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Abstract

Cubic regularization (CR) is an optimization
method with emerging popularity due to its
capability to escape saddle points and con-
verge to second-order stationary solutions for
nonconvex optimization. However, CR en-
counters a high sample complexity issue for
finite-sum problems with a large data size. In
this paper, we propose a stochastic variance-
reduced cubic-regularization (SVRC) method
under random sampling, and study its conver-
gence guarantee as well as sample complex-
ity. We show that the iteration complexity of
SVRC for achieving a second-order stationary
solution within ε accuracy is O(ε−3/2), which
matches the state-of-art result on CR types
of methods. Moreover, our proposed variance
reduction scheme significantly reduces the per-
iteration sample complexity. The resulting to-
tal Hessian sample complexity of our SVRC is
Õ(N2/3ε−3/2), which outperforms the state-
of-art result by a factor of Õ(N2/15). We
also study our SVRC under random sampling
without replacement scheme, which yields a
lower per-iteration sample complexity, and
hence justifies its practical applicability.

1 Introduction

Many machine learning problems are formulated as
finite-sum nonconvex optimization problems that take
the form

min
x∈Rd

F (x) ,
1

N

N∑
i=1

fi(x), (1)
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where each component function fi corresponds to the
loss on the i-th data sample. While finding global
optimal solutions of generic nonconvex optimization
problems are challenging, various nonconvex problems
in the form of eq. (1) have been shown to possess
good landscape properties that facilitate convergence.
For example, the square loss of a shallow linear neural
network is shown to have only strict saddle points other
than local minimum (Baldi and Hornik, 1989; Zhou and
Liang, 2018). The same property also holds for some
other nonconvex problems such as phase retrieval (Sun
et al., 2017) and matrix factorization (Ge et al., 2016;
Bhojanapalli et al., 2016). Such a remarkable property
has motivated a growing research interest in designing
algorithms that can escape strict saddle points and
have guaranteed convergence to local minimum, and
even to global minimum for problems without spurious
local minimum.

Various algorithms have been designed to have the ca-
pability to escape strict saddle points in nonconvex
optimization. Such a desired property requires that
the obtained solution x? satisfies the second-order sta-
tionary conditions within an ε accuracy, i.e.,

‖∇F (x?)‖ 6 ε, ∇2F (x?) < −
√
εI. (2)

Therefore, upon convergence, the gradient is guaran-
teed to be close to zero and the Hessian is guaranteed
to be almost positive semidefinite, which thresh-out the
possibility to converge to strict saddle points. Among
these algorithms (which are reviewed in related work),
the cubic-regularized Newton’s method (also called cu-
bic regularization or CR) (Nesterov and Polyak, 2006)
is a popular method that provides the second-order
stationary guarantee for the obtained solution. At each
iteration k, CR solves a sub-problem that approximates
the objective function in eq. (1) with a cubic-regularized
second-order Taylor’s expansion at the current iterate
xk. In specific, the update rule of CR can be written
as

sk+1 = argmin
s∈Rd

∇F (xk)>s +
1

2
s>∇2F (xk)s +

M

6
‖s‖3 ,
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xk+1 = xk + sk+1. (3)

It has been shown that CR converges to a point sat-
isfying the second-order stationary condition (eq. (2))
within O(ε−3/2) number of iterations. However, fully
solving the exact cubic sub-problem in eq. (3) requires
a high computation complexity, especially due to the
computation of the Hessian matrices for loss functions
on all the data samples. To evaluate the complexity
of CR type algorithms, we define the stochastic Hes-
sian oracle (SHO) as follows. Given a point x and
the component number i, the oracle returns the cor-
responding Hessian ∇2fi(x). Moreover, we define the
subproblem oracle (SO) as a subroutine, which for a
given a point x, returns the minimizer of eq. (3). In
Cartis et al. (2011), the authors proposed an inex-
act cubic-regularized (inexact-CR) Newton’s method,
which formulates the cubic sub-problem in eq. (3) with
an inexact Hessian Hk that satisfies∥∥(Hk −∇2F (xk))sk+1

∥∥ 6 C ‖sk+1‖2 , (4)

where C > 0 is a certain numerical constant. In partic-
ular, Cartis et al. (2011) showed that such an inexact
method achieves the same order of theoretical guar-
antee as the original CR. This inexact condition has
been explored in various situations (Kohler and Luc-
chi, 2017; Cartis et al., 2012a,b; Zhou et al., 2018).
Especially, in order to satisfy the inexact Hessian con-
dition in eq. (4), Kohler and Lucchi (2017) proposed
a practical sub-sampling scheme (referred to SCR) to
implement the inexact-CR. Specifically, at each itera-
tion k, SCR collects two index sets ξg(k), ξH(k) whose
elements are sampled uniformly from {1, . . . , N} at
random, and then evaluates respectively the gradients
and Hessians of the corresponding component func-
tions, i.e., gk , 1

|ξg(k)|
∑
i∈ξg(k)∇fi(xk) and Hk ,

1
|ξH(k)|

∑
i∈ξH(k)∇2fi(xk). Then, SCR solves the fol-

lowing cubic sub-problem at the k-th iteration.

sk+1 = argmin
s∈Rd

g>k s + 1
2s>Hks + M

6 ‖s‖
3
.

Kohler and Lucchi (2017) showed that if the mini-batch
sizes to satisfy

|ξg(k)| > O

(
1

‖sk+1‖4

)
, |ξH(k)| > O

(
1

‖sk+1‖2

)
,

(5)

then the sub-sampled mini-batch of Hessians Hk satis-
fies eq. (4) and the sub-sampled mini-batch of gradients
gk satisfies

‖gk −∇F (xk)‖ 6 C1 ‖sk+1‖2 , (6)

where C1 > 0 is a certain numerical constant, which
further guarantee the same convergence rate for SCR
as that the original exact CR.

Three important issues here motivate our design of a
new sub-sampling CR algorithm.

• It can be seen from eq. (5) that as the algorithm
converges, i.e., sk+1 → 0, the required sample size of
SCR in Kohler and Lucchi (2017) grows polynomially
fast, resulting significant increase in computational
complexity. Thus, an important open issue here is to
design an improved sub-sampling CR algorithm that
reduces the sample complexity (and correspondingly
computational complexity) particularly when the
algorithm approaches to convergence.

• Another reason for the above pessimistic bound is
because that Kohler and Lucchi (2017) analyzed the
sample complexity for sampling with replacement,
whereas in practice sampling without replacement can
potentially have much lower sample complexity. As
a clear evidence, the sample complexity for sampling
with replacement to achieve a certain accuracy can
be unbounded, whereas this for sampling without
replacement can only be as large as the total sample
size. Thus, the second open issue is to develop bounds
for sampling without replacement in order to provide
more precise guidance for sub-sampled CR methods.

• We also observe that eqs. (4) and (6) involve ‖sk+1‖
(and hence xk+1), which is not available at iteration
k. Kohler and Lucchi (2017) used sk to replace
sk+1 in experiments but not theory. A more recent
study Wang et al. (2019) theoretically justified such
a replacement with the convergence analysis, but not
for stochastic sub-sampling scheme, for which the
convergence analysis requires considerable efforts.

In this paper, we address the aforementioned open
issues, and our contributions are summarized as follows.

Our Contributions

We propose a stochastic variance reduced cubic-
regularized (SVRC) Newton’s algorithm, which com-
bines the variance reduced technique with concentra-
tion inequality under sub-sampling scheme. We show
that the computation of the full Hessian and gradient
can facilitate many steps of efficient inner-loop itera-
tion as well as accurate approximation of Hessian and
gradient under high probability perspective. SVRC can
be associated with two sampling schemes, respectively
with and without replacement.

We establish the convergence guarantee of SVRC with
high probability under the implementable inexact con-
dition similar with

∥∥Hk −∇2F (xk)
∥∥ 6 C ‖sk‖. We

show that the convergence of SVRC is at the same rate

1We note that SVRC(ZSG) does not need the objective
function and its gradient to be Lipschitz but we adopt such
assumptions.
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Algorithms
Total Total

SHO SO

CR (Nesterov and Polyak, 2006) O(Nε−3/2) O(ε−3/2)

SCR (Kohler and Lucchi, 2017) O(ε−5/2) O(ε−3/2)

Inexact CR (Xu et al., 2017) O(ε−5/2) O(ε−3/2)

SVRC(ZXG) (Zhou et al., 2018) O(N4/5ε−3/2) O(ε−3/2)

SVRC (This Work) Õ(N2/3ε−3/2) O(ε−3/2)

Table 1: Comparison of total Hessian sample complexity

(O(ε−3/2)) as the original CR (Nesterov and Polyak,
2006) or the other type of inexact-CR in Cartis et al.
(2011, 011b); Kohler and Lucchi (2017).

We then develop the bounds on the total Hessian sam-
ple complexity of SVRC. We show that SVRC achieves
Õ(N2/3ε−3/2) Hessian sample complexity (where we
use Õ to hide the dependence on log factors), which
outperforms CR (Nesterov and Polyak, 2006) by an
order of Õ(N1/3) and outperform SCR (Kohler and
Lucchi, 2017) in the regime of high accuracy require-
ment. Furthermore, our proposed SVRC order-wise
outperforms the algorithm SVRC(ZSG) (Zhou et al.,
2018) by an order of Õ(N2/15), which is also a variance
reduced cubic regularized method concurrently pro-
posed. A detailed comparison among these algorithms
are summarized in Table 1.

