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Abstract

The inexact cubic-regularized Newton’s method (CR) proposed by Cartis, Gould and Toint achieves the same convergence

rate as exact CR proposed by Nesterov and Polyak, but the inexact condition is not implementable due to its dependence

on a future variable. This note establishes the same convergence rate under a similar but implementable inexact condition,

which depends on only current variables. Our proof bounds the function-value decrease over total iterations rather than

each iteration in the previous studies.
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1. Introduction

The cubic-regularized (CR) Newton’s method [1] is a

popular approach that solves the following general non-

convex optimization problem

min
x∈Rd

f(x), (1)

where f :Rd → R is a differentiable and possibly noncon-

vex function. Starting from an arbitrary initial point x0,

the update rule of CR can be written as

(CR):

sk+1 = argmin
s∈Rd

∇f(xk)>s +
1

2
s>∇2f(xk)s +

M

6
‖s‖3,

xk+1 = xk + sk+1, (2)

where M is a positive scalar. [1] showed that CR converges

to a second-order stationary point x of the objective func-

tion, i.e.,

∇f(x) = 0 and ∇2f(x) < 0. (3)
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Such a desirable property allows CR to escape strict sad-

dle points. However, CR needs to compute a full Hessian

at each iteration, and is hence computationally intensive.

Thus, [2, 3] proposed an algorithm named Adaptive Regu-

larization using Cubics (ARC) that uses an adaptive regu-

larization scheme as well as an inexact sub-problem solver

to reduce the computation complexity. More specifically,

[2, 3] proposed to use an inexact approximation Hk to

replace the full Hessian ∇2f(xk) in the CR update in or-

der to be computationally more efficient, leading to the

following inexact CR algorithm

(Inexact CR):

sk+1 = argmin
s∈Rd

∇f(xk)>s +
1

2
s>Hks +

M

6
‖s‖3, (4)

xk+1 = xk + sk+1. (5)

[2, 3] showed that if Hk satisfies the following inexact con-

dition,

‖(Hk −∇2f(xk))sk+1‖ 6 C‖sk+1‖2, (6)

where C > 0. Then ARC with inexact Hessian achieves

the same order-level convergence rate to a second-order
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stationary point as exact CR for nonconvex optimization.

The inexact CR has been further explored in various

situations [4, 5, 6, 7]. However, observe that the above

inexact condition involves ‖sk+1‖ (and hence xk+1), which

is not available at iteration k. Thus, such a condition is not

practically implementable. More recent research studies

[4, 8] used sk to implement inexact CR numerically as

follows

‖Hk −∇2f(xk)‖ 6 C‖sk‖. (7)

These studies demonstrated that inexact CR still performs5

well in experiments under (7), but did not provide theo-

retical convergence guarantee of inexact CR under such a

condition.

The main contribution of this note is the establishment

of convergence guarantee for inexact CR under the imple-10

mentable condition (7), and furthermore under a similar

inexact condition for gradient (see (12) below). We show

that inexact CR under these conditions achieves the same

order of convergence rate as the exact CR, i.e., the al-

gorithm passes an ε approximate second-order stationary15

point within O(ε−3/2) iterations. In contrast to existing

proof techniques, our proof relies on an idea of the con-

trol of the sufficient decrease of the function value over

all iterations rather than requiring a sufficient decrease at

each iteration. More specifically, the inexact error ‖Hk −20

∇2f(xk)‖ 6 C‖sk‖ at current iteration is incorporated

into the bound on the previous iteration, which yields a

successful analysis over all iterations under a more relaxed

(and practical) condition (see (7)). We note that our the-

ory guarantees that the algorithm must pass an ε approx-25

imate second-order stationary point within O(ε−3/2) it-

erations. Although our result does not necessarily guar-

antee the final iterate at the termination to satisfy the

second-order stationary optimality condition, such an is-

sue can be solved by incorporating a breaking step to check30

the condition max{‖sk‖, ‖sk+1‖} 6 O(
√
ε), which implies

‖∇f(xk+1)‖ = Cε and ∇2f(xk+1) < −C
√
ε.

