PeX: A Permission Check Analysis Framework for Linux Kernel

Wenbo Shen”
Zhejiang University

Ahmed M. Azab*
Samsung Research America

Tong Zhang™
Virginia Tech

Abstract

Permission checks play an essential role in operating system
security by providing access control to privileged functionali-
ties. However, it is particularly challenging for kernel develop-
ers to correctly apply new permission checks and to scalably
verify the soundness of existing checks due to the large code
base and complexity of the kernel. In fact, Linux kernel con-
tains millions of lines of code with hundreds of permission
checks, and even worse its complexity is fast-growing.

This paper presents PeX, a static Permission check error
detector for LinuX, which takes as input a kernel source code
and reports any missing, inconsistent, and redundant permis-
sion checks. PeX uses KIRIN (Kernel InteRface based In-
direct call aNalysis), a novel, precise, and scalable indirect
call analysis technique, leveraging the common programming
paradigm used in kernel abstraction interfaces. Over the inter-
procedural control flow graph built by KIRIN, PeX automati-
cally identifies all permission checks and infers the mappings
between permission checks and privileged functions. For each
privileged function, PeX examines all possible paths to the
function to check if necessary permission checks are correctly
enforced before it is called.

We evaluated PeX on the latest stable Linux kernel v4.18.5
for three types of permission checks: Discretionary Access
Controls (DAC), Capabilities, and Linux Security Modules
(LSM). PeX reported 36 new permission check errors, 14 of
which have been confirmed by the kernel developers.

1 Introduction

Access control [38] is an essential security enforcement
scheme in operating systems. They assign users (or processes)
different access rights, called permissions, and enforce that
only those who have appropriate permissions can access criti-
cal resources (e.g., files, sockets). In the kernel, access control

*This work was started when Tong Zhang interned at Samsung Research
America, mentored by Wenbo Shen and Ahmed M. Azab.

TCorresponding author.

*Now at Google.

Stony Brook University

Dongyoon Lee Changhee Jung

Purdue University

Ruowen Wang*
Samsung Research America

is often implemented in the form of permission checks before
the use of privileged functions accessing the critical resources.

Over the course of its evolution, Linux kernel has employed
three different access control models: Discretionary Access
Controls (DAC), Capabilities, and Linux Security Modules
(LSM). DAC distinguishes privileged users (a.k.a., root) from
unprivileged ones. The unprivileged users are subject to vari-
ous permission checks, while the root bypasses them all [4].
Linux kernel v2.2 divided the root privilege into small units
and introduced Capabilities to allow more fine-grained access
control. From kernel v2.6, Linux adopted LSM in which vari-
ous security hooks are defined and placed on critical paths of
privileged operations. These security hooks can be instanti-
ated with custom checks, facilitating different security model
implementations as in SELinux [41] and AppArmor [3].

Unfortunately, for a new feature or vulnerability found,
these access controls have been applied to the Linux kernel
code in an ad-hoc manner, leading to missing, inconsistent, or
redundant permission checks. Given the ever-growing com-
plexity of the kernel code, it is becoming harder to manually
reason about the mapping between permission checks and
privileged functions. In reality, kernel developers rely on their
own judgment to decide which checks to use, often leading
to over-approximation issues. For instance, Capabilities were
originally introduced to solve the “super” root problem, but
it turns out that more than 38% of Capabilities indeed check
CAP_SYS_ADMIN, rendering it yet another root [5].

Even worse, there is no systematic, sound, and scalable way
to examine whether all privileged functions (via all possible
paths) are indeed protected by correct permission checks. The
lack of tools for checking the soundness of existing or new
permission checks can jeopardize the kernel security putting
the privileged functions at risk. For example, DAC, CAP and
LSM introduce hundreds of security checks scattered over
millions of lines of the kernel code, and it is an open problem
to verify if all code paths to a privileged function encounter its
corresponding permission check before reaching the function.
Given the distributed nature of kernel development and the
significant amount of daily updates, chances are that some

parts of the code may miss checks on some paths or introduce
the inconsistency between checks, weakening the operating
system security.

This paper presents PeX, a static permission check analysis
framework for Linux kernel. PeX makes it possible to soundly
and scalably detect any missing, inconsistent and redundant
permission checks in the kernel code. At a high level, PeX
statically explores all possible program paths from user-entry
points (e.g., system calls) to privileged functions and detects
permission check errors therein. Suppose PeX finds a path in
which a privileged function, say PF, is protected (preceded)
by a check, say chk in one code. If it is found that any other
paths to PF bypass Chk, then it is a strong indication of a
missing check. Similarly, PeX can detect inconsistent and
redundant permission checks. While conceptually simple, it
is very challenging to realize a sound and precise permission
check error detection at the scale of Linux kernel.

