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Abstract

Momentum is a popular technique to acceler-
ate the convergence in practical training, and
its impact on convergence guarantee has been
well-studied for first-order algorithms. How-
ever, such a successful acceleration technique
has not yet been proposed for second-order al-
gorithms in nonconvex optimization. In this pa-
per, we apply the momentum scheme to cubic
regularized (CR) Newton’s method and explore
the potential for acceleration. Our numerical
experiments on various nonconvex optimiza-
tion problems demonstrate that the momentum
scheme can substantially facilitate the conver-
gence of cubic regularization, and perform even
better than the Nesterov’s acceleration scheme
for CR. Theoretically, we prove that CR under
momentum achieves the best possible conver-
gence rate to a second-order stationary point for
nonconvex optimization. Moreover, we study
the proposed algorithm for solving problems
satisfying an error bound condition and estab-
lish a local quadratic convergence rate. Then,
particularly for finite-sum problems, we show
that the proposed algorithm can allow computa-
tional inexactness that reduces the overall sam-
ple complexity without degrading the conver-
gence rate.

1 INTRODUCTION

In the era of machine learning, deep models such as neural
networks have achieved great success in solving a variety
of challenging tasks. However, training deep models is
in general a difficult task and traditional first-order algo-
rithms can easily get stuck at sub-optimal points such as
saddle points, which have been shown to bottleneck the
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performance of practical training (Dauphin et al., 2014).
Motivated by this, there is a rising interest in designing
algorithms that can escape saddle points in general non-
convex optimization, and the cubic regularization (CR)
Newton’s method is such a type of popular optimization
algorithm.

More specifically, consider the following generic noncon-
vex optimization problem.

min
xcRd

f(x), (D
where f : R? — R is a twice-differentiable and noncon-
vex function. The CR algorithm (Nesterov and Polyak,
2006) takes an initialization xo € R?, a proper parame-
ter M > 0, and generates a sequence {xy, }, for solving
eq. (1) via the following update rule.

1 M
Spy1 = argmin Vf(xz) s + =s' V2 f(x)s + —|s||®
seRd 2 6

Xg+1 = Xk + Sg+1-

Intuitively, the main step of CR solves a cubic minimiza-
tion subproblem that is formulated by the second-order
Taylor expansion at the current iterate with a cubic regu-
larizer. Such a cubic subproblem can be efficiently solved
by many dedicated solvers (Cartis et al., 2011a; Carmon
and Duchi, 2016; Agarwal et al., 2017) that induce a low
overall computation complexity (see Section 4.3 for fur-
ther elaboration). By exploiting second order information
(i.e., gradient and Hessian) of the objective function, the
CR algorithm has been shown to produce a solution x
that satisfies the e-second-order stationary condition, i.e.,

IVf(x)|| <e and )\min(VQf(x)) > Ve (2

where Apmin (V2 f (x)) denotes the minimum eigenvalue
of the Hessian V2 f(x). Unlike the first-order stationary
condition (i.e., ||V f(x)|| < €) which does not rule out
the possibility of converging to a saddle point, the second-
order stationary condition requires the corresponding Hes-
sian to be almost positive semidefinite and hence can
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avoid convergence to strict saddle points (i.e., at which
Hessian has negative eigenvalue). In particular, a variety
of nonconvex machine learning problems such as phase
retrieval (Sun et al., 2017), dictionary learning (Sun et al.,
2015) and tensor decomposition (Ge et al., 2015) have
been shown to have only strict saddle points. Therefore,
CR is guaranteed to escape all the saddle points and con-
verge to a local minimum in solving these problems.

While most existing studies on the CR algorithm focus on
reducing the computation complexity by various sampling
schemes, e.g., mini-batch sampling (Xu et al., 2017), sub-
sampling (Kohler and Lucchi, 2017), variance-reduced
sampling (Wang et al., 2019b; Zhou et al., 2018), less
attention has been paid to the design of new schemes for
accelerating CR. The only exception is Nesterov (2008),
where an acceleration scheme was proposed for CR, but
has been shown to achieve a faster convergence rate
than CR only for convex problems. Such an accelerated
scheme consists of hyperparameters that are fine-tuned
in the context of convex optimization, and hence may
not guarantee to produce a second-order stationary so-
lution in nonconvex optimization. There does not exist
any accelerated CR algorithm that has provable conver-
gence for nonconvex optimization. Therefore, the aim
of this paper is to design a momentum-based scheme for
CR with provable second-order stationary convergence
guarantee for nonconvex optimization as well as yielding
faster convergence in practical scenarios.

1.1 OUR CONTRIBUTIONS

Our major contribution lies in proposing the first CR algo-
rithm that incorporates momentum technique, which has
provable convergence guarantee to a second-order station-
ary point in nonconvex optimization. We also performed
a comprehensive study of this algorithm from various
aspects both in theory and experiments to demonstrate
the appealing attributes of the proposed algorithm. Our
specific contribution are listed as follows.

e We propose a CR type algorithm with momentum
acceleration (referred to as CRm), which includes
a cubic regularization step, a momentum step for
acceleration and a monotone step. The momentum
step introduces negligible computation complexity
compared to that of the cubic regularization step in
original CR, but can provide substantial advantage
of acceleration.

e We establish the global convergence of CRm to a
second-order stationary point in nonconvex optimiza-
tion. The corresponding convergence rate is as fast
as that of CR in the order-level, which is the best
one can expect for nonconvex optimization. Our

experiments demonstrate that CRm substantially out-
performs CR as well as Nesterov’s accelerated CR
(which does not have guaranteed performance for
nonconvex optimization).

e We also show that CRm enjoys the local quadratic
convergence property under a local error bound con-
dition, which establishes the advantage of the second-
order algorithms than the first-order algorithms in
nonconvex optimization.

o We further show that the inexact variant of CRm
significantly improves the computational complex-
ity without losing the convergence rate. We also
study the finite-sum problem, where we implement
the inexact CRm via a subsampling approach, and
established the total Hessian sample complexity to
guarantee the convergence with high probability.

On the core of our proof technique, we rely on the delicate
design of the adaptive momentum parameter in eq. (4),
and the monotone step in the algorithm, which makes it
possible to establish the convergence result under noncon-
vex optimization but with momentum acceleration. To
the best of our knowledge, there is no result on acceler-
ated CR type algorithms that have such good convergence
property, or even the convergence property under noncon-
vex optimization.

1.2 RELATED WORKS

Escaping saddle points: A number of algorithms have
been proposed to escape saddle points in order to find lo-
cal minima. In general, There are three lines of research.
It has been shown that with random perturbation, gradient
descent algorithm (Jin et al., 2017), the stochastic gradi-
ent descent (Ge et al., 2015), the zero-th order method
(Jin et al., 2018), and the accelerated gradient descent
(Jin et al., 2017) can escape saddle points. The gradi-
ent descent has also been incorporated with the negative
curvature descent in Carmon et al. (2016); Liu and Yang
(2017); Xu et al. (2017) in order to converge to the second-
order stationary points. Furthermore, the cubic regular-
ized (CR) algorithm, which first appeared in Griewank
(1981), has been shown by Nesterov and Polyak (2006)
to converge to the second-order stationary points. Cartis
et al. (2011a,b) then proposed an adaptive CR method
with an approximate sub-problem solver. Agarwal et al.
(2017) established an efficient sub-problem solver for CR
by using the Hessian-vector product technique, and Car-
mon and Duchi (2016) showed that gradient descent can
efficiently solve the sub-problem in CR. This paper fur-
ther accelerates the CR algorithm with momentum and
establishes its convergence rate to a second-order station-
ary point.