We further provide an analysis for the case under sam-
pling without replacement by developing a new con-
centration bound for sampling without replacement for
random matrices by generalizing that for scalar ran-
dom variables in Bardenet and Maillard (2015). Our
result shows that sample replacement has lower sam-
ple complexity than that of with replacement in each
iteration.

Related Works

Escaping saddle points: Various algorithms have
been developed to escape strict saddle points and con-
verge to local minimum for nonconvex optimization.
The first-order such algorithms include the gradient
descent algorithm with random initialization (Lee et al.,
2016) and with injection of random noise (Rong et al.,
2015; Chi et al., 2017). Various second-order algorithms
were also proposed. In particular, Xu et al. (2017); Liu
and Yang (2017); Carmon et al. (2016) proposed algo-
rithms that exploit the negative curvature of Hessian to
escape saddle points. The CR method as we describe
below is another type of second-order algorithm that

has been shown to escape strict saddle points.

CR type of algorithms: The CR method was shown
in Nesterov and Polyak (2006) that converges to a point
that satisfies the first- and second-order optimality
condition for nonconvex optimization. Its accelerated
version was proposed in Nesterov (2008) and the conver-
gence rate was characterized for convex optimization.
Several methods have been proposed to solve the cubic
sub-problem in CR more efficiently. Cartis et al. (2011)
proposed to approximately solve the cubic sub-problem
in Krylov space. Agarwal et al. (2017) proposed an
alternative fast way to solve the sub-problem. Car-
mon and Duchi (2016) proposed a method based on
gradient descent. Zhou et al. (2018) studied asymp-
totic convergence rate of CR under the nonconvex K L
condition, and Wang et al. (2018) established conver-
gence guarantee for CR with momentum in nonconvex
optimization.

Inexact CR algorithms: Various inexact approaches
were proposed to approximate Hessian and gradient in
order to reduce the computational complexity for CR
type of algorithms. In particular, Ghadimi et al. (2017)
studied the inexact CR and accelerated CR for convex
optimization, where the inexactness is fixed through-
out the iterations. Tripuraneni et al. (2017) studied a
similar inexact CR for nonconvex optimization. Alter-
natively, Cartis et al. (2011, 011b) studied the inexact
CR for nonconvex optimization, where the inexact con-
dition is adaptive during the iterations. Wang et al.
(2019) established the convergence result of CR under
a more reasonable inexact condition. Jiang et al. (2017)
studied the adaptive inexact accelerated CR for con-
vex optimization. In practice, sub-sampling is a very
common approach to implement inexact algorithms.
Kohler and Lucchi (2017) proposed a sub-sampling
scheme that adaptively changes the sample complex-
ity to guarantee the inexactness condition in Cartis
et al. (2011, 011b). Xu et al. (2017) proposed uniform
and nonuniform sub-sampling algorithms with fixed
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inexactness condition for nonconvex optimization.

Stochastic variance reduced algorithms: Stochas-
tic variance reduced algorithms have been applied to
various first-order algorithms (known as SVRG algo-
rithms), and the convergence rate has been studied for
convex functions in, e.g., Johnson and Zhang (2013);
Xiao and Zhang (2014) and for nonconvex functions
in, e.g., Reddi et al. (2016); Li et al. (2017); Fang et al.
(2018); Wang et al. (2018). Zhou et al. (2018) proposed
a variance reduction version of CR. In this paper, we
proposed another type of stochastic variance reduction
to the second-order CR method to improve the state-of-
art sample complexity result of approximating Hessian
and gradient in probability perspective, and analyzed
it in with and without replacement schemes.

Sampling without replacement: The sampling
without replacement scheme for first-order methods has
been studied by various papers. Recht and Re (2012)
and Shamir (2016) studied stochastic gradient descent
under sampling without replacement for least square
problems. Gürbüzbalaban et al. (2015) provided con-
vergence rate of the random reshuffling method. As for
the sampling without replacement bounds, Hoeffding
(1963) showed that the bound for sampling with re-
placement also holds for sampling without replacement.
Friedlander and Schmidt (2012) provided deterministic
bounds for without replacement sampling schemes for
gradient approximations under certain assumptions.
Bardenet and Maillard (2015) provided tight concen-
tration bounds for sampling without replacement for
scalar random variables, while bounds for random ma-
trices remain unclear. We fill this gap, and provide
a tight bound for random matrices under sampling
without replacement in this paper.

2 Stochastic Variance Reduction
Scheme for Cubic Regularization

In this paper, we are interested in solving the finite-sum
problem given in eq. (1), which is rewritten below.

min
x∈Rd

F (x) ,
1

N

N∑
i=1

fi(x), (7)

where the component functions fi, i = 1, . . . , N corre-
spond to the loss of the i-th data samples, respectively,
and is nonconvex. More specifically, we adopt the fol-
lowing standard assumptions on the objective function
in eq. (7) throughout the paper

Assumption 1. The objective function in eq. (7) sat-
isfies

1. Function F is bounded below, i.e., infx∈Rd F (x) >
−∞;

2. For all component functions fi, i = 1, . . . , N , the
function value fi, the gradient ∇fi, and the Hessian
∇2fi are L0, L1 and L2-Lipschitz, respectively.

Classical first-order stochastic optimization methods
such as stochastic gradient descent has a low sam-
ple complexity per-iteration (Nemirovski et al., 2009).
However, due to the variance of the stochastic gradients,
the convergence rate is slow even with the incorporation
of momentum (Lan, 2012; Ghadimi and Lan, 2016). A
popular approach to maintain the sample complexity
yet achieve a faster convergence rate that is compa-
rable to that of the full batch first-order methods is
the stochastic variance reduction scheme (Johnson and
Zhang, 2013; Xiao and Zhang, 2014).

Motivated by the success of the variance reduction
scheme in improving the sample complexity of first-
order methods, we propose a stochastic variance re-
duced cubic-regularized Newton’s method, and refer to
it as SVRC. The detailed steps of SVRC are presented
in Algorithm 1. To briefly elaborate the notation in
Algorithm 1, we sequentially index the iterate variable
x across all inner loops by k for k = 0, 1, . . ., so that for
each xk, the initial variable of its inner loop is indexed
as xbk/mc·m (where m is the number of iterations in
each inner loop). For notational simplicity, we denote
such an initial variable of each inner loop as x̃ and
denote its corresponding full gradient and Hessian as
g̃ and H̃, whenever there is no confusion.

Algorithm 1 SVRC

Input: x0 ∈ Rd, and ε1,m,M ∈ R+.
while k do

if k mod m = 0 then
Set gk = ∇F (xk), Hk = ∇2F (xk), g̃ = gk, x̃ =

xk and H̃ = Hk.
else

Sample index sets ξg(k) and ξH(k) from
{1, ..., n} uniformly at random.
Compute

gk= 1
|ξg(k)|

[∑
i∈ξg(k)

(
∇fi(xk)−∇fi(x̃)

)]
+g̃,

Hk= 1
|ξH(k)|

[∑
i∈ξH(k)(∇2fi(xk)−∇2fi(x̃))

]
+H̃.

end if
sk+1 = argmins∈Rd g>k s + 1

2s>Hks + M
6 ‖s‖

3
.

xk+1 = xk + sk+1.
if max{‖sk+1‖ , ‖sk‖} 6 ε1 then

return xk+1

end if
end while

To elaborate the algorithm, SVRC calculates a full
gradient g̃ and a full Hessian H̃ in every outer loop
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(i.e., for every m iterations), which are further used
to construct the stochastic variance reduced gradients
gk and Hessians Hk in the inner loops. Note that the
index sets ξg(k), ξH(k) for the sampled gradients and
Hessians are generated by a random sampling scheme.
More specifically, we consider the following two types
of sampling schemes in this paper.

Sampling with replacement: For k = 0, 1, . . ., each
element of the index sets ξg(k) and ξH(k) is sampled
uniformly at random from {1, . . . , N}.

Sampling without replacement: For k = 0, 1, . . .,
the index sets ξg(k) and ξH(k) are sampled uniformly at
random from all subsets of {1, . . . , N} with cardinality
|ξg(k)| and |ξH(k)|, respectively.

To elaborate, the sampling with replacement scheme
may sample the same index multiple times within each
mini-batch, whereas the sampling without replacement
scheme samples each index at most once within each
mini-batch. Therefore, the sampling without replace-
ment scheme has a smaller variance compared to that of
the sampling with replacement scheme. Consequently,
these sampling schemes lead to inexact gradients and
inexact Hessians with different guarantees to meet the
inexactness criterion.

3 Sample Complexity of SVRC

In this section, we study the sample complexity of
SVRC for achieving a second-order stationary point
via three technical steps, each corresponding to one
subsection below.

3.1 Iteration Complexity under Modified
Inexact Condition

In order to analyze the sample complexity of SVRC
for achieving a second-order stationary point, it turns
out that the inexact condition (Wang et al., 2019) on
the estimated gradients and Hessians is not sufficient.
Thus, we propose a modified inexact condition below,
and then analyze the convergence to a second-order
stationary point if SVRC satisfies such a condition.

Assumption 2. The approximate Hessian Hk and
approximate gradient gk satisfy, for all k = 0, · · · ,∥∥Hk −∇2F (xk)

∥∥ 6 αmax {‖sk‖ , ε1} (8)

‖gk −∇F (xk)‖ 6 βmax
{
‖sk‖2 , ε21

}
(9)

where ε1, α and β are universal positive constants.