In particular, there are two daunting challenges that PeX
should address. First, Linux kernel uses indirect calls very
frequently, yet its static call graph analysis is notoriously
difficult. The latest Linux kernel (v4.18.5) contains 15.8M
LOC, 247K functions, and 115K indirect callsites, rendering
existing precise solutions (e.g., SVF [43]) unscalable. Only
workaround available to date is either to apply the solutions
unsoundly (e.g., only on a small code partition as with K-
Miner [22]) or to rely on naive imprecise solutions (e.g., type-
based analysis). Either way leads to undesirable results, i.e.,
false negatives (K-Miner) or positives (type-based one).

For a precise and scalable indirect call analysis, we intro-
duce a novel solution called KIRIN (Kernel InteRface based
Indirect call aNalysis), which leverages kernel abstraction in-
terfaces to enable precise yet scalable indirect call analysis.
Our experiment with Linux v4.18.5 shows that KIRIN allows
PeX to detect many previously unknown permission check
bugs, while other existing solutions either miss many of them
or introduce too many false warnings.

Second, unlike Android which has been designed with the
permission-based security model in mind [2], Linux kernel
does not document the mapping between a permission check
and a privileged function. More importantly, the huge Linux
kernel code base makes it practically impossible to review
them all manually for the permission check verification.

To tackle this problem, PeX presents a new technique which
takes as input a small set of known permission checks and
automatically identifies all other permission checks includ-
ing their wrappers. Moreover, PeX’s dominator analysis [31]
automates the process of identifying mappings between per-
mission checks and their potentially privileged functions as
well. Our experiment with Linux kernel v4.18.5 shows that
starting from a small set of well-known 3 DAC, 3 Capacities,
and 190 LSM checks, PeX automatically (1) identifies 19, 16,
and 53 additional checks, respectively, and (2) derives 9243
pairs of permission checks and privileged functions.

The contributions of this paper are summarized as follows:

Table 1: Commonly used permission checks in Linux.

Type Total # Permission Checks

DAC 3 generic_permission, sb_permission, inode_permission
Capabilities 3 capable, ns_capable, avc_has_perm_noaudit

LSM 190 security_inode_readlinkat, security_file_ioctl, etc..

New Techniques: We proposed and implemented PeX, a
static permission check analysis framework for Linux ker-
nel. We also developed new techniques that can perform
scalable indirect call analysis and automate the process of
identifying permission checks and privileged functions.
Practical Impacts: We analyzed DAC, Capabilities, and
LSM permission checks in the latest Linux kernel v4.18.5
using PeX, and discovered 36 new permission check bugs,
14 of which have been confirmed by kernel developers.
Community Contributions: We will release PeX as an
open source project, along with the identified mapping be-
tween permission checks and privileged functions. This
will allow kernel developers to validate their codes with
PeX, and to contribute to PeX by refining the mappings
with their own domain knowledge.

2 Background: Permission Checks in Linux

This section introduces DAC, Capabilities, and LSM in Linux
kernel. Table 1 lists practically-known permission checks in
Linux. Unfortunately, the full set is not well-documented.

2.1 Discretionary Access Control (DAC)

DAC restricts the accesses to critical resources based on the
identity of subjects or the group to which they belong [36,46].
In Linux, each user is assigned a user identifier (uid) and a
group identifier (gid). Correspondingly, each file has prop-
erties including the owner, the group, the rwx (read, write,
and execute) permission bits for the owner, the group, and
all other users. When a process wants to access a file, DAC
grants the access permissions based on the process’s uid,
gid as well as the file’s permission bits. For example in
Linux, inode_permission (as listed in Table 1) is often used
to check the permissions of the current process on a given
inode. More precisely speaking, however, it is a wrapper of
posix_acl_permission, which performs the actual check.

In a sense, DAC is a coarse-grained access control model.
Under the Linux DAC design, the “root” bypasses all per-
mission checks. This motivates fine-grained access control
scheme—such as Capabilities—to reduce the attack surface.

2.2 Capabilities

Capabilities, since Linux kernel v2.2 (1999), enable a fine-
grained access control by dividing the root privilege into small
sets. As an example, for users with the CAP_NET_ADMIN ca-
pability, kernel allows them to use ping, without the need
to grant the full root privilege. Currently, Linux kernel
v4.18.5 supports 38 Capabilities including CAP_NET_ADMIN,

CAP_SYS_ADMIN, and so on. Functions capable and ns_capable
are the most commonly used permission checks for Capabili-
ties (as listed in Table 1). Both determine whether a process
has a particular capability or not, while ns_capable performs
an additional check against a given user namespace. They in-
ternally use security_capable as the basic permission check.

Capabilities are supposed to be fine-grained and distinct [4].
However, due to the lack of clear scope definitions, the choice
of specific Capability for protecting a privileged function
has been made based on kernel developers’ own understand-
ing in practice. Unfortunately, this leads to frequent use of
CAP_SYS_ADMIN (451 out of 1167, more than 38%), and it is
just treated as yet another root [5]; grsecurity points out that
19 Capabilities are indeed equivalent to the full root [1].