Algorithms with momentum for nonconvex optimiza-
tion: Ghadimi and Lan (2016); Li and Lin (2015) pro-
posed accelerated gradient descent type of algorithms for
nonconvex optimization, which are guaranteed to con-
verge as fast as gradient descent for nonconvex problems.
Yao et al. (2017) proposed an efficient accelerated proxi-
mal gradient descent algorithm for nonconvex problems,
which requires only one proximal step in each iteration
as compared to the requirement of two proximal steps
in each iteration in the algorithm proposed in Li and Lin
(2015). Then Li et al. (2017) analyzed the algorithm in
Yao et al. (2017) under the KL condition. While the ex-
isting studies analyzed only convergence to first-order
stationary points, this paper proposes the CR algorithms
with momentum that converge to a second-order station-
ary point.

Inexact CR algorithms: To reduce the computational
complexity for the CR type of algorithms, various inexact
Hessian and gradient approaches were proposed. In par-
ticular, Ghadimi et al. (2017) studied the inexact Hessian
CR and accelerated CR for convex optimization, where
the inexact level is fixed during iterations. Tripuraneni
et al. (2017) studied an inexact CR for nonconvex op-
timization, which allows both the gradient and Hessian
to be inexact. Alternatively, Cartis et al. (2011a,b) stud-
ied the inexact Hessian CR for nonconvex optimization,
where the inexact condition is adaptive during iterations.
Jiang et al. (2017) studied a unified scheme of inexact
accelerated adaptive CR and gradient descent for convex
optimization. Furthermore, Kohler and Lucchi (2017) pro-
posed a subsampling CR (SCR) that adaptively changes
the sample batch size to guarantee the inexactness condi-
tion in Cartis et al. (2011a,b), Wang et al. (2019a) relax
the inexact condition in Kohler and Lucchi (2017); Cartis
et al. (2011a,b), and Xu et al. (2017) proposed uniform
and non-uniform sampling algorithms with fixed inexact-
ness for nonconvex optimization. Wang et al. (2019b);
Zhou et al. (2018) proposed stochastic variance reduced
subsampling CR algorithms. This paper establishes the
convergence rate for the inexact scenarios of the proposed
CR algorithm with momentum.

Local quadratic convergence: The Newton’s method
and cubic regularized algorithm have been shown to con-
verge quadratically to the global minimum under the
strongly convex condition in Nesterov and Polyak (2006);
Nesterov (2008), respectively. Furthermore, various
Newton-type algorithms, i.e., the Levenberg-Marquardt
method (Yamashita and Fukushima, 2001; Fan and Yuan,
2005), the regularized Newton method (Li et al., 2004),
the regularized proximal Newton’s method (Yue et al.,
2016), and the CR algorithm (Yue et al., 2018), have been
shown to have the local quadratic convergence under the
more relaxed local error bound condition. This paper fur-

ther establishes such a property for the proposed CR with
momentum algorithm.

2 CRm: CUBIC REGULARIZATION
WITH MOMENTUM

In this section, we propose a CR-type algorithm that
adopts a momentum scheme (referred to as CRm). The
algorithm steps of CRm are summarized in Algorithm 1.

At each iteration, the proposed CRm conducts a cubic
step (eq. (3)), a momentum step (eqs. (4) and (5)), and
a monotone step (eq. (6)). In particular, the cubic step
solves a subproblem of the second-order Taylor expan-
sion with a cubic regularizer at the current iterate xj. The
cubic step can be implemented efficiently by adopting
the solver based on the Hessian-vector product approach
(see Section 4.3 for details). The momentum step is an
extrapolation step that aims to accelerate the algorithm.
We note that the momentum step requires very little addi-
tional computation compared to the cubic step, but offers
substantial advantage for accelerating the algorithm. The
monotone step chooses the next iteration point between
the cubic step and the momentum step to achieve the min-
imum function value. This guarantees that the algorithm
outputs a desirable monotonically decreasing function
value sequence, and helps to establish the convergence
guarantee under nonconvex optimization.

Algorithm 1 CRm

1: Input: Initialization xg = yo € R%, p < 1, M > Ly

2: fork=0,1,... do
3:  Cubic step:

1
Ski1 = argmin Vf(x;) s + isTVQf(xk)s
M, 3
—|s
+ = lsl
Yi+1 = Xk + Sp41 (3)
4:  Momentum step:

Brer = min{p, [V (yrs1)ll; [[yre1 — xll}

“)
Vi1 = Vi1 + Brr1 (Vo1 — Y&) (5)

5. Monotone Step:
Xpr1 = argmin  f(x) ©6)

XE{Yr+1,Vit1}

6: end for

We further highlight the ideas in the design of CRm. First,



we choose the momentum in the direction of y;+1 — ¥,
which has been used for the first-order methods with mo-
mentum for nonconvex problems (Li et al., 2017; Yao
et al., 2017). Second, the momentum parameter /31
in eq. (4) is set to be adaptive (in fact proportional) to
the norm of the progress made in the cubic regulariza-
tion step and the norm of gradient, i.e., ||yx+1 — Xl
and |V f(yr+1)|]- In this way, if the iterate is far away
from a second-order stationary point, ||yx+1 — Xx|| and
IV f(yk+1)| are large so that the momentum takes a
large stepsize to make good progress. On the other hand,
as the iterate is close to the stationary point, ||yx1+1 — X ||
and ||V f(yx+1)]| are small so that the momentum takes a
small momentum stepsize in order not to miss the station-
ary point. It turns out that such a choice of the momen-
tum parameter is critical to guarantee the convergence of
CRm (as can be seen in the proof) as well as achieving
acceleration. Our experiments (see Section 5) show that
such a momentum scheme can substantially accelerate
the convergence of CR in various nonconvex optimization
problems. Therefore, the requirement of the adaptive step
size [ in eq. (4) is not only intuitively reasonable but
also theoretically sound.

In the monotone step, the algorithm compares the func-
tion values between the cubic regularization step and the
momentum step, and choose the better one to perform the
next step. In this way, the proposed accelerated CR algo-
rithm is guaranteed to be monotone, i.e., the generated
function value sequences are monotonically decreasing.
This monotone step is not required in convex optimiza-
tion, but it seems crucial in nonconvex optimization due
to the landscape of nonconvex function does not have
strong structure as convex function. We further note that
although the momentum step may not play a role in ev-
ery iteration due to the monotone step, our experiments
show that the momentum step does participate for most
iterations during the course of convergence, validating its
importance to accelerate the algorithm.

3 CONVERGENCE ANALYSIS OF CRm

In this section, we establish both the global and the local
convergence rates of CRm to a second-order stationary
point.

3.1 GLOBAL CONVERGENCE OF CRm

First recall that our goal is to minimize a twice-
differentiable nonconvex function f(x) (c.f. eq. (1)). We
adopt the following standard assumptions on the objective
function.

Assumption 1. The objective function in eq. (1) satisfies:

1. f is twice-continuously differentiable and bounded
below, i.e., f* = inf f(x) > —o0;
xeR

2. Forall a € R, the sublevel set {x : f(x) < a}of fis
bounded;

3. The gradient V f(-) and Hessian V? f(-) are Ly and
Lo-Lipschitz continuous, respectively.

Assumption | imposes standard conditions on the non-
convex objective function f. In particular, the bounded
sublevel set condition in item 2 is satisfied whenever f
is coercive, i.e., f(x) — 400 as ||x|| — +oo. This
is true for many non-negative loss functions under mild
conditions.

