
PeX: A Permission Check Analysis Framework for Linux Kernel

Tong Zhang*

Virginia Tech
Wenbo Shen†

Zhejiang University
Dongyoon Lee

Stony Brook University
Changhee Jung

Purdue University

Ahmed M. Azab‡

Samsung Research America
Ruowen Wang‡

Samsung Research America

Abstract
Permission checks play an essential role in operating system
security by providing access control to privileged functionali-
ties. However, it is particularly challenging for kernel develop-
ers to correctly apply new permission checks and to scalably
verify the soundness of existing checks due to the large code
base and complexity of the kernel. In fact, Linux kernel con-
tains millions of lines of code with hundreds of permission
checks, and even worse its complexity is fast-growing.

This paper presents PeX, a static Permission check error
detector for LinuX, which takes as input a kernel source code
and reports any missing, inconsistent, and redundant permis-
sion checks. PeX uses KIRIN (Kernel InteRface based In-
direct call aNalysis), a novel, precise, and scalable indirect
call analysis technique, leveraging the common programming
paradigm used in kernel abstraction interfaces. Over the inter-
procedural control flow graph built by KIRIN, PeX automati-
cally identifies all permission checks and infers the mappings
between permission checks and privileged functions. For each
privileged function, PeX examines all possible paths to the
function to check if necessary permission checks are correctly
enforced before it is called.

We evaluated PeX on the latest stable Linux kernel v4.18.5
for three types of permission checks: Discretionary Access
Controls (DAC), Capabilities, and Linux Security Modules
(LSM). PeX reported 36 new permission check errors, 14 of
which have been confirmed by the kernel developers.

1 Introduction
Access control [38] is an essential security enforcement
scheme in operating systems. They assign users (or processes)
different access rights, called permissions, and enforce that
only those who have appropriate permissions can access criti-
cal resources (e.g., files, sockets). In the kernel, access control

*This work was started when Tong Zhang interned at Samsung Research
America, mentored by Wenbo Shen and Ahmed M. Azab.
†Corresponding author.
‡Now at Google.

is often implemented in the form of permission checks before
the use of privileged functions accessing the critical resources.

Over the course of its evolution, Linux kernel has employed
three different access control models: Discretionary Access
Controls (DAC), Capabilities, and Linux Security Modules
(LSM). DAC distinguishes privileged users (a.k.a., root) from
unprivileged ones. The unprivileged users are subject to vari-
ous permission checks, while the root bypasses them all [4].
Linux kernel v2.2 divided the root privilege into small units
and introduced Capabilities to allow more fine-grained access
control. From kernel v2.6, Linux adopted LSM in which vari-
ous security hooks are defined and placed on critical paths of
privileged operations. These security hooks can be instanti-
ated with custom checks, facilitating different security model
implementations as in SELinux [41] and AppArmor [3].

Unfortunately, for a new feature or vulnerability found,
these access controls have been applied to the Linux kernel
code in an ad-hoc manner, leading to missing, inconsistent, or
redundant permission checks. Given the ever-growing com-
plexity of the kernel code, it is becoming harder to manually
reason about the mapping between permission checks and
privileged functions. In reality, kernel developers rely on their
own judgment to decide which checks to use, often leading
to over-approximation issues. For instance, Capabilities were
originally introduced to solve the “super” root problem, but
it turns out that more than 38% of Capabilities indeed check
CAP_SYS_ADMIN, rendering it yet another root [5].

Even worse, there is no systematic, sound, and scalable way
to examine whether all privileged functions (via all possible
paths) are indeed protected by correct permission checks. The
lack of tools for checking the soundness of existing or new
permission checks can jeopardize the kernel security putting
the privileged functions at risk. For example, DAC, CAP and
LSM introduce hundreds of security checks scattered over
millions of lines of the kernel code, and it is an open problem
to verify if all code paths to a privileged function encounter its
corresponding permission check before reaching the function.
Given the distributed nature of kernel development and the
significant amount of daily updates, chances are that some

parts of the code may miss checks on some paths or introduce
the inconsistency between checks, weakening the operating
system security.

This paper presents PeX, a static permission check analysis
framework for Linux kernel. PeX makes it possible to soundly
and scalably detect any missing, inconsistent and redundant
permission checks in the kernel code. At a high level, PeX
statically explores all possible program paths from user-entry
points (e.g., system calls) to privileged functions and detects
permission check errors therein. Suppose PeX finds a path in
which a privileged function, say PF, is protected (preceded)
by a check, say Chk in one code. If it is found that any other
paths to PF bypass Chk, then it is a strong indication of a
missing check. Similarly, PeX can detect inconsistent and
redundant permission checks. While conceptually simple, it
is very challenging to realize a sound and precise permission
check error detection at the scale of Linux kernel.

In particular, there are two daunting challenges that PeX
should address. First, Linux kernel uses indirect calls very
frequently, yet its static call graph analysis is notoriously
difficult. The latest Linux kernel (v4.18.5) contains 15.8M
LOC, 247K functions, and 115K indirect callsites, rendering
existing precise solutions (e.g., SVF [43]) unscalable. Only
workaround available to date is either to apply the solutions
unsoundly (e.g., only on a small code partition as with K-
Miner [22]) or to rely on naive imprecise solutions (e.g., type-
based analysis). Either way leads to undesirable results, i.e.,
false negatives (K-Miner) or positives (type-based one).

For a precise and scalable indirect call analysis, we intro-
duce a novel solution called KIRIN (Kernel InteRface based
Indirect call aNalysis), which leverages kernel abstraction in-
terfaces to enable precise yet scalable indirect call analysis.
Our experiment with Linux v4.18.5 shows that KIRIN allows
PeX to detect many previously unknown permission check
bugs, while other existing solutions either miss many of them
or introduce too many false warnings.

Second, unlike Android which has been designed with the
permission-based security model in mind [2], Linux kernel
does not document the mapping between a permission check
and a privileged function. More importantly, the huge Linux
kernel code base makes it practically impossible to review
them all manually for the permission check verification.

To tackle this problem, PeX presents a new technique which
takes as input a small set of known permission checks and
automatically identifies all other permission checks includ-
ing their wrappers. Moreover, PeX’s dominator analysis [31]
automates the process of identifying mappings between per-
mission checks and their potentially privileged functions as
well. Our experiment with Linux kernel v4.18.5 shows that
starting from a small set of well-known 3 DAC, 3 Capacities,
and 190 LSM checks, PeX automatically (1) identifies 19, 16,
and 53 additional checks, respectively, and (2) derives 9243
pairs of permission checks and privileged functions.

The contributions of this paper are summarized as follows:

Table 1: Commonly used permission checks in Linux.

Type Total # Permission Checks
DAC 3 generic_permission, sb_permission, inode_permission
Capabilities 3 capable, ns_capable, avc_has_perm_noaudit
LSM 190 security_inode_readlinkat, security_file_ioctl, etc..

• New Techniques: We proposed and implemented PeX, a
static permission check analysis framework for Linux ker-
nel. We also developed new techniques that can perform
scalable indirect call analysis and automate the process of
identifying permission checks and privileged functions.

• Practical Impacts: We analyzed DAC, Capabilities, and
LSM permission checks in the latest Linux kernel v4.18.5
using PeX, and discovered 36 new permission check bugs,
14 of which have been confirmed by kernel developers.

• Community Contributions: We will release PeX as an
open source project, along with the identified mapping be-
tween permission checks and privileged functions. This
will allow kernel developers to validate their codes with
PeX, and to contribute to PeX by refining the mappings
with their own domain knowledge.

2 Background: Permission Checks in Linux
This section introduces DAC, Capabilities, and LSM in Linux
kernel. Table 1 lists practically-known permission checks in
Linux. Unfortunately, the full set is not well-documented.

2.1 Discretionary Access Control (DAC)
DAC restricts the accesses to critical resources based on the
identity of subjects or the group to which they belong [36,46].
In Linux, each user is assigned a user identifier (uid) and a
group identifier (gid). Correspondingly, each file has prop-
erties including the owner, the group, the rwx (read, write,
and execute) permission bits for the owner, the group, and
all other users. When a process wants to access a file, DAC
grants the access permissions based on the process’s uid,
gid as well as the file’s permission bits. For example in
Linux, inode_permission (as listed in Table 1) is often used
to check the permissions of the current process on a given
inode. More precisely speaking, however, it is a wrapper of
posix_acl_permission, which performs the actual check.

In a sense, DAC is a coarse-grained access control model.
Under the Linux DAC design, the “root” bypasses all per-
mission checks. This motivates fine-grained access control
scheme—such as Capabilities—to reduce the attack surface.

2.2 Capabilities
Capabilities, since Linux kernel v2.2 (1999), enable a fine-
grained access control by dividing the root privilege into small
sets. As an example, for users with the CAP_NET_ADMIN ca-
pability, kernel allows them to use ping, without the need
to grant the full root privilege. Currently, Linux kernel
v4.18.5 supports 38 Capabilities including CAP_NET_ADMIN,

CAP_SYS_ADMIN, and so on. Functions capable and ns_capable

are the most commonly used permission checks for Capabili-
ties (as listed in Table 1). Both determine whether a process
has a particular capability or not, while ns_capable performs
an additional check against a given user namespace. They in-
ternally use security_capable as the basic permission check.

Capabilities are supposed to be fine-grained and distinct [4].
However, due to the lack of clear scope definitions, the choice
of specific Capability for protecting a privileged function
has been made based on kernel developers’ own understand-
ing in practice. Unfortunately, this leads to frequent use of
CAP_SYS_ADMIN (451 out of 1167, more than 38%), and it is
just treated as yet another root [5]; grsecurity points out that
19 Capabilities are indeed equivalent to the full root [1].