We also note that another inexact condition has been

proposed by [9], which takes the form

‖(Hk −∇2f(xk))sk+1‖ 6 ε‖sk+1‖, (8)

where ε is a pre-defined small constant and is related to

the required accuracy. Similar conditions have been used

in [10, 11, 12, 13, 14]. Compared to (8), (7) is made to35

be adaptive to ‖sk‖ so that more progress towards the

convergence point can be made during the most phase of

the algorithm when the increment ‖sk‖ is larger than ε.

We note that our focus here is on the implementabil-

ity of the inexact Hessian condition, and the results are40

obtained using a fixed regularization, which depends on

the knowledge of the Lipschitz constant L, as well as the

exact solution to the sub-problem. These issues have been

addressed in [2, 3, 9] and several others by employing adap-

tive regularization as well as inexact sub-problem solvers45

(in addition to the inexact Hessian conditions as afore-

mentioned). In fact, our algorithm can further be made

adaptive by incorporating the idea in [2, 3, 9] to estimate

L and can be shown to have the same convergence rate.

Notation: For a vector x, ‖x‖ denotes its `2 norm.50

For a matrix H, ‖H‖ denotes its spectral norm. We let I

denote the identity matrix. For a function f :Rd → R , ∇f

and ∇2f denote its gradient and Hessian, respectively. R,

R+ and Rd denote the set of all real numbers, non-negative

real numbers and d-dimensional real vectors, respectively.55

The symbol S denotes the set of all symmetric matrices.

2. Main Result

Our analysis adopts the following standard assumption

as in the previous studies of CR.

Assumption 1. The objective function in eq. (1) satisfies:60

1. f is twice-continuously differentiable and bounded be-

low, i.e., f∗ , inf
x∈Rd

f(x) > −∞;

2. The Hessian ∇2f is L-Lipschitz continuous.
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In Assumption 1, we assume that the Hessian is Lip-

schitz continuous the Lipschitz parameter L is known a65

priori. We note that such a parameter can be estimated

via adaptive line-search methods in practice [2, 3].

In our analysis, we allow both the gradient and the

Hessian to be replaced by their approximations, and hence

the CR iterate becomes

(Inexact gradient and Hessian CR):

sk+1 = argmin
s∈Rd

g>k s +
1

2
s>Hks +

M

6
‖s‖3, (9)

xk+1 = xk + sk+1. (10)

We assume that the approximations gk and Hk satisfy

the following inexact conditions, which depend on current

information only, and are hence implementable.70

Assumption 2. There exist two constants α, β ∈ R+,

such that the inexact gradient gk and inexact Hessian Hk

satisfy, for all k > 0,

‖Hk −∇2f(xk)‖ 6 α‖sk‖, (11)

‖gk −∇f(xk)‖ 6 β‖sk‖2. (12)

We note that Assumption 2 can be modified as ‖Hk −

∇2f(xk)‖ 6 αmax{‖sk‖, ε} in order for the algorithm to

perform better if ‖sk‖ 6 ε (so that the overall performance

can be improved). Similar modification can be applied to

the gradient as well.75

In our analysis, we assume the cubic subproblem in

eq. (9) can be solved exactly. This is to simplify the anal-

ysis and focus on the inexact conditions in Assumption 2,

and we refer to [2, 3, 15, 9] for the analysis of CR under

inexact sub-problem solvers. Next, we state our main the-80

orem on convergence of CR under the inexact conditions

in Assumption 2.

Theorem 1. Let Assumptions 1 and 2 hold. Then, after

k iterations, the sequence {xi}i>1 generated by inexact CR

contains a point x̃ such that

‖∇f(x̃)‖ 6 C1

(k − 1)2/3
and ∇2f(x̃) < − C2

(k − 1)1/3
I.

where k > 1, and C1 and C2 are universal constants, and

are specified in the proof.