2.3 Linux Security Module (LSM)

LSM [51], introduced in kernel v2.6 (2003), provides a set
of fine-grained pluggable hooks that are placed at various
security-critical points across the kernel. System administra-
tors can register customized permission checking callbacks to
the LSM hooks so as to enforce diverse security policies. The
latest Linux kernel v4.18.5 defines 190 LSM hooks. One com-
mon use of LSM is to implement Mandatory Access Control
(MAC) [8] in Linux (e.g., SELinux [40,41], AppArmor [3]).
MAC enforces more strict and non-overridable access control
policies, controlled by system administrators. For example,
when a process tries to read the file path of a symbolic link,
security_inode_readlink is invoked to check whether the
process has read permission to the symlink file. The SELinux
callback of this hook checks if a policy rule can grant this
permission (e.g.,allow domain_a type_b:lnk_file read). It
is worth noting that the effectiveness of LSM and its MAC
mechanisms highly depend on whether the hooks are placed
correctly and soundly at all security-critical points. If a hook
is missing at any critical point, there is no way for MAC to
enforce a permission check.

3 Examples of Permission Check Errors

This section illustrates different kinds of permission check
errors, found by PeX and confirmed by the Linux kernel de-
velopers. We refer to those functions, that validate whether a
process (a user or a group) has proper permission to do certain
operations, as permission checks. Similarly, we define privi-
leged functions to be those functions which only a privileged
process can access and thus require permission checks.

3.1 Capability Permission Check Errors

Figure | shows real code snippets of Capability permission
check errors in Linux kernel v4.18.5. Figure 1a shows the
kernel function scsi_ioctl, in which sg_scsi_ioctl (Line
7) is safeguarded by two Capability checks, CAP_SYS_ADMIN
and cap_sys_RAWIO (Line 5). To the contrary, scsi_cmd_ioctl
in Figure 1b calls the same function sg_scsi_ioctl (Line

1 int scsi_ioctl (struct scsi_device xsdev, int cmd,
<« wvoid __user +arg)

case S I IL_ S COl D:
if (!capable (CAP_SYS_ADMIN) |
— !capable (CAP_SYS_RAWIO))
6 return -EACCES;
7 return sg_scsi_ioctl (sdev->request_queue, NULL,
— 0, arg);

TS

8

9}

(a) sg_scsi_ioctl (Line 7) is called with CAP_SYS_ADMIN and
CAP_SYS_RAWIO capability checks (Line 5). arg is user space con-
trollable.

int scsi_cmd_ioctl (struct request_queue x*q, ...,
<« wvoid __user *arg)

{

case SCSI_TOCTL_SEND_COMMAND:

2
3

4

5 .

6 if ('arg)

7 break;

8 err = sg_scsi_ioctl (g, bd_disk, mode, arg);
9 break;

11 return err;
12 }

(b) sg_scsi_ioctl (Line 8) is called without capability checks.
arg is user space controllable.

1 int sg_scsi_ioctl (struct request_queue xq, struct
< gendisk xdisk, fmode_t mode, struct

— scsi_ioctl_command __user xsic)

{

éif = blk_verify_command (reg->cmd, mode);

return err;

9 int blk_verify_ command (unsigned char »cmd, fmode_t

— mode)
10 {
11 ca
12 if (capable (CAP_SYS_RAWIO))
13 return 0;
14

s return -EPERM;
}

(c) sg_scsi_ioctl calls blk_verify_command, which checks
CAP_SYS_RAWIO capability.

Figure 1: Capability check errors discovered by PeX.

8) without any Capability check. These two functions
share three similarities. First, both of them are reachable
from the userspace by ioctl system call. Second, both
call sg_scsi_ioctl with a userspace parameter, void __user
*arg. Last, there is no preceding Capability check on all possi-
ble paths to them (though scsi_ioctl performs two checks).

The kernel is supposed to sanitize userspace inputs and
check permissions to ensure that only users with appropriate
permissions can conduct certain privileged operations. As
SCSI (Small Computer System Interface) functions manipu-
late the hardware, they should be protected by Capabilities.
At first glance, scsi_ioctl seems to be correctly protected
(while scsi_cmd_ioctl misses two Capability checks).

However, delving into sg_scsi_ioctl ends up with a differ-
ent conclusion. As shown in Figure Ic, sg_scsi_ioctl calls
blk_verify_command, which in turn checks CAP_SYS_RAWIO.
Considering all together, scsi_ioct1 checks CAP_SYS_ADMIN
once but CAP_SYS_RAWIO “twice”, leading to a redundant per-
mission check. On the other hand, scsi_cmd_ioctl checks

1 static int do_readlinkat (int dfd, const char __ user
— *pathname, char _ user xbuf, int bufsiz)
{

error = security_inode_readlink (path.dentry);
if (!error) {
touch_atime (&path);
) error = vfs_readlink (path.dentry, buf, bufsiz);

}

Sowuou s we

(a) Kernel LSM wusage in system call readlinkat.
vEs_readlink (Line 7) is protected by
security_inode_readlink (Line 4). Both pathname
and buf (Line 1 and Line 7) are user controllable.

