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Abstract

The inexact cubic-regularized Newton’s method (CR) proposed by Cartis, Gould and Toint achieves the same convergence

rate as exact CR proposed by Nesterov and Polyak, but the inexact condition is not implementable due to its dependence

on a future variable. This note establishes the same convergence rate under a similar but implementable inexact condition,

which depends on only current variables. Our proof bounds the function-value decrease over total iterations rather than

each iteration in the previous studies.
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1. Introduction

The cubic-regularized (CR) Newton’s method [1] is a
popular approach that solves the following general non-

convex optimization problem

min f(x), (1)

x€ER?
where f:R? — R is a differentiable and possibly noncon-
vex function. Starting from an arbitrary initial point xq,

the update rule of CR can be written as
(CR):

. 1 M
Spy1 = argmin V£ (xz) s + =s V2 f(xz)s + —|Is||®,
seR? 2 6

Xk4+1 = X + Sp41, (2)
where M is a positive scalar. [1] showed that CR converges

to a second-order stationary point x of the objective func-

tion, i.e.,

Vf(x)=0 and V2f(x):=0. (3)
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Such a desirable property allows CR to escape strict sad-
dle points. However, CR needs to compute a full Hessian
at each iteration, and is hence computationally intensive.
Thus, [2, 3] proposed an algorithm named Adaptive Regu-
larization using Cubics (ARC) that uses an adaptive regu-
larization scheme as well as an inexact sub-problem solver
to reduce the computation complexity. More specifically,
[2, 3] proposed to use an inexact approximation Hj to
replace the full Hessian V2 f(x;) in the CR update in or-
der to be computationally more efficient, leading to the

following inexact CR algorithm

(Inexact CR):

1 M
spr1 = argmin Vf(xg) s + =s Hys + —|s||>,  (4)
scRd 2 6

Xg+1 = Xk + Skg1- (5)

[2, 3] showed that if Hy, satisfies the following inexact con-

dition,
I(Hi = V2 f(x1)sir1 ]| < Cllsia |l (6)

where C' > 0. Then ARC with inexact Hessian achieves
the same order-level convergence rate to a second-order
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stationary point as exact CR for nonconvex optimization.

The inexact CR has been further explored in various
situations [4, 5, 6, 7]. However, observe that the above
inexact condition involves ||sg+1|| (and hence x11), which
is not available at iteration k. Thus, such a condition is not
practically implementable. More recent research studies
[4, 8] used si to implement inexact CR numerically as

follows

L — V2 f ()| < Clsill (7)

These studies demonstrated that inexact CR still performs
well in experiments under (7), but did not provide theo-
retical convergence guarantee of inexact CR under such a
condition.

The main contribution of this note is the establishment
of convergence guarantee for inexact CR under the imple-
mentable condition (7), and furthermore under a similar
inexact condition for gradient (see (12) below). We show
that inexact CR under these conditions achieves the same
order of convergence rate as the exact CR, i.e., the al-
gorithm passes an € approximate second-order stationary
point within O(e=3/2) iterations. In contrast to existing
proof techniques, our proof relies on an idea of the con-
trol of the sufficient decrease of the function value over
all iterations rather than requiring a sufficient decrease at
each iteration. More specifically, the inexact error |Hj, —
V2f(xk)|| < Cllsk| at current iteration is incorporated
into the bound on the previous iteration, which yields a
successful analysis over all iterations under a more relaxed
(and practical) condition (see (7)). We note that our the-
ory guarantees that the algorithm must pass an € approx-
imate second-order stationary point within O(e=3/?) it-
erations. Although our result does not necessarily guar-
antee the final iterate at the termination to satisfy the
second-order stationary optimality condition, such an is-
sue can be solved by incorporating a breaking step to check
the condition max{||s|],||sk+1]|} < O(V/¢€), which implies
IV £ (xs1)ll = Ce and V2 (x41) 3= —C/e.

