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Abstract—We study model recovery for data classification,
where the training labels are generated from a one-hidden-
layer neural network with sigmoid activations, and the goal
is to recover the weights of the neural network. We consider
two network models, the fully-connected network (FCN) and
the non-overlapping convolutional neural network (CNN). We
prove that with Gaussian inputs, the empirical risk based on
cross entropy exhibits strong convexity and smoothness uniformly
in a local neighborhood of the ground truth, as soon as the
sample complexity is sufficiently large. Hence, if initialized in
this neighborhood, it establishes the local convergence guarantee
for empirical risk minimization using cross entropy via gradient
descent for learning one-hidden-layer neural networks, at the
near-optimal sample and computational complexity with respect
to the network input dimension without unrealistic assumptions
such as requiring a fresh set of samples at each iteration.

I. INTRODUCTION

Neural networks have attracted a significant amount of re-
search interest in recent years due to the success of deep neural
networks in practical domains such as computer vision and
artificial intelligence. However, the theoretical underpinnings
behind such success remains mysterious to a large extent.
Efforts have been taken to understand which classes of functions
can be represented by deep neural networks, when (stochastic)
gradient descent is effective for optimizing a nonconvex loss
function, and why these networks generalize well.

One important line of research that has attracted extensive
attention is the model-recovery problem, which is important
for the network to generalize well [1]. Assuming the training
samples (xi, yi) ∼ (x, y), i = 1, . . . , n, are generated inde-
pendently and identically distributed (i.i.d.) from a distribution
D based on a neural network model with the ground truth
parameter W ?, the goal is to recover the underlying model
parameter W ? using the training samples. Consider a network
whose output is given as H(W ?,x). Previous studies along this
topic can be mainly divided into two cases of data generations,
with the input x ∈ Rd being Gaussian.
• Regression, where each sample y ∈ R is generated as

y = H(W ?,x).

This type of regression problem has been studied in various
settings. In particular, [2] studied the single-neuron model
under the Rectified Linear Unit (ReLU) activation, [3]
studied the one-hidden-layer multi-neuron network model,
and [4] studied a two-layer feedforward network with
ReLU activations and identity mapping.

• Classification, where the label y ∈ {0, 1} is drawn
according to the conditional distribution

P(y = 1|x) = H(W ?,x).

Such a problem has been studied in [5] when the network
contains only a single neuron.

For both cases, previous studies attempted to recover W ?,
by minimizing an empirical loss function using the squared
loss, i.e. minW

1
n

∑n
i=1(yi −H(W ,xi))

2, given the training
data. Two types of statistical guarantees were provided for
such model recovery problems using the squared loss. More
specifically, [3] showed that in the local neighborhood of the
ground truth W ?, the empirical loss function is strongly convex
for each given point under independent high probability event.
Hence, their guarantee for gradient descent to converge to
the ground truth, assuming proper initialization, requires a
fresh set of samples at every iteration. Thus the total sample
complexity depends on the number of iterations. On the other
hand, studies such as [5], [2] established strong convexity
in the entire local neighborhood in a uniform sense, so that
resampling per iteration is not needed for gradient descent to
have guaranteed linear convergence as long as it enters such
a local neighborhood. Clearly, the second kind of statistical
guarantee without per-iteration resampling is much stronger
and desirable.

In this paper, we focus on the classification setting by
minimizing the empirical loss using the cross entropy objective,
which is a popular choice in training practical neural networks.
The geometry as well as the model recovery problem based on
the cross entropy loss function have not yet been understood
even for one-hidden-layer networks. Such a loss function is
much more challenging to analyze than the squared loss, not
just because it is nonconvex with multiple neurons, but also
because its gradient and Hessian take much more complicated
forms compared with the squared loss; moreover, it is hard to
control the size of gradient and Hessian due to the saturation
phenomenon, i.e., when H (W ,x) approaches 0 or 1. The
main focus of this paper is to develop technical analysis for
guaranteed model recovery under the challenging cross entropy
loss function for the classification problem for two types of
one-hidden-layer network structures.

A. Problem Formulation

We consider two popular types of one-hidden-layer nonlinear
neural networks, i.e., a Fully-Connected Network (FCN) [3]



and a non-overlapping Convolutional Neural Network (CNN)
[6]. For both cases, we let x ∈ Rd be the input, K ≥ 1 be the
number of neurons, and the activation function be the sigmoid
function

φ (x) =
1

1 + exp (−x)
.