The inexact conditions in eqs. (8) and (9) introduce
a slack variable ε1 to avoid full batch sampling when
‖sk‖ is very close to zero upon convergence. It turns

out introduction of such a variable is essential for char-
acterizing the total sample complexity of our proposed
variance reduction scheme in Algorithm 1. Further-
more, since eqs. (8) and (9) are different from that in
(Wang et al., 2019), and hence require the convergence
analysis if SVRC satisfies such conditions. The follow-
ing theorem presents the iteration complexity analysis
under the modified conditions. The technical proof
in fact requires considerable extra effort than that in
Wang et al. (2019).

Theorem 1. Suppose Assumption 1 holds, and SVRC
satisfies Assumption 2. Let

τ , min
{(L+M

2
+ 2β + 2α

)− 1
2

,(
M + 2L

2
+ 2α

)−1 }
,

set

ε1 = τ
√
ε, (10)

and properly choose M,α and β ∈ R such that

γ ,

(
3M − 2L2

24
− 5

2
β − 5

4
α

)
> 0. (11)

Then, the SVRC algorithm outputs an ε-approximate
second-order stationary point, i.e.,

‖∇f(xk+1)‖ 6 ε and ∇2f(xk+1) < −
√
εI (12)

within at most k = O
(
ε−3/2

)
number of iterations.

Moreover, the following inequality holds

k+1∑
i=1

‖si‖3 6 C, (13)

where C , (f(x0)− f∗ + (2β + α+ 2γ) ε31)/γ.

As stated in Theorem 1, SVRC outputs an ε-
approximate second-order stationary point with k =
O
(
ε−3/2

)
. Such an iteration complexity matches the

state-of-art result and is the best result that one can
expect on nonconvex optimization.

3.2 Per-iteration Sample Complexity

In this subsection, we bound the per-iteration sample
complexity in order for SVRC (under sampling with
replacement) to satisfy the inexact conditions in eqs. (8)
and (9). We apply Bernstein’s inequality and obtain
the following theorem.

Theorem 2. Let Assumption 1 hold. Consider SVRC
under the sampling with replacement scheme. Then,
the sub-sampled mini-batch of gradients gk, k = 0, 1, . . .
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satisfies Assumption 2 with probability at least 1 − ζ
provided that

|ξg(k)| >
(

8L2
1

β2 max{‖sk‖4 , ε41}
‖xk − x̃‖2

+
4L1

3βmax{‖sk‖2 , ε21}
‖xk − x̃‖

)
log

(
2(d+ 1)

ζ

)
,

(14)

Furthermore, the sub-sampled mini-batch of Hessians
Hk, k = 0, 1, . . . of SVRC satisfies Assumption 2 with
probability at least 1− ζ provided that

|ξH(k)| >
(

8L2
2

α2 max{‖sk‖2 , ε21}
‖xk − x̃‖2

+
4L2

3αmax{‖sk‖ , ε1}
‖xk − x̃‖

)
log

(
4d

ζ

)
.

(15)

We next compare the per-iteration Hessian sample com-
plexity of SVRC under the sampling with replacement
scheme (eq. (15)) with that of SCR under the same sam-
pling scheme developed in Kohler and Lucchi (2017),
which is rewritten below

|ξH(k)| > O
(

1
‖sk+1‖2

)
. (16)

To compare, our Theorem 2 requires a Hessian sample
complexity of roughly the order

|ξH(k)| > O
(
‖xk−x̃‖2

‖sk‖2

)
. (17)

It can be seen that the sample complexity bounds for
SVRC in eq. (17) have an additional term ‖xk − x̃‖2
in the numerators comparing to their corresponding
bound for SCR in eq. (16). Intuitively, ‖xk − x̃‖ →
0 as the algorithm converges, and thus our variance
reduction scheme requires a lower sample complexity
than the stochastic sampling in SCR.

3.3 Total Sample Complexity of SVRC

Theorem 2 provides the sample complexity per iteration
(each iteration in SVRC inner loop). We next provide
our result on the sample complexity over the running
process of SVRC, which is a key factor that impacts
the computational complexity of SVRC.

Theorem 3. Let Assumptions 1 hold. For a given ε
and δ, set m = N1/3, then SVRC under the sampling
with replacement scheme outputs an point xk+1 such
that satisfies ‖∇F (xk+1)‖ 6 ε and ∇2F (xk+1) < −εI
with probability at least 1 − δ, and the total Hessian
sample complexity of SVRC is bounded by

K∑
i=1

|ξH(i)| 6 CN2/3

ε3/2
log

(
8d

εδ

)
.

We next compare the total Hessian sample complexity
of SVRC with that of other CR-type algorithms, which
are given below.

SVRC:
K∑
i=1

|ξH(i)| = Õ
(
N2/3

ε3/2

)
, (18)

SVRC (ZXG):
K∑
i=1

|ξH(i)| = O
(
N4/5

ε3/2

)
, (19)

CR:
K∑
i=1

|ξH(i)| 6 O
(
N

ε3/2

)
, (20)

SCR:
K∑
i=1

|ξH(i)| 6 O
(

1

ε5/2

)
. (21)

Comparing eqs. (18) to (20). Clearly, our SVRC
has lower total sample complexity than CR and
SVRC(ZXG) by an order of Õ(N1/3) and Õ(N2/15),
respectively. Therefore, our stochastic variance reduc-
tion scheme is sample efficient when applied to CR type
of methods. Also, comparing the sample complexity of
the two subsampled algorithms in eqs. (18) and (21),
we observe that SVRC enjoys a lower-order complexity
bound than SCR if ε = o(N−2/3), and hence performs
better in the high accuracy regime.

4 SVRC under Sampling without
Replacement Scheme

In this section, we explore the sample complexity of
SVRC under the sampling without replacement scheme,
which is commonly used in practice.

To this end, we first develop some technical concentra-
tion inequalities in the next subsection.

4.1 Concentration Inequality under Sampling
without Replacement

The statistics of sampling without replacement is very
different and more stable than that of sampling with
replacement. However, theoretical analysis of sampling
without replacement turns out to be very difficult. A
common approach is to apply the concentration bound
for sampling with replacement, which also holds for
sampling without replacement (Tropp, 2012). How-
ever, such analysis can be too loose to capture the
essence of the scheme of sampling without replacement.
For example, the sample complexity for sampling with
replacement to achieve a certain accuracy can be un-
bounded, whereas sampling without replacement can at
most sample the total sample size.

Thus, in order to develop a tight sample complexity
bound for SVRC under sampling without replacement,
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we first leverage a recently developed Hoeffding-type of
concentration inequality for sampling without replace-
ment (Bardenet and Maillard, 2015). There, the result
is applicable only for scalar random variables, whereas
our analysis here needs to deal with sub-sampled gra-
dients and Hessians, which are vectors and matrices.
This motivates us to first establish the matrix version of
the Hoeffding-Serfling inequality. Such a concentration
bound can be of independent interest in various other
domains. The proof turns out to be very involved and
is provided in the supplementary materials.

Theorem 4. Let X := {A1, · · · ,AN} be a collection
of real-valued matrices in Rd1×d2 with bounded spectral
norm, i.e., ‖Ai‖ 6 σ for all i = 1, . . . , N and some
σ > 0. Let X1, · · · ,Xn be n < N samples from X
under the sampling without replacement. Denote µ :=
1
N

∑N
i=1 Ai. Then, for any ε > 0, the following bound

holds.

P

(∥∥∥∥ 1

n

n∑
i=1

Xi − µ
∥∥∥∥ > ε

)
6 2(d1 + d2) exp

(
− nε2

8σ2(1 + 1/n)(1− n/N)

)
.

To further understand the above theorem, consider
symmetric random matrix Xi ∈ Rd×d. Suppose we
want

∥∥ 1
n

∑n
i=1 Xi − µ

∥∥ 6 ε to hold with probability
1− ζ. Then the above theorem requires the sample size
to satisfy

nw >

(
1

N
+

ε2

16σ2 log(4d)/ζ)

)−1
. (22)

We consider two regimes to understand the bound in
eq. (22). (a) Low accuracy regime: Suppose ε is large
enough so that the second term in eq. (22) dominates.

In this case, we roughly have nw > 16σ2 log(4d/ζ)
ε2 , which

has the same order as the suggested sample size by the
matrix version of the Hoeffding inequality for sampling
with replacement given below

nb >
8σ2 log(2d/ζ)

ε2
. (23)

Thus, the sample size is approximately the same for
sampling with and without replacement to achieve a
low accuracy concentration. (b) High accurary regime:
Suppose ε is small enough so that the first term in
eq. (22) dominates. Hence, eq. (22) roughly reduces
to nw > N , whereas the matrix version of the Hoeffd-
ing bound in eq. (23) for sampling with replacement
requires infinite samples as ε → 0. Thus, the sample
size is highly different for sampling with and without
replacement to achieve a high accuracy concentration.

4.2 Per-iteration Sample Complexity

We apply Theorem 4 to analyze the sample complexity
of SVRC under sampling without replacement. Our
next theorem characterizes the sample size needed for
SVRC in order to satisfy the inexact condition in As-
sumption 2.