2.3 Linux Security Module (LSM)
LSM [51], introduced in kernel v2.6 (2003), provides a set
of fine-grained pluggable hooks that are placed at various
security-critical points across the kernel. System administra-
tors can register customized permission checking callbacks to
the LSM hooks so as to enforce diverse security policies. The
latest Linux kernel v4.18.5 defines 190 LSM hooks. One com-
mon use of LSM is to implement Mandatory Access Control
(MAC) [8] in Linux (e.g., SELinux [40, 41], AppArmor [3]).
MAC enforces more strict and non-overridable access control
policies, controlled by system administrators. For example,
when a process tries to read the file path of a symbolic link,
security_inode_readlink is invoked to check whether the
process has read permission to the symlink file. The SELinux
callback of this hook checks if a policy rule can grant this
permission (e.g., allow domain_a type_b:lnk_file read). It
is worth noting that the effectiveness of LSM and its MAC
mechanisms highly depend on whether the hooks are placed
correctly and soundly at all security-critical points. If a hook
is missing at any critical point, there is no way for MAC to
enforce a permission check.

3 Examples of Permission Check Errors
This section illustrates different kinds of permission check
errors, found by PeX and confirmed by the Linux kernel de-
velopers. We refer to those functions, that validate whether a
process (a user or a group) has proper permission to do certain
operations, as permission checks. Similarly, we define privi-
leged functions to be those functions which only a privileged
process can access and thus require permission checks.

3.1 Capability Permission Check Errors
Figure 1 shows real code snippets of Capability permission
check errors in Linux kernel v4.18.5. Figure 1a shows the
kernel function scsi_ioctl, in which sg_scsi_ioctl (Line
7) is safeguarded by two Capability checks, CAP_SYS_ADMIN
and CAP_SYS_RAWIO (Line 5). To the contrary, scsi_cmd_ioctl
in Figure 1b calls the same function sg_scsi_ioctl (Line

1 int scsi_ioctl(struct scsi_device *sdev, int cmd,
void __user *arg)↪→

2 {
3 ...
4 case SCSI_IOCTL_SEND_COMMAND:
5 if (!capable(CAP_SYS_ADMIN) ||

!capable(CAP_SYS_RAWIO))↪→
6 return -EACCES;
7 return sg_scsi_ioctl(sdev->request_queue, NULL,

0, arg);↪→
8 ...
9 }

(a) sg_scsi_ioctl (Line 7) is called with CAP_SYS_ADMIN and
CAP_SYS_RAWIO capability checks (Line 5). arg is user space con-
trollable.

1 int scsi_cmd_ioctl(struct request_queue *q, ...,
void __user *arg)↪→

2 {
3 ...
4 case SCSI_IOCTL_SEND_COMMAND:
5 ...
6 if (!arg)
7 break;
8 err = sg_scsi_ioctl(q, bd_disk, mode, arg);
9 break;

10 ...
11 return err;
12 }

(b) sg_scsi_ioctl (Line 8) is called without capability checks.
arg is user space controllable.

1 int sg_scsi_ioctl(struct request_queue *q, struct
gendisk *disk, fmode_t mode, struct
scsi_ioctl_command __user *sic)

↪→
↪→

2 {
3 ...
4 err = blk_verify_command(req->cmd, mode);
5 ...
6 return err;
7 }
8
9 int blk_verify_command(unsigned char *cmd, fmode_t

mode)↪→
10 {
11 ...
12 if (capable(CAP_SYS_RAWIO))
13 return 0;
14 ...
15 return -EPERM;
16 }

(c) sg_scsi_ioctl calls blk_verify_command, which checks
CAP_SYS_RAWIO capability.

Figure 1: Capability check errors discovered by PeX.

8) without any Capability check. These two functions
share three similarities. First, both of them are reachable
from the userspace by ioctl system call. Second, both
call sg_scsi_ioctl with a userspace parameter, void __user

*arg. Last, there is no preceding Capability check on all possi-
ble paths to them (though scsi_ioctl performs two checks).

The kernel is supposed to sanitize userspace inputs and
check permissions to ensure that only users with appropriate
permissions can conduct certain privileged operations. As
SCSI (Small Computer System Interface) functions manipu-
late the hardware, they should be protected by Capabilities.
At first glance, scsi_ioctl seems to be correctly protected
(while scsi_cmd_ioctl misses two Capability checks).

However, delving into sg_scsi_ioctl ends up with a differ-
ent conclusion. As shown in Figure 1c, sg_scsi_ioctl calls
blk_verify_command, which in turn checks CAP_SYS_RAWIO.
Considering all together, scsi_ioctl checks CAP_SYS_ADMIN

once but CAP_SYS_RAWIO “twice”, leading to a redundant per-
mission check. On the other hand, scsi_cmd_ioctl checks

1 static int do_readlinkat(int dfd, const char __user
*pathname, char __user *buf, int bufsiz)↪→

2 {
3 ...
4 error = security_inode_readlink(path.dentry);
5 if (!error) {
6 touch_atime(&path);
7 error = vfs_readlink(path.dentry, buf, bufsiz);
8 }
9 ...

10 }

(a) Kernel LSM usage in system call readlinkat.
vfs_readlink (Line 7) is protected by
security_inode_readlink (Line 4). Both pathname
and buf (Line 1 and Line 7) are user controllable.
1 int ksys_ioctl(unsigned int fd, unsigned int cmd,

unsigned long arg)↪→
2 {
3 ...
4 error = security_file_ioctl(f.file, cmd, arg);
5 if (!error)
6 error = do_vfs_ioctl(f.file, fd, cmd, arg);
7 ...
8 }
9

10 int xfs_readlink_by_handle(struct file *parfilp,
xfs_fsop_handlereq_t *hreq)↪→

11 {
12 ...
13 error = vfs_readlink(dentry, hreq->ohandle, olen);
14 ...
15 }

(b) Kernel LSM usage in system call ioctl. It calls
security_file_ioctl (Line 4) to protect do_vfs_ioctl
(Line 6). hreq->ohandle and olen are also user controllable.

Figure 2: LSM check errors discovered by PeX.

only CAP_SYS_RAWIO, resulting in a missing permission check
for CAP_SYS_ADMIN. In particular, PeX detects this bug as an
inconsistent permission check because the two paths disagree
with each other, and further investigation shows that one is
redundant and the other is missing.

3.2 LSM Permission Check Errors

The example of LSM permission check errors is related to
how LSM hooks are instrumented for two different system
calls readlinkat and ioctl.

Figure 2a shows the LSM usage in the readlinkat system
call. On its call path, vfs_readlink (Line 7) is protected by
the LSM hook security_inode_readlink (Line 4) so that a
LSM-based MAC mechanism, such as SELinux or AppArmor,
can be realized to allow or deny the vfs_readlink operation.

Figure 2b presents two sub-functions for the system call
ioctl. Similar to the above case, ioctl calls ksys_ioctl,
which includes its own LSM hook security_file_ioctl

(Line 4) before do_vfs_ioctl (Line 6). This is proper design,
and there is no problem so far. However, it turns out that there
is a path from do_vfs_ioctl to xfs_readlink_by_handle

(Line 10), which eventually calls the same privileged func-
tion vfs_readlink (see Line 7 in Figure 2a and Line 13
in Figure 2b). While this function is protected by the
security_inode_readlink LSM hook in readlinkat, that
is not the case for the path to the function going through
xfs_readlink_by_handle. The problem is that SELinux main-
tains separate ‘allow’ rules for read and ioctl. With the miss-
ing LSM security_inode_readlink check, a user only with

1 struct file_operations {
2 ...
3 ssize_t (*read_iter) (struct kiocb *, struct

iov_iter *);,!
4 ssize_t (*write_iter) (struct kiocb *, struct

iov_iter *);,!
5 ...
6 }

(a) The Virtual File System (VFS) kernel interface.

const struct file_operations ext4_file_operations
{

. . .

.read_iter = ext4_file_read_iter,

.write_iter = ext4_file_write_iter,

. . .
}

syscall(1, fd, buffer, count)

write(fd, buffer, count)

SyS_write(fd, buffer, count)
vfs_write(fd.file, buffer, count, fd.pos)

file->f_op->write_iter(kio, iter);

User space

Kernel space syscall dispatcher

const struct file_operations nfs_file_operations
{

. . .

.read_iter = nfs_file_read,

.write_iter = nfs_file_write,

. . .
}

(b) VFS indirect calls in Linux kernel.
Figure 3: Indirect call examples via the VFS kernel interface.

the ‘ioctl allow rule’ may exploit the ioctl system call to
trigger the vfs_readlink operation, which should only be
permitted by the different ‘read allow rule’.

The above two Capability and LSM examples show how
challenging it is to ensure correct permission checks. There
are no tools available for kernel developers to rely on to
figure out whether a particular function should be protected
by a permission check; and, (if so) which permission checks
should be used.

4 Challenges
This section discusses two critical challenges in designing
static analysis for detecting permission errors in Linux kernel.

4.1 Indirect Call Analysis in Kernel
The first challenge lies in the frequent use of indirect calls in
Linux kernel and the difficulties in statically analyzing them
in a scalable and precise manner. To achieve a modular de-
sign, the kernel proposes a diverse set of abstraction layers
that specify the common interfaces to different concrete im-
plementations. For example, Virtual File System (VFS) [12]
abstracts a file system, thereby providing a unified and trans-
parent way to access local (e.g., ext4) and network (e.g., nfs)
storage devices. Under this kernel programming paradigm,
an abstraction layer defines an interface as a set of indirect
function pointers while a concrete module initializes these
pointers with its own implementations. For example, as shown
in Figure 3a, VFS abstracts all file system operations in a ker-

nel interface struct file_operations that contains a set of
function pointers for different file operations. When a file
system is initialized, it initializes the VFS interface with the
concrete function addresses of its own. For instance, Figure 3b
shows that ext4 file system sets the write_iter function
pointer to ext4_file_write_iter, while nfs sets the pointer
to nfs_file_write.