• FCN: the network parameter is W = [w1, · · · ,wK ] ∈
Rd×K , and

HFCN (W ,x) =
1

K

K∑
k=1

φ(w>k x). (1)

• Non-overlapping CNN: for simplicity we let d = m ·
K for some integers m. Let w ∈ Rm be the network
parameter, and the kth stride of x be given as x(k) =[
xm(k−1)+1, · · ·xm·k

]> ∈ Rm. Then,

HCNN (w,x) =
1

K

K∑
k=1

φ(w>x(k)). (2)

The non-overlapping CNN model can be viewed as a highly
structured instance of the FCN, where the weight matrix can
be written as:

WCNN =


w 0 . . . 0
0 w . . . 0
...

...
. . .

...
0 0 . . . w

 ∈ Rd×K .

In a model recovery setting, we are given n training samples
{(xi, yi)}ni=1 ∼ (x, y) that are drawn i.i.d. from certain
distribution regarding the ground truth network parameter W ?

(or resp. w? for CNN). Suppose the network input x ∈ Rd
is drawn from a standard Gaussian distribution x ∼ N (0, Id).
This assumption has been used a lot in previous literature [2],
[7], [6], [8], to name a few. Then, conditioned on x ∈ Rd,
the output y is mapped to {0, 1} via the output of the neural
network, i.e.,

P (y = 1|x) = H (W ?,x) . (3)

Our goal is to recover the network parameter, i.e., W ?, via
minimizing the following empirical loss function:

fn(W ) =
1

n

n∑
i=1

` (W ;xi) , (4)

where ` (W ;x) := ` (W ;x, y) is the cross-entropy loss
function, i.e.,

` (W ;x) = −y · log (H (W ,x))− (1− y) · log (1−H (W ,x)) ,
(5)

where H(W ,x) can subsume either HFCN or HCNN.

B. Our Contributions
Considering the multi-neuron classification problem with

either FCN or CNN, the main contributions of this work are
summarized as follows. Throughout the discussions below, we
assume the number K of neurons is a constant, and state the
scaling only in terms of the input dimension d and the number
n of samples .
• Uniform local strong convexity: If the input is Gaussian,

the empirical risk function fn(W ) is uniformly strongly
convex in a local neighborhood of the ground truth W ?

as soon as the sample size n = O(d log2 d).
• Statistical and computational rate of gradient descent:

consequently, if initialized in this neighborhood, gradient
descent converges linearly to a critical point (which we
show to exist). Due to the nature of quantized labels
here, the recovery of the ground truth is only up to
certain statistical accuracy. In particular, gradient descent
finds the critical point Ŵn with a computation cost of
O(nd log(1/ε)) , where ε denotes the numerical accuracy
and Ŵn converges to W ? at a rate of O(

√
d log n/n) in

the Frobenius norm.
Note that our performance guarantee of gradient descent

requires appropriate initialization. Such an initialization scheme
has been provided in an extended version [9], and is omitted due
to the space limitations. We derive network specific quantities
to capture the local geometry of FCN and CNN, which
imply that the geometry of CNN is more benign than FCN,
corroborated by the numerical experiments. In order to analyze
the challenging cross-entropy loss function, our proof develops
various new machineries in order to exploit the statistical
information of the geometric curvatures, including the gradient
and Hessian of the empirical risk, and to develop covering
arguments to guarantee uniform concentrations. To the best of
our knowledge, combining the analysis of gradient descent and
initialization, this work provides the first globally convergent
algorithm for the recovery of one-hidden-layer neural networks
using the cross entropy loss function.

C. Related Work
Due to the scope, we focus on the most relevant literature on

theoretical and algorithmic aspects of learning shallow neural
networks via nonconvex optimization.

The studies of one-hidden-layer network model can be further
categorized into two classes, landscape analysis and model
recovery. In the landscape analysis, it is known that if the
network size is large enough compared to the data input,
then there are no spurious local minima in the optimization
landscape, and all local minima are global [10], [11], [12],
[13]. For the case with multiple neurons (2 ≤ K ≤ d) in
the under-parameterized setting, there exist spurious bad local
minima in the optimization landscape [14], [15] even at the
population level. Zhong et. al. [3] provided several important
geometric characterizations for the regression problem using a
variety of activation functions and the squared loss.

