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Median-Truncated Nonconvex Approach
for Phase Retrieval with Outliers

Huishuai Zhang, Yuejie Chi, Yingbin Liang

Abstract—This paper investigates the phase retrieval
problem, which aims to recover a signal from the magni-
tudes of its linear measurements. We develop statistically
and computationally efficient algorithms for the situation
when the measurements are corrupted by sparse outliers
that can take arbitrary values. We propose a novel
approach to robustify the gradient descent algorithm by
using the sample median as a guide for pruning spurious
samples in initialization and local search. Adopting a
Poisson loss and a reshaped quadratic loss respectively, we
obtain two algorithms termed median-TWF and median-
RWF, both of which provably recover the signal from a
near-optimal number of measurements when the measure-
ment vectors are composed of i.i.d. Gaussian entries, up
to a logarithmic factor, even when a constant fraction
of the measurements are adversarially corrupted. We
further show that both algorithms are stable in the
presence of additional dense bounded noise. Our analysis
is accomplished by developing non-trivial concentration
results of median-related quantities, which may be of
independent interest. We provide numerical experiments
to demonstrate the effectiveness of our approach.

I. INTRODUCTION

Phase retrieval is a classical problem in signal pro-
cessing, optics and machine learning that has a wide
range of applications such as X-ray crystallography
[23], astronomical imaging, and TeraHertz imaging
[52]. Mathematically, it is formulated as recovering a
signal x ∈ Rn or Cn from the magnitudes of its linear
measurements:

yi = |〈ai,x〉|2, i = 1, . . . ,m, (1)

where m is the total number of measurements, and ai ∈
Rn or Cn is the ith known measurement vector, i =
1, . . . ,m. Phase retrieval is known to be notoriously
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difficult due to the quadratic form of the measurements.
Classical methods [24], though computationally simple,
lack rigorous performance guarantees.

There has been, however, a recent line of work that
successfully develops provably accurate algorithms for
phase retrieval, in particular for the case when the
measurement vectors ai’s are composed of indepen-
dent and identically distributed (i.i.d.) Gaussian entries.
Broadly speaking, two classes of approaches have been
proposed based on convex and nonconvex optimization
techniques, respectively. Using the lifting trick, the
phase retrieval problem can be reformulated as esti-
mating a rank-one positive semidefinite (PSD) matrix
X = xxT from linear measurements [4], for which
convex relaxations into semidefinite programs have been
studied [8], [11], [18], [21], [41], [62]. In particular,
Phaselift [11] perfectly recovers the signal with high
probability as long as the number of measurements
m is on the order of n. However, the computational
complexity of Phaselift is at least cubic in n, which
becomes expensive when n is large. Very recently,
another convex relaxation named PhaseMax has been
proposed in the natural parameter space without lifting
[3], [26], [29], resulting in a linear program that can
handle large problem dimensions as long as m is on
the order of n.

Another class of approaches aims to find the signal
that minimizes a loss function based on certain pos-
tulated noise model, which often results in a noncon-
vex optimization problem due to the quadratic mea-
surements. Despite nonconvexity, it is demonstrated in
[10], [45], [53] that the so-called Wirtinger flow (WF)
algorithm, based on gradient descent, works remarkably
well: it converges to the global optima when properly
initialized using the spectral method. Several variants of
WF have been proposed thereafter to further improve
its performance, including the truncated Wirtinger flow
(TWF) algorithm [15], the reshaped Wirtinger flow
(RWF) algorithm [67], and the truncated amplitude flow
(TAF) algorithm [63]. Notably, TWF, RWF and TAF are
shown to converge globally at a linear rate as long as
m is on the order of n, and attain ε-accuracy within
O(mn log(1/ε)) flops using a constant step size.1

A. Outlier-Robust Phase Retrieval
The aforementioned algorithms are evaluated based

on their statistical and computational performances:

1Notation f(n) = O(g(n)) or f(n) . g(n) means that there
exists a constant c > 0 such that |f(n)| ≤ c|g(n)|.



2

statistically, we wish the sample complexity m to be
as small as possible; computationally, we wish the run
time to be as fast as possible. As can be seen, existing
WF-type algorithms are already near-optimal both sta-
tistically and computationally. This paper introduces a
third consideration, which is the robustness to outliers,
where we wish the algorithm continues to work well
even in the presence of outliers that may take arbitrary
magnitudes. This bears great importance in practice,
because outliers arise frequently from the phase imaging
applications [65] due to various reasons such as detector
failures, recording errors, and missing data. Specifically,
suppose the set of m measurements are given as

yi = |〈ai,x〉|2 + ηi, i = 1, · · · ,m, (2)

where ηi ∈ R or C for i = 1, . . . ,m are outliers that can
take arbitrary values. We assume that outliers are sparse
with no more than sm nonzero values, i.e., ‖η‖0 ≤ sm,
where η = {ηi}mi=1 ∈ Rm or Cm. Here, s is a nonzero
constant, representing the faction of measurements that
are corrupted by outliers.