However, kernel’s large code base challenges the resolution
of these numerous function pointers within kernel interfaces.
For example, the kernel used in our evaluation (v4.18.5) in-
cludes 15.8M LOC, 247K functions, and 115K indirect call-
sites. This huge code base makes existing precise pointer
analysis techniques [23–25, 35, 43] unscalable. In fact, Static
Value Flow (SVF) [43], i.e., the state-of-the-art analysis that
uses flow- and context-sensitive value flow for high preci-
sion, failed to scale to the huge Linux kernel. That is because
SVF is essentially a whole program analysis, and its indirect
call resolution thus requires tracking all objects such as func-
tions, variables, and so on, making the value flow analysis
unscalable to the large-size Linux kernel. In our experiment
of running SVF for the kernel on a machine with 256GB
memory, SVF was crashed due to an out of memory error1.

Alternatively, one may opt for a simple “type-based” func-
tion pointer analysis, which would scale to Linux kernel. How-
ever, the type-based indirect call analysis would suffer from
serious imprecision with too many false targets, because func-
tion pointers in the kernel often share the same type. For
example, in Figure 3a, two function pointers read_iter and
write_iter share the same function type. Type based pointer
analysis will even link write_iter to ext4_file_read_iter

falsely, which may lead to false permission check warnings.
PeX addresses this problem with a new kernel-interface

aware indirect call analysis technique, detailed in §5.

4.2 The Lack of Full Permission Checks, Priv-
ileged Functions, and Their Mappings

The second challenge lies in soundly enumerating a set of
permission checks and inferring correct mappings between
permission checks and privileged functions in Linux kernel.

Though some commonly used permission checks for
DAC, Capabilities, and LSM are known (Table 1), kernel
developers often devise custom permission checks (wrap-
pers) that internally use basic permission checks. Unfor-
tunately, the complete list of such permission checks has
never been documented. For example, ns_capable is a com-
monly used permission check for Capabilities, but it calls
ns_capable_common and security_capable in sequence. It is
the last security_capable that performs the actual capability
check. In other words, all the others are “wrappers” of the
“basic” permission check security_capable. This example

1SVF internally uses LLVM SparseVectors to save memory overhead by
only storing the set bits. However, it still blows up both the memory and the
computation time due to the expensive insert, expand and merge operations.

shows how hard it is for a permission check analysis tool to
keep up with all permission checks.

To make matters worse, Linux kernel has no explicit docu-
mentation that specifies which privileged function should
be protected by which permission checks. This is differ-
ent from Android [2], which has been designed with the
permission-based security model in mind from the begin-
ning. Take the Android LocationManager class as an example;
for the getLastKnownLocation method, the API document
states explicitly that permission ACCESS_COARSE_LOCATION or
ACCESS_FINE_LOCATION is required [7].

Unfortunately, existing static permission error checking
techniques are not readily applicable in order to address these
problems. Automated LSM hook verification [44] works only
with clearly defined LSM hooks, which would miss many
wrappers in the kernel setting. Many other tools require heavy
manual efforts such as user-provided security rules [20, 56],
authorization constraints [33], annotation on sensitive ob-
jects [21]. These manual processes are particularly error-
prone when applied to huge Linux code base. Alternatively,
some works such as [18, 32] rely on dynamic analysis. How-
ever, such run-time approaches may significantly limit the
code coverage being analyzed, thereby missing real bugs.

Moreover, all of above existing works cannot detect permis-
sion checks soundly. Their inability to recognize permission
checks or wrappers leads to missing privileged functions or
false warnings for those that are indeed protected by wrappers.
Since the huge Linux kernel code base makes it practically
impossible to review them all manually, reasoning about the
mapping is considered to be a daunting challenge.

In light of this, PeX presents a novel static analysis tech-
nique that takes as input a small set of known permission
checks to identify their basic permission checks and leverages
them as a basis for finding other permission check wrappers
(§6.2). In addition, PeX proposes a dominator analysis based
solution to automatically infer the mappings between permis-
sion checks and privileged functions (§6.3).

5 KIRIN Indirect Call Analysis

PeX proposes a precise and scalable indirect call analysis
technique, called KIRIN (Kernel InteRface based Indirect
call aNalysis), on top of the LLVM [27] framework. KIRIN
is inspired by two key observations: (1) almost all (95%)
indirect calls in the Linux kernel are originated from ker-
nel interfaces (§4.1) and (2) the type of a kernel interface
is preserved both at its initialization site (where a function
pointer is defined) and at the indirect callsite (where a func-
tion pointer is used) in LLVM IR. For example in Figure 3b,
the kernel interface object ext4_file_operations of the
type struct file_operations is statically initialized where
ext4_file_write_iter is assigned to the field of write_iter.
For the indirect call site file→f_op→write_iter, one can
identify that f_op is of the type struct file_operations and

1 @ext4_file_operations = dso_local local_unnamed_addr
constant %struct.file_operations {,!

2 %struct.module* null,
3 i64 (%struct.file*, i64, i32)* @ext4_llseek,
4 i64 (%struct.file*, i8*, i64, i64*)* null,
5 i64 (%struct.file*, i8*, i64, i64*)* null,
6 i64 (%struct.kiocb*, %struct.iov_iter*)*

@ext4_file_read_iter,,!
7 i64 (%struct.kiocb*, %struct.iov_iter*)*

@ext4_file_write_iter,,!

(a) LLVM IR of ext4_file_operations initialization.

1 %25 = load %struct.file_operations*,
%struct.file_operations** %f_op, align 8,!

2 %write_iter.i.i = getelementptr inbounds
%struct.file_operations,
%struct.file_operations* %25, i64 0, i32 5

,!
,!

3 %26 = load i64 (%struct.kiocb*, %struct.iov_iter*)*,
i64 (%struct.kiocb*, %struct.iov_iter*)**
%write_iter.i.i, align 8

,!
,!

4 %call.i.i = call i64 %26(%struct.kiocb* nonnull
%kiocb.i, %struct.iov_iter* nonnull %iter.i) #10,!

(b) LLVM IR of callsite file→f_op→write_iter in vfs_write.

Figure 4: Indirect callsite resolution for vfs_write.

infer that ext4_file_write_iter is one of potential call tar-
gets. Based on this observation, PeX first collects indirect call
targets at kernel interface initialization sites (§5.1) and then
resolves them at indirect callsites (§5.2).

5.1 Indirect Call Target Collection

In Linux kernel, a kernel interface is often defined in
a C struct comprised of function pointers (§4.1): e.g.,
struct file_operations in Figure 3a. Many kernel inter-
faces (C structs) are statically allocated and initialized
as with ext4_file_operations and nfs_file_operations in
Figure 3b. Some interfaces may be dynamically allocated and
initialized at run time for reconfiguration.

For the former, KIRIN scans all Linux kernel code linearly
to find all statically allocated and initialized struct objects
with function pointer fields. Then, for each struct object,
KIRIN keep tracks of which function address is assigned to
which function pointers field using an offset as a key for the
field. For instance, Figure 4a shows the LLVM IR of statically
initialized ext4_file_operations. KIRIN finds that the ker-
nel interface type is struct file_operations (Line 1), and
ext4_file_write_iter is assigned to the 5th field write_iter

(Line 7). Therefore, KIRIN figures out that write_iter may
point to ext4_file_write_iter, not ext4_file_read_iter

(even though they have the same function type).

For the rest dynamically initialized kernel interfaces,
KIRIN performs a data flow analysis to collect any assign-
ment of a function address to the function pointer inside a
kernel interface. KIRIN’s field-sensitive analysis allows the
collected targets to be associated with the individual field of
a kernel interface.

1 struct usb_driver* driver =
container_of(intf->dev.driver, struct
usb_driver, drvwrap.driver);

,!
,!

2 retval = driver->unlocked_ioctl(intf,
ctl->ioctl_code, buf);,!

(a) C code of a container_of usage, followed by an indirect call.

1 #define container_of(ptr, type, member) ({
2 void *__mptr = (void *)(ptr);
3 ((type *)(__mptr - offsetof(type, member))); })

\\
4 %unlocked_ioctl = getelementptr inbounds i8*, i8**

%add.ptr76, i64 3,!

(b) Original container_of and the LLVM IR for the callsite.

1 #define container_of(ptr, type, member) ({
2 type* __res;
3 void* __mptr = ((void *)((void*)(ptr) -

offsetof(type, member)));,!
4 memcpy(&__res, &__mptr, sizeof(void*));
5 (__res);})

\\\
\\

6 %unlocked_ioctl = getelementptr inbounds
%struct.usb_driver, %struct.usb_driver* %20, i64
0, i32 3

,!
,!

(c) Modified container_of and the LLVM IR for the callsite.

Figure 5: Fixing container_of missing struct type problem.

5.2 Indirect Callsite Resolution
KIRIN stores the result of the above first pass in a key-value
map data structure in which the key is a pair of kernel interface
type and an offset (a field), and the value is a set of call
targets. At each indirect callsite, KIRIN retrieves the type of
a kernel interface and the offset from LLVM IR, looks up
the map using them as a key, and figures out the matched
call targets. For example, Figure 4b shows the LLVM IR
snippet in which an indirect call file→f_op→write_iter is
made inside of vfs_write. When an indirect call is made
(Line 4), KIRIN finds that the kernel interface type is struct
file_operations (Line 1) and the offset is 5 (Line 2). In this
way, KIRIN reports that ext4_file_write_iter (assigned at
Line 7 in Figure 4a) is one of potential call targets that are
indirectly called by dereferencing write_iter.

When applying KIRIN to Linux kernel, we found in cer-
tain callsites, the kernel interface type is not presented in the
LLVM IR, making their resolution impossible. For example,
the macro container_of is commonly used in order to get
the starting address of a struct object by using a pointer to
its own member field. Figure 5a shows an example of using
container_of (Line 1). It calculates the starting address of
usb_driver through its own member drvwrap.driver. Based
on the address, the code at Line 2 makes an indirect call by us-
ing a function pointer unlocked_ioctl that is another member
of the struct usb_driver object.