Theorem 5. Let Assumption 1 hold. Consider SVRC
under sampling without replacement. The sub-sampled
mini-batches of gradients gk, k = 0, 1, . . . satisfy eq. (6)
with probability at least 1− ζ provided that

|ξg(k)|>
(

1

N
+

β2 max{‖sk‖4 , ε41}
64L2

1 ‖xk − x̃‖2 log(2(d+ 1)/ζ)

)−1
,

(24)

Furthermore, the sub-sampled mini-batches of Hessians
Hk, k = 0, 1, . . . satisfy eq. (4) with probability at least
1− ζ provided that

|ξH(k)| >

(
1

N
+

α2 max{‖sk‖2 , ε21}
64L2

2 ‖xk − x̃‖2 log(4d/ζ)

)−1
.

(25)

In order to further understand the sample complexity
in Theorem 5 and what improvement that SVRC makes
in terms of sample complexity compared to the SCR
algorithm in Kohler and Lucchi (2017), we next char-
acterize the corresponding sample complexity for SCR
under sampling without replacement below. (We note
that the sample complexity for SCR under sampling
with replacement was provided in Kohler and Lucchi
(2017).)

Proposition 6. Let Assumptions 1 hold. Consider
the SCR algorithm in Kohler and Lucchi (2017) under
sampling without replacement. The sub-sampled mini-
batch of gradients gk, k = 0, 1, . . . satisfies eq. (6) with
probability at least 1− ζ provided that for all k

|ξg(k)| >
(

1

N
+

C2
1 ‖xk+1 − xk‖4

64L2
0 log(2(d+ 1)/ζ)

)−1
. (26)

Furthermore, the sub-sampled mini-batch of Hessians
Hk, k = 0, 1, . . . satisfies eq. (4) with probability at least
1− ζ provided that for all k

|ξH(k)| >
(

1

N
+
C2

2 ‖xk+1 − xk‖2

64L2
1 log(4d/ζ)

)−1
. (27)

To compare the sample complexity for SVRC in Theo-
rem 5 and SCR in Proposition 6, we take the sample
complexity for mini-batch of gradients as an example.
Comparing eq. (24) and eq. (26), the second term in
the denominator in eq. (24) is additionally divided by

‖xk − x̃‖2, which converges to zero as the algorithms
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converge. Thus, ‖xk+1 − xk‖2 in eq. (26) converges to

zero much faster than ‖xk+1−xk‖4

‖xk−x̃‖2
in eq. (24), so that

the term 1/N dominates the denominator and results
in the sample size close to the number of total samples
much earlier in the iteration of SCR than SVRC.

We also note that Proposition 6 shows that as SCR
approaches the convergence, the sample size goes to the
total number of samples with technical rigor, whereas
such a fact was only intuitively discussed in Kohler and
Lucchi (2017).

4.3 Total Sample Complexity

We next characterize the total Hessian sample complex-
ity of SVRC under sampling without replacement.

Theorem 7. Let Assumptions 1 hold. For a given
ε and δ, set m = N1/3, then SVRC under sampling
without replacement outputs an point xk+1 such that
satisfies ‖∇F (xk+1)‖ 6 ε and ∇2F (xk+1) < −εI with
probability at least 1− δ. Then the total sample com-
plexity for Hessian used in SVRC is bounded by

k∑
i=0

|ξH(k)| 6 CN2/3

ε3/2
log

(
8d

εδ

)
. (28)

In this theorem, we show that total sample complexity
of SVRC under sampling without replacement is at least
as good as SVRC under sampling with replacement.
And the comparison of this bound with other bound
follows similarly as we discuss in Section 3.3.

5 Discussion

Storage Issue: The proposed algorithm involves the
storage of a Hessian, which requires O(d2) space for
storage. In this perspective, the proposed algorithm
can be directly applied for solving small or medium
scale machine learning problems. As for large scale
problems, using PCA to store the main component of
Hessian can be a possible solution.

With and Without replacement: We show that
the total sample complexity of SVRC under sampling
without replacement is at least as good as SVRC under
sampling with replacement. Actually, if we compare
the per iteration complexity of the two, i.e., we compare
Theorem 5 with Theorem 2, the without replacement
scheme has a better complexity than that with replace-
ment in each iteration since there is a 1/N term in
the denominator on the bound for the scheme without
replacement. This does suggest the same total sample
complexity for the two schemes is likely due to the
technicality issue.

6 Conclusion

In this paper, we proposed a stochastic variance-
reduced cubic regularization method. We characterized
the per iteration sample complexity for Hessian and
gradient that guarantees convergence of SVRC to a
second-order optimality condition, under both sampling
with and without replacement. We also developed the
total sample size for Hessian. Our theoretic results im-
ply that SVRC outperforms the state-of-art result by an
factor of O(N2/15). Moreover, Our study demonstrates
that variance reduction can bring substantial advan-
tage in sample size as well as computational complexity
for second-order algorithms, along which direction we
plan to explore further in the future.
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Supplementary Materials

A Proof of Convergence

A.1 Lemmas

In this subsection, we introduce two useful lemmas, which will be used in the proof of convergence.

Lemma 8 (Nesterov and Polyak (2006), Lemma 1). Let the Hessian ∇2f(·) of the function f(·) be L-Lipschitz
continuous with L > 0. Then, for any x,y ∈ Rd, we have∥∥∇f(y)−∇f(x)−∇2f(x)(y − x)

∥∥ 6
L

2
‖y − x‖2 , (29)∣∣∣∣f(y)− f(x)−∇f(x)T (y − x)− 1

2
(y − x)T∇2f(x)(y − x)

∣∣∣∣ 6 L

6
‖y − x‖3 . (30)

Lemma 9 (Wang et al. (2019), Lemma 3). Let M ∈ R,g ∈ Rd,H ∈ Sd×d, and

s = argmin
u∈Rd

g>u +
1

2
u>Hu +

M

6
‖u‖3 . (31)

Then, the following statements hold:

g + Hs +
M

2
‖s‖ s = 0, (32)

H +
M

2
‖s‖ I < 0, (33)

g>s +
1

2
s>Hs +

M

6
‖s‖3 6 −M

12
‖s‖3 . (34)

A.2 Proof of Theorem 1

Proof. Since ∇2f(x) is L2-Lipschitz, thus we have

f(xk+1)− f(xk)
(i)

6 ∇f(xk)>sk+1 +
1

2
s>k+1∇f(xk)sk+1 +

L2

6
‖sk+1‖3

6 g>k sk+1 +
1

2
s>k+1Hksk+1 +

M

6
‖sk+1‖3 + (∇f(xk)− gk)>sk+1

+
L2 −M

6
‖sk+1‖3 +

1

2
s>k+1(∇2f(xk)−Hk)sk+1

(ii)

6 −3M − 2L2

12
‖sk+1‖3 + (∇f(xk)− gk)>sk+1 +

1

2
s>k+1(∇f(xk)−Hk)sk+1 (35)

where (i) follows from Lemma 8 with y = xk+1,x = xk and sk+1 = xk+1 − xk, (ii) follows from eq. (34) in
Lemma 9 with g = gk,H = Hk and s = sk+1.

Next, we bound the terms (∇f(xk)− gk)>sk+1 and s>k+1(∇f(xk)−Hk)sk+1. For the first term, we have that

(∇f(xk)− gk)>sk+1 6 ‖∇f(xk)− gk‖ ‖sk+1‖
(i)

6 β
(
‖sk‖2 + ε21

)
‖sk+1‖ = β

(
‖sk‖2‖sk+1‖+ ε21‖sk+1‖

)
(ii)

6 β
(
‖sk‖3 + ‖sk+1‖3 + ε31 + ‖sk+1‖3

)
= β

(
‖sk‖3 + 2‖sk+1‖3 + ε31

)
, (36)

where (i) follows from Assumption 2, which gives that ‖gk −∇F (xk)‖ 6 βmax
{
‖sk‖2 , ε21

}
, and (ii) follows from

the inequality that for a, b ∈ R+, a2b 6 a3 + b3, which can be verified by checking the cases with a < b and a > b,
respectively. Similarly, we obtain that

s>k+1(∇f(xk)−Hk)sk+1 6
∥∥∇2f(xk)−Hk

∥∥ ‖sk+1‖2
(i)

6 α (‖sk‖+ ε1) ‖sk+1‖2 = α
(
‖sk‖‖sk+1‖2 + ε1‖sk+1‖2

)
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(ii)

6 α
(
‖sk‖3 + ‖sk+1‖3 + ε31 + ‖sk+1‖3

)
= α

(
‖sk‖3 + 2‖sk+1‖3 + ε31

)
, (37)

where (i) follows from Assumption 2, which gives that
∥∥Hk −∇2F (xk)

∥∥ 6 αmax {‖sk‖ , ε1}, and (ii) follows from
the inequality that for a, b ∈ R+, a2b 6 a3 + b3.

