probability is e~ "(P(1/2llP)+o(1)) "and we skip the
details here. We focus on the first n/2 terms. We rewrite the
probability as follows:

n/2 n/2
> P(M, <n(l-6),B<n,G=g)= [Z]P’(G—
9=0 =0

(5 2 (Eneefme) ()]

We explain the indicator function as follows. The total number
of +1’s received equals (n — b) (the +1’s received after time
b) plus the total number of +1’s received up to time b, which
equals (b— a)/2. This equals n — (a4 b)/2, and since we are
interested in the event that this quantity is at most n(1 — §),
we introduce the indicator 1((a+b)/2 > nd). Substitute o :=
a/n,B := b/n,y := g/n. We may rewrite the above as a
summation over «, 3, and -y, were we implicitly assume that
they take values of the form i/n for some integer i:

1/2

2r(v=)

N>

B=max(6,2v) a=20—p4

< ;wl Tj —_— ?:1 |T]| _5>}
n

Our next theorem forms the core result of this paper:
Theorem 1: The following equality holds:

1 lim 1ogP (Ai" <(1- 5)) — —5D(1/2||p).

n n—oo
Proof Define the random vector Z, =
S,Z — 1 T Z’ 1' il . Define the set R := {a,8,7 |

3 C O/28 € k(6 lha € 25— 6,8]) C B
Note that we are interested in the quantity P(Z, € R).
We shall evaluate this probability for large n using the
Gartner-Ellis theorem from large deviation theory [7]. The
first step is to show that the following limit exists for every
A= ()\1,)\2,A3) € R3:

n\-Zn

A(N) := lim flogIEe

n—00

G G
= nhf;O = logIEexp <A1G+ A2 <Z Tj) + A3 (Z Tj))

j=1 j=1

exp (/\1G+ Ao (; }) + s (; Tyl))

[ Alc+L(A2,A3>G}

= lim 1logIE E

n—oo N

@ lim = logIE

n— 00

N 0 if Ay +L(>\2,)\3) < 10g(1/2p),
" )4o00 otherwise.

where the equality in (a) holds only when (A, A3) € D,
otherwise the limit is +oco. To summarize,

+oo if (A2, A3) € D9,
AN) =< 4o if (A2, A3) € D, A1 > log(1/2p) — L(A2, A3),
0 otherwise.

Let the domain of A be Dy. Let A* be the convex conjugate
of A. A direct application of the Gartner-Ellis theorem gives
the following upper bound'

lim sup
n— oo

“log Pa(R) < — inf A"(2) )

where P,, is the distribution of Z,,. We evaluate the convex
conjugate of A at the point (v, a, 3) € RY:

A" (v, 0, B) = sup iy + Ao+ A3
XED,
@ sup  (log(1/2p) — L(A2,A3)) v + A2cx + A3f.
(A2,A3)€D

where in (a) we used that v > 0 in R. We make the
following crucial observations: First, Lemma 1 implies that
the coefficient of ~ in the above expression is positive, and
therefore A* (7, o, 3) is a monotonically increasing function of
~ for fixed o and 8. Second, the set R is such that the possible
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values of the pair (a,3) can only increase as v becomes
smaller. This implies that if v; < 72, then

(717 36) <

,O{
BER (s, A (2,0, 8),

(o, 8): (’Yl ,B)ER

since not only is the left hand smaller for every fixed («, §),
but also the range of possible values of («,3) on the left
hand side contains the range on the right hand side. Thus, the
infimum of A* over R must be when v = 0; i.e.,

inf  A*(v, o, 8) = A0, B).
oo (v,a,8) (0,a,p)

When S € [4,1], and a € [8 — 26, 8], we have
A" (0,0, 8) = Ao+ A3 = BD(1/2]|p).

inf
Bels,1],ae[26—3,8]

sup
(A2,X3)€D

Hence, we conclude that

inf A*(y,0,8) =

o BD(1/2|p)

Bels,1], aE[25 3,81
=46D(1/2|p).

To complete the proof, we need to establish a lower bound
counterpart to inequality (1). This is established via the
following lemma, whose proof we skip here:

Lemma 2: The following inequality holds:

liminf + log P, (R) > —3D(1/2|[p).

n—,oo Mn
The proof follows by constructing a set of paths that satisfy
M, < (1 —96)n and explicitly computing the combined prob-
ability of these paths. This completes the proof of Theorem 1,
and we conclude P (2= < (1 —§)) ~ e 0D(1/20IP), [ ]

IV. LEARNING RATE FOR THE HIGH-EFFORT STRATEGY

Notice that Theorem 1 already provides the exact learning
rate if the teacher to student channel is perfect; i.e., if ¢ = 0.
In this case, a majority learner student makes an error only
if M,, < n/2. Substituting 6 = 1/2, we see that the student
will learn at a rate of $D(1/2||p) via high-effort strategy.
In contrast, the learning rate for the low-effort strategy is
D(1/2]lp)

To evaluate the learning rate with ¢ > 0, we first prove the
following large deviations result for a mixture of Bernoulli
random variables:

Lemma 3: Let § € [0,1] and ¢ € [0,1/2]. Con-
sider a sequence of ii.d. Bernoulli(l — ¢) random vari-
ables {U; }1<i<n—|no| and i.i.d. Bernoulli(g) random variables
{Vj}1<j<|no| such that the U;’s are independent of the V;’s.
Define the random variable W,, as follows:

no no
S U S,

n

W, =

Then W, satisfies the large deviation principle with rate
function

Ip(w) = wlog (n) — Olog (qn + q) — 6log (qn + q)

where
/72 z i
n::—T+ 2:D+4wz7 Tzzg(efw)wL%(@fw).