Theorem 1 guarantees that after k iterations, inexact85

CR must pass an approximate second order stationary

point with error within O(1/k2/3) and O(1/k1/3) for the

gradient and Hessian, respectively, under the inexact con-

ditions in Assumption 2. The proof of Theorem 1 is based

on the following two useful lemmas.90

Lemma 2 ([1], Lemma 1). Let the Hessian ∇2f of the

function f be L-Lipschitz continuous with L > 0. Then,

for any x,y ∈ Rd, we have

‖∇f(y)−∇f(x)−∇2f(x)(y − x)‖ 6 L

2
‖y − x‖2, (13)∣∣∣f(y)− f(x)−∇f(x)T (y − x)

− 1

2
(y − x)T∇2f(x)(y − x)

∣∣∣ 6 L

6
‖y − x‖3.

(14)

We then establish Lemma 3, which provides the prop-

erties of the minimizer of (9) for a more general setting.

Lemma 3. Let M > 0,g ∈ Rd,H ∈ Sd×d, and

s = argmin
u∈Rd

g>u +
1

2
u>Hu +

M

6
‖u‖3. (15)

Then, the following statements hold:

g + Hs +
M

2
‖s‖s = 0, (16)

H +
M

2
‖s‖I < 0, (17)

g>s +
1

2
s>Hs +

M

6
‖s‖3 6 −M

12
‖s‖3. (18)

To further explain, (16) corresponds to the first-order

necessary optimality condition, (17) corresponds to the

second-order necessary optimality condition but with a95

tighter form due to the specific form of this optimization

problem, and (18) guarantees a sufficient decrease at this

minimizer.

Proof of Lemma 3. First, (16) follows from the first-order

necessary optimality condition of (15), and (17) follows
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from Proposition 1 in [1]. We next prove (18). Following

similar steps to those in [1], we obtain that

g>s +
1

2
s>Hs +

M

6
‖s‖3

(i)
=

(
−Hs− M

2
‖s‖s

)>
s +

1

2
s>Hs +

M

6
‖s‖3

= −1

2
s>
(
H +

M

2
‖s‖I

)
s− M

12
‖s‖3

(ii)

6 −M
12
‖s‖3,

where (i) follows from (16), and (ii) follows from (17),

which implies that − 1
2s
> (H + M

2 ‖s‖I
)
s 6 0.100

Now, we are ready to prove our main theorem.

Proof of Theorem 1. Consider any iteration k, we obtain

that

f(xk+1)− f(xk)

(i)

6 ∇f(xk)>sk+1 +
1

2
s>k+1∇2f(xk)sk+1 +

L

6
‖sk+1‖3

= g>k sk+1 +
1

2
s>k+1Hksk+1 +

M

6
‖sk+1‖3

+ (∇f(xk)− gk)>sk+1 +
L−M

6
‖sk+1‖3

+
1

2
s>k+1(∇2f(xk)−Hk)sk+1

(ii)

6 −3M − 2L

12
‖sk+1‖3 + (∇f(xk)− gk)>sk+1

+
1

2
s>k+1(∇f(xk)−Hk)sk+1

(iii)

6 −3M − 2L

12
‖sk+1‖3 + β‖sk‖2‖sk+1‖

+ α‖sk‖‖sk+1‖2

(vi)

6 −3M − 2L

12
‖sk+1‖3 + β(‖sk‖3 + ‖sk+1‖3)

+ α(‖sk‖3 + ‖sk+1‖3)

= −
(

3M − 2L

12
− α− β

)
‖sk+1‖3 + (α+ β)‖sk‖3.

(19)

where (i) follows from Lemma 2 with y = xk+1,x = xk

and sk+1 = xk+1 − xk, (ii) follows from (18) in Lemma 3

with g = gk,H = Hk and s = sk+1, (iii) follows from

Assumption 2, and (vi) follows from the inequality that105

for a, b ∈ R+, a2b 6 a3 + b3, which can be verified by

checking the cases with a < b and a > b, respectively.