o

o

0

0

We also note that another inexact condition has been

proposed by [9], which takes the form

1 = V2 f (xi))serall < ellsall,

(8)

where € is a pre-defined small constant and is related to
the required accuracy. Similar conditions have been used
in [10, 11, 12, 13, 14]. Compared to (8), (7) is made to
be adaptive to ||sk|| so that more progress towards the
convergence point can be made during the most phase of
the algorithm when the increment ||sx|| is larger than e.
We note that our focus here is on the implementabil-
ity of the inexact Hessian condition, and the results are
obtained using a fixed regularization, which depends on
the knowledge of the Lipschitz constant L, as well as the
exact solution to the sub-problem. These issues have been
addressed in [2, 3, 9] and several others by employing adap-
tive regularization as well as inexact sub-problem solvers
(in addition to the inexact Hessian conditions as afore-
mentioned). In fact, our algorithm can further be made
adaptive by incorporating the idea in [2, 3, 9] to estimate
L and can be shown to have the same convergence rate.
Notation: For a vector x, ||x|| denotes its £ norm.
For a matrix H, |H|| denotes its spectral norm. We let I
denote the identity matrix. For a function f:R? - R, Vf
and V2f denote its gradient and Hessian, respectively. R,
R* and R? denote the set of all real numbers, non-negative
real numbers and d-dimensional real vectors, respectively.

The symbol S denotes the set of all symmetric matrices.

2. Main Result

Our analysis adopts the following standard assumption

as in the previous studies of CR.

Assumption 1. The objective function in eq. (1) satisfies:

1. f is twice-continuously differentiable and bounded be-

A

low, i.e., f*

inf > —00;
Jnf, S0 > —oc

2. The Hessian V2 f is L-Lipschitz continuous.
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In Assumption 1, we assume that the Hessian is Lip-
schitz continuous the Lipschitz parameter L is known a
priori. We note that such a parameter can be estimated
via adaptive line-search methods in practice [2, 3].

In our analysis, we allow both the gradient and the
Hessian to be replaced by their approximations, and hence

the CR iterate becomes

(Inexact gradient and Hessian CR):

. 1 M
Sp41 = argming, s + isTHks + FHSHS’ (9)

seR?

Xk+1 = Xk + Sk+1- (10)

We assume that the approximations gy and Hj, satisfy
the following inexact conditions, which depend on current

information only, and are hence implementable.

Assumption 2. There exist two constants o, 3 € RT,
such that the inexact gradient g and inexact Hessian Hy
satisfy, for all k >0,

Hy — V2 f (x1)]| < allsl],

lgr — V£ (xi) [l < Bliskl*.

(11)
(12)

We note that Assumption 2 can be modified as |Hy —
V2f(xk)|| € amax{||si|,e} in order for the algorithm to
perform better if ||sg|| < € (so that the overall performance
can be improved). Similar modification can be applied to
the gradient as well.

In our analysis, we assume the cubic subproblem in
eq. (9) can be solved exactly. This is to simplify the anal-
ysis and focus on the inexact conditions in Assumption 2,
and we refer to [2, 3, 15, 9] for the analysis of CR under
inexact sub-problem solvers. Next, we state our main the-
orem on convergence of CR under the inexact conditions

in Assumption 2.

Theorem 1. Let Assumptions 1 and 2 hold. Then, after
k iterations, the sequence {x;}i>1 generated by inexact CR

contains a point X such that

Cy

IV < 123

and V*f(X) = —

85

90

95

where k > 1, and C7 and Cs are universal constants, and

are specified in the proof.

Theorem 1 guarantees that after k iterations, inexact
CR must pass an approximate second order stationary
point with error within O(1/k*/3) and O(1/k'/?) for the
gradient and Hessian, respectively, under the inexact con-
ditions in Assumption 2. The proof of Theorem 1 is based

on the following two useful lemmas.

Lemma 2 ([1], Lemma 1). Let the Hessian V2f of the
function f be L-Lipschitz continuous with L > 0. Then,

for any x,y € R%, we have

IVf(y) = Vf(x)— V) (y —x)| < %Hy —x|?, (13)
fy) = f(x) = V)" (y —x)

5 =TV )| < Elly -,

(14)

We then establish Lemma 3, which provides the prop-

erties of the minimizer of (9) for a more general setting.

Lemma 3. Let M > 0,g € R H € S, and

1 M
s =argming'u+ —u' Hu + —|u|]>. (15)
uERd 2 6
Then, the following statements hold:
M
g—i—Hs—i-?HsHS:O7 (16)
M
H o+ s =0, (1)
1 M M
T T 3 3
SsTHs + — |s|® < — = ||s|]®. 1
glst s Hs + sl < TSIt (18)

To further explain, (16) corresponds to the first-order
necessary optimality condition, (17) corresponds to the
second-order necessary optimality condition but with a
tighter form due to the specific form of this optimization
problem, and (18) guarantees a sufficient decrease at this

minimizer.