Based on Assumption 1, we characterize the global con-
vergence rate of CRm to a second-order stationary point
in the following result. We refer the readers to the supple-
mentary materials for the proof.

Theorem 1 (Global convergence rate). Let Assumption [
hold and fix any ¢ < 1. Then, the sequence {Xj,}k>0
generated by CRm contains an e-second-order station-
ary point provided that the total number of iterations k
satisfies that

C
2 @)

k >
where C'is a universal positive constant and is specified
in the proof.

Theorem 1 establishes the global convergence rate to an
e-second-order stationary point for CRm. Although the
obtained convergence rate of CRm achieves the same
order as that of the original CR algorithm in Nesterov
and Polyak (2006), which is in fact the best that one can
expect for general nonconvex optimization, the techni-
cal proof critically exploits the design of the momentum
scheme, and requires substantial machinery to handle the
momentum step. Further in Section 5, we demonstrate via
various experiments that CRm do enjoy the momentum
acceleration and converge much faster than the original
CR algorithm.

3.2 LOCAL CONVERGENCE OF CRm

It is well known that Newton-type second-order algo-
rithms enjoy a local quadratic convergence rate for mini-
mizing strongly convex functions. While strong convexity
is a restrictive condition in nonconvex optimization, many
nonconvex problems such as phase retrieval and low-rank
matrix recovery have been shown to satisfy the follow-
ing more relaxed local error bound condition (Yue et al.,
2018).

Assumption 2 (Local error bound). Denote X as the
set of second-order stationary points of f. There exists



Ky > 0 such that for all x € {x : dist(x, X) < r}, it
holds that
dist(x, X) < k[|Vf(x)]], ®)

where dist(x, X) denotes the point-to-set distance be-
tween x and X.

One can easily check that all strongly convex functions
satisfy the above local error bound condition. Therefore,
the local error bound condition is a more general geometry
than strong convexity.

Next, we explore the local convergence property for CRm
under the local error bound condition. Typically, such a
property is due to the usage of the Hessian information
in the algorithm. In CRm, the momentum step does not
directly exploit the Hessian information. Hence, it is not
clear a priori by including the momentum step whether
CRum still enjoys the local quadratic convergence property.
The following theorem provides an affirmative answer.

Theorem 2. Let Assumptions 1 and 2 hold. Then, the
sequence {xy}r>o0 generated by CRm with M > L,
converges quadratically to a point x* € X, where X is
the set of second-order stationary points of f. That is,
there exists an integer k1 such that for all k > ki,

¢rs1 — x| < Cllxr — %1%, ©)

where C' is a universal positive constant and is specified
in the proof.

Under the local error bound condition, Theorem 2 shows
that CRm enjoys a quadratic convergence rate as shown in
eq. (9). To elaborate, note that Theorem 1 guarantees the
convergence of CRm to a second-order stationary point,

ie., ||xx — x*|| = 0 as k — oo. Thus, the recursion in
S,

eq. (9) implies that C||x;, — x*|| < (C|xk, —x
which is at a quadratic converge rate. In particular, the re-
gion of quadratic convergence is defined by [|x; — x*|| <
1/C'. Such quadratic convergence achieves an e-accuracy
second-order stationary point within k¥ = O(loglog(1/e))
number of iterations, which is much faster than the linear
converge rate of fisrt-order methods in local region.

s

Local quadratic convergence has also been established
for the original CR algorithm under the local error bound
condition Yue et al. (2018). As a comparison, our proof
of Theorem 2 for CRm exploits the proposed momentum
scheme, which results in additional terms that requires
extra effort to handle.

4 INEXACT VARIANTS OF CRm

The major computational load of CRm lies in the cubic
step, which requires to solve a computationally costly opti-
mization problem. In this section, we explore three imple-

mentation schemes that can efficiently perform the cubic
step without sacrificing the acceleration performance.

4.1 CUBIC STEP WITH INEXACT HESSIAN

The cubic step requires the full Hessian information,
which can be too costly in practice. Instead, we con-
sider performing the following cubic step with an inexact
approximation of the Hessian.

. . 1 M
Xpy1 = argmin Vf(xz) 's + §STHks + E”SH?’,
séxka

(10)

where H;, denotes the inexact estimation of the full Hes-
sian V2 f(xy,), and their difference is assumed to satisfy
the following criterion. Section 4.2 proposes a subsam-
pling scheme to achieve Assumption 3 for the finite-sum
problem.

Assumption 3. The inexact Hessian Hy, in eq. (10) satis-
fies, forall k > 0,

IHE — V2 f (xi) || < er

Assumption 3 assumes that the inexact Hessian is close
to the exact one in terms of a small operator norm gap.
Such inexact criterion has been considered in Tripuraneni
et al. (2017); Xu et al. (2017) to study the convergence
property of the inexact CR algorithm.

Next, we study the convergence of the inexact variant of
CRm by replacing the cubic step in eq. (3) with the inexact
cubic step in eq. (10). Our main result is summarized as
follows, and the proof is provided in the supplemental
materials.

Theorem 3. Let Assumptions | and 3 hold and fix any ¢ <
1. Then, the sequence {xy }r>0 generated by the inexact
CRm with M > 2L5/3 + 2 and ¢; = 6./€ contains an
e-second-order stationary point provided that the total
number of iterations k satisfies that

C

k>€3ﬁ,

(1)
where C, 0 are universal constants, and are specified in
the proof.

Theorem 3 shows that, under a proper inexact criterion,
the iteration complexity of inexact CRm is on the same
order as that of exact CRm for achieving an e-second-
order stationary point. Since the inexact Hessian saves
the computation in each iteration comparing to the full
Hessian, it is clear that the overall computation complex-
ity of the inexact CRm is less than that of the exact cases.
In Appendix A.2, we verify through experiments that



the inexact algorithm do perform much better than the
corresponding exact version.

We note that the proof of Theorem 3 suggests that the
condition that ||yx+1 — Xg|| < €1 implies the point x5
is an e-second-order stationary point, where ¢; = 04/c.
Thus, the implementation of the inexact CRm can ter-
minate by checking the satisfaction of the condition
Vi1 — xkl| < e

4.2 INEXACT CRm VIA SUBSAMPLING

In this subsection, we consider a general finite-sum op-
timization problem, where inexact CRm can be imple-
mented via subsampling. More specifically, consider to
solve the following optimization problem:

flz) & Zﬁ(w), (12)

where f;(-) is possibly nonconvex. Furthermore, we as-
sume that Assumption 1 holds for each f;(-). For finite-
sum problems, the full Hessian can be approximated by
the Hessian of a mini-batch of data samples each uni-
formly randomly drawn from the dataset, i.e.,

1
H = o >V fi(xa). (13)

1€S1

We use the subsampling technique introduced in Kohler
and Lucchi (2017) to satisfy the inexact condition in As-
sumption 3. The following theorem provides our char-
acterization of the overall Hessian sample complexity in
order to guarantee the convergence of the subsampling
algorithm with high probability over the entire iteration
process.