Summing (19) from 0 to k − 1, we obtain that

f(xk)− f(x0)

6 −
k−1∑
i=0

(
3M − 2L

12
− α− β

)
‖si+1‖3 +

k−1∑
i=0

(α+ β)‖si‖3

6 −
k∑
i=1

(
3M − 2L

12
− α− β

)
‖si‖3 +

k∑
i=0

(α+ β)‖si‖3

= −
k∑
i=1

(
3M − 2L

12
− 2α− 2β

)
‖si‖3 + (α+ β)‖s0‖3.

Therefore, we have

k∑
i=1

γ‖si‖3 6 f(x0)− f∗ + (α+ β)‖s0‖3, (20)

where γ , 3M−2L
12 − 2α − 2β. We note that we set M >

2
3L+ 8α+ 8β to have γ > 0, which is needed to conclude

that
∑k
i=1 ‖si‖3 is upper bounded from (20). One way to110

satisfy the requirement of M is to adopt a similar adaptive

scheme proposed by [2, 3].

Let m , argmini∈{1,··· ,k−1} ‖si‖3 +‖si+1‖3. We obtain

that

‖sm‖3+‖sm+1‖3

= min
i∈{1,··· ,k−1}

‖si‖3 + ‖si+1‖3

6
1

k − 1

k−1∑
i=1

(
‖si‖3 + ‖si+1‖3

)
(i)

6
2

γ(k − 1)

(
f(x0)− f∗ + (α+ β)‖s0‖3

)
.

where (i) follows (20).

Therefore, we have

max {‖sm‖, ‖sm+1‖}

6
1

(k − 1)1/3

(
2

γ

(
f(x0)− f∗ + (α+ β)‖s0‖3

))1/3

.

(21)

Next, we prove the convergence rate of ∇f and ∇2f .

We first derive

‖∇f(xm+1)‖

(i)
=

∥∥∥∥∇f(xm+1)−
(
gm + Hmsm+1 +

M

2
‖sm+1‖sm+1

)∥∥∥∥
4



6 ‖∇f(xm+1)− (gm + Hmsm+1)‖+
M

2
‖sm+1‖2

6
∥∥∇f(xm+1)−∇f(xm)−∇2f(xm)sm+1

∥∥
+ ‖∇f(xm)− gm‖+ ‖(∇2f(xm)−Hm)sm+1‖

+
M

2
‖sm+1‖2

(ii)

6
L

2
‖sm+1‖2 + β‖sm‖2 + α‖sm‖‖sm+1‖+

M

2
‖sm+1‖2

(iii)

6
C1

(k − 1)2/3
,

where (i) follows from (16) with g = gm,H = Hm and s =

sm+1, (ii) follows from (13) in Lemma 2 and Assumption 2,115

and (iii) follows from (21) and the definition that C1 ,
L+M+2β+2α

2

(
2
γ

(
f(x0)− f∗ + (α+ β)‖s0‖3

))2/3
.

We next prove the the convergence rate of ∇2f(·).

∇2f(xm+1)
(i)

< Hm − ‖Hm −∇2f(xm+1)‖I
(ii)

< −M
2
‖sm+1‖I− ‖Hm −∇2f(xm+1)‖I

< −M
2
‖sm+1‖I− ‖Hm −∇2f(xm)‖I

− ‖∇2f(xm)−∇2f(xm+1)‖I
(iii)

< −M
2
‖sm+1‖I− α‖sm‖I− L‖sm+1‖I

(iv)

< − C2

(k − 1)1/3
I,

where (i) follows from Weyl’s inequality, (ii) follows from

(17) with H = Hm and s = sm+1, (iii) follows from As-

sumption 2, the fact that ∇2f is L−Lipschitz and the def-120

inition of sm+1, and (iv) follows from the definition that

C2 , M+2L+2α
2

(
2
γ

(
f(x0)− f∗ + (α+ β)‖s0‖3

))1/3
, and

(21) .
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