1 int ksys_ioctl (unsigned int fd, unsigned int cmd,
— unsigned long arg)

2 |

3 “e

4 error = security_file_ioctl(f.file, cmd, arg);
5 if (l!error)

6 error = do_vfs_ioctl(f.file, fd, cmd, arg);
7 ...

8}

9

0

int xfs_readlink_by_ handle (struct file «+parfilp,
— xfs_fsop_handlereq t xhreq)
11 {

13 éffor vfs_readlink (dentry, hreg->ohandle, olen);

(b) Kernel LSM usage in system call ioctl. It calls
security_file_ioctl (Line 4) to protect do_vfs_ioctl
(Line 6). hreg->ohandle and olen are also user controllable.

Figure 2: LSM check errors discovered by PeX.

only CAP_SYS_RAWIO, resulting in a missing permission check
for cap_sys_apMIN. In particular, PeX detects this bug as an
inconsistent permission check because the two paths disagree
with each other, and further investigation shows that one is
redundant and the other is missing.

3.2 LSM Permission Check Errors

The example of LSM permission check errors is related to
how LSM hooks are instrumented for two different system
calls readlinkat and ioctl.

Figure 2a shows the LSM usage in the readlinkat system
call. On its call path, vfs_readlink (Line 7) is protected by
the LSM hook security_inode_readlink (Line 4) so that a
LSM-based MAC mechanism, such as SELinux or AppArmor,
can be realized to allow or deny the vfs_readlink operation.

Figure 2b presents two sub-functions for the system call
ioctl. Similar to the above case, ioctl calls ksys_ioctl,
which includes its own LSM hook security_file_ioctl
(Line 4) before do_vfs_ioctl (Line 6). This is proper design,
and there is no problem so far. However, it turns out that there
is a path from do_vfs_ioctl to xfs_readlink_by_handle
(Line 10), which eventually calls the same privileged func-
tion vfs_readlink (see Line 7 in Figure 2a and Line 13
in Figure 2b). While this function is protected by the
security_inode_readlink LSM hook in readlinkat, that
is not the case for the path to the function going through
xfs_readlink_by_handle. The problem is that SELinux main-
tains separate ‘allow’ rules for read and ioct1. With the miss-
ing LSM security_inode_readlink check, a user only with

1 struct file_operations {

2 “e

3 ssize_t (*read_iter) (struct kiocb %, struct
— lov_iter «);

4 ssize_t (*write_iter) (struct kiocb *, struct

— lov_iter «);

(a) The Virtual File System (VFS) kernel interface.

write (fd, buffer, count)
User space gsyscall(l, fd, buffer, count)

Kernel spaceC syscall dispatcher

SyS_write (fd, buffer, count)
Evfs_write(fd.file, buffer, count, fd.pos)

file->f op->write iter(kio, iter);
N\

const struct file/Operati¢gns ex\4 filx operations

{

.read_iter =\extd4 file read fiter,
.write iter ="extd4 file writp iter,

} const struct file operations|nfs fi
{

operations

.read_iter = nfs_file read,
.write iter = nfs_file wri

(b) VFS indirect calls in Linux kernel.
Figure 3: Indirect call examples via the VES kernel interface.

the ‘ioctl allow rule’ may exploit the ioctl system call to
trigger the vfs_readlink operation, which should only be
permitted by the different ‘read allow rule’.

The above two Capability and LSM examples show how
challenging it is to ensure correct permission checks. There
are no tools available for kernel developers to rely on to
figure out whether a particular function should be protected
by a permission check; and, (if so) which permission checks
should be used.

4 Challenges

This section discusses two critical challenges in designing
static analysis for detecting permission errors in Linux kernel.

4.1 Indirect Call Analysis in Kernel

The first challenge lies in the frequent use of indirect calls in
Linux kernel and the difficulties in statically analyzing them
in a scalable and precise manner. To achieve a modular de-
sign, the kernel proposes a diverse set of abstraction layers
that specify the common interfaces to different concrete im-
plementations. For example, Virtual File System (VES) [12]
abstracts a file system, thereby providing a unified and trans-
parent way to access local (e.g., ext4) and network (e.g., nfs)
storage devices. Under this kernel programming paradigm,
an abstraction layer defines an interface as a set of indirect
function pointers while a concrete module initializes these
pointers with its own implementations. For example, as shown
in Figure 3a, VFS abstracts all file system operations in a ker-

nel interface struct file_operations that contains a set of
function pointers for different file operations. When a file
system is initialized, it initializes the VFS interface with the
concrete function addresses of its own. For instance, Figure 3b
shows that ext4 file system sets the write_iter function
pointer to ext4_file write_iter, while nfs sets the pointer
tonfs_file write.