In the model recovery problem, the number of neurons is
smaller than the input dimension, and all the existing works



discussed below assumed the squared loss and (sub-)Gaussian
inputs. [5] showed that when φ(·) has bounded first, second
and third derivatives, there is no other critical points than
the unique global minimum (within a constrained region of
interest), and (projected) gradient descent converges linearly
with an arbitrary initialization, as long as the sample complexity
is O(d log2 d) for the classification problem. Moreover, in
the case with multiple neurons, [7] showed that projected
gradient descent with a local initialization converges linearly
for smooth activations with bounded second derivatives for the
regression problem, [16] showed that gradient descent with
tensor initialization converges linearly to a neighborhood of the
ground truth using ReLU activations, and [17] showed the linear
convergence of gradient descent with the spectral initialization
using quadratic activations. For CNN with ReLU activations,
[6] showed that gradient descent converges to the ground truth
with random initialization for the population risk function
based on the squared loss under Gaussian inputs. Moreover,
[8] showed that gradient descent learns a two-layer CNN despite
the existence of bad local minima. From a technical perspective,
our study differs from all the aforementioned work in that the
cross entropy loss function we analyze has a very different
form. Furthermore, we study the model recovery classification
problem under the multi-neuron case, which has not been
studied before.

Finally, we note that several papers study one-hidden-layer
or two-layer neural networks with different structures under
Gaussian input. For example, [18] studied the overlapping con-
volutional neural network, [4] studied a two-layer feedforward
networks with ReLU activations and identity mapping, and
[19] introduced the Porcupine Neural Network. Very recently,
several papers [20], [21], [22] declared global convergence
of gradient descent for optimizing deep neural networks in
the over-parameterized regime. These results are not directly
comparable to ours since both the networks and the loss
functions are different.

D. Notations

Throughout this paper, we use boldface letters to denote
vectors and matrices, e.g. w and W . The transpose of W is
denoted by W>, and ‖W ‖, ‖W ‖F denote the spectral norm
and the Frobenius norm. For a positive semidefinite (PSD)
matrix A, we write A � 0. The identity matrix is denoted
by I . The gradient and the Hessian of a function f(W ) is
denoted by ∇f(W ) and ∇2f(W ), respectively.

We use c, C,C1, . . . to denote constants whose values may
vary from place to place. For nonnegative functions f(x) and
g(x), f(x) = O (g(x)) means there exist positive constants c
and a such that f(x) ≤ cg(x) for all x ≥ a; f(x) = Ω (g(x))
means there exist positive constants c and a such that f(x) ≥
cg(x) for all x ≥ a.

II. GRADIENT DESCENT AND ITS PERFORMANCE
GUARANTEE

To estimate the network parameter W ?, since (4) is a
highly nonconvex function, vanilla gradient descent with an

arbitrary initialization may get stuck at local minima. Therefore,
we implement gradient descent (GD) with a well-designed
initialization (see the details in [9]). In this section, we focus
on the performance of the local update rule

Wt+1 = Wt − η∇fn (Wt) ,

where η is the constant step size. The algorithm is summarized
in Algorithm 1.

Algorithm 1 Gradient Descent (GD)
Input: Training data {(xi, yi)}ni=1, step size η, iteration T
Initialization: W0 ← INITIALIZATION ({(xi, yi)}ni=1)
Gradient Descent: for t = 0, 1, · · · , T

Wt+1 = Wt − η∇fn (Wt) .

Output: WT

Note that throughout the execution of GD, the same set of
training samples is used which is the standard implementation
of gradient descent. Consequently the analysis is challenging
due to the statistical dependence of the iterates with the data.

A. Geometric Properties of the Networks

Before stating our main results, we first introduce an
important quantity ρ (σ) regarding φ(z) that captures the
geometric properties of the loss function for neural networks
(1) and (2).

Definition 1 (Key quantity for FCN). Let z ∼ N
(
0, σ2

)
and

define αq(σ) = E[φ′(σ · z)zq], ∀q ∈ {0, 1, 2}, and βq(σ) =
E[φ′(σ · z)2zq], ∀q ∈ {0, 2}. Define ρFCN(σ) as

ρFCN(σ) = min
{
β0(σ)− α2

0(σ), β2(σ)− α2
2(σ)

}
− α2

1(σ).

