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Abstract

Cubic-regularized Newton’s method (CR) is a popular algorithm that guarantees
to produce a second-order stationary solution for solving nonconvex optimization
problems. However, existing understandings of the convergence rate of CR are
conditioned on special types of geometrical properties of the objective function.
In this paper, we explore the asymptotic convergence rate of CR by exploiting the
ubiquitous Kurdyka-Łojasiewicz (KŁ) property of nonconvex objective functions.
In specific, we characterize the asymptotic convergence rate of various types
of optimality measures for CR including function value gap, variable distance
gap, gradient norm and least eigenvalue of the Hessian matrix. Our results fully
characterize the diverse convergence behaviors of these optimality measures in the
full parameter regime of the KŁ property. Moreover, we show that the obtained
asymptotic convergence rates of CR are order-wise faster than those of first-order
gradient descent algorithms under the KŁ property.

1 Introduction

A majority of machine learning applications are naturally formulated as nonconvex optimization
due to the complex mechanism of the underlying model. Typical examples include training neural
networks in deep learning Goodfellow et al. (2016), low-rank matrix factorization Ge et al. (2016);
Bhojanapalli et al. (2016), phase retrieval Candès et al. (2015); Zhang et al. (2017), etc. In particular,
these machine learning problems take the generic form

min
x∈Rd

f(x), (P)

where the objective function f : Rd → R is a differentiable and nonconvex function, and usually
corresponds to the total loss over a set of data samples. Traditional first-order algorithms such
as gradient descent can produce a solution x̄ that satisfies the first-order stationary condition, i.e.,
∇f(x̄) = 0. However, such first-order stationary condition does not exclude the possibility of
approaching a saddle point, which can be a highly suboptimal solution and therefore deteriorate the
performance.

Recently in the machine learning community, there has been an emerging interest in designing
algorithms to scape saddle points in nonconvex optimization, and one popular algorithm is the
cubic-regularized Newton’s algorithm Nesterov and Polyak (2006); Agarwal et al. (2017); Yue et al.
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(2018), which is also referred to as cubic regularization (CR) for simplicity. Such a second-order
method exploits the Hessian information and produces a solution x̄ for problem (P) that satisfies the
second-order stationary condition, i.e.,

(second-order stationary) : ∇f(x̄) = 0, ∇2f(x̄) � 0.

The second-order stationary condition ensures CR to escape saddle points wherever the corresponding
Hessian matrix has a negative eigenvalue (i.e., strict saddle points Sun et al. (2015)). In particular,
many nonconvex machine learning problems have been shown to exclude spurious local minima and
have only strict saddle points other than global minima Baldi and Hornik (1989); Sun et al. (2017);
Ge et al. (2016); Zhou and Liang (2018). In such a desirable case, CR is guaranteed to find the
global minimum for these nonconvex problems. To be specific, given a proper parameter M > 0, CR
generates a variable sequence {xk}k via the following update rule

(CR) xk+1 ∈ argmin
y∈Rd

〈y − xk,∇f(xk)〉+
1

2
(y − xk)>∇2f(xk)(y − xk) +

M

6
‖y − xk‖3. (1)

Intuitively, CR updates the variable by minimizing an approximation of the objective function at the
current iterate. This approximation is essentially the third-order Taylor’s expansion of the objective
function. We note that computationally efficient solver has been proposed for solving the above cubic
subproblem Agarwal et al. (2017), and it was shown that the resulting computation complexity of CR
to achieve a second-order stationary point serves as the state-of-the-art among existing algorithms
that achieve the second-order stationary condition.

Several studies have explored the convergence of CR for nonconvex optimization. Specifically, the
pioneering work Nesterov and Polyak (2006) first proposed the CR algorithm and showed that the
variable sequence {xk}k generated by CR has second-order stationary limit points and converges
sub-linearly. Furthermore, the gradient norm along the iterates was shown to converge quadratically
(i.e., super-linearly) given an initialization with positive definite Hessian. Moreover, the function
value along the iterates was shown to converge super-linearly under a certain gradient dominance
condition of the objective function. Recently, Yue et al. (2018) studied the asymptotic convergence
rate of CR under the local error bound condition, and established the quadratic convergence of the
distance between the variable and the solution set. Clearly, these results demonstrate that special
geometrical properties (such as the gradient dominance condition and the local error bound) enable
much faster convergence rate of CR towards a second-order stationary point. However, these special
conditions may fail to hold for generic complex objectives involved in practical applications. Thus, it
is desired to further understand the convergence behaviors of CR for optimizing nonconvex functions
over a broader spectrum of geometrical conditions.

The Kurdyka-Łojasiewicz (KŁ) property (see Section 2 for details) Bolte et al. (2007, 2014) serves as
such a candidate. As described in Section 2, the KŁ property captures a broad spectrum of the local
geometries that a nonconvex function can have and is parameterized by a parameter θ that changes over
its allowable range. In fact, the KŁ property has been shown to hold ubiquitously for most practical
functions (see Section 2 for a list of examples). The KŁ property has been exploited extensively
to analyze the convergence rate of various first-order algorithms for nonconvex optimization, e.g.,
gradient method Attouch and Bolte (2009); Li et al. (2017), alternating minimization Bolte et al.
(2014) and distributed gradient methods Zhou et al. (2016a). But it has not been exploited to establish
the convergence rate of second-order algorithms towards second-order stationary points. In this
paper, we exploit the KŁ property of the objective function to provide a comprehensive study of the
convergence rate of CR for nonconvex optimization. We anticipate our study to substantially advance
the existing understanding of the convergence of CR to a much broader range of nonconvex functions.
We summarize our contributions as follows.

1.1 Our Contributions
We characterize the convergence rate of CR locally towards second-stationary points for nonconvex
optimization under the KŁ property of the objective function. Our results also compare and contrast
the different order-level of guarantees that KŁ yields between the first and second-order algorithms.
Also, our analysis characterizes the convergence property for a range of KŁ parameter θ, which
requires the development of different recursive inequalities for various cases.

Gradient norm & least eigenvalue of Hessian: We characterize the asymptotic convergence rates
of the sequence of gradient norm {‖∇f(xk)‖}k and the sequence of the least eigenvalue of Hessian
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{λmin(∇2f(xk))}k generated by CR. We show that CR meets the second-order stationary condition
at a (super)-linear rate in the parameter range θ ∈ [ 1

3 , 1] for the KŁ property, while the convergence
rates become sub-linearly in the parameter range θ ∈ (0, 1

3 ) for the KŁ property.

Function value gap & variable distance: We characterize the asymptotic convergence rates of
the function value sequence {f(xk)}k and the variable sequence {xk}k to the function value and
the variable of a second-order stationary point, respectively. The obtained convergence rates range
from sub-linearly to super-linearly depending on the parameter θ associated with the KŁ property.
Our convergence results generalize the existing ones established in Nesterov and Polyak (2006)
corresponding to special cases of θ to the full range of θ. Furthermore, these types of convergence
rates for CR are orderwise faster than the corresponding convergence rates of the first-order gradient
descent algorithm in various regimes of the KŁ parameter θ (see Table 1 and Table 2 for the
comparisons).