Theorem 4 (Total Hessian sample complexity). Assum-
ing that Assumption 1 holds for each f;(-), and let the
sub-sampled mini-batch of Hessians Hy, k = 0,1,...
satisfies

8L? 4L, 4d
Sil= =24+ —o)1 — |,
15l (9% * 39\/5) o8 <63/25>
then the sequence {X}, } >0 generated by the inexact CRm
with M > Lo + 2 outputs an e-second-order stationary

point with probability at least 1 — 0 by taking at most the
following number of Hessian samples in total:

L2 4L, 4d
<o A (2
s<¢ (9265/2 * 39@) o8 <65>

Theorem 4 characterizes the total Hessian sample com-
plexity to guarantee the convergence of CRm with high

probability. This is the first such a type result for stochas-
tic CR algorithms. Note that previous studies Kohler and
Lucchi (2017); Xu et al. (2017) on subsampling CR pro-
vide only the Hessian sample complexity per iteration
to guarantee inexactness condition with high probability.
Our result indicates that even over the entire iteration
process, the convergence is still guaranteed with high
probability. In fact, if we let IV denote the total sample
complexity, Theorem 4 implies that the failure probability
& decays exponentially fast as the total sample complexity
N becomes asymptotically large. Such a result by nature
is stronger than those that characterize the convergence
only in expectation, not in (high) probability, in existing
literature.

4.3 EFFICIENT SOLVERS FOR CUBIC STEP

Since the cubic step does not have a closed form solu-
tion, an inexact solver is typically used for solving the
cubic step. Various solvers have been proposed to approx-
imately solve such a subproblem. The first type of solver
is based on the Lanczos method (Cartis et al., 2011a,b),
which solves the cubic subproblem in a Krylov subspace
K = span{Vf(xx), V2 f(xx)Vf(xk), -} instead of
in the entire space. Each step of the solver can be im-
plemented efficiently with a computation cost of O(d)
(Kohler and Lucchi, 2017). Moreover, building the sub-
space requires a Hessian-vector product, which introduces
a cost of O(nd) per additional subspace dimension for
finite-sum problem with n data samples. The second type
of solver is proposed by Agarwal et al. (2017), which is
based on the techniques of Hessian-vector product and
binary search. The proposed solver can find an approxi-
mate solution of the cubic subproblem with a total cost
of O(nd/e'/*) for finite-sum problems, where e is the
desired accuracy. Carmon and Duchi (2016) proposed
another solver based on the gradient descent method. The
solver finds an approximate solution of the cubic sub-
problem within O(e~! log(1/e)) iterations for large € and
O(log(1/e)) iterations for small e.

All of these solvers can be applied to solve the cubic step
in CRm. Note that the momentum and monotone steps in
CRm introduce order-level less computation complexity
compared to these solvers for solving the cubic step. Thus,
CRm have the same per-iteration computational complex-
ity as CR when implementing the same solver, and have
at least the same overall computational complexity as CR
(in fact, much less overall computational complexity in
practice as demonstrated by our experiments). As the
solvers solve the cubic subproblem up to certain accuracy
in practice, the total computation complexity of CRm
to achieve a second-order stationary point can still be
established.
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Figure 1: Nonconvex logistic regression.

S EXPERIMENTS

5.1 SETUP

We compare the performance among the following six
algorithms: cubic regularization algorithm (CR) in Nes-
terov and Polyak (2006), accelerated cubic regularization
algorithm (CRa) in Nesterov (2008) (whose convergence
guarantee has not been established), cubic regularization
algorithm (CRm) with momentum, cubic regularization
algorithm with inexact Hessian (CR_I), accelerated cu-
bic regularization with inexact Hessian (CRa_I), CRm
with inexact Hessian (CRm_I). In this section, we present
the comparison among the three exact algorithms. The
comparisons among the inexact variants are presented in
Appendix A due to space limitation. The details of the
experiment settings can also be found in Appendix A.

We conduct two experiments. The first experiment solves
the following logistic regression problem with a noncon-
vex regularizer

AN e (—
niZIy S g
W' x
(1~ yi)log | T +0‘Z

where we set « = 0.1 in our experiment. The second
experiment solves the following nonconvex robust linear

min —
wERd

1+w

Top: gradient norm v.s. time. Bottom: function value gap v.s. time.

regression problem

- - 14
S
where n(z) = log(% +1) Each experiment is performed

over three datasets, i.e., a9a, covtype, and ijcnn (Chang
and Lin, 2011).

5.2 RESULTS

Figures 1 and 2 show the results of the two experiments
for comparing the three exact algorithms, respectively.
From both figures, it can be seen that CRm outperforms
the vanilla CR, which demonstrates that the momentum
step in CRm significantly accelerates the CR algorithm
for nonconvex problems. Also, CRm outperforms CRa
in the experiments with datasets a9a and covtype, while
its performance is comparable to CRa in the experiments
with dataset ijcnnl. Thus, our proposed momentum step
achieves a faster convergence than the Nesterov’s acceler-
ation scheme for CR.

We note that similar comparisons are observed in the
comparison of the corresponding three inexact variants
of the algorithms (see Figures 3 and 4 in Appendix A),
i.e., our momentum scheme with inexact Hessian outper-
forms other inexact CR algorithms. We also note that all
inexact variants of the algorithms outperform their exact
counterparts (see Figures 5 and 6 in Appendix A). Hence,
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Figure 2: Robust linear regression. Top: gradient norm v.s. time. Bottom: function value gap v.s. time.

the inexact implementation plays an important role in re-
ducing the computation complexity of these CR type of
algorithms in practice.

6 CONCLUSION

In this paper, we proposed a momentum scheme to accel-
erate the cubic regularization algorithm. We showed that
the order of the global convergence rate of the proposed
algorithm CRm is at least as fast as its vanilla version. We
also established the local quadratic convergence property
for the proposed algorithm, and extended our analysis
for the proposed algorithm to the inexact Hessian case
and established the total Hessian sample complexity to
guarantee the convergence with high probability. We fur-
ther conducted various experiments to demonstrate the
advantage of applying momentum for accelerating the
cubic regularized algorithm.
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Supplementary Materials

We first note that in order for a clear illustration, we use a slightly difference notation such that v, is replaced by
Xp+1 and yg4+1 is replaced by Xp41.

A Experiment Setting and Additional Result

Parameters Setting: The experiment specifications are as follows. For all algorithms, the subproblem in each iteration
of the cubic step is solved by the Lanczos-type method as suggested by Cartis et al. (2011a). We set the parameter
M = 10 through all the experiments. The momentum parameter 81 in CRm is set to be 8 x ||X;+1 — Xx||. Although
in theory of CRm, we require S;4+1 < min{p, |V f(Xr+1)], || Xx+1 — X&||}, in practice, a more relaxed value works
well in our experiments. The initial point is set to be an all-two-vector for all datasets for the logistic regression problem
and an all 0.5 vector for all datasets for the robust linear regression problem.

A.1 Comparison Among Inexact Algorithms

In this subsection, we present the comparison among the three algorithms with inexact Hessian. Namely, vanilla cubic
regularized algorithm with inexact Hessian (CR_I), Nesterov accelerated cubic regularization algorithm with inexact
Hessian (CRa_I), and the proposed CRm with inexact Hessian (CRm_I). For the implementation, since we solve a
finite-sum problem f(x) = Y7, fi(x), we draw a mini-batch of data samples as the estimated Hessian, given by
Hy =3 cs, V2 f;(xk)/|Sk|- We take n/20 as the batch size in the logistic regression problem and n/5 in the robust
linear regression problem. The results are shown in Figures 3 and 4. The performance comparison among the four
algorithms with inexact Hessian is similar to that of their exact cases. However, we should note that the time used by
inexact algorithms is much less than that of their corresponding exact cases.
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Figure 3: Logistic regression loss with a nonconvex regularizer: The top row presents the gradient norm versus runtime.
The bottom row presents the function value gap versus runtime.