However, kernel’s large code base challenges the resolution
of these numerous function pointers within kernel interfaces.
For example, the kernel used in our evaluation (v4.18.5) in-
cludes 15.8M LOC, 247K functions, and 115K indirect call-
sites. This huge code base makes existing precise pointer
analysis techniques [23-25, 35, 43] unscalable. In fact, Static
Value Flow (SVF) [43], i.e., the state-of-the-art analysis that
uses flow- and context-sensitive value flow for high preci-
sion, failed to scale to the huge Linux kernel. That is because
SVF is essentially a whole program analysis, and its indirect
call resolution thus requires tracking all objects such as func-
tions, variables, and so on, making the value flow analysis
unscalable to the large-size Linux kernel. In our experiment
of running SVF for the kernel on a machine with 256GB
memory, SVF was crashed due to an out of memory error'.

Alternatively, one may opt for a simple “type-based” func-
tion pointer analysis, which would scale to Linux kernel. How-
ever, the type-based indirect call analysis would suffer from
serious imprecision with too many false targets, because func-
tion pointers in the kernel often share the same type. For
example, in Figure 3a, two function pointers read_iter and
write_iter share the same function type. Type based pointer
analysis will even link write iter to ext4 file read iter
falsely, which may lead to false permission check warnings.

PeX addresses this problem with a new kernel-interface
aware indirect call analysis technique, detailed in §5.

4.2 The Lack of Full Permission Checks, Priv-
ileged Functions, and Their Mappings

The second challenge lies in soundly enumerating a set of
permission checks and inferring correct mappings between
permission checks and privileged functions in Linux kernel.

Though some commonly used permission checks for
DAC, Capabilities, and LSM are known (Table 1), kernel
developers often devise custom permission checks (wrap-
pers) that internally use basic permission checks. Unfor-
tunately, the complete list of such permission checks has
never been documented. For example, ns_capable is a com-
monly used permission check for Capabilities, but it calls
ns_capable_common and security_capable in sequence. It is
the last security_capable that performs the actual capability
check. In other words, all the others are “wrappers” of the
“basic” permission check security_capable. This example

'SVF internally uses LLVM SparseVectors to save memory overhead by
only storing the set bits. However, it still blows up both the memory and the
computation time due to the expensive insert, expand and merge operations.

shows how hard it is for a permission check analysis tool to
keep up with all permission checks.

To make matters worse, Linux kernel has no explicit docu-
mentation that specifies which privileged function should
be protected by which permission checks. This is differ-
ent from Android [2], which has been designed with the
permission-based security model in mind from the begin-
ning. Take the Android LocationManager class as an example;
for the getLastKnownLocation method, the API document
states explicitly that permission ACCESS_COARSE_LOCATION or
ACCESS_FINE_LOCATION is required [7].

Unfortunately, existing static permission error checking
techniques are not readily applicable in order to address these
problems. Automated LSM hook verification [44] works only
with clearly defined LSM hooks, which would miss many
wrappers in the kernel setting. Many other tools require heavy
manual efforts such as user-provided security rules [20, 56],
authorization constraints [33], annotation on sensitive ob-
jects [21]. These manual processes are particularly error-
prone when applied to huge Linux code base. Alternatively,
some works such as [18,32] rely on dynamic analysis. How-
ever, such run-time approaches may significantly limit the
code coverage being analyzed, thereby missing real bugs.

Moreover, all of above existing works cannot detect permis-
sion checks soundly. Their inability to recognize permission
checks or wrappers leads to missing privileged functions or
false warnings for those that are indeed protected by wrappers.
Since the huge Linux kernel code base makes it practically
impossible to review them all manually, reasoning about the
mapping is considered to be a daunting challenge.

In light of this, PeX presents a novel static analysis tech-
nique that takes as input a small set of known permission
checks to identify their basic permission checks and leverages
them as a basis for finding other permission check wrappers
(§6.2). In addition, PeX proposes a dominator analysis based
solution to automatically infer the mappings between permis-
sion checks and privileged functions (§6.3).

5 KIRIN Indirect Call Analysis

PeX proposes a precise and scalable indirect call analysis
technique, called KIRIN (Kernel InteRface based Indirect
call aNalysis), on top of the LLVM [27] framework. KIRIN
is inspired by two key observations: (1) almost all (95%)
indirect calls in the Linux kernel are originated from ker-
nel interfaces (§4.1) and (2) the type of a kernel interface
is preserved both at its initialization site (where a function
pointer is defined) and at the indirect callsite (where a func-
tion pointer is used) in LLVM IR. For example in Figure 3b,
the kernel interface object ext4_file operations of the
type struct file_operations is statically initialized where
extd_file_write_iter is assigned to the field of write_iter.
For the indirect call site file—f_op—write_iter, one can
identify that £_op is of the type struct file_operations and

1 @ext4_file_operations = |dso_local| local_unnamed addr
— constant $struct.file_operations {
%$struct.modulex null,
i64 (%struct.filex, i64, i32)x* Qextd_llseek,
i64 (%struct.filex, i8%, i64, i64x)* null,
i64 ($struct.filex, i8%, 164, i64x)x null,
i64 (%struct.kiocbx, %struct.iov_iterx) =
— (@ext4_file_read_iter,
7 164 (%struct.kiocbx, %$struct.iov_iterx)x
— (@ext4_file_write_iter,

o w e W

(a) LLVM IR of ext4_file_operations initialization.