Based on the KŁ property, we establish a generalized local error bound condition (referred to as the
KŁ error bound). The KŁ error bound further leads to characterization of the convergence rate of
distance between the variable and the solution set, which ranges from sub-linearly to super-linearly
depending on the parameter θ associated with the KŁ property. This result generalizes the existing
one established in Yue et al. (2018) corresponding to a special case of θ to the full range of θ.

1.2 Related Work
Cubic regularization: CR algorithm was first proposed in Nesterov and Polyak (2006), in which the
authors analyzed the convergence of CR to second-order stationary points for nonconvex optimization.
In Nesterov (2008), the authors established the sub-linear convergence of CR for solving convex
smooth problems, and they further proposed an accelerated version of CR with improved sub-linear
convergence. Recently, Yue et al. (2018) studied the asymptotic convergence properties of CR under
the error bound condition, and established the quadratic convergence of the iterates. Several other
works proposed different methods to solve the cubic subproblem of CR, e.g., Agarwal et al. (2017);
Carmon and Duchi (2016); Cartis et al. (2011b).

Inexact-cubic regularization: Another line of work aimed at improving the computation efficiency
of CR by solving the cubic subproblem with inexact gradient and Hessian information. In particular,
Ghadimi et al. (2017); Tripuraneni et al. (2017) proposed an inexact CR for solving convex problem
and nonconvex problems, respectively. Also, Cartis et al. (2011a) proposed an adaptive inexact
CR for nonconvex optimization, whereas Jiang et al. (2017) further studied the accelerated version
for convex optimization. Several studies explored subsampling schemes to implement inexact CR
algorithms, e.g., Kohler and Lucchi (2017); Xu et al. (2017); ?); Wang et al. (2018).

KŁ property: The KŁ property was first established in Bolte et al. (2007), and was then widely
applied to characterize the asymptotic convergence behavior for various first-order algorithms for
nonconvex optimization Attouch and Bolte (2009); Li et al. (2017); Bolte et al. (2014); Zhou et al.
(2016a); Zhou et al. (2018). The KŁ property was also exploited to study the convergence of second-
order algorithms such as generalized Newton’s method Frankel et al. (2015) and the trust region
method Noll and Rondepierre (2013). However, these studies did not characterize the convergence
rate and the studied methods cannot guarantee to converge to second-order stationary points, whereas
this paper provides this type of results.

First-order algorithms that escape saddle points: Many first-order algorithms are proved to
achieve second-order stationary points for nonconvex optimization. For example, online stochastic
gradient descent Ge et al. (2015), perturbed gradient descent Tripuraneni et al. (2017), gradient
descent with negative curvature Carmon and Duchi (2016); Liu and Yang (2017) and other stochastic
algorithms Allen-Zhu (2017).

2 Preliminaries on KŁ Property and CR Algorithm

Throughout the paper, we make the following standard assumptions on the objective function
f : Rd → R Nesterov and Polyak (2006); Yue et al. (2018).
Assumption 1. The objective function f in the problem (P) satisfies:

1. Function f is continuously twice-differentiable and bounded below, i.e., infx∈Rd f(x) > −∞;
2. For any α ∈ R, the sub-level set {x : f(x) ≤ α} is compact;
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3. The Hessian of f is L-Lipschitz continuous on a compact set C, i.e.,

‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖, x,y ∈ C.

The above assumptions make problem (P) have a solution and make the iterative rule of CR being well
defined. We note that if the Lipschitz constant is unknown a priori, one can apply a standard back-
tracking line search step to dynamically search for a proper constant. Besides these assumptions, many
practical functions are shown to satisfy the so-called Łojasiewicz gradient inequality Łojasiewicz
(1965). Recently, such a condition was further generalized to the Kurdyka-Łojasiewicz property
Bolte et al. (2007, 2014), which is satisfied by a larger class of nonconvex functions.

Next, we introduce the KŁ property of a function f . Throughout, the (limiting) subdifferential of a
proper and lower-semicontinuous function f is denoted as ∂f , and the point-to-set distance is denoted
as distΩ(x) := infw∈Ω ‖x−w‖.
Definition 1 (KŁ property, Bolte et al. (2014)). A proper and lower-semicontinuous function f is
said to satisfy the KŁ property if for every compact set Ω ⊂ domf on which f takes a constant value
fΩ ∈ R, there exist ε, λ > 0 such that for all x̄ ∈ Ω and all x ∈ {z ∈ Rd : distΩ(z) < ε, fΩ <
f(z) < fΩ + λ}, one has

ϕ′ (f(x)− fΩ) · dist∂f(x)(0) ≥ 1, (2)

where ϕ′ is the derivative of function ϕ : [0, λ)→ R+, which takes the form ϕ(t) = c
θ t
θ for some

constants c > 0, θ ∈ (0, 1].

The KŁ property establishes local geometry of the nonconvex function around a compact set. In
particular, consider a differentiable function (which is our interest here) so that ∂f = ∇f . Then, the
local geometry described in eq. (2) can be rewritten as

f(x)− fΩ ≤ C‖∇f(x)‖
1

1−θ (3)

for some constant C > 0. Equation (3) can be viewed as a generalization of the gradient dominance
condition Łojasiewicz (1963); Karimi et al. (2016), which corresponds to the special case of θ = 1

2 .
The KŁ property has been shown to hold for a large class of functions including sub-analytic functions,
logarithm and exponential functions and semi-algebraic functions. These function classes cover most
of nonconvex objective functions encountered in practical applications. To illustrate, consider the
function xp/q , where p is an even positive integer and q < p is a positive integer. Then, it satisfies the
KŁ property in the region [−1, 1] with θ = 1− p−q

p . More generally, many nonconvex problems have
been shown to be KŁ with θ = 1/2 Zhou et al. (2016b); Yue et al. (2018); Zhou and Liang (2017).

Next, we provide some fundamental understandings of CR that determines the convergence rate. The
algorithmic dynamics of CR Nesterov and Polyak (2006) is very different from that of first-order
gradient descent algorithm, which implies that the convergence rate of CR under the KŁ property
can be very different from the existing result for the first-order algorithms under the KŁ property.
We provide a detailed comparison between the two algorithmic dynamics in Table 1 for illustration,
where Lgrad corresponds to the Lipschitz parameter of ∇f for gradient descent, L is the Lipschitz
parameter for Hessian and we choose M = L for CR for simple illustration.