The goal of this paper is to develop phase retrieval
algorithms with both statistical and computational ef-
ficiency, and provable robustness to even a constant
proportion of outliers. To the best of our knowledge,
before the appearance of the current article, none of
the existing algorithms meet all of the three consid-
erations simultaneously. The performance of WF-type
algorithms is very sensitive to outliers which intro-
duce anomalous search directions when their values
are excessively deviated. While a form of Phaselift
[27] is robust to a constant portion of outliers, it is
computationally too expensive.

B. Median-Truncated Gradient Descent
A natural idea is to recover the signal as a solution

to the following loss minimization problem:

min
z

1

2m

m∑
i=1

`(z; yi) (3)

where `(z, yi) is postulated using the negative likeli-
hood of Gaussian or Poisson noise model. Since the
measurements are quadratic in x, the objective function
is nonconvex. We consider two choices of `(z; yi) in
this paper. The first one is the Poisson loss function of
|aTi z|2 employed in TWF [15], which is given by

`(z; yi) = |aTi z|2 − yi log |aTi z|2. (4)

The second one is the reshaped2 quadratic loss of |aTi z|
employed in RWF [67], which is given by

`(z; yi) =
(
|aTi z| −

√
yi
)2
. (5)

It has been argued in [67] that the loss function (5)
resembles more closely to a quadratic function than the

2It is called “reshaped” in order to distinguish it from the quadratic
loss of |aTi z|2 used in [10].

Wirtinger flow loss used in [10], which results in a more
amenable curvature for the convergence of the gradient
descent algorithms.

In the presence of outliers, the signal of interest may
no longer be the global optima of (3). Therefore, we
wish to only include the clean samples that are not
corrupted in the optimization (3), which is, however,
impossible as we do not assume any a priori knowledge
of the outliers. Our key strategy is to prune the bad
samples adaptively and iteratively, using a gradient
descent procedure that proceeds as follows:

z(t+1) = z(t) − µ

m

∑
i∈Tt+1

∇`(z(t); yi). (6)

where z(t) denotes the tth iterate of the algorithm,
∇`(z(t); yi) is the gradient of `(z(t); yi), and µ is
the step size, for t = 0, 1, . . .. In each iteration, only
a subset Tt+1 of data-dependent and iteration-varying
samples contributes to the search direction. But how to
select the set Tt+1? Note that the gradient of the loss
function typically contains the term

∣∣yi − |aTi z(t)|2∣∣
(for TWF) or

∣∣√yi − |aTi z(t)|∣∣ (for RWF), which mea-
sures the residual using the current iterate. With yi being
corrupted by arbitrarily large outliers, the gradient can
deviate the search direction from the signal arbitrarily.

Inspired by the utility of median to combat outliers
in robust statistics [31], we prune samples whose gra-
dient components ∇`(z(t); yi) are much larger than
the sample median to control the search direction of
each update. Hiding some technical details, this gives
the main ingredient of our median-truncated gradient
descent update rule3, i.e., for each iterate t ≥ 0:

Tt+1 := {i : |yi − |aTi z(t)|2|
≤ αhmed({|yi − |aTi z(t)|2}mi=1)}, for TWF, (7)

Tt+1 := {i : |√yi − |aTi z(t)|
≤ α′hmed({|√yi − |aTi z(t)|}mi=1)}, for RWF, (8)

where αh and α′h are some given algorithm parameters
and med(·) denotes the sample median. The robust
property of median lies in the fact that the median can-
not be arbitrarily perturbed unless the outliers dominate
the inliers [31]. This is in sharp contrast to the sample
mean, which can be made arbitrarily large even by a
single outlier. Thus, using the sample median in the
truncation rule can effectively remove the impact of out-
liers. Finally, there still left the question of initialization,
which is critical to the success of the algorithm. We
use the spectral method, i.e., initialize z(0) by a proper
rescaling of the top eigenvector of a surrogate matrix

Y =
1

m

∑
i∈T0

yiaia
T
i , (9)

where again T0 includes only a subset of samples whose
values are not excessively large compared with the

3Please see the exact form of the algorithms in Section II.
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sample median of the measurements, given as

T0 = {i : yi ≤ αy ·med({yi}mi=1)}, (10)

where αy is an algorithm parameter. Putting things
together (the update rule (6) and the initialization (9)),
we obtain two new median-truncated gradient descent
algorithms, median-TWF and median-RWF, based on
applying the median truncation strategy for the loss
functions used in TWF and RWF, respectively. The
median-TWF and median-RWF algorithms do not as-
sume a priori knowledge of the outliers, such as their
existence or the number of outliers, and therefore can be
used in an oblivious fashion. Importantly, we establish
the following performance guarantees.