Definition 2 (Key quantity for CNN). Let z ∼ N
(
0, σ2

)
and

define ρCNN(σ) as

ρCNN(σ) = min
{
E[(φ′(z)z)

2
],E[φ′ (z)

2
]
}
.
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Fig. 1. Illustration ρ (σ) for both FCN and CNN with the sigmoid activation.

Note that Definition 1 for FCN is different from that in
[3, Property 3.2] but consistent with [3, Lemma D.4] which
removes the third term in [3, Property 3.2]. For the activation
function considered in this paper, the first two terms suffice.



Definition 2 for CNN is a newly distilled quantity in this paper
tailored to the special structure of CNN. We depict ρ(σ) as
a function of σ in a certain range for the sigmoid activation
in Fig. 1. It can be numerically verified that ρ(σ) > 0 for all
σ > 0. Furthermore, the value of ρCNN(σ) is much larger than
ρFCN(σ) for the same input.

B. Uniform Local Strong Convexity

We first characterize the local strong convexity of fn(·) in a
neighborhood of the ground truth. We use the Euclidean ball
to denote the local neighborhood of W ? for FCN or of w?

for CNN.

B (W ?, r) =
{
W ∈ Rd×K : ‖W −W ?‖F ≤ r

}
, (6a)

B (w?, r) = {w ∈ Rm : ‖w −w?‖2 ≤ r} , (6b)

where r is the radius of the ball. With slight abuse of notations,
we will drop the subscript FCN or CNN for simplicity,
whenever it is clear from the context that the result is for
FCN when the argument is W ∈ Rd×K and for CNN when
the argument is w ∈ Rm. Further, σi (W ) denotes the i-th
singular value of W ?. Let the condition number be κ = σ1/σK ,
and λ =

∏K
i=1 (σi/σK). The following theorem guarantees the

Hessian of the empirical risk function in the local neighborhood
of the ground truth is positive definite with high probability
for both FCN and CNN.

Theorem 1 (Local Strong Convexity). Consider the classi-
fication model with FCN (1) or CNN (2) and the sigmoid
activation function.
• For FCN, assume ‖w?

k‖2 ≤ 1 for all k. There exist
constants c1 and c2 such that as soon as

nFCN ≥ c1 · dK5 log2 d ·
(

κ2λ

ρFCN (σK)

)2

,

with probability at least 1− d−10, we have for all W ∈
B(W ?, rFCN),

Ω

(
1

K2
· ρFCN (σK)

κ2λ

)
· I � ∇2fn (W ) � Ω(1) · I,

where rFCN := c2√
K
· ρFCN(σK)

κ2λ .
• For CNN, assume ‖w?‖2 ≤ 1. There exist constants c3

and c4 such that as soon as

nCNN ≥ c3 · dK5 log2 d ·
(

1

ρCNN (‖w?‖2)

)2

,

with probability at least 1− d−10, we have for all w ∈
B(w?, rCNN),

Ω

(
1

K
· ρCNN (‖w?‖2)

)
· I � ∇2fn (w) � Ω(K) · I,

where rCNN := c4
K2 · ρCNN (‖w?‖2).

We note that for FCN (1), all column permutations of W ? are
equivalent global minimum of the loss function, and Theorem 1
applies to all such permutation matrices of W ?.

Theorem 1 guarantees that for both FCN (1) and CNN (2)
the Hessian of the empirical cross-entropy loss function fn(W )
is positive definite in a neighborhood of the ground truth W ?,
as long as the sample size n is sufficiently large. The bounds
in Theorem 1 depend on the dimension parameters of the
network (n and K), as well as the ground truth (ρFCN(σK),
λ, ρCNN (‖w?‖2)).

C. Performance Guarantees of GD

For the classification problem, due to the nature of quantized
labels, W ? is no longer a critical point of fn(W ). By the
strong convexity of the empirical risk function fn(W ) in the
local neighborhood of W ?, there can exist at most one critical
point in B(W ?, r), which is the unique local minimizer in
B (W ?, r) if it exists. The following theorem shows that there
indeed exists such a critical point Ŵn, which is provably
close to the ground truth W ?, and gradient descent converges
linearly to Ŵn.