Table 1: Comparison between dynamics of gradient descent and CR.

gradient descent cubic-regularization (M = L)

f(xk)− f(xk−1) ≤ −Lgrad

2 ‖xk − xk−1‖2 − L
12‖xk − xk−1‖3

‖∇f(xk)‖ ≤ Lgrad‖xk − xk−1‖ L‖xk − xk−1‖2

−λmin(∇2f(xk)) ≤ N/A 3L
2 ‖xk − xk−1‖

It can be seen from Table 1 that the dynamics of gradient descent involves information up to the first
order (i.e., function value and gradient), whereas the dynamics of CR involves the additional second
order information, i.e., least eigenvalue of Hessian (last line in Table 1). In particular, note that the
successive difference of function value f(xk+1)− f(xk) and the gradient norm ‖∇f(xk)‖ of CR
are bounded by higher order terms of ‖xk−xk−1‖ compared to those of gradient descent. Intuitively,
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this implies that CR should converge faster than gradient descent in the converging phase when
xk+1 − xk → 0. Next, we exploit the dynamics of CR and the KŁ property to study its asymptotic
convergence rate.

Notation: Throughout the paper, we denote f(n) = Θ(g(n)) if and only if for some 0 < c1 < c2,
c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0.

3 Convergence Rate of CR to Second-order Stationary Condition

In this subsection, we explore the convergence rates of the gradient norm and the least eigenvalue
of the Hessian along the iterates generated by CR under the KŁ property. Define the second-order
stationary gap

µ(x) := max

{√
2

L+M
‖∇f(x)‖, − 2

2L+M
λmin(∇2f(x))

}
.

The above quantity is well established as a criterion for achieving second-order stationary Nesterov
and Polyak (2006). It tracks both the gradient norm and the least eigenvalue of the Hessian at x. In
particular, the second-order stationary condition is satisfied as µ(x) = 0.

Next, we characterize the convergence rate of µ for CR under the KŁ property.

Theorem 1. Let Assumption 1 hold and assume that problem (P) satisfies the KŁ property associated
with parameter θ ∈ (0, 1]. Then, there exists a sufficiently large k0 ∈ N such that for all k ≥ k0 the
sequence {µ(xk)}k generated by CR satisfies

1. If θ = 1, then µ(xk)→ 0 within finite number of iterations;

2. If θ ∈ ( 1
3 , 1), then µ(xk)→ 0 super-linearly as µ(xk) ≤ Θ

(
exp

(
−
(

2θ
1−θ
)k−k0))

;

3. If θ = 1
3 , then µ(xk)→ 0 linearly as µ(xk) ≤ Θ

(
exp

(
− (k − k0)

))
;

4. If θ ∈ (0, 1
3 ), then µ(xk)→ 0 sub-linearly as µ(xk) ≤ Θ

(
(k − k0)−

2θ
1−3θ

)
.

Theorem 1 provides a full characterization of the convergence rate of µ for CR to meet the second-
order stationary condition under the KŁ property. It can be seen from Theorem 1 that the convergence
rate of µ is determined by the KŁ parameter θ. Intuitively, in the regime θ ∈ (0, 1

3 ] where the local
geometry is ‘flat’, CR achieves second-order stationary slowly as (sub)-linearly. As a comparison, in
the regime θ ∈ ( 1

3 , 1] where the local geometry is ‘sharp’, CR achieves second-order stationary fast
as super-linearly.

We next compare the convergence results of µ in Theorem 1 with that of µ for CR studied in Nesterov
and Polyak (2006). To be specific, the following two results are established in (Nesterov and Polyak,
2006, Theorems 1 & 3) under Assumption 1.

1. limk→∞ µ(xk) = 0, min1≤t≤k µ(xt) ≤ Θ(k−
1
3 );

2. If the Hessian is positive definite at certain xt, then the Hessian remains to be positive
definite at all subsequent iterates {xk}k≥t and {µ(xk)}k converges to zero quadratically.

Item 1 establishes a best-case bound for µ(xk), i.e., it holds only for the minimum µ along the
iteration path. As a comparison, our results in Theorem 1 characterize the convergence rate of µ(xk)
along the entire asymptotic iteration path. Also, the quadratic convergence in item 2 relies on the
fact that CR eventually stays in a locally strong convex region (with KŁ parameter θ = 1

2 ), and this
is consistent with our convergence rate in Theorem 1 for KŁ parameter θ = 1

2 . In summary, our
result captures the effect of the underlying geometry (parameterized by the KŁ parameter θ) on the
convergence rate of CR towards second-order stationary.

4 Other Convergence Results of CR

In this section, we first present the convergence rate of function value and variable distance for
CR under the KŁ property. Then, we discuss that such convergence results are also applicable to
characterize the convergence rate of inexact CR.
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4.1 Convergence Rate of Function Value for CR
It has been proved in (Nesterov and Polyak, 2006, Theorem 2) that the function value sequence
{f(xk)}k generated by CR decreases to a finite limit f̄ , which corresponds to the function value
evaluated at a certain second-order stationary point. The corresponding convergence rate has also
been developed in Nesterov and Polyak (2006) under certain gradient dominance condition of the
objective function. In this section, we characterize the convergence rate of {f(xk)}k to f̄ for CR by
exploiting the more general KŁ property. We obtain the following result.
Theorem 2. Let Assumption 1 hold and assume problem (P) satisfies the KŁ property associated
with parameter θ ∈ (0, 1]. Then, there exists a sufficiently large k0 ∈ N such that for all k ≥ k0 the
sequence {f(xk)}k generated by CR satisfies

1. If θ = 1, then f(xk) ↓ f̄ within finite number of iterations;

2. If θ ∈ ( 1
3 , 1), then f(xk) ↓ f̄ super-linearly as f(xk+1)− f̄ ≤ Θ

(
exp

(
−
(

2
3(1−θ)

)k−k0))
;

3. If θ = 1
3 , then f(xk) ↓ f̄ linearly as f(xk+1)− f̄ ≤ Θ

(
exp

(
− (k − k0)

))
;

4. If θ ∈ (0, 1
3 ), then f(xk) ↓ f̄ sub-linearly as f(xk+1)− f̄ ≤ Θ

(
(k − k0)−

2
1−3θ

)
.

From Theorem 2, it can be seen that the function value sequence generated by CR has diverse
asymptotic convergence rates in different regimes of the KŁ parameter θ. In particular, a larger θ
implies a sharper local geometry that further facilitates the convergence. We note that the gradient
dominance condition discussed in Nesterov and Polyak (2006) locally corresponds to the KŁ property
in eq. (3) with the special cases θ ∈ {0, 1

2}, and hence the convergence rate results in Theorem 2
generalize those in (Nesterov and Polyak, 2006, Theorems 6, 7).

We can further compare the function value convergence rates of CR with those of gradient descent
method Frankel et al. (2015) under the KŁ property (see Table 2 for the comparison). In the
KŁ parameter regime θ ∈ [ 1

3 , 1], the convergence rate of {f(xk)}k for CR is super-linear—orderwise
faster than the corresponding (sub)-linear convergence rate of gradient descent. Also, both methods
converge sub-linearly in the parameter regime θ ∈ (0, 1

3 ), and the corresponding convergence rate of
CR is still considerably faster than that of gradient descent.