Figure 5b shows the original macro container_of (Lines
1-3) and resulting LLVM IR (Line 4). The problem of this
macro is that it involves a pointer manipulation, the LLVM
IR of which voids the struct type information, i.e., the sec-
ond argument of the macro. To solve this problem, KIRIN
redefines container_of in a way that the struct type is pre-
served in the LLVM IR (on which KIRIN works), as in Fig-
ure 5c (Lines 1-5). This adds back the kernel interface type

struct.usb_driver in the LLVM IR (Line 6), thereby en-
abling KIRIN to infer the correct type of driver and resolve
the targets for unlocked_ioctl.

Our experiment (§7.2) shows that KIRIN resolves 92%
of total indirect callsites for allyesconfig. PeX constructs a
more sound (less missing edges) and precise (less false edges)
call graph than other existing workarounds (e.g., [22]).

6 Design of PeX
Figure 6 shows the architecture of PeX. It takes as input
kernel source code (in the LLVM bitcode format) and com-
mon permission checks (Table 1), analyzes and reports all
detected permission check errors, including missing, incon-
sistent, and redundant permission checks. In addition, PeX
produces the mapping of permission checks and privileged
functions, which has not been formally documented.

At a high-level, PeX first resolves indirect calls with our
new technique called KIRIN (§5). Next, PeX builds an aug-
mented call graph—in which indirect callsites are connected
to possible targets—and cuts out only the portion reachable
from user space (§6.1). Based on the partitioned call graph,
PeX then generates the interprocedural control flow graph
(ICFG) where each callsite is connected to the entry and the
exit of the callee [17]. Then, starting from a small set of (user-
provided) permission checks, PeX automatically detects their
wrappers (§6.2). After that, for a given permission check,
PeX identifies its potentially privileged functions on top of
the ICFG (§6.3), followed by a heuristic-based filter to prune
obviously non-privileged functions (§6.4). Finally, for each
privileged function, PeX examines all user space reachable
paths to it to detect any permission checks error on the paths
(§6.5). The following section describes these steps in detail.

6.1 Call Graph Generation and Partition
PeX generates the call graph leveraging the result of KIRIN
(§5), and then partitions it into two groups.

User Space Reachable Functions: Starting from func-
tions with the common prefix SyS_ (indicating system call
entry points), PeX traverses the call graph, marks all visited
functions, and treats them as user space reachable functions.
The user reachable functions in this partition are investigated
for possible permission check errors.

Kernel Initialization Functions: Functions that are used
only during booting are collected to detect redundant checks.
The Linux kernel boots from the start_kernel function,
and calls a list of functions with the common prefix __init.
PeX performs multiple call graph traversals starting from
start_kernel and each of the __init functions to collect
them.

Other functions such as IRQ handlers and kernel thread
functions are not used in later analysis since they cannot be
directly called from user space. The partitioned call graph
serves as a basis for building an interprocedural control flow

graph (ICFG) [31] used in the inference of the mapping be-
tween permission checks and privileged functions (§6.3).

6.2 Permission Check Wrapper Detection
Sound and precise detection of permission check errors re-
quires a complete list of permission checks, but they are not
readily available (§4.2). One may name some commonly used
permission checks, as in Table 1. However, they are often the
wrapper of basic permission checks, which actually perform
the low-level access control, and even worse there could be
other wrappers of the wrapper.

PeX solves this by automating the process of identifying
all permission checks including wrappers. PeX takes an in-
complete list of user-provided permission checks as input.
Starting from them, PeX detects basic permission checks, by
performing the forward call graph slicing [26, 37, 45] over
the augmented call graph. For a given permission check func-
tion, PeX searches all call instructions inside the function for
the one that passes an argument of the function to the callee.
In other words, PeX identifies the callees of the permission
check function which take its actual parameter as their own
formal parameter. Similarly, PeX then conducts backward
call graph slicing [26, 37, 45] from these basic permission
checks to detect the list of their wrappers. PeX refers to only
those callers that pass permission parameters as wrappers,
excluding other callers just using the permission checks.

Figure 7 shows an example of the permission check wrap-
per detection. Given a known permission check ns_capable

(Lines 10-13), PeX first finds security_capable (Line 4) as
a basic permission check, and then based on it, PeX detects
another permission check wrapper has_ns_capability (Lines
14-20). Note that the parameter cap is passed from both the
parents ns_capable_common and has_ns_capability to the
child security_capable; and the result of security_capable
is returned to them. Our evaluation (§7.3) shows that based on
196 permission checks in Table 1, PeX detects 88 wrappers.

6.3 Privileged Function Detection
It is important to understand the mappings between permis-
sion checks and privileged functions for effective detection
of any permission check errors therein. However, the lack of
clear mapping in Linux kernel complicates the detection of
permission check errors (§4.2).

To address this problem, PeX leverages an interprocedural
dominator analysis [31] that can automatically identify the
privileged functions protected by a given permission check.
PeX conservatively treats all targets (callees) of those call
instructions, that are dominated by each permission check
(§6.2) on top of the ICFG (§6.1), as its potential privileged
functions. The rationale behind the dominator analysis is
based on the following observation: since there is no single
path that allows the dominated call instruction to be reached
without visiting the dominator (i.e., the permission check),

KIRIN
Indirect Call

Pointer Analysis
(§5)

Call Graph
Generation &
Partitioning

(§6.1)

Privileged
Function
Detection

(§6.3)

Permission
Check Wrapper

Detection
(§6.2)

Non-privileged
Function

Filter
(§6.4)

Permission
Check Error

Detection
(§6.5)

Permission
Checks

(Table 1)

Kernel
Source

(IR)

ICFG

all permission checks

potential
privileged
functions

privileged
functions

pointer
targets Permission

Check
Errors

Privileged
Functions

Permission
Checks

Figure 6: PeX static analysis architecture. PeX takes as input kernel source code and permission checks, and reports as output
permission check errors. PeX also produces mappings between identified permission checks and privileged functions as output.

1 static bool ns_capable_common(struct user_namespace
*ns, int cap, bool audit),!

2 {
3
4 capable = audit ?

security_capable(current_cred(), ns, cap) :,!
5 security_capable_noaudit(current_cred(), ns,

cap);,!
6 if (capable == 0)
7 return true;
8 return false;
9 }

10 bool ns_capable(struct user_namespace *ns, int cap)
11 {
12 return ns_capable_common(ns, cap, true);
13 }
14 bool has_ns_capability(struct task_struct *t,
15 struct user_namespace *ns, int cap)
16 {
17 ...
18 ret = security_capable(__task_cred(t), ns, cap);
19 ...
20 }

Figure 7: Permission check wrapper examples.

Algorithm 1 Privileged Function Detection
INPUT:

pc f uncs - all permission checking functions
OUTPUT:

pv f uncs - privileged functions
1: procedure PRIVILEGED FUNCTION DETECTION
2: for f ← pc f uncs do
3: for u←User(f) do
4: CallInst←CallInstDominatedBy(u) . Inter-procedural analysis, for

full program path
5: callee← getCallee(CallInst)
6: pv f uncs.insert(callee)
7: end for
8: end for
9: return pv f uncs

10: end procedure

the callee is likely to be the one that should be protected by
the check on all paths 2.

Algorithm 1 shows how PeX uses the dominator analysis
to find potential privileged functions pvfuncs for a given list
of permission check functions pcfuncs. For each permission
check function f (Line 2), PeX finds all users of f, i.e., the
callsite invoking f (Line 3). For each user (callsite) u, PeX
performs interprocedural dominator analysis over the ICFG to
find all dominated call instructions (Line 4). All their callees
are then added to pvfuncs (Lines 5-6).

Note that the call graph generated by KIRIN (§5) has
resolved most of the indirect calls, which allows PeX to

2This does not necessarily mean that the permission check dominates all
call instructions of ICFG which invoke the resulting privileged function. As
long as some call instructions are dominated by the check, their callees are
treated as privileged functions.

perform—on top of the resulting ICFG—more sound privi-
leged function detection. For example, our experiment (§7.3)
shows that KIRIN can identify ecryptfs_setxattr (reachable
via indirect calls over the ICFG) as a privileged function and
detect its missing permission check bug (Table 6, LSM-17).
Note that if some other unsound workaround such as [22] had
been used, this bug could not have been detected.

6.4 Non-privileged Function Filter
The conservative approach in §6.3 may lead to too many po-
tential privileged functions. In this step, PeX applies heuristic-
based filters to prune out false privileged functions. In the
current prototype, the filter contains a set of kernel library
functions which are not privileged functions, e.g., kmalloc,
strcmp, kstrtoint. Though PeX is currently designed to
avoid false negatives (and thus leverages a small set of library
filters only), one can add more aggressive filters to purge more
false privileged functions. With releasing PeX, we expect a
good opportunity for the kernel development community to
contribute to the design of non-privileged function filters
where domain knowledge is helpful.

6.5 Permission Check Error Detection
This last step is validating the use of privileged functions to
detect any potential permission check errors. For a given map-
ping between a permission check and a privileged function,
PeX performs a backward traversal of the ICFG, starting from
the privileged functions with the corresponding permission
check in mind. Note that PeX validates every possible path to
each privileged function of interest.