Theorem 2 (Performance Guarantees of Gradient Descent).
Assume the assumptions in Theorem 1 hold. Under the event
that local strong convexity holds,
• for FCN, there exists a critical point in B(W ?, rFCN)

such that∥∥∥Ŵn −W ?
∥∥∥
F
≤ c1

K9/4κ2λ

ρFNN (σK)

√
d log n

n
,

and if the initial point W0 ∈ B(W ?, rFCN), GD con-
verges linearly to Ŵn, i.e.∥∥∥Wt − Ŵn

∥∥∥
F
≤
(

1− c2ηρFCN (σK)

K2κ2λ

)t ∥∥∥W0 − Ŵn

∥∥∥
F
,

for η ≤ c3, where c1, c2, c3 are constants;
• for CNN, there exists a critical point in B(w?, rCNN) such

that

‖ŵn −w?‖2 ≤ c4
K

ρCNN (‖w?‖2)
·
√
d log n

n
,

and if the initial point w0 ∈ B(w?, rCNN), GD converges
linearly to ŵn, i.e.

‖wt − ŵn‖2 ≤
(

1− c5ηρCNN (‖w?‖2)

K

)t
‖w0 − ŵn‖2 ,

for η ≤ c6/K, where c4, c5, c6 are constants.

Similarly to Theorem 1, for FCN (1) Theorem 2 also holds
for all column permutations of W ?. Theorem 2 guarantees that
the existence of critical points in the local neighborhood of the
ground truth, which GD converges to, and also shows that the
critical points converge to the ground truth W ? at the rate of
O(K9/4

√
d log n/n) for FCN (1) and O

(
K
√
d log n/n

)
for

CNN(2) with respect to increasing the sample size n. Therefore,
W ? can be recovered consistently as n goes to infinity. Notice
that the sample complexity requirement in Theorem 1 depends
linearly on the dimension O(d) of the unknown parameters,
hence it’s near optimal. Moreover, for both FCN (1) and CNN
(2) gradient descent converges linearly to Ŵn (or resp. ŵn)



at a linear rate, as long as it is initialized in the basin of
attraction. To achieve ε-accuracy, i.e.

∥∥∥Wt − Ŵn

∥∥∥
F
≤ ε (or

resp. ‖wt − ŵn‖2 ≤ ε), it requires a computational complexity
of O

(
ndK4 log (1/ε)

)
(or resp. O

(
ndK2 log (1/ε)

)
), which

is linear in n, d and log(1/ε).

III. CONCLUSIONS

In this paper, we have studied the model recovery problem
of a one-hidden-layer neural network using the cross-entropy
loss in a multi-neuron classification problem. In particular,
we have characterized the sample complexity to guarantee
local strong convexity in a neighborhood (whose size we have
characterized as well) of the ground truth when the training
data are generated from a classification model for two types
of neural network models: fully-connected network and non-
overlapping convolutional network. This guarantees that with
high probability, gradient descent converges linearly to the
ground truth if initialized properly. In the future, it will be
interesting to extend the analysis in this paper to more general
class of activation functions, particularly ReLU-like activations.
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APPENDIX A
PROOF SKETCH

We sketch the proof of both Theorem 1 and Theorem 2
in this section, and the complete proof can be found in an
extended version online [9].

In order to show that the empirical loss possesses a local
strong convexity, we follow the following steps:

1) We first show that the Hessian ∇2f(W ) of the population
loss function is smooth with respect to ∇2f(W ?) ;

2) We then show that ∇2f(W ) satisfies local strong con-
vexity and smoothness in a neighborhood of W ? with
appropriately chosen radius, B(W ?, r), by leveraging
similar properties of ∇2f(W ?) ;

3) Next, we show that the Hessian of the empirical loss
function ∇2fn(W ) is close to its population counterpart
∇2f(W ) uniformly in B(W ?, r) with high probability.

4) Finally, putting all the arguments together, we establish
∇2fn(W ) satisfies local strong convexity and smoothness
in B(W ?, r).

We have established that fn (W ) is strongly convex in
B(W ?, r) in Theorem 1. Thus there exists at most one critical
point in B(W ?, r). The proof of Theorem 2 follows the steps
below:

1) We first show that the gradient ∇fn (W ) concentrates
around ∇f (W ) in B(W ?, r), and then invoke [5, The-
orem 2] to guarantee that there indeed exists a critical
point Ŵn in B(W ?, r);

2) We next show that Ŵn is close to W ? and gradient
descent converges linearly to Ŵn with a properly chosen
step size.
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