Table 2: Comparison of convergence rate of {f(xk)}k between gradient descent and CR.

KŁ parameter gradient descent cubic-regularization

θ = 1 finite-step finite-step

θ ∈ [ 1
2 , 1) linear super-linear

θ ∈ [ 1
3 ,

1
2 ) sub-linear (super)-linear

θ ∈ (0, 1
3 ) sub-linear O(k−

1
1−2θ ) sub-linear O(k−

2
1−3θ )

4.2 Convergence Rate of Variable Distance for CR
It has been proved in (Nesterov and Polyak, 2006, Theorem 2) that all limit points of {xk}k generated
by CR are second order stationary points. However, the sequence is not guaranteed to be convergent
and no convergence rate is established.

Our next two results show that the sequence {xk}k generated by CR is convergent under the
KŁ property.
Theorem 3. Let Assumption 1 hold and assume that problem (P) satisfies the KŁ property. Then,
the sequence {xk}k generated by CR satisfies

∞∑
k=0

‖xk+1 − xk‖ < +∞. (4)

Theorem 3 implies that CR generates an iterate {xk}k with finite trajectory length, i.e., ‖x∞−x0‖ <
+∞. In particular, eq. (4) shows that the sequence is absolutely summable, which strengthens
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the result in Nesterov and Polyak (2006) that establishes the cubic summability instead, i.e.,∑∞
k=0 ‖xk+1 − xk‖3 < +∞. We note that the cubic summability property does not guarantee

that the sequence is convergence, for example, the sequence { 1
k}k is cubic summable but is not

absolutely summable. In comparison, the summability property in eq. (4) directly implies that the
sequence {xk}k generated by CR is a Cauchy convergent sequence, and we obtain the following
result.
Corollary 1. Let Assumption 1 hold and assume that problem (P) satisfies the KŁ property. Then,
the sequence {xk}k generated by CR is a Cauchy sequence and converges to some second-order
stationary point x̄.

We note that the convergence of {xk}k to a second-order stationary point is also established for CR in
Yue et al. (2018), but under the special error bound condition, whereas we establish the convergence
of {xk}k under the KŁ property that holds for general nonconvex functions.

Next, we establish the convergence rate of {xk}k to the second-order stationary limit x̄.
Theorem 4. Let Assumption 1 hold and assume that problem (P) satisfies the KŁ property. Then,
there exists a sufficiently large k0 ∈ N such that for all k ≥ k0 the sequence {xk}k generated by CR
satisfies

1. If θ = 1, then xk → x̄ within finite number of iterations;
2. If θ ∈ ( 1

3 , 1), then xk → x̄ super-linearly as ‖xk+1 − x̄‖ ≤ Θ
(

exp
(
−
(

2θ
3(1−θ) + 2

3

)k−k0))
;

3. If θ = 1
3 , then xk → x̄ linearly as ‖xk+1 − x̄‖ ≤ Θ

(
exp

(
− (k − k0)

))
;

4. If θ ∈ (0, 1
3 ), then xk → x̄ sub-linearly as ‖xk+1 − x̄‖ ≤ Θ

(
(k − k0)−

2θ
1−3θ

)
.

From Theorem 4, it can be seen that the convergence rate of {xk}k is similar to that of {f(xk)}k in
Theorem 2 in the corresponding regimes of the KŁ parameter θ. Essentially, a larger parameter θ
induces a sharper local geometry that leads to a faster convergence.

We can further compare the variable convergence rate of CR in Theorem 4 with that of gradient
descent method Attouch and Bolte (2009) (see Table 3 for the comparison). It can be seen that the
variable sequence generated by CR converges orderwise faster than that generated by the gradient
descent method in a large parameter regimes of θ.

Table 3: Comparison of convergence rate of {xk}k between gradient descent and CR.

KŁ parameter gradient descent cubic-regularization

θ = 1 finite-step finite-step

θ ∈ [ 1
2 , 1) linear super-linear

θ ∈ [ 1
3 ,

1
2 ) sub-linear (super)-linear

θ ∈ (0, 1
3 ) sub-linear O(k−

θ
1−2θ ) sub-linear O(k−

2θ
1−3θ )

4.3 Extension to Inexact Cubic Regularization
All our convergence results for CR in previous sections are based on the algorithm dynamics Table 1
and the KŁ property of the objective function. In fact, such dynamics of CR has been shown to be
satisfied by other inexact variants of CR Cartis et al. (2011b,a); Kohler and Lucchi (2017); Wang et al.
(2018) with different constant terms. These inexact variants of CR updates the variable by solving
the cubic subproblem in eq. (1) with the inexact gradient∇f̂(xk) and inexact Hessian∇2f̂(xk) that
satisfy the following inexact criterion

‖∇f̂(xk)−∇f(xk)‖ ≤ c1‖xk+1 − xk‖2, (5)∥∥(∇2f̂(xk)−∇2f(xk)
)
(xk+1 − xk)

∥∥ ≤ c2‖xk+1 − xk‖2, (6)

where c1, c2 are positive constants. Such inexact criterion can reduce the computational complexity
of CR for solving finite-sum problems and can be realized via various types of subsampling schemes
Kohler and Lucchi (2017); Wang et al. (2018).
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Since the above inexact-CR also satisfies the dynamics in Table 1 (with different constant terms), all
our convergence results for CR can be directly applied to inexact CR. Then, we obtain the following
corollary.

Corollary 2 (Inexact-CR). Let Assumption 1 hold and assume that problem (P) satisfies the KŁ prop-
erty. Then, the sequences {µ(xk)}k, {f(xk)}k, {xk}k generated by the inexact-CR satisfy respec-
tively the results in Theorems 1, 2, 3 and 4.

5 Convergence Rate of CR under KŁ Error Bound

In Yue et al. (2018), it was shown that the gradient dominance condition (i.e., eq. (3) with θ = 1
2 )

implies the following local error bound, which further leads to the quadratic convergence of CR.

Definition 2. Denote Ω as the set of second-order stationary points of f . Then, f is said to satisfy
the local error bound condition if there exists κ, ρ > 0 such that

distΩ(x) ≤ κ‖∇f(x)‖, ∀ distΩ(x) ≤ ρ. (7)

As the KŁ property generalizes the gradient dominance condition, it implies a much more general
spectrum of the geometry that includes the error bound in Yue et al. (2018) as a special case. Next,
we first show that the KŁ property implies the KŁ -error bound, and then exploit such an error bound
to establish the convergence of CR.

Proposition 1. Denote Ω as the set of second-order stationary points of f . Let Assumption 1
hold and assume that f satisfies the KŁ property. Then, there exist κ, ε, λ > 0 such that for all
x ∈ {z ∈ Rd : distΩ(z) < ε, fΩ < f(z) < fΩ + λ}, the following property holds.

(KŁ -error bound) distΩ(x) ≤ κ‖∇f(x)‖
θ

1−θ . (8)

We refer to the condition in eq. (8) as the KŁ -error bound, which generalizes the original error bound
in eq. (7) under the KŁ property. In particular, the KŁ -error bound reduces to the error bound in the
special case θ = 1

2 . By exploiting the KŁ error bound, we obtain the following convergence result
regarding distΩ(xk).