1 %25 = load S%$struct.file_operationsx,
— %struct.file_operations*x %$f_op, align 8
2 Swrite_iter.i.i = getelementptr inbounds
— %struct.file_operations,
— %struct.file_operationsx %25, i64 0, i32 5
3 %26 = load i64 (%struct.kiocbx, %$struct.iov_iterx)x,
<« 164 (%struct.kiocb*, %$struct.iov_iterx) =
— %write_iter.i.i, align 8
4 %call.i.i = call i64 %26 (%struct.kiocb* nonnull
— %$kiocb.i, %struct.iov_iterx nonnull %$iter.i) #10

(b) LLVM IR of callsite file—f_op—write_iterinvfs_write.
Figure 4: Indirect callsite resolution for vfs_write.

infer that ext4_file write_iter is one of potential call tar-
gets. Based on this observation, PeX first collects indirect call
targets at kernel interface initialization sites (§5.1) and then
resolves them at indirect callsites (§5.2).

5.1 Indirect Call Target Collection

In Linux kernel, a kernel interface is often defined in
a C struct comprised of function pointers (§4.1): e.g.,
struct file_operations in Figure 3a. Many kernel inter-
faces (C structs) are statically allocated and initialized
as with ext4_file_operations and nfs_file_operations in
Figure 3b. Some interfaces may be dynamically allocated and
initialized at run time for reconfiguration.

For the former, KIRIN scans all Linux kernel code linearly
to find all statically allocated and initialized struct objects
with function pointer fields. Then, for each struct object,
KIRIN keep tracks of which function address is assigned to
which function pointers field using an offset as a key for the
field. For instance, Figure 4a shows the LLVM IR of statically
initialized ext4_file_operations. KIRIN finds that the ker-
nel interface type is struct file_operations (Line 1), and
extd_file write_iter isassignedto the Sthfieldwrite_iter
(Line 7). Therefore, KIRIN figures out that write_iter may
point to ext4_file_write_iter, not extd_file_read_iter
(even though they have the same function type).

For the rest dynamically initialized kernel interfaces,
KIRIN performs a data flow analysis to collect any assign-
ment of a function address to the function pointer inside a
kernel interface. KIRIN’s field-sensitive analysis allows the
collected targets to be associated with the individual field of
a kernel interface.

1 struct usb_driverx driver =
<« container_of (intf->dev.driver, struct
< usb_driver, drvwrap.driver);

2 retval = driver->unlocked_ioctl (intf,
— ctl->ioctl_code, buf);

(a) C code of a container_of usage, followed by an indirect call.

#define container_of (ptr, type, member) ({ \
void *__mptr = (void x) (ptr); \
((type *) (__mptr offsetof (type, member))); })

4 %unlocked_ioctl = getelementptr inbounds i8x, i8xx
« %add.ptr76, 164 3

W=

(b) Original container_of and the LLVM IR for the callsite.

1 #define container_of (ptr, type, member) ({ \
2 type* __res; \
3 void+ __mptr = ((void *) ((void*) (ptr) - \

— offsetof (type, member))); \
4 memcpy (&__res, &__mptr, sizeof (voidx)); \
5 (__res);})

6 %unlocked_ioctl = getelementptr inbounds
< %struct.}usb_driver, $struct.usb_driverx %20, i64
- 0, i 3

(c) Modified container_of and the LLVM IR for the callsite.
Figure 5: Fixing container_of missing struct type problem.

5.2 Indirect Callsite Resolution

KIRIN stores the result of the above first pass in a key-value
map data structure in which the key is a pair of kernel interface
type and an offset (a field), and the value is a set of call
targets. At each indirect callsite, KIRIN retrieves the type of
a kernel interface and the offset from LLVM IR, looks up
the map using them as a key, and figures out the matched
call targets. For example, Figure 4b shows the LLVM IR
snippet in which an indirect call file—f_op—write_iter is
made inside of vis_write. When an indirect call is made
(Line 4), KIRIN finds that the kernel interface type is struct
file_operations (Line 1) and the offset is 5 (Line 2). In this
way, KIRIN reports that ext4_file_write_iter (assigned at
Line 7 in Figure 4a) is one of potential call targets that are
indirectly called by dereferencing write_iter.

When applying KIRIN to Linux kernel, we found in cer-
tain callsites, the kernel interface type is not presented in the
LLVM IR, making their resolution impossible. For example,
the macro container_of is commonly used in order to get
the starting address of a struct object by using a pointer to
its own member field. Figure 5a shows an example of using
container_of (Line 1). It calculates the starting address of
usb_driver through its own member drvwrap.driver. Based
on the address, the code at Line 2 makes an indirect call by us-
ing a function pointer unlocked_ioctl that is another member
of the struct usb_driver object.