Plugging eqs. (36) and (37) into eq. (35) yields

f(xk+1)− f(xk) 6 −3M − 2L2

12
‖sk+1‖3 + β

(
‖sk‖3 + 2‖sk+1‖3 + ε31

)
+
α

2

(
‖sk‖3 + 2‖sk+1‖3 + ε31

)
= −

(
3M − 2L2

12
− 2β − α

)
‖sk+1‖3 +

(
β +

α

2

)
‖sk‖3 +

(
β +

α

2

)
ε31 (38)

Summing Equation (38) for 0 to k, we obtain

f(xk+1)− f(x0) 6 −
(

3M − 2L2

12
− 2β − α

) k+1∑
i=1

‖si‖3 +
(
β +

α

2

) k∑
i=0

‖si‖3 +
(
β +

α

2

) k∑
i=0

ε31

6 −
(

3M − 2L2

12
− 2β − α

) k+1∑
i=1

‖si‖3 +
(
β +

α

2

) k+1∑
i=0

‖si‖3 +
(
β +

α

2

) k∑
i=0

ε31

6 −
(

3M − 2L2

12
− 3β − 3

2
α

) k+1∑
i=1

‖si‖3 +
(
β +

α

2

)
‖s0‖3 +

(
β +

α

2

) k∑
i=0

ε31, (39)

We next note that

k+1∑
i=1

‖si‖3 =
1

2

(
k+1∑
i=1

‖si‖3 +

k+1∑
i=1

‖si‖3
)

=
1

2

(
k+1∑
i=1

‖si‖3 +

k∑
i=0

‖si+1‖3
)

>
1

2

k∑
i=1

(
‖si‖3 + ‖si+1‖3

)
. (40)

Plugging eq. (40) into eq. (39) yields that

f(xk+1)− f(x0) 6 −
k∑
i=1

(
3M − 2L2

24
− 3

2
β − 3

4
α

)(
‖si‖3 + ‖si+1‖3

)
+
(
β +

α

2

)
‖s0‖3 +

(
β +

α

2

) k∑
i=0

ε31

(i)

6 −
k∑
i=1

(
3M − 2L2

24
− 5

2
β − 5

4
α

)(
‖si‖3 + ‖si+1‖3

)
+
(
β +

α

2

)
‖s0‖3 +

(
β +

α

2

)
ε31,

where (i) follows from the fact that before the algorithm terminates we always have that ‖si‖ > ε1 or ‖si+1‖ > ε1,
which gives that ‖si‖3 + ‖si+1‖3 > ε31. Therefore, we have

k∑
i=1

(
3M − 2L2

24
− 5

2
β − 5

4
α

)(
‖si‖3 + ‖si+1‖3

)
6 f(x0)− f∗ +

(
β +

α

2

)
‖s0‖3 +

(
β +

α

2

)
ε31

(i)
= f(x0)− f∗ + (2β + α) ε31 (41)

where (i) follows from the fact that ‖s0‖ = ε1. Thus, if the algorithm never terminates, then we always have that
‖si‖ > ε1 or ‖si+1‖ > ε1, which gives ‖si‖3 + ‖si+1‖3 > ε31. Following from Equation (41), we obtain that

k × γε31 6 f(x0)− f∗ + (2β + α) ε31, (42)

where γ ,
(
3M−2L2

24 − 5
2β −

5
4α
)
. Therefore, we obtain

k 6
f(x0)− f∗ + (2β + α) ε31

γε31
, (43)

which shows that the algorithm must terminates if the total number of iterations exceeds O(ε−31 ). With the choice
of ε1 in Theorem 1 , we obtain that the algorithm terminates at most with total iteration k = O(ε−3/2).
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Suppose that the algorithm terminates at iteration k, then according to the analysis in eq. (41), we have that

k−1∑
i=1

γ
(
‖si‖3 + ‖si+1‖3

)
6 f(x0)− f∗ + (2β + α) ε31. (44)

On the other hand, according to eq. (44) and the terminal condition that ‖si‖ 6 ε1 and ‖si+1‖ 6 ε1, we obtain

k∑
i=1

γ
(
‖si‖3 + ‖si+1‖3

)
6 f(x0)− f∗ + (2β + α+ 2γ) ε31,

which gives that

k+1∑
i=1

‖si‖3 6
f(x0)− f∗ + (2β + α+ 2γ) ε31

γ
. (45)

We next consider the convergence of ‖∇f(xk)‖ and
∥∥∇2f(xk)

∥∥. Next, we prove the convergence rate of ∇f(·)
and ∇2f(·). We first derive

‖∇f(xk+1)‖ (i)
=

∥∥∥∥∇f(xk+1)−
(

gk + Hksk+1 +
M

2
‖sk+1‖ sk+1

)∥∥∥∥
6 ‖∇f(xk+1)− (gk + Hksk+1)‖+

M

2
‖sk+1‖2

6
∥∥∇f(xk+1)−∇f(xk)−∇2f(xk)sk+1

∥∥+ ‖∇f(xk)− gk‖+
∥∥(∇2f(xk)−Hk)sk+1

∥∥+
M

2
‖sk+1‖2

(ii)

6
L2

2
‖sk+1‖2 + β(‖sk‖2 + ε21) + α(‖sk‖+ ε1) ‖sk+1‖+

M

2
‖sk+1‖2

(iii)

6

(
L+M

2
+ 2β + 2α

)
ε21

(iv)

6 ε,

where (i) follows from eq. (32) with g = gk,H = Hk and s = sk+1, (ii) follows from eq. (29) in Lemma 8 and
Assumption 2, (iii) follows from the terminal condition of the algorithm, and (iv) follows from eq. (10).

Similarly, we have

∇2f(xk+1)
(i)

< Hk −
∥∥Hk −∇2f(xk+1)

∥∥ I

(ii)

< −M
2
‖sk+1‖ I−

∥∥Hk −∇2f(xk+1)
∥∥ I

< −M
2
‖sk+1‖ I−

∥∥Hk −∇2f(xk)
∥∥ I−

∥∥∇2f(xk)−∇2f(xm+1)
∥∥ I

(iii)

< −M
2
‖sk+1‖ I− α(‖sk‖+ ε1)I− L2 ‖sk+1‖ I

(iv)

< −
(
M + 2L2

2
+ 2α

)
ε1I

(v)

< εI,

where (i) follows from Weyl’s inequality, (ii) follows from eq. (33) with H = Hm and s = sm+1, (iii) follows from
Assumption 2 and the fact that ∇2f(·) is L2-Lipschitz, (iv) follows from the terminal condition of the algorithm,
and (v) follows from eq. (10).

B Proofs for SVRC under Sampling with Replacement

B.1 Proof of Theorem 2

The idea of the proof is to apply the following matrix Bernstein inequality Tropp (2012) for sampling with
replacement to characterize the sample complexity in order to satisfy the inexactness condition

∥∥Hk −∇2F (xk)
∥∥ 6

αmax{‖sk‖ , ε1} with the probability at least 1 − ζ.
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Lemma 10 (Matrix Bernstein Inequality). Consider a finite sequence {Xk} of independent, random matrices
with dimensions d1 × d2. Assume that each random matrix satisfies

EXk = 0 and ‖Xk‖ 6 R almost surely.

Define

σ2 , max
(∥∥∥∑

k
E(XkX

∗
k)
∥∥∥ , ∥∥∥∑

k
E(X∗kXk)

∥∥∥) . (46)

Then, for all ε > 0,

P

(∥∥∥∑
k

Xk

∥∥∥ > ε

)
6 2(d1 + d2) exp

(
− ε2/2

σ2 +Rε/3

)
.

Let ξH(k) be the collection of index that uniformly picked from 1, · · · , N with replacement, and Xi be

Xi =
1

|ξH(k)|
(
∇2fi(xk)−∇2fi(x̃) +∇2F (x̃)−∇2F (xk)

)
,

then we have

Hk −∇2F (xk) =
∑

i∈ξH(k)

Xi. (47)

Moreover, we have EXi = 0, and

R , ‖Xi‖ =
1

|ξH(k)|
∥∥∇2fξi(xk)−∇2fξi(x̃) +∇2F (x̃)−∇2F (xk)

∥∥
(i)

6
2L2

|ξH(k)|
‖xk − x̃‖ , (48)

where (i) follows because ∇2fi(·) is L2 Lipschitz, for 1 6 i 6 N .

The variance also can be bounded by

σ2 , max

(∥∥∥∥∑k∈ξH(k)
E(XkX

∗
k)

∥∥∥∥ , ∥∥∥∥∑k∈ξH(k)
E(X∗kXk)

∥∥∥∥)
(i)

6

∥∥∥∥∑k∈ξH(k)
E(X2

k)

∥∥∥∥ (ii)

6
∑

k∈ξH(k)
E
∥∥X2

k

∥∥ 6
∑

k∈ξH(k)
E ‖Xk‖2

(ii)

6
4L2

2

|ξH(k)|
‖xk − x̃‖2 (49)

where (i) follows from the fact that Xk is real and symmetric, (ii) follows from Jensen’s inequality, and (iii)
follows from eq. (48).