Proposition 2. Denote Ω as the set of second-order stationary points of f . Let Assumption 1 hold
and assume that problem (P) satisfies the KŁ property. Then, there exists a sufficiently large k0 ∈ N
such that for all k ≥ k0 the sequence {distΩ(xk)}k generated by CR satisfies

1. If θ = 1, then distΩ(xk)→ 0 within finite number of iterations;

2. If θ ∈ ( 1
3 , 1), then distΩ(xk)→ 0 super-linearly as distΩ(xk) ≤ Θ

(
exp

(
−
(

2θ
1−θ
)k−k0))

;

3. If θ = 1
3 , then distΩ(xk)→ 0 linearly as distΩ(xk) ≤ Θ

(
exp

(
− (k − k0)

))
;

4. If θ ∈ (0, 1
3 ), then distΩ(xk)→ 0 sub-linearly as distΩ(xk) ≤ Θ

(
(k − k0)−

2θ
1−3θ

)
.

We note that Proposition 2 characterizes the convergence rate of the point-to-set distance distΩ(xk),
which is different from the convergence rate of the point-to-point distance ‖xk − x̄‖ established in
Theorem 4. Also, the convergence rate results in Proposition 2 generalizes the quadratic convergence
result in Yue et al. (2018) that corresponds to the case θ = 1

2 .

6 Conclusion

In this paper, we explore the asymptotic convergence rates of the CR algorithm under the KŁ property
of the nonconvex objective function, and establish the convergence rates of function value gap, iterate
distance and second-order stationary gap for CR. Our results show that the convergence behavior of
CR ranges from sub-linear convergence to super-linear convergence depending on the parameter of
the underlying KŁ geometry, and the obtained convergence rates are order-wise improved compared
to those of first-order algorithms under the KŁ property. As a future direction, it is interesting to study
the convergence of other computationally efficient variants of the CR algorithm such as stochastic
variance-reduced CR under the KŁ property in nonconvex optimization.
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Supplementary Materials
The proof of Theorem 1 is based on the results in other theorems. Thus, we postpone its proof to the
end of the supplementary material.

Proof of Theorem 2

Theorem 2. Let Assumption 1 hold and assume problem (P) satisfies the KŁ property associated
with parameter θ ∈ (0, 1]. Then, there exists a sufficiently large k0 ∈ N such that for all k ≥ k0 the
sequence {f(xk)}k generated by CR satisfies

1. If θ = 1, then f(xk) ↓ f̄ within finite number of iterations;

2. If θ ∈ ( 1
3 , 1), then f(xk) ↓ f̄ super-linearly as f(xk+1)− f̄ ≤ Θ

(
exp

(
−
(

2
3(1−θ)

)k−k0))
;

3. If θ = 1
3 , then f(xk) ↓ f̄ linearly as f(xk+1)− f̄ ≤ Θ

(
exp

(
− (k − k0)

))
;

4. If θ ∈ (0, 1
3 ), then f(xk) ↓ f̄ sub-linearly as f(xk+1)− f̄ ≤ Θ

(
(k − k0)−

2
1−3θ

)
.

Proof. We first recall the following fundamental result proved in Nesterov and Polyak (2006), which
serves as a convenient reference.

Theorem 5 (Theorem 2, Nesterov and Polyak (2006)). Let Assumption 1 hold. Then, the sequence
{xk}k generated by CR satisfies

1. The set of limit points ω(x0) of {xk}k is nonempty and compact, all of which are second-order
stationary points;

2. The sequence {f(xk)}k decreases to a finite limit f̄ , which is the constant function value evaluated
on the set ω(x0).

From the results of Theorem 5 we conclude that distω(x0)(xk) → 0, f(xk) ↓ f̄ and ω(x0) is
a compact set on which the function value is the constant f̄ . Then, it is clear that for any fixed
ε > 0, λ > 0 and all k ≥ k0 with k0 being sufficiently large, xk ∈ {x : distω(x0)(x) < ε, f̄ <

f(x) < f̄ + λ}. Hence, all the conditions of the KŁ property in Definition 1 are satisfied, and we can
exploit the KŁ inequality in eq. (2).

Denote rk := f(xk)− f̄ . For all k ≥ k0 we obtain that

rk
(i)

≤ C‖∇f(xk)‖
1

1−θ
(ii)

≤ C‖xk − xk−1‖
2

1−θ
(iii)

≤ C(rk−1 − rk)
2

3(1−θ) , (9)

where (i) follows from the KŁ property in eq. (3), (ii) and (iii) follow from the dynamics of CR in
Table 1 and we have absorbed all constants into C. Define δk = rkC

3(1−θ)
3θ−1 , then the above inequality

can be rewritten as

δk−1 − δk ≥ δ
3(1−θ)

2

k , ∀k ≥ k0. (10)

Next, we discuss the convergence rate of δk under different regimes of θ.

Case 1: θ = 1.

In this case, the KŁ property in eq. (2) satisfies ϕ′(t) = c and implies that ‖∇f(xk)‖ ≥ 1
c for some

constant c > 0. On the other hand, by the dynamics of CR in Table 1, we obtain that

f(xk+1) ≤ f(xk)− M

12
‖xk+1 − xk‖3 ≤ f(xk)− M

12
(

2

L+M
)

3
2 ‖∇f(xk)‖ 3

2 . (11)

Combining these two facts yields the conclusion that for all k ≥ k0

f(xk+1) ≤ f(xk)− C

for some constant C > 0. Then, we conclude that f(xk) ↓ −∞, which contradicts the fact that
f(xk) ↓ f̄ > −∞ (since f is bounded below). Hence, we must have f(xk) ≡ f̄ for all sufficiently
large k.

Case 2: θ ∈ ( 1
3 , 1).

11



In this case 0 < 3(1−θ)
2 < 1. Since δk → 0 as rk → 0, δ

3(1−θ)
2

k is order-wise larger than δk for all
sufficiently large k. Hence, for all sufficiently large k, eq. (10) reduces to

δk−1 ≥ δ
3(1−θ)

2

k . (12)

It follows that δk ↓ 0 super-linearly as δk ≤ δ
2

3(1−θ)
k−1 . Since δk = rkC

2
1−3θ , we conclude that rk ↓ 0

super-linearly as rk ≤ C1r
2

3(1−θ)
k−1 for some constant C1 > 0. By letting k0 be sufficiently large so

that rk0 is sufficiently small, we obtain that

rk ≤ C1r
2

3(1−θ)
k−1 ≤ Ck−k01 r

( 2
3(1−θ) )k−k0

k0
= Θ

(
exp

(
−
(

2

3(1− θ)

)k−k0))
. (13)

Case 3: θ = 1
3 .