A.2 Comparison between Exact and Inexact Algorithms

In this subsection, we present the comparison between the algorithms with exact Hessian and the algorithms with
inexact Hessian. The results are shown in Figures 5 and 6. It is clear that all inexact algorithms significantly outperform
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Figure 4: Robust linear regression loss: The top row presents the gradient norm versus runtime. The bottom row
presents the function value gap versus runtime.

their corresponding exact algorithms. This demonstrates the efficiency of the inexact Hessian technique for second-order
algorithms.
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Figure 5: Nonconvex logistic regression. Top: gradient norm v.s. time. Bottom: function value gap v.s. time.
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Figure 6: Robust linear regression loss: The top row presents the gradient norm versus runtime. The bottom row
presents the function value gap versus runtime.

B Technical Lemmas

In this section, we introduce several technical lemmas that are useful for proving our main results.

Lemma 5 (Nesterov and Polyak (2006), Lemma 1). Let the Hessian V2 f of the function f be Lo-Lipschitz continuous
with Ly > 0. Then, for any x,y € R?, we have

IV5(y) ~ V70 = V1) — )] < 2y —x.

7 = 109 = V60 y %) = 5y =0TV 1 )y ~ %) < 2y —x]*.

The following lemma provides bounds on ||Xj11 — Xx|| as shown in (Yue et al., 2018, Lemma 1).

Lemma 6 (Yue et al. (2018), Lemma 1). Let Assumption I hold. Then, the sequences {xy}r>0 and {Xy }1>1 generated
by Algorithm 1 satisfies, for all k > 0,

Xe11 — Xkl < 1 - dist(xg, X), (15)
2
where ¢, = (1 +La 1+ E) 4 ﬁ;)

Next, we develop a number of useful bounds regarding the sequences {xy }x>o0 and {Xy },>1 that are generated by
Algorithm 1. We refer to Appendix G for the details of the proofs.

Lemma 7. Let Assumption 1 hold. Then, the sequences {xy}r>0 and {Xy}r>0 generated by Algorithms I with
M > 2L2 satisfy, for all k > 0,

f(f<k+1) — f(xnr) < =7l[Rpg1 — x?, (16)

Z||Xk+1_xk||3 o) = F* ) . (17)



Lo+ M .
e = xll?, (18)

M+ 2L,
2

IV (X1l <
Amin (V2 f(Xpy1)) = — (%541 — x|, 19

where v = 3M=2L2 - Fyrthermore, there exists a ko € {0, - - - k} such that

. 1 (f(xo) = f\"*
1K ko+1 — Xio || < RVE ( L : (20)

The following lemma establishes the corresponding bounds regarding {xy } x>0 and {Xy };>1 that are generated by the
inexact variants of Algorithms 1. We refer to Appendix G for the details of the proof.

Lemma 8. Let Assumption 1 and Assumption 3 hold. Then, the sequences {xy } x>0 and {Xy, } >0 generated by the
inexact variants of Algorithms 1 with M > % + 2 satisfy, for all k > 0 and any ¢; > 0,

. 3M —2Ls . 1, .
f(Xk+1) - f(xkr) < —T2ka+1 - Xk||3 + §||Xk+1 - Xk:||2617 (21)
. Lo+ M . R
V£ (X1l < QT”XIH—I = xp|I” + €1l Kns1 — k], (22)
. M+ 2Ly .
Amin (V2 f (Rp41)) = —?2”3%“ — x| — e (23)

Furthermore, if the total number of iterations k > (3 M—1221:2—6) ’ (x(’e){f for any €1 > 0, then there exists a
1
ko € {0, - - k} such that

1Xko+1 — Xk || < €1 (24)

Note that in CRm, Xj41 is generated by x;, through a cubic regularization step, and the output sequence { f(xx) }r>0 is
monotone through a monotone step. Therefore, Lemmas 6 to 8 hold for CRm.

C Global Convergence: Proof of Theorem 1

We first prove a useful inequality. Note that

. @ . . - .
%41 = Ko || < max ([[Kpet1 — X [|s [ Kg1 = Ko [])
~ R (i) R R
= [[Xpg1 — X1l < BrrrlXnr1r — Xl (25)
where (i) follows from the definition of x;1 (see eq. (6)) and (ii) follows from eq. (5).
We then present the following lemma that bounds ||X4+1 — Xy ||, where {X) }r>0 is generated by CRm.

Lemma 9. Ler Assumption [ hold. Then, the sequence {X,} generated by CRm satisfies

[Xk+1 — Xkl < cs, (26)
where ¢z 2 1 (M)m’
o 1-p v )

Proof. See Appendix G.4. O

Next, we prove the main theorem for CRm. Note that
IV k)| < IV E) |+ IV Rigr) = VI e

() X )
S IV Erp) | + Laflxprr — K|



(i) R R )
SV Erg) | 4 LiBrsr [ Fps1 — Xl

(i) . . A
S IVFGr+) (4 La g —xi]) 27)
@) Lo+ M, . I <) — N\ 1/3

< TR = xi? <1+1_1 (f( 0)7 f) : (28)

where (i) follows from the Lipschitz gradient assumption, (ii) follows from eq. (25), (iii) follows from eq. (4), which
implies that 51 < ||V f(Xk+1)]|| and (iv) follows from Lemma 9 and eq. (18).

Next, we bound the minimum eigenvalue of the Hessian. Observe that

0 ) R
Amin (V2 f(Xk41)) 2 Amin (V2 Rig1)) = IV F(xip1) = V2 Rigr) |
(ii)
2 Amin (V2fXit1)) — Lo|Xp1 — it ||

(i)
> Amin (V2 f(Xit1)) — LoBrs1lXes1 — Xil|

(iv) . . R .
> Amin (VA (Rit1)) — Lo|[Rns1 — xa ||| Re41 — Xl (29)
© M+2L ) Lo [ f(xo) — f*\'/*
2 =5 IXet1 = Xl = [ Xp+1 — %l
- ol

X M+ 2L L xo) — f*\ /3

= —[|%r1 — x| 24 =2 (f( ) f) : (30)
2 L-p v

where (i) follows form Weyl’s inequality, (ii) follows from the fact that V2 f (+) is Lo Lipschitz, (iii) follows from
eq. (25), (iv) follows from eq. (4), which implies that Sy+1 < ||Xg+1 — X || and (v) follows from Lemma 9 and eq. (19).

Then, by eq. (20) , there exists a point kg € {0, -,k — 1} such that

o\ 1/3
1 <f(X0)f> ' 31)

||)A(k0+1 - Xk’UH < ]431/3 v

Plugging eq. (31) into eqs. (28) and (30) with k = kg, we further obtain that

1 Lo+ M [ f(xo)— f*\*"* L xo) — f*\'/*
e e (L) 1 (R0))

1 xo) — f*\* (M + 2L L xo) — f*\/*
) 2 (L) (2 (120

Thus, in order to guarantee |V f (xx,+1)|| < €ineq. (32) and Apin (V2 f(Xko+1)) = —V/€ in eq. (33), we require

3/2 g ) — 13\ P2
k>€31/2<L2;M> (f(xo)7 ! ) <1+1L1p (f( 0)7 f) ) . (34)
1 (f(x0) = ) (M 2Ly | Lo (f(xo)— )7\
k> 5 . T, . . (35)

Combining eqs. (34) and (35), we obtain that CRm must pass an e-approximate second-order stationary point if

1
k> 7] max{cs, ¢4},



where

(1>

C3

() () (ot () )

(L)1) <M+2L2 e (L) f>/>
v 2 L—p g

D Local Quadratic Convergence: Proof of Theorem 2

>

Cq

We first present the following lemma that characterizes the properties of the sequence {xy, },>o generated by CRm.