The proof is a direct application of the Gartner-Ellis theorem
and we skip it here.

Although we are interested in 6 = 1/2, it is not too much
work to evaluate the probability that at most n(1—9) instances
of the student’s received sequence {Z,} equal +1.

Theorem 2: Let 6 € [g,1 — ¢]. Suppose we say that the
student commits an error if the fraction of received +1’s is at
most (1 — §). Then the rate of learning is given by

‘= inf 6D(1/2 I
R 961%71]0 (1/2[lp) + 1(0),

where I(-) is defined as
I(0) = inf

wel0,1-48]

Ig(’w)7

where Iy(-) is the rate function from Lemma 3.

Proof: Let £, be the error event; i.e. the event when the
student receives at most n(1—J) number of +1’s. Consider an
integer N > 0, whose value will be decided later. Divide the
interval [0, 1] into intervals L;, for 0 < ¢ < N — 1 such that

i := [{/N, i+ 1/N]. The probability of error can be written

as follows:
M, .
n i

N-—-1
M,
P(E,) = ;P<T ELZ)]P)( ,L
Note that we have the following bounds on the first term:
M, M, _i+1 M,
-n i) = o< _ el
P(en) (e ()

Let €1 > 0 be an arbitrarily small constant. From Theorem 1,
we have that for all 0 <7 < N — 1 and for all large enough
n, the following inequality holds:

1 M, N—i—1
R P o = R Skt YO WD) ‘ )
[~ poe? (2 e 1) - M= bz | < @

Turning to the second term, we note that the probability of
error is a monotonically decreasing function of M,,/n. Thus,
we may write the following bounds:

M, i
no ﬁ) ‘

P(&L(%:Z;l)q»(s (—eL) <IP(

Let e2 > 0 be an arbitrarily small constant. Using the large
deviations principle from Lemma 3, we have that for all large
enough n and for all 0 <7 < N — 1, we have the bounds

1 M, 1 - .
)nlog[ED( ; :N> —I((N—z)/N)‘ <& ()
Combining the bounds from inequalities (2) and (3), we obtain
N-1 i—1 - )
PE,) < S e (T DO 2N =)/N) 1 ~e2)

B D(/2| )+ (N —i=1)/N)+erte)

P(E,) > fe*"(

Let €3 > 0 be an arbitrarily small constant. Define the three
quantities

= inf xD(1/2 i
wi= me (1/2lp) + I(x),
. N-—-1-—1 . ‘
wi= inf == D(1/2lp) + I((N = )/N),
L inf MD(UQH )"‘j((N—‘—l)/N)
L= T N p i .
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p (Noise for teacher)

L L L ' 4

(0,0) g (Noise for student)

Fig. 1. The dark region indicates where the low-effort strategy outperforms
the high-effort strategy.

Using the continuity of I, we now pick N such that
max(|u — al, [u — u|) < €.

Then for all large enough n, we have the bounds
P(gn) S N@—T},(1J,—€l—€2—€3)7

P(gn) > e—n(u+61+62+€3).

Taking logarithms, dividing by n, and taking the limit, we
see that

1
lim —logP(€n) —u| < €1 + €2 + €3.
n—oo N
Since €1, €2, €3 are arbitrary constants, we conclude that
1
lim —logP(&n) = w.
n—oo M

|

The above result may be simplified further. Notice that when
0G+0q € [0,1—0], the value of 1(#) = 0, since the infimum in
its definition may be calculated to be at G+ fq. Since we are
minimizing #.D(1/2||p) + 1(6), we would like to consider the
smallest possible value of § such that G+60q < 1—4. It follows

that there is no need to consider 6 > %. Furthermore, for 8 €

LE), %], we have the equality 1(0) = Ip(1 — §). This means
that we may write exponential decay of the error probability

as
inf _0D(1/2||p) + Is(1 — 0).
oefo.=¢]
This expression does not simplify further, but since the func-
tion being minimized is known in closed form, it is convenient

to simulate this using MATLAB or similar softwares.

V. DISCUSSION

In Figure 1, we have compared the learning rates for the
student for the low-effort and the high-effort strategies. The
black region indicates the region where the low-effort strategy
dominates. This shows that if the teacher to student channel
does not have a lot of noise, then it is better for the teacher to
not teach her best estimate to the student; i.e., send uncoded

information. A rough intuition for this is that the teacher may
receive many incorrect observations initially by chance. In this
case, the high-effort strategy (which relies on the teacher’s
majority opinion) has a significant delay in correcting the
teacher’s opinion. However, if the teacher is following the low-
effort strategy, the flipped observations in the beginning have
no effect on the teacher’s future communications. Furthermore,
since the student has a relatively clean channel, she does need
a high-effort strategy to learn quickly. A surprising threshold
of ¢ = 0.15 also emerges from the figure: if the teacher to
student channel is more noisy that this threshold, then it is
always beneficial to use the high-effort strategy, no matter how
bad the teacher’s observations.

There are various other strategies that the teacher and
student may employ that we have not discussed here. For
example, when the teacher is using the high-effort strategy,
the student may “ignore” the first few observations and use
the majority rule only on the latter observations, since they
are more likely to be correct. Bayesian strategies are also
worth analyzing. In general, it is an open problem to determine
the optimal joint strategies they may employ to maximize the
learning rate, or indeed establish non-trivial upper bounds on
the best possible learning rates.

We also note that our result in Section III is closely related
to the famous Ballot Theorem in combinatorics [9]. Theorem
1 is essentially a more refined analysis of the classical Bal-
lot Theorem setting. Extending Theorem 1 to more general
Markov chains, such as the Brownian motion, could potentially
lead to newer versions of Ballot Theorems.
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