In this case 3(1−θ)
2 = 1, and eq. (9) reduces to rk ≤ C(rk−1 − rk), i.e., rk ↓ 0 linearly as

rk ≤ C
1+C rk−1 for some constant C > 0. Thus, we obtain that for all k ≥ k0

rk ≤
(

C

1 + C

)k−k0
rk0 = Θ

(
exp

(
− (k − k0)

))
. (14)

Case 4: θ ∈ (0, 1
3 ).

In this case, 1 < 3(1−θ)
2 < 3

2 and − 1
2 <

3θ−1
2 < 0. Since δk ↓ 0, we conclude that for all k ≥ k0

δ
− 3(1−θ)

2

k−1 < δ
− 3(1−θ)

2

k , δ
3θ−1

2

k−1 < δ
3θ−1

2

k . (15)

Define an auxiliary function φ(t) := 2
1−3θ t

3θ−1
2 so that φ′(t) = −t

3(θ−1)
2 . We next consider two

cases. First, suppose that δ
3(θ−1)

2

k ≤ 2δ
3(θ−1)

2

k−1 . Then for all k ≥ k0

φ(δk)− φ(δk−1) =

∫ δk

δk−1

φ′(t)dt =

∫ δk−1

δk

t
3(θ−1)

2 dt ≥ (δk−1 − δk)δ
3(θ−1)

2

k−1 (16)

(i)

≥ 1

2
(δk−1 − δk)δ

3(θ−1)
2

k

(ii)

≥ 1

2
, (17)

where (i) utilizes the assumption and (ii) uses eq. (10).

Second, suppose that δ
3(θ−1)

2

k ≥ 2δ
3(θ−1)

2

k−1 . Then δ
3θ−1

2

k ≥ 2
3θ−1

3(θ−1) δ
3θ−1

2

k−1 , which further leads to

φ(δk)− φ(δk−1) =
2

1− 3θ
(δ

3θ−1
2

k − δ
3θ−1

2

k−1 ) ≥ 2

1− 3θ
(2

3θ−1
3(θ−1) − 1)δ

3θ−1
2

k−1 (18)

≥ 2

1− 3θ
(2

3θ−1
3(θ−1) − 1)δ

3θ−1
2

k0
. (19)

Combining the above two cases and defining C := min{ 1
2 ,

2
1−3θ (2

3θ−1
3(θ−1) − 1)δ

3θ−1
2

k0
}, we conclude

that for all k ≥ k0

φ(δk)− φ(δk−1) ≥ C, (20)

which further implies that

φ(δk) ≥
k∑

i=k0+1

φ(δi)− φ(δi−1) ≥ C(k − k0). (21)

Substituting the form of φ into the above inequality and simplifying the expression yields δk ≤
( 2
C(1−3θ)(k−k0) )

2
1−3θ . It follows that rk ≤ ( C3

k−k0 )
2

1−3θ for some C3 > 0.
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Proof of Theorem 3

Theorem 3. Let Assumption 1 hold and assume that problem (P) satisfies the KŁ property. Then,
the sequence {xk}k generated by CR satisfies

∞∑
k=0

‖xk+1 − xk‖ < +∞. (4)

Proof. Recall the definition that rk := f(xk) − f̄ , where f̄ is the finite limit of {f(xk)}k. Also,
recall that k0 ∈ N is a sufficiently large integer. Then, for all k ≥ k0, the KŁ property implies that

ϕ′(rk) ≥ 1

‖∇f(xk)‖
≥ 2

(L+M)‖xk − xk−1‖2
, (22)

where the last inequality uses the dynamics of CR in Table 1. Note that ϕ(t) = c
θ t
θ is concave for

θ ∈ (0, 1]. Then, by concavity we obtain that

ϕ(rk)− ϕ(rk+1) ≥ ϕ′(rk)(rk − rk+1) ≥ M

6(L+M)

‖xk+1 − xk‖3

‖xk − xk−1‖2
, (23)

where the last inequality uses eq. (22) and the dynamics of CR in Table 1. Rearranging the above
inequality, taking cubic root and summing over k = k0, . . . , n yield that (all constants are absorbed
in C)

n∑
k=k0

‖xk+1 − xk‖ ≤ C
n∑

k=k0

(ϕ(rk)− ϕ(rk+1))
1
3 ‖xk − xk−1‖

2
3 (24)

(i)

≤ C

[
n∑

k=k0

(ϕ(rk)− ϕ(rk+1))

] 1
3
[

n∑
k=k0

‖xk − xk−1‖

] 2
3

(25)

(ii)

≤ C [ϕ(rk0)]
1
3

[
n∑

k=k0

‖xk+1 − xk‖+ ‖xk0 − xk0−1‖

] 2
3

, (26)

where (i) applies the Hölder’s inequality and (ii) uses the fact that ϕ ≥ 0. Clearly, we must have
limn→∞

∑n
k=k0

‖xk+1 − xk‖ < +∞, because otherwise the above inequality cannot hold for all n
sufficiently large. We then conclude that

∞∑
k=k0

‖xk+1 − xk‖ < +∞,

and the desired result follows because k0 is a fixed number.

Proof of Theorem 4

Theorem 4. Let Assumption 1 hold and assume that problem (P) satisfies the KŁ property. Then,
there exists a sufficiently large k0 ∈ N such that for all k ≥ k0 the sequence {xk}k generated by CR
satisfies

1. If θ = 1, then xk → x̄ within finite number of iterations;
2. If θ ∈ ( 1

3 , 1), then xk → x̄ super-linearly as ‖xk+1 − x̄‖ ≤ Θ
(

exp
(
−
(

2θ
3(1−θ) + 2

3

)k−k0))
;

3. If θ = 1
3 , then xk → x̄ linearly as ‖xk+1 − x̄‖ ≤ Θ

(
exp

(
− (k − k0)

))
;

4. If θ ∈ (0, 1
3 ), then xk → x̄ sub-linearly as ‖xk+1 − x̄‖ ≤ Θ

(
(k − k0)−

2θ
1−3θ

)
.

Proof. We prove the theorem case by case.
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Case 1: θ = 1.

We have shown in case 1 of Theorem 2 that f(xk) ↓ f̄ within finite number of iterations, i.e.,
f(xk+1) − f(xk) = 0 for all k ≥ k0. Based on this observation, the dynamics of CR in Table 1
further implies that for all k ≥ k0

0 = f(xk+1)− f(xk) ≤ −M
12
‖xk+1 − xk‖3 ≤ 0. (27)

Hence, we conclude that xk+1 = xk for all k ≥ k0, i.e., xk converges within finite number of
iterations. Since Theorem 3 shows that xk converges to some x̄, the desired conclusion follows.

Case 2: θ ∈ ( 1
3 , 1).

Denote ∆k :=
∑∞
i=k ‖xi+1 − xi‖. Note that Theorem 3 shows that xk → x̄. Thus, we have

‖xk − x̄‖ ≤ ∆k. Next, we derive the convergence rate of ∆k.