Lemma 10. Let Assumption I hold and assume that L(f (x)) is bounded for some k > 0. Then, the sequence {Xy;}1>0
generated by CRm and its set of accumulation points X satisfy

(i) v = lim f(x}) exists.
k—o0
(ll) lim ||Xk+1 _ka =0.
k—o0
(iii) The sequence {Xy }r>0 is bounded.

(iv) The set X is bounded and non-empty. Moreover, everyx € X, satisfies
f®=v, Vfx) =0, Vf(x)=0.
Proof. See Appendix G.5. O

We next prove the main theorem for CRm. Denote X, € argmin, .y ||x; — z||? as the projection of x; onto X.
Since {x}} x>0 is bounded (Lemma 10, (iii)) and X is non- empty and bounded (Lemma 10, (iv)), we conclude that
limy s oo dist(xg, X ) = 0. By (iv) of Lemma 10 and the definition of X', we have X C X. Thus, we obtain that

lim ||x; — Xi|| = lim dist(xg, &) < lim dist(xg, X') = 0, (36)
k—o0 k—o0 k—o0
which implies that
lim dist(x, X) = 0. (37
k—o0

Therefore, for any > 0, there exists a k; > 0 such that dist(x;, X) < r for all k¥ > k. Combining this with
Assumption 2, we obtain that

dist(xg, X) < k[|Vf(xp)|l, VEk = k. (38)
Hence, for all k¥ > k1, we obtain that

K[V f (X))
KV f(Xpg1) = VX))l + 5|V (Xpgr) |
(i)

< KLa|[xp1 — i || + £V F (Xi11) |
(ii)
< kL1 Bl R1 — il + £V f (K1) |

(iii)
< RV )| (L llRpe — Xel +1)

(iv)

< AV Er)l (Laes +1)

v) Lo+ M .
L (B (Baca 1) B P )

dist(Xk+1 3 )

//\ //\

/

~



where (i) follows from the Lipschitz gradient property, (ii) follows from eq. (25), (iii) follows from eq. (5), which
implies that S;11 < ||V (Xg+1)], (iv) follows from Lemma 9 and (v) follows from eq. (18). Combining eq. (39) with
Lemma 6, we obtain that, for all & > kq,

Lo+ M
dist(xg41,X) < K (i) (Lics + 1) cf - dist(xg, X)?
= ¢g - dist(xy, X)?, (40)

where cg £  (£232) (Lycs + 1) ¢}

Next, we prove that {xy, },>0 is Cauchy, and hence is a convergent sequence. For any € > 0, by eq. (37), there exists
ko > 0 such that

1
dist(xy, X') < min ( €

— Vk > ko. 41
2(267 261(65 + 1)) ’ 2 ( )

Therefore, for any & > max(k1, ko) and any j > 0, we have

ktj—1 k+j—1
ey —xkll < D0 Ixipr = xall < Y (Ixigr — Riga | + [Riga — %)
1=k i=k
o =1
< D BnllFin =%l + [%ir —xil)
ik
(i) k+j—1
< Z [%ir1 — xal| ([[%it1 — %l + 1)
i=k
(111) k+7—1 k+j 1
< ) I%ipr —xill(es + 1) Z ¢y - dist(x;, X)(cs 4+ 1)
i=k
k+] 1

=ci(es +1 Z dist(x;, X

v)
< c1(es + D)dist(xg, X)

Mg

1
: 21
=2 (65 + 1) . diSt(Xk.7 X) (42)

(iv)
< €

I
=

where (i) follows from eq. (25), (ii) follows from eq. (5), which implies that 5,11 < ||X;4+1 — x;||, (iii) follows from
Lemma 9, (iv) follows from Lemma 6, (v) follows from eq. (40) and eq. (41), which implies that dist(xg+1, X) <
dist(xy, X')/2 and (iv) follows from eq. (41). Then, we conclude that {xj}r>0 is a Cauchy sequence, and thus
converges.

Next, we study the convergence rate of {xj };>0. Let x* 2 limp_ oo Xg- By (iv) of Lemma 10, we have x* € X. Then,
for all & > max{k1, k2}, we obtain that

™ = || = N (|14 —Xk+1\| 961 (e + 1) - dist(xes1, ¥)

(ii) (iii)
< 2¢1 (e5 4+ 1) ¢ - dist(xg, X)? < 2¢1 (5 + 1) cg|x* — x| (43)

where (i) follows from eq. (42), (ii) follows from eq. (40), and (iii) follows from the fact that dist(x, X') < ||x* — xx]|-
Note that eq. (43) implies that

[[x* = Xt |
[l — %2

g 261 (05 + 1) Ce, Vk 2 max{kl, kQ} (44)



Hence, {xy } >0 converges at least Q-quadratically to x*. In particular, the Q-quadratic convergence region of CRm is
given by
1

20166 (65 + 1) ' (45)

% — x| <

E Inexact CRm Convergence: Proof of Theorem 3

We first present the following lemma, which bounds the term ||Xg+1 — Xg
the inexact variant of CRm.

Lemma 11. Let Assumption 1 and Assumption 3 hold. Set M > 2Ls/3 + 2, 8x < p,e1 < 1. Then the sequence
{Xr }r>0 generated by the inexact variant of CRm satisfies

, where sequence {xy, } >0 is generated by

1Xp41 — Xi|| < s (46)

[—aL,—6\—1/3 .
Whe}’608éﬁ((73]w 2L2-0) / (f(x0) — f )1/3—1—1).

Proof. See Appendix G.6. O

We next prove the main theorem for CRm. The proof of this theorem is similar to that of the exact case, and hence we
only highlight the main difference for simplicity. Define €¢; = 6+/¢ where

2 2
f £ min , .
{\/(1+L168)(L2+M—|—2) M+2L2+2+L208}

Since m < 1and e < 1, we obtain that ¢; < 1.

Note that Lemma 8 implies that if the total number of iterations k& > (3 M_122L2_6) ! (0’(3"6)372f , then there exists a
ko € {0,--- , k} such that

[Xkg+1 — Xk || < €1 (47)
Following the reasoning similar to that for proving eq. (27), we obtain that
IVf Kkt )| S IV F ko) (1 + L[| Ko 11 — Ko l])
<1V kpe) | (1 + Laes)
(2 (1+ Licg) (L2 ;— M

(iii) L M 2 (iv)
< ne) () a e @)

[Rko+1 — Xio I” + €1/ Kho41 — Xig ||)

where (i) follows from Lemma 11, (ii) follows from eq. (22), (iii) follows from eq. (47), and (iv) follows from the
definition of ¢;.

Then, following the reasoning similar to that for proving eq. (29), we further obtain that
Amin (VZf(kaH)) 2 Amin (v2f<§ik0+1)) - LQH)A(koJrl - XkO||H§(kO+1 - iko”

() R N
2 Amin (V2 (Rko11)) — Lacs|[Rio41 — X, |

@ M +2Ly . . X

> *TQHXkoH — Xpo || — €1 — Lacs||Xky+1 — Xk, ||

i) M + 2Ly 42+ Locg @

> — 3 e > /e (49)

where (i) follows from Lemma 11, (ii) follows from eq. (19), (iii) follows from eq. (47), and (iv) follows from the
definition of €;. Combining eqs. (48) and (49), we obtain the main statement of Theorem 3.