Algorithm 2 shows PeX’s permission check error detec-
tion algorithm. Recall that PeX treats user reachable kernel
functions and kernel initialization functions separately and
detects different forms of errors (§6.1). Lines 2-12 shows how
PeX detects missing, redundant, and inconsistent checks in
user reachable kernel functions. For each privileged function
f (Line 5) in a mapping, PeX finds all possible paths allpath
from user entry points to that privileged function f over the
ICFG (Line 6). Line 7-18 checks each path p for the preceding
permission check function, the lack of which should be re-
ported as a bug. If the call to the privileged function (pvcall)
is not preceded by the corresponding permission check func-

Algorithm 2 Permission Check Error Detection
INPUT:

pc− pv - permission check function to privileged function mapping
pc f uncs - all permission check functions
kinit f uncs - kernel init functions

1: procedure PERMISSION CHECK ERROR DETECTION
2: for pair← pc− pv do
3: pv f uncs← pair.pv . privileged functions
4: pc f unc← pair.pc . permission check functions
5: for f ← pv f uncs do
6: all path← getAllPathUseFunc(f) . get all user reachable paths that

call the privileged function f
7: for p← all path do
8: pvcall← PrivilegeFunctionCallInPath(p)
9: if pvcall not Preceded by pc f unc then

10: if pvcall not Preceded by any pc f uncs then
11: report(p) . Report missing checks
12: else
13: report(p) . Report inconsistent check
14: end if
15: else if pvcall Preceded by multiple same pc f unc then
16: report(p) . Report redundant checks
17: end if
18: end for
19: end for
20: end for
21: for f ← kinit f uncs do
22: if f uses any pc f uncs then
23: report(f) . Report unnecessary checks during kernel boot
24: end if
25: end for
26: end procedure

tion (pcfunc) and any other check functions (those in pcfuncs)
over a given path p, then PeX reports a missing check (Lines
6-7). And if pvcall is preceded not by the corresponding
check (pcfunc) but other check in pcfuncs, PeX reports an
inconsistent check. Finally, if PeX discovers that pvcall is
indeed preceded by pcfunc checks but multiple times, then it
reports a redundant check (Lines 15-17). Besides, Lines 21-25
shows how PeX detects redundant checks in kernel initial-
ization functions. As kinitfuncs includes a conservative list
of functions that can only be executed during booting (thus
obviating the need of any checks), all detected permission
checks are marked as redundant (Lines 22-24).

7 Implementation and Evaluation

PeX was implemented using LLVM [27]/Clang-6.0. It con-
tains about 7K lines of C/C++ code. Clang was modified to
preserve the kernel interface type at allocation/initialization
sites by using an identified struct type instead of using un-
named literal struct type. We also automated the generation of
the single-file whole vmlinux LLVM bitcode vmlinux.bc us-
ing wllvm [13]. This avoids building each kernel module sep-
arately or changing kernel build infrastructures, as observed
in prior kernel static analysis works [22, 49]. We evaluated
PeX on the latest stable Linux kernel v4.18.5. In summary,
KIRIN resolves 86%–92% of indirect callsites depending on
its compilation configurations. PeX reported 36 permission
check errors warnings to the Linux community, 14 of which
have been confirmed as real bugs.

Table 2: Input Statistics for Kernel v4.18.5.

defconfig allyesconfig
of yes(=y) config 1284 9939
of compiled LOC 2,414,772 15,881,692
vmlinux size 481 MB 3.8 GB
vmlinux.bc size 387 MB 3.3 GB
of total functions 42,264 247,465
of syscall entries 857 1,027
of init functions 1,570 9,301
of indirect callsites (ICS) 20,338 115,537

Table 3: Indirect Call Pointer Analysis.

defconfig allyesconfig
KIRIN TYPE KM KIRIN TYPE KM

% of ICS resolved 86 100 1 92 100 na
of avg target 3.6 10K 3.6 6.2 81K na
analysis time (min) 1 1 9,869 6.6 1 na

7.1 Evaluation Methodology
We evaluated PeX with two different kernel configurations: (1)
defconfig, the (commonly-used) default configuration, and
(2) allyesconfig with all non-conflict configuration options
enabled. The use of allyesconfig not only stress-tests PeX
(including KIRIN) with a larger code base than defconfig,
but also covers the majority of kernel code, allowing PeX to
detect more bugs. In addition, we used 3 DAC, 3 Capabilities,
and 190 LSM permission checks(Table 1) as input permission
checks, from which PeX finds other wrappers. For the non-
privileged function filter, we collected 1827 library functions
from lib directory in the kernel source code. All experiments
were carried out on a machine running Ubuntu 16.04 with
two Intel Xeon E5-2650 2.20GHz CPU and 256GB DRAM.

7.2 Evaluation of KIRIN
We compared the effectiveness and efficiency of KIRIN with
type-based approach and SVF-based K-Miner approach.

K-Miner [22] works around the scalability problem in SVF
by analyzing the kernel on a per system call basis, rather than
taking the entire kernel code for analysis. K-Miner generates
a (small-size) partition of kernel code which can be reached
from a given system call, and (unsoundly) applies SVF for that
partition. For comparison, we took K-Miner’s implementation
from the github [6] and added the logic to count the number of
resolved indirect callsites and the average number of targets
per callsite. As K-Miner was originally built on LLVM/Clang-
3.8.1, we recompiled the same kernel v4.18.5 using wllvm

with the same kernel configurations.
Table 3 summaries evaluation results of KIRIN, compar-

ing it to the type-based approach and K-Miner approach in
terms of the percentage of indirect callsite (ICS) resolved, the
average number of targets per ICS, and the total analysis time.

7.2.1 Resolution Rate

For K-Miner, we observe somewhat surprising results: it re-
solves only 1% of all indirect callsites. After further inves-

tigation, we noticed that SVF runs on each partition whose
code base is smaller than the whole kernel, its analysis scope
is significantly limited and unable to resolve function pointers
in other partitions, leading to the poor resolution rate.

Besides, we found out that K-Miner does not work for
allyesconfig which contains a much larger code base than
defconfig. Note that K-Miner evaluated its approach only for
defconfig in the original paper [22]. The K-Miner approach
turns out to be not scalable to handle allyesconfig which
ends up encountering out of memory error even for analyzing
a single system call.

7.2.2 Resolved Average Targets

For KIRIN, the number of average indirect call targets per
resolved indirect callsite is much smaller than that of the
type-based approach as shown in the second row of Table 3.
The reason is that the type-based approach classifies all func-
tions (not only address-taken functions) into different sets
based on the function type. This implies that all functions in
the set are regarded as possible call targets of that function
pointer. For example, as shown in Figure 3a, two functions
ext4_file_read_iter and ext4_file_write_iter share the
same type. As a result, the type-based approach incorrectly
identifies both functions as possible call targets of the function
pointer f_ops→write_iter.

7.2.3 Analysis Time

The total analysis times of each ICS resolution approach
are shown in the last row of Table 3. As expected, the type-
based approach is the fastest, finishing analysis in 1 minute
for both configurations. KIRIN runs slower than the type-
based approach. However, the analysis time of KIRIN (≈1
minute) is comparable to that of the type-based approach for
defconfig, while KIRIN takes 6.6 minutes for allyesconfig.

For a fair comparison with K-Miner, care must be taken
when we collect its indirect call analysis time. For a given
system call, we measured K-Miner’s running time from the
beginning until it produces the SVF point-to result, which
does not include the later bug detection time. To obtain the
total analysis time of K-Miner, we summed up the running
times of all system calls. The result shows that SVF based K-
Miner takes about 9,869 minutes to finish analyzing all system
calls of defconfig, which is much slower than KIRIN’s.

7.3 PeX Result
Table 4 summarizes PeX’s intermediate program analyses.
As allyesconfig subsumes defconfig in static analysis, we
focus on discussing allyesconfig results here. Overall, PeX
finishes all analyses within a few hours and reports about
two thousand groups of warnings, which are classified by
privileged functions. One may implement a multi-threaded
version of PeX to further reduce the analysis time.

Given the small number of input DAC, CAP, and LSM per-
mission checks (3, 3, and 190 each), PeX’s permission check

Table 4: PeX Results.

defconfig allyesconfig
DAC CAP LSM DAC CAP LSM

of input checks 3 3 190 3 3 190
of detected wrappers 11 13 34 19 16 53
of priv func detected 174 869 2030 631 3770 10915
of priv func after filter 116 582 1635 537 3245 10260
of warnings grouped
by priv func 72 210 853 221 850 1017

total time (min) 6 8 11 83 247 169

Table 5: Comparison of PeX warnings when used with differ-
ent indirect call analyses.

defconfig allyesconfig
DAC CAP LSM Bugs DAC CAP LSM Bugs

KIRIN 72 210 853 21 221 850 1017 36
TYPE 218 348 1319 21 164 964 4364 19 (PeX Timeout)
KM 54 196 241 6 na na na na (SVF Timeout)

detection (§6.2) was able to identify 19, 16 and 53 permission
check wrappers. For example, PeX detects wrappers such as
nfs_permission and may_open for DAC; sk_net_capable and
netlink_capable for Capabilities; and key_task_permission

and __ptrace_may_access for LSM.
Table 4 also shows the number of potentially privileged

functions detected by PeX (§6.3) and the number of remain-
ing privileged functions after kernel library filtering (§6.4).
We found that there are typically 1-to-1 or 2-to-1 mapping
between permission checks and privileged functions. Over-
all, PeX reports 221, 850, and 1017 warnings (grouped by
privileged functions) for DAC, CAP, and LSM, respectively.

Table 6 shows the list of 36 bugs we reported, 14 of which
have been confirmed by Linux kernel developers. Kernel de-
velopers ignored some bugs and decided not to make changes
because they believe that the bugs are not exploitable. We
discuss them in detail in §7.5.

Comparison. To highlight the effectiveness of KIRIN,
we repeated the end-to-end PeX analysis using type-based
(PeX+TYPE) and K-Miner-style (PeX+KM) indirect call anal-
yses. Table 5 shows the resulting number of warnings and
detected bugs when the 36 bugs— shown in Table 6—are
used as an oracle for false negative comparison.

For allyesconfig, PeX+TYPE and PeX+KM could not
complete the analysis within the 12-hour experiment limit.
PeX+TYPE generated too many (false) edges in ICFG and
suffered from path explosion during the last phase of PeX
analysis; only 19 bugs were reported before the timeout. In the
mean time, PeX+KM timed out on an earlier pointer analysis
phase, thereby failing to report any bug.