Therefore, in order to satisfy
∥∥Hk −∇2F (xk)

∥∥ 6 αmax{‖sk‖ , ε1} with probability at least 1− ζ, by eq. (47), it is

equivalent to require
∥∥∥∑i∈ξH(k) Xi

∥∥∥ 6 αmax{‖sk‖ , ε1} with probability at least 1− ζ. We now apply Lemma 10

for Xi, and it is sufficient to have:

2(d1 + d2) exp

(
−ε2/2

σ2 +Rε/3

)
6 ζ

which is equivalent to have

1

σ2 +Rε/3
>

2

ε2
log

(
2(d1 + d2)

ζ

)
. (50)
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Plugging eqs. (48) and (49) into eq. (50) yields

1
4L2

2

|ξH(k)| ‖xk − x̃‖2 + 2L2

|ξH(k)| ‖xk − x̃‖ ε/3
>

2

ε2
log

(
4d

ζ

)
,

which gives

|ξH(k)| >
(

8L2
2

ε2
‖xk − x̃‖2 +

4L2

3ε
‖xk − x̃‖

)
log

(
4d

ζ

)
. (51)

Substituting ε = αmax{‖sk‖ , ε1}, we obtain the required sample size to be bounded by

|ξH(k)| >

(
8L2

2

α2 max{‖sk‖2 , ε21}
‖xk − x̃‖2 +

4L2

3αmax{‖sk‖ , ε1}
‖xk − x̃‖

)
log

(
4d

ζ

)
. (52)

We next bound the sample size |ξg(k)| for the gradient in the similar procedure. We first define Xi ∈ Rd×1 as

Xi =
1

|ξg(k)|
(∇fξi(xk)−∇fξi(x̃) +∇F (x̃)−∇F (xk)) , (53)

then we have

gk −∇f(xk) =
∑

i∈ξg(k)

Xi (54)

Furthermore,

R = ‖Xi‖ =
1

|ξg(k)|
‖∇fξi(xk)−∇fξi(x̃) +∇F (x̃)−∇F (xk)‖

(i)

6
2L1

|Sg,k|
‖xk − x̃‖ , (55)

where (i) follows because ∇fi(·) is L1 Lipschitz, for i = 1, . . . , N , and

σ2 , max

(∥∥∥∥∑k∈ξg(k)
E(XkX

∗
k)

∥∥∥∥ , ∥∥∥∥∑k∈ξg(k)
E(X∗kXk)

∥∥∥∥) 6
∑

k∈ξH(k)
E ‖Xk‖2

(ii)

6
4L2

1

|ξg(k)|
‖xk − x̃‖2

In order to satisfy ‖gk −∇F (xk)‖ 6 βmax
{
‖sk‖2 , ε21

}
with the probability at least 1 − ζ, by eq. (54), it is

equivalent to require
∥∥∥∑i∈ξg(k)|Xi

∥∥∥ 6 βmax
{
‖sk‖2 , ε21

}
with the probability at least 1 − ζ. We then apply

Lemma 10 for Xi in the way similar to that for bounding the sample size for Hessian, with R = 2L1

|Sg,k| ‖xk − x̃‖,

ε = βmax
{
‖sk‖2 , ε21

}
, and σ2 =

4L2
1

|ξg(k)| ‖xk − x̃‖2, and obtain the required sample size to satisfy

|ξg(k)| >

(
8L2

1

β2 max{‖sk‖4 , ε41}
‖xk − x̃‖2 +

4L1

3βmax{‖sk‖2 , ε21}
‖xk − x̃‖

)
log

(
2(d+ 1)

ζ

)
. (56)

B.2 Proof of Theorem 3

First, by eq. (13), we have

k+1∑
i=1

‖xi − xi−1‖3 6 C. (57)

We then derive

k/m−1∑
i=0

m−1∑
j=1

‖xi·m+j − xi·m‖2
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6
k/m−1∑
i=0

m−1∑
j=1

(
‖xi·m+j − xi·m+j−1‖+ · · ·+ ‖xi·m+1 − xi·m‖

)2

6
k/m−1∑
i=0

m−1∑
j=1

(
‖xi·m+m−1 − xi·m+m−2‖+ · · ·+ ‖xi·m+1 − xi·m‖

)2

=

k/m−1∑
i=0

m−1∑
j=1

(m−1∑
l=1

‖xi·m+l − xi·m+l−1‖
)2 (i)

6
k/m−1∑
i=0

m−1∑
j=1

m
m−1∑
l=1

‖xi·m+l − xi·m+l−1‖2

(ii)

6 m2

k/m−1∑
i=0

m−1∑
l=1

‖xi·m+l − xi·m+l−1‖2 6 m2
k∑
i=1

‖xi − xi−1‖2

(iii)

6 m2k1/3
( k∑
i=1

‖xi − xi−1‖3
)2/3 (iv)

6 m2k1/3C2/3, (58)

where (i) follows from the Cauthy-Schwaz inequality (ii) follows because j is not a variable in the inner summation,
(iii) follows from Holder’s inequality, and (iv) follows from eq. (57).

Similarly, we have that

k/m−1∑
i=0

m−1∑
j=1

‖xi·m+j − xi·m‖ 6
k/m−1∑
i=0

m−1∑
j=1

(
‖xi·m+j − xi·m+j−1‖+ · · ·+ ‖xi·m+1 − xi·m‖

)

6
k/m−1∑
i=0

m−1∑
j=1

(
‖xi·m+m−1 − xi·m+m−2‖+ · · ·+ ‖xi·m+1 − xi·m‖

)

=

k/m−1∑
i=0

m−1∑
j=1

(m−1∑
l=1

‖xi·m+l − xi·m+l−1‖
)

(i)

6 m

k/m−1∑
i=0

m−1∑
l=1

‖xi·m+l − xi·m+l−1‖

6 m
k∑
i=1

‖xi − xi−1‖
(ii)

6 mk2/3
( k∑
i=1

‖xi − xi−1‖3
)1/3 (iii)

6 mk2/3C1/3, (59)

where (i) follows because j is not a variable in the inner summation, (ii) follows from Holder’s inequality, and (iii)
follows from eq. (57).

Thus, the total sample size for Hessian is given by

m+
kN

m
+

k/m−1∑
i=0

m−1∑
j=1

|ξH(k)|

(i)

6
CkN

m
+

k/m−1∑
i=0

m−1∑
j=1

(
8L2

2

α2 max{‖sk‖2 , ε21}
‖xi·m+j − xi·m‖2 +

4L2

3αmax{‖sk‖ , ε1}
‖xi·m+j − xi·m‖

)
log

(
4d

ζ

)

6
CkN

m
+

k/m−1∑
i=0

m−1∑
j=1

(
8L2

2

α2ε21
‖xi·m+j − xi·m‖2 +

4L2

3αε1
‖xi·m+j − xi·m‖

)
log

(
4d

ζ

)
(ii)

6
CkN

m
+

(
8L2

2

α2ε21
m2k1/3C2/3 +

4L2

3αε1
mk2/3C1/3

)
log

(
4d

ζ

)
(iii)

6 log

(
4d

ζ

)(
N

mε3/2
+

C

ε3/2
m2 +

C

ε3/2
m

)
= log

(
4d

ζ

)
C

ε3/2

(
N

m
+m2

)
where (i) follows form Theorem 2, and (ii) follows form eqs. (58) and (59), (iii) follows from the fact that ζ 6 1

and d > 1 which gives log
(

4d
ζ

)
> 1, and ε1 = O(ε1/2) such that k = O(ε−3/2) according to Theorem 1
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We minimize the above bound over m, substitute the minimizer m? = N1/3, and obtain

k∑
i=0

|ξH(k)| 6 CN2/3

ε3/2
log

(
4d

ζ

)
.

Next, according to Theorem 2, Assumption 2 is satisfies with probability at least 1 − ζ for gradient and 1− ζ for
Hessian . Thus, according to the union bound, the probability of a failure satisfaction per iteration is at most 2ζ.
Then, for k iteration, the probability of failure satisfaction of Assumption 2 is at most 2kζ according to the union
bound. To obtain Assumption 2 holds for the total k iteration with probability least 1 − δ, we require

1− 2kζ > 1− δ,

which yields

ζ 6
δ

2k
.

Thus, with probability 1− δ, the algorithms successfully outputs an ε approximated second-order stationary point,
with the total Hessian sample complexity is bounded by

k∑
i=0

|ξH(k)| 6 CN2/3

ε3/2
log

(
8d

ε3/2δ

)
6
CN2/3

ε3/2
log

(
8d

εδ

)
. (60)

which gives

k∑
i=0

|ξH(k)| = Õ

(
N2/3

ε3/2

)
. (61)

C Proof of Concentration Inequality for Sampling without replacement

The proof generalizes the Hoeffding-Serfling inequality for scalar random variables in Bardenet and Maillard
(2015) to that for random matrices. We also apply various properties for handling random matrices in Tropp
(2012).

C.1 Definitions and Useful Lemmas

We first introduce the definition of the matrix function following Tropp (2012), and then introduce a number of
Lemmas that are useful in the proof.

Given a symmetric matrix A, suppose its eigenvalue decomposition is given by A = UΛUT ∈ Rd×d, where
Λ = diag(λ1, · · · , λd). Then a function f : R→ R of A is defined as:

f(A) , Uf(Λ)UT , (62)

where f(Λ) = diag(f(λ1), · · · , f(λd)), i.e., f(Λ) applies the function f(·) to each diagonal entry of the matrix Λ.

The trace exponential function tr exp : A→ treA, i.e., tr exp(A), is defined to first apply the exponential matrix
function exp(A), and then take the trace of exp(A). Such a function is monotone with respect to the semidefinite
order:

A 4 H =⇒ tr exp(A) 4 tr exp(H), (63)

which follows because for two symmetric matrices A and H, if A 4 H, then λi(A) 6 λi(H) for every i, where
λi(A) is the i-th largest eigenvalue of A. Furthermore, the matrix function log(·) is monotone with respect to
the semidefinite order (see the exercise 4.2.5 in Bhatia (2007)):

0 ≺ A 4 H =⇒ log(A) 4 log(H). (64)

The next three lemmas follow directly from Bardenet and Maillard (2015) because the proofs are applicable for
matrices.
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Lemma 11. [Bardenet and Maillard (2015)] Let Zk , 1
k

∑k
i=1 Xi. The following reverse martingale structure

holds for {Zk}k6N :

E[Zk|Zk+1, · · ·ZN−1] = Zk+1. (65)

Lemma 12. [Bardenet and Maillard (2015)] Let Yk , ZN−k for 1 6 k 6 N − 1. For any λ > 0, the following
equality holds for 2 6 k 6 n,

λYk = λYk−1 − λ
XN−k+1 − µ−Yk−1

N − k
. (66)

Lemma 13. [Bardenet and Maillard (2015)] Let Yk , ZN−k for 1 6 k 6 N − 1. For 2 6 k 6 N , the following
equality holds

E[XN−k+1 − µ−Yk−1|Y1, · · · ,Yk−1] = 0, (67)

where µ = 1
N

∑N
t=1 Xt.