F Subsampling Technique

To prove Theorem 4, we first establish a useful Proposition (Proposition 1) to characterize the per iteration complexity
of Hessian in Appendix F.1, and then establish the overall convergence guarantee in Appendix F.2.

F.1 Per iteration Complexity

In order to satisfy the inexact criterion €; in Assumption 3, the mini-batch size should be large enough to guarantee
statistical concentration with high probability (Xu et al., 2017; Tripuraneni et al., 2017; Kohler and Lucchi, 2017; Wang
et al., 2019b; Zhou et al., 2018). Such an approach is referred to as the subsampling technique, and has been used in
Kohler and Lucchi (2017) to implement the inexact CR. Here, we apply such an approach to CRm, and the following
theorem characterizes the sample complexity to guarantee the inexact criterion for each iteration.

Proposition 1 (Per iteration Hessian sample complexity). Assuming that Assumption 1 holds for each f;(-), then
sub-sampled mini-batch of Hessians Hy, k = 0,1, . .. satisfies Assumption 3 with probability at least 1 — ( provided

that
8L 4L, 4d
> (2 + 2 ) og (= ).
5 ( 2 + 361) og<§) (50)

The idea of the proof is to apply the following matrix Bernstein inequality (Tropp, 2012) to characterize the sample
complexity in order to satisfy the inexactness condition in Assumption 3 with the probability at least 1 — (.

Lemma 12 (Tropp (2012), Theorem 1.6.2). Consider a finite sequence {Xy,} of independent, random matrices with
dimensions dy X da. Assume that each random matrix satisfies

EXy =0 and || Xg| <R almost surely.
Define

i

o2 2 max (sz E(X,X})

ZkE(x;;Xk)H) . (51)

Then, for all € > 0,

€2/2
P(HZICXkH > €> < Z(dl +d2)exp ( O'Q-i—Re/?))

With this lemma in hand, we are ready to prove our main result.

Proof of Proposition 1. In order to apply Lemma 12, we first define
1
X; = B (V2 filxi) — V2 f(xx)) -

Then, we obtain that

EX; =0 (52)
and
IV i) | + IV F ()l 2L1
X;l < = _—_—— 2 R.
Pl 51 5 9

where (i) follows from item 3 of Assumption 1 that V f;(-) is L1-Lipschitz which implies that || V2 f;(-)|| < L1 and
IV2FOIN< La,
Moreover, we have that

azmax<

Z E(X;X;)

1€S1

> E(X;X)

€51

)




> EXD)

€5

(i) (iii >4L
<Y EED| < D EIXE < D EIX* < |51| (54)

1€S1 1€S 1€S1

where (i) follows from the fact that X; is real and symmetric, (ii) follows from Jasen’s inequality, and (iii) follows from
eq. (53).
Plugging egs. (54), (52) and (53) into Lemma 12, we obtain

2
€1/2
i€ [ENRREIER

Thus, in order to satisfies HZ X H €1 with probability at least 1 — , it is sufficient to require

i€S1
€1/2
ey (-0 ) <c 36)
[S1] 3151]
which gives that

8Ly 4L 4d
> (S5 3 )10 (4). 57

€2 3e ¢
O

F.2 Overall Complexity: Proof of Theorem 4

Proof. We first note that Theorem 3 shows that let e; = 64/, then the sequence {xy } ;>0 generated by the inexact
CRm contains an e-second-order stationary point if the total number k of iterations satisfies

C

Next, according to Proposition 1, Assumption 3 is satisfies with probability at least 1 — ¢ for Hessian . Thus, according
to the union bound, for k iterations, the probability of failure satisfaction of Assumption 3 is at most k(. To obtain
Assumption 3 holds for the total k iteration with probability least 1 — J, we require

1—-k(>21-
which yields

1)
< -
(<

Thus, with probability 1 — §, the algorithms successfully outputs an e approximated second-order stationary point if we
set ¢ = §/k. Therefore, according to Proposition 1, Assumption 3 with €; = 61/€ holds with probability at least 1 — ¢

given that
8L? 4l 4dk
Sil=|{—== lo 59
51l ( TN ) ( ) &%)

and the total Hessian sample complexity is bounded by

8L2 414 4dk\ © 8L% 414 4d
5=kl =k (ot + g5z ) o (%5 ) <€ (e + 35 ) o5 (5) 0

where (i) follows from eq. (58).




G Proof of Technical Lemmas

In this section, we provide the proofs of the technical lemmas.

G.1 Useful Inequality

Lemma 13. Forz,A €¢ R, 0 < 2 < 1, and 0 < A < 1, the following inequality holds

2(1— A)log <1lA> <1—(1—A). 61)
Proof. Let

F@)=1— (1= A — (1 - A)log (1_1A) |

it is sufficient to prove f(z) > 0for0 < z < 1,and 0 < A < 1. We first note that

1
V) =~ A log(1 — 4) - (1= Ao (11 ). (62)
which is decreasing with respect to . Thus, we have, for 0 < x < 1
Vi) > Vi) =0,
which implies f(z) increasing within 0 < = < 1. Thus,
f(z) = f(0)=0. (63)

Therefore, we complete our proof. O

G.2 Proof of Lemma 7

Proof. We first prove eq. (16). Define sy, £ Xk+1 — Xg. Then, we obtain that

Fl&ien) € Fo0) + VF() s+ LT V2 (0 + 2 s

(ii) M Ly—M
< f0) — Ty llsnl + 2 sl
3M — 2L,

||Xk+1 _XkH37

= Fxk) = =5

where (i) follows from lemma 5, and (ii) follows from Lemma 4 in Nesterov and Polyak (2006) and the definition of
Xg+1- Then, we further obtain that

FGagn) = FO0) < =7l%n1 = %, (64)
which gives eq. (16).
Next, we prove eq. (17). Note that eq. (16) implies that, for all ¢ > 0,
O fxi) = f(ir) @ fxi) = f(Xit1) 65)

[%ir1 — x4]|* < 5 < 5 ,

where (i) follows from eq. (64), and (ii) follows from the definition of x;;;. Summing eq. (65) over ¢ from 0 to k, we
obtain that

)

y *
; [%it1 — xi||® < f(x0) _’Yf(karl) < f(xozy— f



which gives eq. (17).
To prove eqs. (18) and (19), note that
. . ST g M, s
X1 = argmin V f(xg)" s + 55 Ve f(xk)s + 5 IIs]|®.
séxka,
Then, Lemma 5 in Nesterov and Polyak (2006) directly implies eqs. (18) and (19).

Next, we prove eq. (20). Note that

k )
. 1 . @1 f(xo) — f*
3 3
Join, i = xll” < 2 ; i = xll” < ot (66)
where (i) follows from eq. (17). Then, eq. (20) follows by taking the cubic root on both sides of eq. (66). O]

G.3 Proof of Lemma 8

Proof. We first prove eq. (21). Note that
f(Xk+1)

R A e

= f(xi) + VF(xi)Tsp + %sfHkSk + %IISkII3 + %IISMI3 + %Sf(VQf(Xk) ~ Hes
< 0 = Tyl + s+ 5E (V) — Husy

< o0 = S sl + skl

where (i) follows from Lemma 5, (ii) follows from Lemma 4 in Nesterov and Polyak (2006) and the fact that
Xpy1 = argmings,  Vf(xx)"s + §sTHys + 4 [|s||®, and (iii) follows from Assumption 3.