When defconfig is used for comparison, PeX+TYPE and
PeX+KM were able to complete the analysis. In this setting,
PeX+KIRIN (original) and PeX+TYPE both report 21 bugs
(a subset of 36 bugs detected with allyesconfig). Though
PeX+TYPE can capture them all (as type-based analysis is

sound yet imprecise), it generates up to 3x more warnings,
placing a high burden on the users side for their manual review.
On the other hand, as an unsound solution, PeX+KM produces
a limited number of warnings, resulting in the detection of
only 6 bugs missing the rest.

7.4 Manual Review of Warnings
The manual review process of reported warnings is to deter-
mine whether a privileged function identified by PeX (§6.3)
is a true privileged function or not. As long as one can con-
firm that a function is indeed privileged, reported warnings
regarding its missing, inconsistent, and redundant permission
checks should be true positives from PeX’s point of view.

Though kernel developers with domain knowledge may be
able to discern them with no complication, we (as a third-
party) try to understand whether a given function can be used
to access critical resources (e.g., device, file system, etc.). As
a result, we conservatively reported 36 bug warnings to the
community; we suspect that there could be more true warn-
ings missed due to our lack of domain knowledge. We plan
to release PeX and the list of potential privileged functions,
hoping kernel developers will contribute to identify privileged
functions and fix more true permission errors.

Certain static paths reported by PeX may not be feasible
dynamically during program execution, resulting in false pos-
itives. One may devise a solution solving path constraints as
in symbolic execution engines [16] to address this problem,
PeX currently does not do so.

7.5 Discussion of Security Bug Findings
7.5.1 Missing Check

Figure 2b is one of the confirmed missing LSM checks (LSM-
21). We discuss two more confirmed cases.

The CAP-4 missing check in kernel random device driver
is particularly critical and triggered active discussion in the
kernel developer community (including Torvalds). Random
number generator serves as the foundation of many cryp-
tography libraries including OpenSSL, and thus the quality
of the random number is very critical. This security bug al-
lows attackers to manipulate entropy pool, which can poten-
tially corrupt many applications using cryptography libraries.
Specifically, a problematic path starts from evdev_write and
reaches the privileged function credit_entropy_bits, which
can control the entropy in the entropy pool, while bypassing
the required CAP_SYS_ADMIN permission check.

The LSM-21 missing check in xfs_file_ioctl led to an-
other interesting discussion among kernel developers [9].
With this interface, a userspace program may perform low-
level file system operations, but security_inode_read_link
LSM hook was missing. An adversary could exploit this
interface and gain access to the whole file system that is
not allowed by LSM policy. Interestingly, however, the privi-
leged function performed CAP_SYS_ADMIN Capability permis-

sion check. This created disagreement between kernel devel-
opers: one group argues that the LSM hook is necessary, while
another thinks that CAP_SYS_ADMIN is sufficient. We agree with
the former because LSM is designed to limit the damage of
a compromised process to the system, even the ones of root
user [40]. We believe that LSM permission checks should
still be enforced as always for better security even when the
current user is root.

Kernel developers decided not to fix 9 of our reports be-
cause they believe these bugs are not exploitable. As discussed
earlier, PeX in the current form neither validates if a suspi-
cious static path is dynamically reachable, nor generates a
concrete exploit to demonstrate the security issue; we be-
lieve both are good future works. Nonetheless, we have one
complaint to share.

For the LSM-19 and LSM-20 cases, PeX found
that the LSM hooks security_kernel_read_file and
security_kernel_post_read_file were used to pro-
tect the privileged functions kernel_read_file and
kernel_post_read_file in some program paths. We
reported missing LSM hooks in load_elf_binary and
load_elf_library for these privileged functions. However,
the kernel developers responded that those hooks are used
to monitor loading firmware/kernel modules only (not other
files), and thus no patch is required. Here, the implication we
found is three-fold. First, the permission check names are
ambiguous and misleading. Second, we were not able to find
any documentation of such LSM specification regarding the
protection of firmware/kernel modules. Last, PeX actually
found a counter-example in IMA where the same checks are
indeed used for loading other files (neither firmware nor
kernel modules). Consequently, we suggest changing the
function name and documenting the clear intention to avoid
any confusion and to prevent system administrators from
creating an LSM policy that does not work.

7.5.2 Inconsistent Check

The CAP-13 inconsistent check has been discussed in Fig-
ure 1. One program path in Figures 1a and 1c has two
CAP_SYS_RAWIO checks and one CAP_SYS_ADMIN check, while
another path in Figures 1b and 1c has only one CAP_SYS_ADMIN

check. PeX detects this bug as an inconsistent check, but
from the viewpoint of correction, which requires adding
CAP_SYS_RAWIO, this may also be viewed as a missing check.
There is a separate redundant check error in CAP_SYS_RAWIO.

Upon further investigation, we were interested in learn-
ing the practices in using multiple capabilities together.
scsi_ioctl in Figure 1a checks both CAP_SYS_ADMIN and
CAP_SYS_RAWIO. However, in a different network subsys-
tem (not shown), we found that too_many_unix_fds per-
forms a weaker permission check with the CAP_SYS_ADMIN or
CAP_SYS_RAWIO condition. We believe this OR-based weaker
check is not a good practice because this in effect makes
CAP_SYS_ADMIN too powerful (like root), diminishing the ben-

Table 6: Bugs Reported By PeX. Confirmed or Ignored.

Type-# File Function Description Status
DAC-1 fs/btrfs/send.c btrfs_send missing DAC check when traversing a snapshot C
DAC-2 fs/ecryptfs/inode.c ecryptfs_removexattr(),_setxattr() missing xattr_permission() C
DAC-3 fs/ecryptfs/inode.c ecryptfs_listxattr() missing xattr_permission() C
CAP-4 drivers/char/random.c write_pool(), credit_entropy_bits() missing CAP_SYS_ADMIN C
CAP-5 drivers/scsi/sg.c sg_scsi_ioctl() missing CAP_SYS_ADMIN or CAP_RAW_IO I
CAP-6 drivers/block/pktcdvd.c add_store(), remove_store() missing CAP_SYS_ADMIN I
CAP-7 drivers/char/nvram.c nvram_write() missing CAP_SYS_ADMIN I
CAP-8 drivers/firmware/efi/efivars.c efivar_entry_set() missing CAP_SYS_ADMIN C
CAP-9 net/rfkill/core.c rfkill_set_block(), rfkill_fop_write() missing CAP_NET_ADMIN C
CAP-10 block/scsi_ioctl.c mmc_rpmb_ioctl() missing verify_command or CAP_SYS_ADMIN I
CAP-11 drivers/platform/x86/thinkpad_acpi.c acpi_evalf() missing CAP_SYS_ADMIN I
CAP-12 drivers/md/dm.c dm_blk_ioctl() missing CAP_RAW_IO I
CAP-13 block/bsg.c bsg_ioctl inconsistent/missing CAP_SYS_ADMIN C
CAP-14 kernel/sys.c prctl_set_mm_exe_file inconsistent capability check I
CAP-15 kernel/sys.c prctl_set_mm_exe_file inconsistent capability and namespace check I
CAP-16 block/scsi_ioctl.c blk_verify_command redundant check CAP_SYS_RAWIO I
LSM-17 fs/ecryptfs/inode.c ecryptfs_removexattr(), _setxattr() missing security_inode_removexattr() C
LSM-18 mm/mmap.c remap_file_pages missing security_mmap_file() I
LSM-19 fs/binfmt_elf.c load_elf_binary() missing security_kernel_read_file I
LSM-20 fs/binfmt_elf.c load_elf_library() missing security_kernel_read_file I
LSM-21 fs/xfs/xfs_ioctl.c xfs_file_ioctl() missing security_inode_readlink() C
LSM-22 kernel/workqueue.c wq_nice_store() missing security_task_setnice() C
LSM-23 fs/ecryptfs/inode.c ecryptfs_listxattr() missing security_inode_listxattr C
LSM-24 include/linux/sched.h comm_write() missing security_task_prctl() C
LSM-25 fs/binfmt_misc.c load_elf_binary() missing security_bprm_set_creds() I
LSM-26 drivers/android/binder.c binder_set_nice missing security_task_setnice() I
LSM-27 fs/ocfs2/cluster/tcp.c o2net_start_listening() missing security_socket_bind I
LSM-28 fs/ocfs2/cluster/tcp.c o2net_start_listening() missing security_socket_listen I
LSM-29 fs/dlm/lowcomms.c tcp_create_listen_sock missing security_socket_bind I
LSM-30 fs/dlm/lowcomms.c tcp_create_listen_sock missing security_socket_listen I
LSM-31 fs/dlm/lowcomms.c sctp_listen_for_all missing security_socket_listen I
LSM-32 net/socket.c kernel_bind missing security_socket_bind I
LSM-33 net/socket.c kernel_listen missing security_socket_listen I
LSM-34 net/socket.c kernel_connect missing security_socket_connect I
LSM-35 fs/ocfs2/cluster/tcp.c o2net_start_listening() redundant security_socket_create C
LSM-36 fs/ocfs2/cluster/tcp.c o2net_open_listening_sock() redundant security_socket_create C

efit of fine-grained capability-based access control.
The CAP-14 and CAP-15 inconsistent error reports were

acknowledged but ignored by the kernel developers for
the following reason. For the same privileged function
prctl_set_mm_exe_file, which is used to set an executable
file, PeX discovered one case requiring CAP_SYS_RESOURCE in
user namespace, and another case checking CAP_SYS_ADMIN in
init namespace. Kernel developers responded that each case
is fine by design for that specific context. PeX does not con-
sider the precise context in which prctl_set_mm_exe_file is
used (similar to aforementioned security_kernel_read_file

used for loading kernel modules), leading to an imprecise
report, but we believe that both CAP-14 and CAP-15 are
worthwhile for further investigation.