The following lemma is an extension of Hoeffding’s inequality for scalars to matrices. We include a brief proof for
completeness.

Lemma 14 (Hoeffding’s Inequality for Matrix). For a random symmetric matrix X ∈ Rd×d, suppose

E[X] = 0 and aI 4 X 4 bI.

where a and b are real constants. Then for any λ > 0, the following inequality holds

E[eλX] 4 exp

(
1

8
λ2(b− a)2I

)
. (68)

Proof. The proof follows from the standard reasoning for scalar version. We emphasize only the difference in
handling matrices. Suppose the eigenvalue decomposition of the symmetric random matrix X can be written as
X = UΛUT , where U = [u1, · · · ,ud] and Λ = diag(λ1, · · · , λd). Therefore, we obtain eλX =

∑d
i=1 e

λλiuiu
T
i .

Since scalar function eλx is convex for any λ > 0, for 1 6 i 6 d, we have

eλλi 6

(
b− λi
b− a

eλa +
λi − a
b− a

eλb
)
, (69)

which implies that

eλλiuiu
T
i 4

(
b− λi
b− a

eλa +
λi − a
b− a

eλb
)

uiu
T
i . (70)

Then,

E[eλX] = E
[ d∑
i=1

eλλiuiu
T
i

]
(i)

4 E
[ d∑
i=1

(
b− λi
b− a

eλa +
λi − a
b− a

eλb
)

uiu
T
i

]

= E
[ d∑
i=1

b

b− a
eλauiu

T
i −

d∑
i=1

λi
b− a

eλauiu
T
i +

d∑
i=1

λi
b− a

eλbuiu
T
i −

d∑
i=1

a

b− a
eλbuiu

T
i

]
(ii)
= E

[ d∑
i=1

b

b− a
eλauiu

T
i −

eλa

b− a
X +

eλb

b− a
X−

d∑
i=1

a

b− a
eλbuiu

T
i

]
(iii)
= E

[ d∑
i=1

b

b− a
eλauiu

T
i −

d∑
i=1

a

b− a
eλbuiu

T
i

]
(iv)
= E

[
b

b− a
eλaI− a

b− a
eλbI

]
=

(
b

b− a
eλa − a

b− a
eλb
)

I
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4 exp

(
1

8
λ2(b− a)2

)
I

(v)
= exp

(
1

8
λ2(b− a)2I

)
, (71)

where (i) follows from eq. (70) and the fact that the expectation of random matrix preserves the semi-definite order,

(ii) follows from X =
∑d
i=1 λiuiu

T
i , (iii) follows because E[X] = 0, (iv) follows because I = UUT =

∑d
i=1 uiu

T
i ,

and (v) follows from the standard steps in the proof of the scalar version of Hoeffding’s inequality.

Lemma 15. Tropp (2012)[Corollary 3.3] Let H be a fixed self-adjoint matrix, and let X be a random self-adjoint
matrix. The following inequality holds

E tr exp(H + X) 6 tr exp(H + log(EeX)). (72)

Lemma 16. Bardenet and Maillard (2015) For integer n 6 N , the following inequality holds

n∑
t=1

( 1

N − t
)2

6
n

(N − n)2
(
1− n− 1

N

)
C.2 Proof of Theorem 4

First, it suffices to show the theorem only for symmetric matrices, due to the technique of dilations in Tropp
(2012) that transforms the asymmetric matrix to a symmetric matrix while keeping the spectral norm to be the
same.

Second, it also suffices to show that for 1 6 i 6 N , Xi are symmetric and bounded, i.e., aI 4 Xi 4 bI, and
1 6 n 6 N − 1, the following inequality holds

P

(
λmax

(
1

n

n∑
i=1

Xi − µ
)

> ε

)
6 d exp

(
− nε2

2(b− a)2(1 + 1/n)(1− n/N)

)
.

This is because the above result, with Xi being replaced with −Xi, implies

P

(
λmin

(
1

n

n∑
i=1

Xi − µ
)

6 −ε
)

6 d exp

(
− nε2

2(b− a)2(1 + 1/n)(1− n/N)

)
. (73)

Then the combination of the two results completes the desired theorem.

We start the proof by applying the matrix version of Chernoff inequality as follows. Let Zk , 1
k

∑k
i=1 Xi, for any

λ > 0, we obtain

P

(
λmax(Zn) > ε

)
= P

(
exp(λλmax(Zn)) > exp(λε)

)
(i)

6 exp(−λε)E exp
(
λλmax(Zn)

)
(ii)

6 exp(−λε)E λmax

(
exp(λZn)

)
(iii)

6 exp(−λε)E tr exp(λZn)

(iv)

6 exp(−λε) tr exp

(
λ2

2
(b− a)2

(n+ 1)

n2

(
1− n

N

)
I

)
(v)

6 d exp

(
λ2

2
(b− a)2

(n+ 1)

n2

(
1− n

N

))
exp(−λε)

= d exp

(
λ2

2
(b− a)2

(n+ 1)

n2

(
1− n

N

)
− λε

)
(74)

where (i) follows from the matrix version of Chernoff inequality, (ii) follows from the fact that exp(·) is an increasing
function, thus exp

(
λλmax(Zn)

)
= λmax

(
exp(λZn), and (iii) follows from the fact that λmax(A) 6 tr(A), with

A = exp(λZn), we get the desire result.
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We next bound E tr exp(λZn). Let Yk , ZN−k for 1 6 k 6 N − 1, and Ek[ · ] , E[ · |Y1, · · · ,Yk]. Thus,

E tr exp(λYn)
(i)
= E tr exp

(
λYn−1 − λ

XN−n+1 − µ−Yn−1

N − n

)
(ii)
= E En−1 tr exp

(
λYn−1 − λ

XN−n+1 − µ−Yn−1

N − n

)
(iii)

6 E tr exp

(
λYn−1 + logEn−1 exp

(
− λXN−n+1 − µ−Yn−1

N − n

))
, (75)

where (i) follows from Lemma 12, (ii) follows from the tower property of expectation, (iii) follows by applying
Lemma 15, where λYn−1 is deterministic given Y1, · · · ,Yk, and −λ

(
XN−n+1−µ−Yn−1

)
/(N − n) is a random

variable matrix.

In order to apply Lemma 14 to bound En−1 exp(−λ
(
XN−n+1 − µ−Yn−1

)
/(N − n)), we first bound XN−n+1 −

µ−Yn−1 as follows:

XN−n+1 − µ−Yn−1
(i)
= XN−n+1 − µ− ZN−n+1

(ii)
= XN−n+1 − µ−

1

N − n+ 1

N−n+1∑
i=1

(
Xi − µ

)

= XN−n+1 −
1

N − n+ 1

N−n+1∑
i=1

Xi, (76)

where (i) follows from the definition of Yn−1 and (ii) follows from the definition of ZN−n+1. Since aI 4 Xi 4 bI,
the above equality implies

− (b− a)

N − n
I 4

XN−n+1 − µ−Yn−1

N − n
4

(b− a)

N − n
I. (77)

By applying Lemma 14, and the fact En−1[XN−n+1 − µ−Yn−1] = 0 due to Lemma 13, we obtain

En−1 exp

(
XN−n+1 − µ−Yn−1

)
4 exp

(
1

8
λ2
(

2(b− a)

N − n

)2

I

)
= exp

(
1

2
λ2
(
b− a
N − n

)2

I

)
, (78)

Substituting eq. (78) into eq. (75), we obtain

E tr exp(λYn)
(i)

6 E tr exp

(
λYn−1 + log exp

(
1

2
λ2
(
b− a
N − n

)2

I

))
= E tr exp

(
λYn−1 +

λ2

2

(
b− a
N − n

)2

I

)
· · · · · ·

(ii)

6 tr exp

(
logE[eλY1 ] +

n∑
t=2

λ2

2

(
b− a
N − t

)2

I

)
. (79)

where (i) follows from eqs. (63) and (64), and (ii) follows by applying the steps similar to obtain eq. (78) for n− 2
times.

To bound E[eλY1 ], we first note that

Y1 = ZN−1 =
1

N − 1

N−1∑
i=1

(
Xi − µ

)
(i)
=

1

N − 1

(
Nµ−XN − (N − 1)µ

)
=

1

N − 1

(
µ−XN

)
,

where (i) follows because Nµ =
∑N
i=1 Xi. Thus with aI 4 Xi 4 bI and aI 4 µ 4 bI, we obtain

− (b− a)

N − 1
I 4 Y1 4

(b− a)

N − 1
I. (80)
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Applying the matrix Hoeffding lemma with eq. (80) and E[Y1] = E[ZN−1] = 0, we obtain

E[eλY1 ] 4 exp

(
1

2
λ2
(
b− 1

N − 1

)2

I

)
. (81)

Substituting eq. (81) into eq. (79), we obtain

E tr exp(λYn) 6 tr exp

( n∑
t=1

λ2

2

(
b− a
N − t

)2

I

)

= tr exp

(
λ2

2
(b− a)2

n∑
t=1

(
1

N − t

)2

I

)
(i)

6 tr exp

(
λ2

2
(b− a)2

n

(N − n)2

(
1− n− 1

N

)
I

)
, (82)

where (i) follows from lemma 16.