Figure 5b shows the original macro container_of (Lines
1-3) and resulting LLVM IR (Line 4). The problem of this
macro is that it involves a pointer manipulation, the LLVM
IR of which voids the struct type information, i.e., the sec-
ond argument of the macro. To solve this problem, KIRIN
redefines container_of in a way that the struct type is pre-
served in the LLVM IR (on which KIRIN works), as in Fig-
ure 5c (Lines 1-5). This adds back the kernel interface type

struct.usb_driver in the LLVM IR (Line 6), thereby en-
abling KIRIN to infer the correct type of driver and resolve
the targets for unlocked_ioctl.

Our experiment (§7.2) shows that KIRIN resolves 92%
of total indirect callsites for allyesconfig. PeX constructs a
more sound (less missing edges) and precise (less false edges)
call graph than other existing workarounds (e.g., [22]).

6 Design of PeX

Figure 6 shows the architecture of PeX. It takes as input
kernel source code (in the LLVM bitcode format) and com-
mon permission checks (Table 1), analyzes and reports all
detected permission check errors, including missing, incon-
sistent, and redundant permission checks. In addition, PeX
produces the mapping of permission checks and privileged
functions, which has not been formally documented.

At a high-level, PeX first resolves indirect calls with our
new technique called KIRIN (§5). Next, PeX builds an aug-
mented call graph—in which indirect callsites are connected
to possible targets—and cuts out only the portion reachable
from user space (§6.1). Based on the partitioned call graph,
PeX then generates the interprocedural control flow graph
(ICFG) where each callsite is connected to the entry and the
exit of the callee [17]. Then, starting from a small set of (user-
provided) permission checks, PeX automatically detects their
wrappers (§6.2). After that, for a given permission check,
PeX identifies its potentially privileged functions on top of
the ICFG (§6.3), followed by a heuristic-based filter to prune
obviously non-privileged functions (§6.4). Finally, for each
privileged function, PeX examines all user space reachable
paths to it to detect any permission checks error on the paths
(§6.5). The following section describes these steps in detail.

6.1 Call Graph Generation and Partition

PeX generates the call graph leveraging the result of KIRIN
(§5), and then partitions it into two groups.

User Space Reachable Functions: Starting from func-
tions with the common prefix sys_ (indicating system call
entry points), PeX traverses the call graph, marks all visited
functions, and treats them as user space reachable functions.
The user reachable functions in this partition are investigated
for possible permission check errors.

Kernel Initialization Functions: Functions that are used
only during booting are collected to detect redundant checks.
The Linux kernel boots from the start_kernel function,
and calls a list of functions with the common prefix __init.
PeX performs multiple call graph traversals starting from
start_kernel and each of the __init functions to collect
them.

Other functions such as IRQ handlers and kernel thread
functions are not used in later analysis since they cannot be
directly called from user space. The partitioned call graph
serves as a basis for building an interprocedural control flow

graph (ICFG) [31] used in the inference of the mapping be-
tween permission checks and privileged functions (§6.3).

6.2 Permission Check Wrapper Detection

Sound and precise detection of permission check errors re-
quires a complete list of permission checks, but they are not
readily available (§4.2). One may name some commonly used
permission checks, as in Table 1. However, they are often the
wrapper of basic permission checks, which actually perform
the low-level access control, and even worse there could be
other wrappers of the wrapper.

PeX solves this by automating the process of identifying
all permission checks including wrappers. PeX takes an in-
complete list of user-provided permission checks as input.
Starting from them, PeX detects basic permission checks, by
performing the forward call graph slicing [26,37,45] over
the augmented call graph. For a given permission check func-
tion, PeX searches all call instructions inside the function for
the one that passes an argument of the function to the callee.
In other words, PeX identifies the callees of the permission
check function which take its actual parameter as their own
formal parameter. Similarly, PeX then conducts backward
call graph slicing [26,37,45] from these basic permission
checks to detect the list of their wrappers. PeX refers to only
those callers that pass permission parameters as wrappers,
excluding other callers just using the permission checks.

Figure 7 shows an example of the permission check wrap-
per detection. Given a known permission check ns_capable
(Lines 10-13), PeX first finds security_capable (Line 4) as
a basic permission check, and then based on it, PeX detects
another permission check wrapper has_ns_capability (Lines
14-20). Note that the parameter cap is passed from both the
parents ns_capable_common and has_ns_capability to the
child security_capable; and the result of security_capable
is returned to them. Our evaluation (§7.3) shows that based on
196 permission checks in Table 1, PeX detects 88 wrappers.

6.3 Privileged Function Detection

It is important to understand the mappings between permis-
sion checks and privileged functions for effective detection
of any permission check errors therein. However, the lack of
clear mapping in Linux kernel complicates the detection of
permission check errors (§4.2).