7.5.3 Redundant Check

A redundant check occurs in two forms. First, for user-
reachable functions, it happens when a privileged function is
covered by the same permission checks multiple times. We
reported three cases. The CAP-16 case was discussed in Fig-
ures 1a and 1c with two CAP_SYS_RAWIO checks, which was
ignored by kernel developers. On the other hand, for the LSM-
35 and LSM-36 cases found in the ocfs2 file system, the other
kernel developer group confirmed and promised to fix the
bugs. Second, any permission check in kernel-initialization

functions is marked as redundant because the boot thread is
executed under root. PeX detected tens of such cases, but we
did not report them as they are less critical.

8 Related Work

8.1 Hook Verification and Placement

There is a series of studies on checking kernel LSM hooks.
Automated LSM hook verification work [56] verifies the com-
plete mediation of LSM hooks relying manually specified
security rules. While [20] automates LSM hook placements
utilizing manually written specification of security sensitive
operations. However, required manual processes are error-
prone when applied to huge Linux code base. Edwards et
al. [18] proposed to use dynamic analysis to detect LSM
hook inconsistencies. While PeX is using static analysis, can
achieve better code coverage.

AutoISES [44] is the most closely related work to PeX.
AutoISES regards data structures, such as the structure fields
and global variables, as privileged, applies static analysis to
extract security check usage patterns, and validates the pro-
tections to these data structures. The difference between Au-
toISES and PeX is three-fold. First, PeX is privileged function
oriented while AutoISES is more like data structure oriented.

Second, AutoISES is designed for LSM only, whose permis-
sion checks (hooks) are clearly defined, and therefore it is
not applicable to DAC and Capabilities due to their various
permission check wrappers. In contrast, PeX works for all
three types of permission checks. Third, AutoISES uses type-
based pointer analysis to resolve indirect calls, while PeX
uses KIRIN to resolve indirect calls in a more precise manner.

There are also works [21, 32, 33] that extend authorization
hook analysis to user space programs, including X server and
postgresql. However, their approaches canot be applied to the
huge kernel scale. Moreover, all of above works either do not
analyze indirect calls at all, or apply over approximate indirect
call analysis techniques, such as type-based approach or field
insensitive approach. To the contrary, PeX uses KIRIN, a
precise and scalable indirect call analysis technique, which
can also benefit these works by finding more accurate indirect
call targets.

8.2 Kernel Static Analysis Tools

Coccinelle [34] is a tool that detects a bug of pre-defined
pattern based on text pattern matching on the symbolic rep-
resentation of bug cases. This is basically intra-procedural
analysis. Building upon Coccinelle, Wang et al. proposed
another pattern matching based static tool which detects po-
tential double-fetch vulnerabilities in the Linux kernel [48].

Sparse [11] is designed to detect the problematic use of
pointers belonging to different address space (kernel space
or userspace). Later, Sparse was used to build a static anal-
ysis framework called Smatch [10] for detecting different
sorts of kernel bugs. However, Smatch is also based on intra-
procedural analysis, thus it can only find shallow bugs.

Double-Fetch [52], Check-it-again [49] focus on detect-
ing time of check to time of use (TOCTTOU) bugs. Dr.
Checker [29] is designed for analyzing Linux kernel drivers.
It adopts the modular design, allowing new bug detectors to
be plug-in easily. KINT [50] applies taint analysis to detect
integer errors in Linux kernel while UniSan [28] leverages
the same analysis to detect uninitialized kernel memory leak-
ages to the userspace. Chucky [53] also uses a taint analysis
to analyze missing checks in different sources in userspace
programs and Linux kernel. However, Chucky can handle
only kernel file system code due to the lack of pointer analy-
sis. Note that to resolve indirect call targets, all these works
leverage a type-based approach, which is not as accurate as
KIRIN, thus suffering from false positives.

MECA [54] is an annotation based static analysis frame-
work, and it can detect security rule violations in Linux.
APISan [55] aims at finding API misuse. It figures out the
right API usage through the analysis of existing code base and
performs intra-procedural analysis to find bugs. To achieve the
former, APISan relies on relaxed symbolic execution which
is complementary to the techniques used in PeX.

8.3 Permission Check Analysis Tools
Engler et al. propose to use programmer beliefs to automati-
cally extract checking information from the source code. They
apply the checking information to detect missing checks [19].
RoleCast [42] leverages software engineering patterns to de-
tect missing security checks in web applications. TESLA [14]
implements temporal assertions based on LLVM instrument,
in which the FreeBSD hooks are checked by inserted asser-
tions dynamically. Different from TESLA, PeX uses KIRIN
to analyze jump targets of all kernel function pointers stat-
ically, achieving better resolution rate and code coverage.
JIGSAW [47] is a system that can automatically derive pro-
grammer expectations on resources access and enforce it on
the deployment. It is designed for analyzing userspace pro-
grams, cannot be applied to kernel directly.

JUXTA [30] is a tool designed for detecting semantic
bugs in filesystem while PScout [15] is a static analysis
tool for validating Android permission checking mechanisms.
Kratos [39] is a static security check framework designed for
the Android framework. It builds a call graph using LLVM
and tries to discover inconsistent check paths in the frame-
work. However, Android has well-documented permission
check specifications [2], i.e., privileged functions and the per-
mission required for them are both clearly defined. In contrast,
the Linux kernel has no such documentation, which makes
it impossible to apply PScout and Kratos to Linux kernel
permission checks.

9 Conclusion
This paper presents PeX, a static permission check analysis
framework for Linux kernel, which can automatically infer
mappings between permission checks and privileged func-
tions as well as detect missing, inconsistent, and redundant
permission checks for any privileged functions. PeX relies on
KIRIN, our novel call graph analysis based on kernel inter-
faces, to resolve indirect calls precisely and efficiently.

We evaluated both KIRIN and PeX for the latest stable
Linux kernel v4.18.5. The experiments show that KIRIN can
resolve 86%-92% of all indirect callsites in the kernel within
7 minutes. In particular, PeX reported 36 permission check
bugs of DAC, Capabilities, and LSM, 14 of which have al-
ready been confirmed by the kernel developers. PeX source
code is available at https://github.com/lzto/pex, along with
the identified mapping between permission checks and privi-
leged functions. We believe that such a mapping allows kernel
developers to validate their code with PeX and encourages
them to contribute to PeX by refining the mapping with their
domain knowledge.

Acknowledgments
The authors would like to thank anonymous reviewers for their
insightful comments. This research is partially supported by
the NSF under Grant No. CSR-1814430 and CSR-1750503.

References
[1] alse boundaries and arbitrary code execution.

https://forums.grsecurity.net/viewtopic.
php?f=7&t=2522.

[2] Android Permission Overview. https:
//developer.android.com/guide/topics/
permissions/overview.

[3] Apparmor. https://gitlab.com/apparmor/
apparmor/wikis/home/.

[4] capabilities - overview of linux capabilities.
http://man7.org/linux/man-pages/man7/
capabilities.7.html.

[5] CAP_SYS_ADMIN: the new root. https://lwn.net/
Articles/486306/.

[6] K-miner: Data-flow analysis for the linux kernel. https:
//github.com/ssl-tud/k-miner.

[7] Locationmanager. https://developer.
android.com/reference/android/location/
LocationManager#getLastKnownLocation(java.
lang.String).

[8] Mandatory access control. https://en.wikipedia.
org/wiki/Mandatory_access_control.

[9] Re: Leaking path in xfs’s ioctl interface(missing lsm
check) by stephen smalley. https://lkml.org/lkml/
2018/9/26/668.

[10] Smatch: pluggable static analysis for c. https://lwn.
net/Articles/691882/.

[11] Sparse. https://www.kernel.org/doc/html/v4.
14/dev-tools/sparse.html.

[12] Virtual file system. https://en.wikipedia.org/
wiki/Virtual_file_system.

[13] Whole Program LLVM: a wrapper script to build whole-
program llvm bitcode files. https://github.com/
travitch/whole-program-llvm.

[14] Jonathan Anderson, Robert NM Watson, David Chis-
nall, Khilan Gudka, Ilias Marinos, and Brooks Davis.
Tesla: temporally enhanced system logic assertions. In
Proceedings of the Ninth European Conference on Com-
puter Systems, page 19. ACM, 2014.

[15] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and
David Lie. Pscout: analyzing the android permission
specification. In Proceedings of the 2012 ACM confer-
ence on Computer and communications security, pages
217–228. ACM, 2012.

[16] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al.
Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In OSDI,
volume 8, pages 209–224, 2008.

[17] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa.
Demand-driven computation of interprocedural data
flow. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, pages 37–48. ACM, 1995.

[18] Antony Edwards, Trent Jaeger, and Xiaolan Zhang. Run-
time verification of authorization hook placement for
the linux security modules framework. In Proceedings
of the 9th ACM Conference on Computer and Commu-
nications Security, pages 225–234. ACM, 2002.

[19] Dawson Engler, David Yu Chen, Seth Hallem, Andy
Chou, and Benjamin Chelf. Bugs as deviant behavior:
A general approach to inferring errors in systems code.
In ACM SIGOPS Operating Systems Review, volume 35,
pages 57–72. ACM, 2001.

[20] Vinod Ganapathy, Trent Jaeger, and Somesh Jha. Au-
tomatic placement of authorization hooks in the linux
security modules framework. In Proceedings of the 12th
ACM conference on Computer and communications se-
curity, pages 330–339. ACM, 2005.

[21] Vinod Ganapathy, Trent Jaeger, and Somesh Jha. To-
wards automated authorization policy enforcement. In
Proceedings of Second Annual Security Enhanced Linux
Symposium. Citeseer, 2006.

[22] David Gens, Simon Schmitt, Lucas Davi, and Ahmad-
Reza Sadeghi. K-miner: Uncovering memory corruption
in linux. In Proceedings of the 2018 Annual Network
and Distributed System Security Symposium (NDSS),
San Diego, CA, 2018.