Now let m = N − n, where 1 6 m 6 N − 1, and hence Yn = ZN−n. Thus, eq. (82) implies

E tr exp(λZm) 6 tr exp

(
λ2

2
(b− a)2

(m+ 1)

m2

(
1− m

N

)
I

)
.

Substituting the above bound into eq. (74), we obtain

P

(
λmax(Zn) > ε

)
6 exp(−λε) tr exp

(
λ2

2
(b− a)2

(n+ 1)

n2

(
1− n

N

)
I

)
= d exp

(
λ2

2
(b− a)2

(n+ 1)

n2

(
1− n

N

)
− λε

)
, (83)

where the last step follows form the equation tr(aI) = da for I ∈ Rd×d. The proof is completed by minimizing the
above bound with respect to λ > 0, and then substituting the minimizer λ? = nε

(b−a)2(1+ 1
n )(1− n

N )
.

D Proofs for SVRC under Sampling without Replacement

D.1 Proof of Theorem 5

Proof. The idea of the proof is to apply the matrix concentration inequality for sampling without replacement
that we developed in Theorem 4 to characterize the sample complexity in order to satisfy the inexactness condition∥∥Hk −∇2F (xk)

∥∥ 6 αmax{‖sk‖ , ε1} with the probability at least 1 − ζ.

We first note that

Hk −∇2F (xk)
(i)
= 1
|ξH(k)|

[∑
i∈ξH(k)(∇2fi(xk)−∇2fi(x̃))

]
+∇2F (x̃k)−∇2F (xk)

=
1

|ξH(k)|
∑

i∈ξH(k)

(
∇2fi(xk)−∇2fi(x̃) +∇2F (x̃)−∇2F (xk)

)
where (i) follows from the definition of Hk in Algorithm 1. In order to apply the concentration inequality
(Theorem 4) to bound Hk −∇2F (xk), we define, for 1 6 i 6 N ,

Xi = ∇2fi(xk)−∇2fi(x̃) +∇2F (x̃)−∇2F (xk),

which gives

Hk −∇2F (xk) =
1

|ξH(k)|
∑

i∈ξH(k)

Xi. (84)
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Moreover, we have µ , 1
N

∑N
i=1 Xi = 0, and

σ , ‖Ai‖ =
∥∥∇2fi(xk)−∇2fi(x̃) +∇2F (x̃)−∇2F (xk)

∥∥ (i)

6 2L2 ‖xk − x̃‖ ,

where (i) follows because ∇2fi(·) is L2 Lipschitz, for 1 6 i 6 N .

Thus, in order to satisfy
∥∥Hk −∇2F (xk)

∥∥ 6 αmax{‖sk‖ , ε1} with probability at least 1 − ζ, by eq. (84), it

is equivalent to satisfy
∥∥∥ 1
|ξH(k)|

∑
i∈ξH(k) Xi − µ

∥∥∥ 66 αmax{‖sk‖ , ε1} with probability at least 1 − ζ. We now

apply Theorem 4 for Xi, and it is sufficient to have:

2(d1 + d2) exp

(
− nε2

8σ2(1 + 1/n)(1− n/N)

)
6 ζ,

which implies

nε2

8σ2(1 + 1/n)(1− n/N)
> log(

2(d1 + d2)

ζ
).

Using (1 + 1/n) 6 2, it is sufficient to have:

nε2

16σ2(1− n/N)
> log(

2(d1 + d2)

ζ
),

which implies

n >
1

1
N + ε2

16σ2 log(2(d1+d2)/ζ)

. (85)

We then substitute σ = 2L2 ‖xk − x̃‖, ε = αmax{‖sk‖ , ε1}, and n = |ξH(k)|, and obtain the required sample size
to satisfy

|ξH(k)| > 1

1
N +

α2 max{‖sk‖2,ε21}
64L2

2‖xk−x̃‖2 log(4d/ζ)

. (86)

We next bound the sample size |ξg(k)| for the gradient, the proof follows the same procedure. We first define
Xi ∈ Rd×1 as

Xi = ∇fi(xk)−∇fi(x̃) +∇F (x̃)−∇F (xk), (87)

and hence

gk −∇F (xk) =
1

|ξg(k)|
∑

i∈ξg(k)

Xi. (88)

Moreover, we have µ = 1
N

∑
i∈ξg(k) Ai = 0, and

σ , ‖Ai‖ = ‖∇fi(xk)−∇fi(x̃) +∇F (x̃)−∇F (xk)‖
(i)

6 2L1 ‖xk − x̃‖ ,

where (i) follows because ∇fi(·) is L1 Lipschitz, for 1 6 i 6 N .

In order to satisfy ‖gk −∇F (xk)‖ 6 βmax{‖sk‖2 , ε21} with probability at least 1− ζ, by eq. (88), it is equivalent

to satisfy
∥∥∥ 1
|ξg(k)|

∑
i∈ξg(k) Xi − µ

∥∥∥ 6 βmax{‖sk‖2 , ε21} with probability at least 1− ζ. We then apply Theorem 4

for Xi in the way similar to that for bounding the sample size for Hessian, with σ = 2L1 ‖xk − x̃‖, µ = 0,

ε = βmax{‖sk‖2 , ε21}, and n = |ξg(k)|, and obtain the required sample size to satisfy

|ξg(k)| > 1

1
N +

β2 max{‖sk‖4,ε41}
64L2

1‖xk−x̃‖2 log(2(d+1)/ζ)

. (89)
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D.2 Proof of Proposition 6

Proof. The proof of Proposition 6 is similar to the proof of Theorem 5. We first define Ai ∈ Rd×d as

Ai = ∇2fi(xk)−∇2F (xk), (90)

and hence µ = 1
N

∑
i∈ξH(k) Ai = 0. Furthermore,

σ , ‖Ai‖ =
∥∥∇2fi(xk)−∇2F (xk)

∥∥ (i)

6 2L1,

where (i) follows from Assumption 1.

Let {Xi}
|ξg(k)|
i=1 = {Ai : i ∈ ξH(k)}, and we have

1

|ξH(k)|
∑

i∈ξH(k)

Xi − µ
(i)
=

1

|ξH(k)|
∑

i∈ξH(k)

Ai
(ii)
= Hk −∇2F (xk), (91)

where (i) follows from the fact that µ = 0 and (ii) follows from the definition of Hk in Algorithm 1.

We then apply Theorem 4 for Xi with σ = 2L1, µ = 0, ε = C2 ‖xk+1 − xk‖, and n = |ξH(k)|, and obtain the
require sampled size to satisfy

|ξH(k)| > 1

1
N +

C2
2‖xk+1−xk‖2

64L2
1 log(4d/ζ)

. (92)

To bound the sample size of gradient, i.e., |ξg(k)|, we follow the similar proof by constructing

Ai = ∇fi(xk)−∇F (xk), (93)

and applying Theorem 4 with σ = 2L0, µ = 0, ε = C1 ‖xk+1 − xk‖2, and n = |ξg(k)|, and obtain the required
sample size to satisfy

|ξg(k)| > 1

1
N +

C2
1‖xk+1−xk‖4

64L2
0 log(2(d+1)/ζ)

. (94)

D.3 Proof of Theorem 7

Proof. Assume the algorithm terminates at iteration k, then the total Hessian complexity is given by

m+
kN

m
+

k/m−1∑
i=0

m−1∑
j=1

|ξH(k)|
(i)

6
CkN

m
+

k/m−1∑
i=0

m−1∑
j=1

1

1
N +

α2 max{‖sk‖2,ε21}
64L2

2‖xi·m+j−xi·m‖2 log(4d/ζ)

6
CkN

m
+

k/m−1∑
i=0

m−1∑
j=1

64L2
2 ‖xi·m+j − xi·m‖2 log(4d/ζ)

α2ε21

(ii)

6
CkN

m
+

64L2
2

α2ε21

(
m2k1/3C2/3

)
log

(
4d

ζ

)
(iii)

6 C log

(
4d

ζ

)(
N

mε3/2
+
m2

ε3/2

)
=

C

ε3/2
log

(
4d

ζ

)(
N

m
+m2

)
where (i) follows form Theorem 5, and (ii) follows form eq. (58), (iii) follows from the fact that ζ < 1 and d > 1

which gives log
(

4d
ζ

)
> 1, and the fact that ε1 = O(ε1/2) such that k = O(ε−3/2) according to Theorem 1.
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We minimize the above bound over m, substitute the minimizer m? = N1/3, and follows the similar procedure in
the proof of eq. (13) to ensure a successful event overall iteration with at least 1 − δ, which gives that

k∑
i=0

|ξH(k)| 6 CN2/3

ε3/2
log

(
8d

εδ

)
. (95)

Thus, we have

k∑
i=0

|ξH(k)| = Õ

(
N3/2

ε3/2

)
. (96)
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