To address this problem, PeX leverages an interprocedural
dominator analysis [31] that can automatically identify the
privileged functions protected by a given permission check.
PeX conservatively treats all targets (callees) of those call
instructions, that are dominated by each permission check
(§6.2) on top of the ICFG (§6.1), as its potential privileged
functions. The rationale behind the dominator analysis is
based on the following observation: since there is no single
path that allows the dominated call instruction to be reached
without visiting the dominator (i.e., the permission check),

potential
KIRIN pointer | Call Graph Privileged privileged [Non-privileged | privileged Permissi o
Kernel Indirect Call | targets [Generation & | ICFG Function functions Function functions Check Error e
Solul{ce T Pointer Analysis Partitioning Detection Filter T Detection gheck
a® @5) $6.0 §63) (64 ! ($65) rrors
. 1
all permission checks t.—. ———————————— | b - Privileged
Permission | Functions
Permissi Check Wrapper |
Checks Detection | L e - - ——— L - Permission
(Table 1) (§6.2) Checks

Figure 6: PeX static analysis architecture. PeX takes as input kernel source code and permission checks, and reports as output
permission check errors. PeX also produces mappings between identified permission checks and privileged functions as output.

1 static bool ns_capable_common (struct user_namespace
— *ns, int cap, bool audit)
2 |

4 capable = audit ?
— security_capable (current_cred(), ns, cap) :
5 security_capable_noaudit (current_cred(), ns,
— cap);
6 if (capable == 0)
7 return true;
8 return false;

}
10 bool ns_capable (struct user_namespace *ns, int cap)
{

12 return ns_capable_common (ns, cap, true);

13

14 bool has_ns_capability (struct task_struct =t,

15 struct user_namespace #ns, int cap)
16 {

17 .

18 ret = security_capable(__task_cred(t), ns, cap);

Figure 7: Permission check wrapper examples.

Algorithm 1 Privileged Function Detection

INPUT:
pcfuncs - all permission checking functions
OUTPUT:
pvfuncs - privileged functions
1: procedure PRIVILEGED FUNCTION DETECTION
for f <« pcfuncs do
for u < User(f) do
: Calllnst < CalllnstDominatedBy(u) > Inter-procedural analysis, for
full program path
: callee « getCallee(Calllnst)

R

5

6: pvfuncs.insert(callee)
7 end for

8: end for

9 return pvfuncs

10: end procedure

the callee is likely to be the one that should be protected by
the check on all paths .

Algorithm | shows how PeX uses the dominator analysis
to find potential privileged functions pvfuncs for a given list
of permission check functions pcfuncs. For each permission
check function £ (Line 2), PeX finds all users of f, i.e., the
callsite invoking £ (Line 3). For each user (callsite) u, PeX
performs interprocedural dominator analysis over the ICFG to
find all dominated call instructions (Line 4). All their callees
are then added to pvfuncs (Lines 5-6).

Note that the call graph generated by KIRIN (§5) has
resolved most of the indirect calls, which allows PeX to

2This does not necessarily mean that the permission check dominates all
call instructions of ICFG which invoke the resulting privileged function. As
long as some call instructions are dominated by the check, their callees are
treated as privileged functions.

perform—on top of the resulting ICFG—more sound privi-
leged function detection. For example, our experiment (§7.3)
shows that KIRIN can identify ecrypt fs_setxattr (reachable
via indirect calls over the ICFG) as a privileged function and
detect its missing permission check bug (Table 6, LSM-17).
Note that if some other unsound workaround such as [22] had
been used, this bug could not have been detected.

6.4 Non-privileged Function Filter

The conservative approach in §6.3 may lead to too many po-
tential privileged functions. In this step, PeX applies heuristic-
based filters to prune out false privileged functions. In the
current prototype, the filter contains a set of kernel library
functions which are not privileged functions, e.g., kmalloc,
strcmp, kstrtoint. Though PeX is currently designed to
avoid false negatives (and thus leverages a small set of library
filters only), one can add more aggressive filters to purge more
false privileged functions. With releasing PeX, we expect a
good opportunity for the kernel development community to
contribute to the design of non-privileged function filters
where domain knowledge is helpful.

6.5 Permission Check Error Detection

This last step is validating the use of privileged functions to
detect any potential permission check errors. For a given map-
ping between a permission check and a privileged function,
PeX performs a backward traversal of the ICFG, starting from
the privileged functions with the corresponding permission
check in mind. Note that PeX validates every possible path to
each privileged function of interest.

Algorithm 2 shows PeX’s permission check error detec-
tion algorithm. Recall that PeX treats user reachable kernel
functions and kernel initialization functions separately and
detects different forms of errors (§6.1). Lines 2-12 shows how
PeX detects missing, redundant, and inconsistent checks in
user reachable kernel functions. For each privileged function
f (Line 5) in a mapping, PeX finds all possible paths allpath
from user entry points to that privileged function £ over the
ICFG (Lin