By Theorem 3, limn→∞
∑n
i=k ‖xi+1 − xi‖ exists for all k. Then, we can let n→∞ in eq. (26) and

obtain that for all k ≥ k0

∆k ≤ C[ϕ(rk)]
1
3 ∆

2
3

k−1 ≤ Cr
θ
3

k ∆
2
3

k−1

(i)

≤ C(∆k−1 −∆k)
2θ

3(1−θ) ∆
2
3

k−1 ≤ C∆
2θ

3(1−θ) + 2
3

k−1 , (28)

where C denotes a universal constant that may vary from line to line, and (i) uses the KŁ property
and the dynamics of CR, i.e., rk ≤ C‖∇f(xk)‖

1
1−θ ≤ C‖xk − xk−1‖

2
1−θ . Note that in this case we

have 2θ
3(1−θ) + 2

3 > 1, and hence the above inequality implies that ∆k converges to zero super-linearly
as

∆k ≤ Ck−k0∆
( 2θ
3(1−θ) + 2

3 )k−k0

k0
= Θ

(
exp

(
−
(

2θ

3(1− θ)
+

2

3

)k−k0))
. (29)

Since ‖xk − x̄‖ ≤ ∆k, it follows that ‖xk − x̄‖ converges to zero super-linearly as desired.

Cases 3 & 4.

We first derive another estimate on ∆k that generally holds for both cases 3 and 4, and then separately
consider cases 3 and 4, respectively.

Fix γ ∈ (0, 1) and consider k ≥ k0. Suppose that ‖xk+1 − xk‖ ≥ γ‖xk − xk−1‖, then eq. (23) can
be rewritten as

‖xk+1 − xk‖ ≤
C

γ2
(ϕ(rk)− ϕ(rk+1)) (30)

for some constant C > 0. Otherwise, we have ‖xk+1 − xk‖ ≤ γ‖xk − xk−1‖. Combing these two
inequalities yields that

‖xk+1 − xk‖ ≤ γ‖xk − xk−1‖+
C

γ2
(ϕ(rk)− ϕ(rk+1)). (31)

Summing the above inequality over k = k0, . . . , n yields that

n∑
k=k0

‖xk+1 − xk‖ ≤ γ
n∑

k=k0

‖xk − xk−1‖+
C

γ2
(ϕ(rk0)− ϕ(rn+1)) (32)

≤ γ

[
n∑

k=k0

‖xk+1 − xk‖+ ‖xk0 − xk0−1‖

]
+
C

γ2
ϕ(rk0). (33)

Rearranging the above inequality yields that

n∑
k=k0

‖xk+1 − xk‖ ≤
γ

1− γ
‖xk0 − xk0−1‖+

C

γ2(1− γ)
ϕ(rk0). (34)

14



Recall ∆k :=
∑∞
i=k ‖xi+1 − xi‖ < +∞. Letting n→∞ in the above inequality yields that for all

sufficiently large k

∆k ≤
γ

1− γ
(∆k−1 −∆k) +

C

γ2(1− γ)θ
rθk (35)

(i)

≤ γ

1− γ
(∆k−1 −∆k) +

C

γ2(1− γ)θ
‖xk − xk−1‖

2θ
1−θ (36)

≤ γ

1− γ
(∆k−1 −∆k) +

C

γ2(1− γ)θ
(∆k−1 −∆k)

2θ
1−θ , (37)

where (i) uses the KŁ property and the dynamics of CR, i.e., rk ≤ C‖∇f(xk)‖
1

1−θ ≤ C‖xk −
xk−1‖

2
1−θ .

Case 3: θ = 1
3 . In this case, 2θ

1−θ = 1 and eq. (37) implies that ∆k ≤ C(∆k−1 − ∆k) for all
sufficiently large k, i.e., ∆k converges to zero linearly as ∆k ≤ ( C

1+C )k−k0∆k0 . The desired result
follows since ‖xk − x̄‖ ≤ ∆k.

Case 4: θ ∈ (0, 1
3 ). In this case, 0 < 2θ

1−θ < 1 and eq. (37) can be asymptotically rewritten as

∆k ≤ C
γ2(1−γ)θ (∆k−1 −∆k)

2θ
1−θ . This further implies that

∆
1−θ
2θ

k ≤ C(∆k−1 −∆k) (38)

for some constant C > 0. Define h(t) = t−
1−θ
2θ and fix β > 1. Suppose first that h(∆k) ≤

βh(∆k−1). Then the above inequality implies that

1 ≤ C∆k−1 −∆k

∆
1−θ
2θ

k

= C(∆k−1 −∆k)h(∆k) ≤ Cβ(∆k−1 −∆k)h(∆k−1) (39)

≤ Cβ
∫ ∆k−1

∆k

h(t)dt = Cβ
2θ

3θ − 1
(∆

3θ−1
2θ

k−1 −∆
3θ−1
2θ

k ). (40)

Set µ := 1−3θ
2Cβθ > 0, ν := 3θ−1

2θ < 0. Then the above inequality can be rewritten as

∆ν
k −∆ν

k−1 ≥ µ. (41)

Now suppose h(∆k) > βh(∆k−1), which implies that ∆k < q∆k−1 with q = β−
2θ

1−θ ∈ (0, 1).
Then, we conclude that ∆ν

k ≥ qν∆ν
k−1 and hence ∆ν

k −∆ν
k−1 ≥ (qν − 1)∆ν

k−1. Since qν − 1 > 0
and ∆ν

k−1 → +∞, there must exist µ̄ > 0 such that (qν − 1)∆ν
k−1 ≥ µ̄ for all sufficiently large k.

Thus, we conclude that ∆ν
k −∆ν

k−1 ≥ µ̄. Combining two cases, we obtain that for all sufficiently
large k,

∆ν
k −∆ν

k−1 ≥ min{µ, µ̄}. (42)

Telescoping the above inequality over k = k0, . . . , k yields that

∆k ≤ [∆ν
k0 + min{µ, µ̄}(k − k0)]

1
ν ≤

(
C

k − k0

) 2θ
1−3θ

, (43)

where C is a certain positive constant. The desired result then follows from the fact that ‖xk − x̄‖ ≤
∆k.

Proof of Proposition 1

Proposition 1. Denote Ω as the set of second-order stationary points of f . Let Assumption 1
hold and assume that f satisfies the KŁ property. Then, there exist κ, ε, λ > 0 such that for all
x ∈ {z ∈ Rd : distΩ(z) < ε, fΩ < f(z) < fΩ + λ}, the following property holds.