S=X—X

Next, we prove eq. (22). Note that

. . 1 M
Xpy1 = argmin V f(xz)T's + §STHkS + ?”SHB (67)
SéX7Xk
By the first-order optimality condition, we obtain that
M
Vf(Xk) + Hgs, + ?skHskH =0. (68)

Then, we further obtain that

19 o)l 2 [ 01) = 97 00) ~ Fis = sl

< ||V f Kig1) = VF(xi) = V2 f (xi)sk || + (V2 (xk) — Hi)sil| + %Hskﬂz

i) Lo+ M. A
<= 5 [%rt1 — xe)® + €1 Zer1 — %),

. M
< |IVf(Xg+1) = VF(xk) — Hgsg || + ?HSkH2

where (i) follows from eq. (68), and (ii) follows from Lemma 5, Assumption 3, and the fact that s, £ X1 — Xy.

Next, we prove eq. (23). By eq. (67) and Proposition 1 in Nesterov and Polyak (2006), we obtain that

M .
Hy = —7||Xk+1 — x||L. (69)



Then, we further obtain that

(i)
Amin (V2 F(%k41)) 2 Amin(Hi) — [|[V2 f(xx11) — Hi |
a M

Z =5 1%kr1 —xull = V2 f(xpg1) = V2 f(xp) | = V2 f (k) — Hg||
Qi M R
> _?kaJrl = x| = LallXpt1 — x| — e

M +2Ls

= %1 —xi — e,

2

where (i) follows from Wely’s inequality, (ii) follows from eq. (69) and (iii) follows from Assumption 3 and the fact
that V2 f is Lo-Lipschitz.

Next, we prove eq. (24) by contradiction. Suppose for every i € {0, --- , k} it holds that
||)A(Z‘+1 — XiH > €. (70)

Then, eq. (21) further implies that

N 3M — 2L, . 1, .
f(Xiy1) — f(xi) < —TQHXz‘H - x| + §\|Xz’+1 —xi|*e1
@) 3M — 2Ly — 6 .
< - (12> %11 — x|,

where (i) follows from eq. (70). Therefore, we have

(31‘4—12;2—6) [Kien —xil® < F0x1) — FGirn) € £0) — Fxisn), 71)

where (i) follows from the definition of x4 1. Summing up eq. (71) over ¢ from 0 to k, we obtain that

k
3M —2Ly —6
> (B0 e - il < fla) - 1 72
=0

Combining eq. (72) with the fact that ||X; 41 — x;|| > €1 fori € {0,--- ,k} and M > 2L5/3 + 2, we have

k

3M — 2Ly —6 3M — 2Ly — 6 N

(P < X () e - il < sl £
=0

which gives

12 f(xo) — f*
kg(SM—QLg—G) € '

This contradicts with our assumption that & > (3 M_122Lz_6) f(xoel,_f - Therefore, there must exist an integer
1
ko € {0, - - - k} such that

||)A(k0+1 - Xko” < €1, (73)
and the proof is complete. O
G.4 Proof of Lemma 9

Proof. Fori > 1, note that

. o D .
[%iv1 — %] < |I%ipr — x| + [Jxi — %]



(i) A .

< IXir — x| + Bil|%i — Xi—1]]

(i) X A

< %ipr — x| + pll%i — X1l (74)
where (i) follows from the triangle inequality, (ii) follows from eq. (25), and (iii) follows from the fact that 8511 < p
forall £ > 0.

Recursively applying eq. (74), we obtain that

k
[Re1 = Zill < pFl%1 = Roll + D pF %iga — x|
i=1
0
< Zp ki1 — xill, (75)

where (i) follows because Xy = x( in Algorithm 1. Note that eq. (75) is also true for £ = 0. Then, by eq. (75), we
further obtain that

k
1 = Rill <D P R — x|
=0

< maX \Xz+1*Xz||Zpk ‘

2ie{r&§¥7k} 41 —xi||1% (76)
21 (f(xO) - f*)l/?’
ST15, 5 )

where (i) follows from the fact that p < 1 and (ii) follows from eq. (17). The proof of Lemma 9 is complete. O

G.5 Proof of Lemma 10
Proof. To prove item (3), it suffices to show that {f(xy)}xr>0 is a decreasing sequence with a lower bound. By
Assumption 1, f is bounded below. Thus, { f(xx)}x>0 is bounded below. Also, note that

Fth1) € Faer) < F(xi) (77

where (i) follows from eq. (6), and (ii) follows from eq. (16). Thus, {f(xx)}x>0 is a decreasing sequence and is
bounded below, which further imply that { f(xx) } x>0 converges. We denote the corresponding limit as v.

To prove item (i), note that
m [[xg41 = xe|| < Hmfxpq1 = X || 4 K1 — x|
k—o0 k— o0

® . R R R
s lim Bt 1l X1 — X[l + (K1 — x|

(ii)

< Hm {3 s = x (e — %kl +1)

N\ 1/3
(iii) 1 _
< 11m I%k+1 — Xk || (1_p (f(Xo?y f ) +1>

) 0

(78)

where (i) follows from eq. (25), (ii) follows from eq. (5), which implies that 841 < || Xg+1 — X[, (iil) follows from
Lemma 9 and (iv) follows from eq. (17), which implies that

lim H)A(k;Jrl — Xk” =0. (79)
k—o0



Then, we conclude that lim ||xx4+1 — x| = 0.
k—oo

To prove item (i), note that eq. (77) implies that x;, € L(f(x0)) for all k. By the assumption that £(f(xy)) is
bounded for some k& > 0, we conclude that {x, } >0 is also bounded.

To prove item (7v), note that the Bolzano-Weierstarss theorem and item (44i) of Lemma 10 imply that {x} }1>0 has a
convergent subsequence. Also, the set of its accumulation points X is bounded. Moreover, for every accumulation
point X, by eqgs. (28), (30) and (79), we obtain that

IVFE)I < limsup [[V £ (x0)]

Ly L — M\
hmsup—ka_,_l—XkH ( +1—1p (f(xo) / > =0,

k—o0

and

Amin (V2f (%)) = i inf Amin (V2 (x411))

Mool I e\ 1/3
> liminf—||§<k+1 — Xk” ( + 209 + 2 (f(XO) f ) > =0.
k—o0 1 —r

2 gl
Thus, we conclude that V f(x) = 0, V2 f(x) 3= 0. Furthermore, item (4) of ?? implies that f(xy), k>0 converges to its
limit v.

O

G.6 Proof of Lemma 11

Proof. Following the proof similar to that of Lemma 9, one can show that eq. (76) also holds for the inexact algorithm,
ie.,
1

%Kit — || < Ris1 — X[ ——. 80
B Xkll\,{rg‘q?ﬁk}llxzﬂ xill1 (80)

Then, it suffices to bound ||X;+1 — X;||. Suppose that the inexact variant of CRm2 terminates at iteration k. By the
termination criterion, we have

I%it1 — x|l >e1 for 0<i<k-—1, (81)
and
I%k+1 — xxl| < €1 < 1 (82)
For 0 <7 < k —1,eq. (21) implies that
. 3M — 2Ly . 1
f&ip1) = f(xi) < —TQHXiH il + 5 5 l%i+1 = xil|*er
@ 3M —2L5 -6 | .
< (22— ) ki — xil® (83)
12
where (i) follows from eq. (81). Summing eq. (83) over ¢ from 0 to k¥ — 1, we obtain that
3M — 2L, -
Z i1 — x* < (2> (f(x0) = £*), (84)
which further implies that
3M — 2Ly — 6\ /? 1/3
e @™y [%it1 — x| < (12> (f(x0) = f*)7". (85)

Combining egs. (80), (82) and (85), we obtain the statement of Lemma 11. O]
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