[23] Ben Hardekopf and Calvin Lin. The ant and the
grasshopper: fast and accurate pointer analysis for mil-
lions of lines of code. In ACM SIGPLAN Notices, vol-
ume 42, pages 290–299. ACM, 2007.

[24] Ben Hardekopf and Calvin Lin. Exploiting pointer and
location equivalence to optimize pointer analysis. pages
265–280, 2007.

[25] Ben Hardekopf and Calvin Lin. Flow-sensitive pointer
analysis for millions of lines of code. In Proceedings
of the 9th Annual IEEE/ACM International Symposium
on Code Generation and Optimization, pages 289–298.
IEEE Computer Society, 2011.

[26] Bogdan Korel and Juergen Rilling. Program slicing
in understanding of large programs. In Program Com-
prehension, 1998. IWPC’98. Proceedings., 6th Interna-
tional Workshop on, pages 145–152. IEEE, 1998.

https://forums.grsecurity.net/viewtopic.php?f=7&t=2522
https://forums.grsecurity.net/viewtopic.php?f=7&t=2522
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://gitlab.com/apparmor/apparmor/wikis/home/
https://gitlab.com/apparmor/apparmor/wikis/home/
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
https://lwn.net/Articles/486306/
https://lwn.net/Articles/486306/
https://github.com/ssl-tud/k-miner
https://github.com/ssl-tud/k-miner
https://developer.android.com/reference/android/location/LocationManager#getLastKnownLocation(java.lang.String)
https://developer.android.com/reference/android/location/LocationManager#getLastKnownLocation(java.lang.String)
https://developer.android.com/reference/android/location/LocationManager#getLastKnownLocation(java.lang.String)
https://developer.android.com/reference/android/location/LocationManager#getLastKnownLocation(java.lang.String)
https://en.wikipedia.org/wiki/Mandatory_access_control
https://en.wikipedia.org/wiki/Mandatory_access_control
https://lkml.org/lkml/2018/9/26/668
https://lkml.org/lkml/2018/9/26/668
https://lwn.net/Articles/691882/
https://lwn.net/Articles/691882/
https://www.kernel.org/doc/html/v4.14/dev-tools/sparse.html
https://www.kernel.org/doc/html/v4.14/dev-tools/sparse.html
https://en.wikipedia.org/wiki/Virtual_file_system
https://en.wikipedia.org/wiki/Virtual_file_system
https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm

[27] Chris Lattner and Vikram Adve. Llvm: A compilation
framework for lifelong program analysis & transforma-
tion. In Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-directed
and Runtime Optimization, CGO ’04, pages 75–, 2004.

[28] Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke
Lee. Unisan: Proactive kernel memory initialization to
eliminate data leakages. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 920–932. ACM, 2016.

[29] Aravind Machiry, Chad Spensky, Jake Corina, Nick
Stephens, Christopher Kruegel, and Giovanni Vigna. Dr.
checker: A soundy analysis for linux kernel drivers. In
26th {USENIX} Security Symposium ({USENIX} Secu-
rity 17), pages 1007–1024. USENIX Association, 2017.

[30] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee,
Chengyu Song, and Taesoo Kim. Cross-checking se-
mantic correctness: The case of finding file system bugs.
In Proceedings of the 25th Symposium on Operating
Systems Principles, pages 361–377. ACM, 2015.

[31] S.S. Muchnick. Advanced Compiler Design Implemen-
tation. Morgan Kaufmann Publishers, 1997.

[32] Divya Muthukumaran, Trent Jaeger, and Vinod Ganapa-
thy. Leveraging choice to automate authorization hook
placement. In Proceedings of the 2012 ACM confer-
ence on Computer and communications security, pages
145–156. ACM, 2012.

[33] Divya Muthukumaran, Nirupama Talele, Trent Jaeger,
and Gang Tan. Producing hook placements to enforce
expected access control policies. In International Sym-
posium on Engineering Secure Software and Systems,
pages 178–195. Springer, 2015.

[34] Yoann Padioleau, Julia Lawall, René Rydhof Hansen,
and Gilles Muller. Documenting and automating collat-
eral evolutions in linux device drivers. In Acm sigops
operating systems review, volume 42, pages 247–260.
ACM, 2008.

[35] Fernando Magno Quintao Pereira and Daniel Berlin.
Wave propagation and deep propagation for pointer
analysis. In Code Generation and Optimization, 2009.
CGO 2009. International Symposium on, pages 126–
135. IEEE, 2009.

[36] Lili Qiu, Yin Zhang, Feng Wang, Mi Kyung, and
Han Ratul Mahajan. Trusted computer system eval-
uation criteria. In National Computer Security Center.
Citeseer, 1985.

[37] Sanjay Rawat, Laurent Mounier, and Marie-Laure Potet.
Listt: An investigation into unsound-incomplete yet
practical result yielding static taintflow analysis. In
Availability, Reliability and Security (ARES), 2014 Ninth
International Conference on, pages 498–505. IEEE,
2014.

[38] Ravi S Sandhu and Pierangela Samarati. Access control:
principle and practice. IEEE communications magazine,
32(9):40–48, 1994.

[39] Yuru Shao, Qi Alfred Chen, Zhuoqing Morley Mao,
Jason Ott, and Zhiyun Qian. Kratos: Discovering in-
consistent security policy enforcement in the android
framework. In NDSS, 2016.

[40] Stephen Smalley and Robert Craig. Security enhanced
(se) android: Bringing flexible mac to android. In NDSS,
volume 310, pages 20–38, 2013.

[41] Stephen Smalley, Chris Vance, and Wayne Salamon. Im-
plementing selinux as a linux security module. NAI
Labs Report, 1(43):139, 2001.

[42] Sooel Son, Kathryn S McKinley, and Vitaly Shmatikov.
Rolecast: finding missing security checks when you do
not know what checks are. In ACM SIGPLAN Notices,
volume 46, pages 1069–1084. ACM, 2011.

[43] Yulei Sui and Jingling Xue. Svf: interprocedural static
value-flow analysis in llvm. In Proceedings of the 25th
International Conference on Compiler Construction,
pages 265–266. ACM, 2016.

[44] Lin Tan, Xiaolan Zhang, Xiao Ma, Weiwei Xiong, and
Yuanyuan Zhou. Autoises: Automatically inferring se-
curity specification and detecting violations. In USENIX
Security Symposium, pages 379–394, 2008.

[45] Frank Tip. A survey of program slicing techniques. Cen-
trum voor Wiskunde en Informatica, 1994.

[46] National Computer Security Center (US). A guide to
understanding discretionary access control in trusted
systems, volume 3. National Computer Security Center,
1987.

[47] Hayawardh Vijayakumar, Xinyang Ge, Mathias Payer,
and Trent Jaeger. Jigsaw: Protecting resource access by
inferring programmer expectations. In USENIX Security
Symposium, pages 973–988, 2014.

[48] Pengfei Wang, Jens Krinke, Kai Lu, Gen Li, and Steve
Dodier-Lazaro. How double-fetch situations turn into
double-fetch vulnerabilities: A study of double fetches
in the linux kernel. In USENIX Security Symposium,
2017.

[49] Wenwen Wang, Kangjie Lu, and Pen-Chung Yew. Check
it again: Detecting lacking-recheck bugs in os kernels.
In Proceedings of ACM conference on Computer and
communications security. ACM, 2018.

[50] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zel-
dovich, and M Frans Kaashoek. Improving integer secu-
rity for systems with kint. In OSDI, volume 12, pages
163–177, 2012.

[51] Chris Wright, Crispin Cowan, James Morris, Stephen
Smalley, and Greg Kroah-Hartman. Linux security mod-
ule framework. In Ottawa Linux Symposium, volume
8032, pages 6–16, 2002.

[52] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael
Backes, and Taesoo Kim. Precise and scalable detection
of double-fetch bugs in os kernels. 2018.

[53] Fabian Yamaguchi, Christian Wressnegger, Hugo Gas-
con, and Konrad Rieck. Chucky: Exposing missing
checks in source code for vulnerability discovery. In

Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 499–510.
ACM, 2013.

[54] Junfeng Yang, Ted Kremenek, Yichen Xie, and Dawson
Engler. Meca: an extensible, expressive system and
language for statically checking security properties. In
Proceedings of the 10th ACM conference on Computer
and communications security, pages 321–334. ACM,
2003.

[55] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Tae-
soo Kim, and Mayur Naik. Apisan: Sanitizing api usages
through semantic cross-checking. In USENIX Security
Symposium, pages 363–378, 2016.

[56] Xiaolan Zhang, Antony Edwards, and Trent Jaeger. Us-
ing cqual for static analysis of authorization hook place-
ment. In USENIX Security Symposium, pages 33–48,

2002.

	Introduction
	Background: Permission Checks in Linux
	Discretionary Access Control (DAC)
	Capabilities
	Linux Security Module (LSM)

	Examples of Permission Check Errors
	Capability Permission Check Errors
	LSM Permission Check Errors

	Challenges
	Indirect Call Analysis in Kernel
	The Lack of Full Permission Checks, Privileged Functions, and Their Mappings

	KIRIN Indirect Call Analysis
	Indirect Call Target Collection
	Indirect Callsite Resolution

	Design of PeX
	Call Graph Generation and Partition
	Permission Check Wrapper Detection
	Privileged Function Detection
	Non-privileged Function Filter
	Permission Check Error Detection

	Implementation and Evaluation
	Evaluation Methodology
	Evaluation of KIRIN
	Resolution Rate
	Resolved Average Targets
	Analysis Time

	PeX Result
	Manual Review of Warnings
	Discussion of Security Bug Findings
	Missing Check
	Inconsistent Check
	Redundant Check

	Related Work
	Hook Verification and Placement
	Kernel Static Analysis Tools
	Permission Check Analysis Tools

	Conclusion