Proof of Lemma 3. First, (16) follows from the first-order

necessary optimality condition of (15), and (17) follows
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from Proposition 1 in [1]. We next prove (18). Following
similar steps to those in [1], we obtain that
1

M
2STHS + FHSH:‘

gTs +

-
O ge M Lomas + Mg
= ( Hs 5 ||s||s> s+ 55 Hs + : IIs]]

1 M M
— 55" (B G IslT) s 33 1sl°
i) M
<My,

12

where (i) follows from (16), and (ii) follows from (17),
which implies that —3s™ (H + & |s||I) s < 0. O

Now, we are ready to prove our main theorem.

Proof of Theorem 1. Consider any iteration k, we obtain
that

110
f(Xk41) — f(xx)
) T 1 T 2 L 3
< Vf(xk) sip1+ §Sk+1v J(xk)Skt1 + gHSkHH

1 M
=g Skr1 T §Sg+1HkSk+1 + §||Sk+1||3

F(VF00) — 8) s + e s
I

(2 _%HMH”B + (VF(xr) = k) skt
+ %sLl(Vf(Xk) ~ Hi)se

(2) 7%Hsk+1”3 + Bllskl|*(Iskr1

+allselllsera]?

(vi) 3M — 2L
< =g lskal® + Bllisel® + llsesa )
+ al[lskl® + llsks1])
3M — 2L
T (12 e B) lIsk+1l” + (a + B) Il

(19)
where (i) follows from Lemma 2 with y = xp41,x = xp
and Sp41 = Xg41 — Xk, (i) follows from (18) in Lemma 3
with g = gy, H = Hy, and s = sp41, (iii) follows from
Assumption 2, and (vi) follows from the inequality that
for a,b € RT, a?b < a® + b3, which can be verified by

checking the cases with a < b and a > b, respectively.

Summing (19) from 0 to k — 1, we obtain that

k—1 k—1
3M — 2L
< - (12 —a—ﬁ) ||Si+1||3+2(a+5)||siH3
=0 i=0
k k
3M — 2L
<=3 (M - a-8) Il + X+ Alsil
=1 i=0
" /3M —2L
-3 (B 20 - 28) Il + (a+ D)ol
=1

Therefore, we have
k
Y Alsill® < fxo) = £+ (a+ Blsoll’,  (20)
i=1

where v £ % — 2a — 2. We note that we set M >
%L + 8a + 80 to have v > 0, which is needed to conclude
that Zle l|s;||® is upper bounded from (20). One way to
satisfy the requirement of M is to adopt a similar adaptive
scheme proposed by [2, 3].

Let m = argming ey ... 1y [[8ill® +[[siz1[|*. We obtain

that

1S [+ llsma [
= min
ie{l,,k—1}
1 k—1

< =7 2 (Isill® + llsia )

i=1

Isill® + llsia]1?

® 2

< o Vo) =17+ @+ Blisol)

where (i) follows (20).

Therefore, we have

maX{HSmHu ||Sm+1||}

1/3
(f(x0) = f* + (a+ 6>sO||3)) -

(21)

< 1 2

(k=13 \y

Next, we prove the convergence rate of Vf and V2f.
We first derive

IV (mi)|

i M
9 60m0) = (s + B + 3 sl )|
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M
<VFGemi1) = (8m + Humsmin) | + - [small?

< va(xm-i-l) - vf(xm) - v2f(Xm)sm+1H
IV m) = ol + (V2 (xm) — Hin)Sa |

M
+ S sl

i) I M
< Flsmaal® + Blismll* + allsmlllismeall + 5 Isma

W G
S (k—1)2/3

140
where (i) follows from (16) with g = g,,,, H = H,, and s =
Sm+1, (ii) follows from (13) in Lemma 2 and Assumption 2,
and (iii) follows from (21) and the definition that C; =
Lads20 (2 ()~ 4 (0t B)sol))

We next prove the the convergence rate of V2f(-).

(4)
sz(xm_H) = Hy, — [[Hy, — v2JE(Xm+1)||I

@ M
= _7||Sm+1||1 - HHm - VQf(Xm-i-l)”I 150

M
7 = Ismaa [T = [[H = V2 f () T

- ||V2f(xm) - V2f(xm+1)|\1

(i) M
S _?HSerlHI_aHSmHI_L||5m+1||I 155

(iv)

T Cf)l/BI’
where (i) follows from Weyl’s inequality, (ii) follows from
(17) with H = H,,, and s = s,,41, (iii) follows from As-i
sumption 2, the fact that V2 f is L—Lipschitz and the def-
inition of s,,41, and (iv) follows from the definition that
Cy & M2 (2 (f(xcg) = £+ o+ B sol|?))  » amd
(21) . Clies
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