(KŁ -error bound) distΩ(x) ≤ κ‖∇f(x)‖
θ

1−θ . (8)
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Proof. The proof idea follows from that in Yue et al. (2018). Consider any x ∈ Ωc ∩ {x ∈ Rd :
distΩ(x) < ε, fΩ < f(x) < fΩ + λ}, and consider the following differential equation

u(0) = x,
•

u(t) = −∇f(u(t)), ∀t > 0. (44)

As ∇f is continuously differentiable, it is Lipschitz on every compact set. Thus, by the Picard-
Lindelöf theorem (Hartman, 2002, Theorem II.1.1), there exists ν > 0 such that eq. (44) has a unique
solution ux(t) over the interval [0, ν]. Define ∆(t) := f(ux(t)) − fΩ. Note that ∆(t) > 0 for
t ∈ [0, ν], as otherwise there exists t̂ ∈ [0, ν] such that ux(t̂) ∈ Ω and hence ux ≡ ux(t̂) ∈ Ω is the
unique solution to eq. (44). This contradicts the fact that u(0) ∈ Ωc.

Using eq. (44) and the chain rule, we obtain that for all t ∈ [0, ν]

•

∆(t) = 〈∇f(ux(t)),
•

ux(t)〉 = −‖∇f(ux(t))‖‖
•

ux(t)‖. (45)

Applying the KŁ property in eq. (3) to the above equation yields that

•

∆(t) ≤ −
(

∆(t)

C

)1−θ

‖
•

ux(t)‖, (46)

where C > 0 is a certain universal constant. Since ∆(t) > 0, eq. (46) can be rewritten as

‖
•

ux(t)‖ ≤ −C
1−θ

θ
(∆(t)θ)′. (47)

Based on the above inequality, for any 0 ≤ a < b < ν we obtain that

‖ux(b)− ux(a)‖ = ‖
∫ b

a

•

ux(t)dt‖ ≤
∫ b

a

‖
•

ux(t)‖dt

≤ −
∫ b

a

C1−θ

θ
[∆(t)θ]′dt =

C1−θ

θ
[∆(a)θ −∆(b)θ]. (48)

In particular, setting a = 0 in eq. (48) and noting that ux(0) = x, we further obtain that

‖ux(b)− x‖ ≤ C1−θ

θ
(f(x)− fΩ)θ. (49)

Next, we show that ν = +∞. Suppose ν < +∞, then (Hartman, 2002, Corollary II.3.2) shows that
‖ux(t)‖ → +∞ as t→ ν. However, eq. (49) implies that

‖ux(t)‖ ≤ ‖x‖+ ‖ux(t)− x‖ ≤ ‖x‖+
C1−θ

θ
(f(x)− fΩ)θ < +∞,

which leads to a contradiction. Thus, ν = +∞.

Since
•

∆(t) ≤ 0, ∆(t) is non-increasing. Hence, the nonnegative sequence {∆(t)} has a limit.
Then, eq. (48) further implies that {ux(t)} is a Cauchy sequence and hence has a limit ux(∞).

Suppose ∇f(ux(∞)) 6= 0. Then we obtain that limt→∞
•

∆(t) = −‖∇f(ux(∞))‖2 < 0, which
contradicts the fact that limt→∞∆(t) exists. Thus, ∇f(ux(∞)) = 0, and this further implies that
ux(∞) ∈ Ω, f(ux(∞)) = fΩ by the KŁ property in eq. (3). We then conclude that

distΩ(x) ≤ ‖x− ux(∞)‖ = lim
t→∞

‖x− ux(t)‖ ≤ C1−θ

θ
(f(x)− fΩ)θ. (50)

Combining the above inequality with the KŁ property in eq. (3), we obtain the desired KŁ error
bound.

Proof of Proposition 2

Proposition 2. Denote Ω as the set of second-order stationary points of f . Let Assumption 1 hold
and assume that problem (P) satisfies the KŁ property. Then, there exists a sufficiently large k0 ∈ N
such that for all k ≥ k0 the sequence {distΩ(xk)}k generated by CR satisfies
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1. If θ = 1, then distΩ(xk)→ 0 within finite number of iterations;

2. If θ ∈ ( 1
3 , 1), then distΩ(xk)→ 0 super-linearly as distΩ(xk) ≤ Θ

(
exp

(
−
(

2θ
1−θ
)k−k0))

;

3. If θ = 1
3 , then distΩ(xk)→ 0 linearly as distΩ(xk) ≤ Θ

(
exp

(
− (k − k0)

))
;

4. If θ ∈ (0, 1
3 ), then distΩ(xk)→ 0 sub-linearly as distΩ(xk) ≤ Θ

(
(k − k0)−

2θ
1−3θ

)
.

Proof. We prove the theorem case by case.

Case 1: θ = 1.

We have proved in Theorem 4 that xk → x̄ ∈ Ω within finite number of iterations. Since distΩ(xk) ≤
‖xk − x̄‖, we conclude that distΩ(xk) converges to zero within finite number of iterations.

Case 2: θ ∈ ( 1
3 , 1).

By the KŁ error bound in Proposition 1, we obtain that

distΩ(xk+1) ≤ C‖∇f(xk+1)‖
θ

1−θ ≤ C‖xk+1 − xk‖
2θ

1−θ , (51)

where the last inequality uses the dynamics of CR in Table 1. On the other hand, (Yue et al., 2018,
Lemma 1) shows that

‖xk+1 − xk‖ ≤ CdistΩ(xk). (52)

Combining eq. (51) and eq. (52) yields that

distΩ(xk+1) ≤ CdistΩ(xk)
2θ

1−θ . (53)

Note that in this case we have 2θ
1−θ > 1. Thus, distΩ(xk) converges to zero super-linearly as desired.

Cases 3 & 4: θ ∈ (0, 1
3 ].

Note that distΩ(xk) ≤ ‖xk − x̄‖. The desired results follow from Cases 3 & 4 in Theorem 4.

Proof of Theorem 1

Theorem 1. Let Assumption 1 hold and assume that problem (P) satisfies the KŁ property associated
with parameter θ ∈ (0, 1]. Then, there exists a sufficiently large k0 ∈ N such that for all k ≥ k0 the
sequence {µ(xk)}k generated by CR satisfies

1. If θ = 1, then µ(xk)→ 0 within finite number of iterations;

2. If θ ∈ ( 1
3 , 1), then µ(xk)→ 0 super-linearly as µ(xk) ≤ Θ

(
exp

(
−
(

2θ
1−θ
)k−k0))

;

3. If θ = 1
3 , then µ(xk)→ 0 linearly as µ(xk) ≤ Θ

(
exp

(
− (k − k0)

))
;

4. If θ ∈ (0, 1
3 ), then µ(xk)→ 0 sub-linearly as µ(xk) ≤ Θ

(
(k − k0)−

2θ
1−3θ

)
.

Proof. By the dynamics of CR in Table 1, we obtain that

‖∇f(xk+1)‖ ≤ L+M

2
‖xk+1 − xk‖2, (54)

−λmin(∇2f(xk+1)) ≤ 2L+M

2
‖xk+1 − xk‖. (55)

The above two inequalities imply that µ(xk) ≤ ‖xk+1 − xk‖. Also, (Yue et al., 2018, Lemma 1)
shows that ‖xk+1 − xk‖ ≤ CdistΩ(xk). Then, the desired convergence result for µ(xk) follows
from Proposition 2.
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