Main Result (informal): For the Gaussian measure-
ment model, with high probability, median-TWF and
median-RWF recover all signal x up to the global sign
at a linear rate of convergence, even with a constant
fraction of outliers, as long as the number of measure-
ments m is on the order of n log n. Furthermore, the
reconstruction is stable in the presence of additional
bounded dense noise.

Statistically, the sample complexity of both algo-
rithms is near-optimal up to a logarithmic factor, and
to reassure, they continue to work even when out-
liers are absent. Computationally, both algorithms con-
verge linearly, requiring a mere computational cost
of O(mn log 1/ε) to reach ε-accuracy. More impor-
tantly, our algorithms now tolerate a constant fraction
of arbitrary outliers, without sacrificing performance
otherwise.

To establish the performance guarantees, we first
show that the initialization is close enough to the ground
truth, and then that within the neighborhood of the
ground truth, the gradients satisfy certain Regularity
Condition [10], [15] that guarantees linear convergence
of the descent rule, as long as the fraction of outliers
is small enough and the sample complexity is large
enough. As a nonlinear operator, the sample median is
much more difficult to analyze than the sample mean,
which is a linear operator and many existing concentra-
tion inequalities are readily applicable. Therefore, con-
siderable technical efforts are devoted to develop novel
non-asymptotic concentrations of the sample median,
and various statistical properties of the sample median
related quantities, which may be of independent interest.

Finally, we note that while median-TWF and median-
RWF share similar theoretical performance guarantees,
their empirical performances vary under different sce-
narios, due to the use of different loss functions. Their
theoretical analyses also have significant difference that
worth separate treatments. While we only consider the
loss functions used in TWF and RWF in this paper,
we believe the median-truncation technique can be
applied to gradient descent algorithms for solving other
problems as well.

C. Related Work

Our work is closely related to the TWF algorithm
[15], which is also a truncated gradient descent al-
gorithm for phase retrieval. However, the truncation
rule in TWF is based on the sample mean, which is
very sensitive to outliers. In [27], [44], [49], [65], the
problem of phase retrieval under outliers is investigated,
but the proposed algorithms either lack performance
guarantees or are computationally too expensive. A
modified PhaseMax was proposed to deal with sparse
outliers [28], which also achieves exact recovery with a
constant fraction of outliers by applying our initializa-
tion step.

The adoption of median in machine learning is not
unfamiliar, for example, K-median clustering [14] and
resilient data aggregation for sensor networks [60]. Our
work here further extends the applications of median
to robustifying high-dimensional estimation problems
with theoretical guarantees. Another popular approach
in robust estimation is to use the trimmed mean [31],
which has found success in robustifying sparse regres-
sion [17], subspace clustering [50], etc. However, using
the trimmed mean requires knowledge of an upper
bound on the number of outliers, whereas median does
not require such information.

Developing non-convex algorithms with provable
global convergence guarantees has attracted intensive
research interest recently. A partial list of these studies
include phase retrieval [10], [15], [46], [55], [63], matrix
completion [20], [25], [30], [32]–[34], [40], [56], [69],
low-rank matrix recovery [6], [19], [36], [39], [42], [48],
[58], [64], [68], robust PCA [47], [66], robust tensor
decomposition [1], dictionary learning [2], [54], com-
munity detection [5], phase synchronization [7], blind
deconvolution [35], [37], joint alignment [16], shallow
neural networks [38], etc. Our algorithm provides a
new instance in this list that emphasizes robust high-
dimensional signal estimation under minimal assump-
tions of outliers.

D. Paper Organization and Notations

The rest of this paper is organized as follows. Sec-
tion II describes the proposed two algorithms, median-
TWF and median-RWF, in details and their performance
guarantees. Section III presents numerical experiments.
Section IV provides the preliminaries and the proof
road map. Section V provides the proofs for median-
TWF and Section VI provides the proofs of median-
RWF, respectively. Finally, we conclude in Section VII.
Supporting proofs are given in the Appendix.

We adopt the following notations in this paper. Given
a set of numbers {yi}mi=1, the sample median is denoted
as med({yi}mi=1). The indicator function 1A = 1 if the
event A holds, and 1A = 0 otherwise. For a vector y,
‖y‖ denotes the l2 norm. For two matrices, A � B if
B −A is a positive semidefinite matrix.
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II. ALGORITHMS AND PERFORMANCE
GUARANTEES

We consider the following model for phase retrieval,
where the measurements are corrupted by not only
sparse arbitrary outliers but also dense bounded noise.
Under such a model, the measurements are given as

yi = |〈ai,x〉|2 + wi + ηi, i = 1, · · · ,m, (11)

where x ∈ Rn is the unknown signal4, ai ∈ Rn is the
ith measurement vector composed of i.i.d. Gaussian en-
tries distributed asN (0, 1), and ηi ∈ R for i = 1, . . . ,m
are outliers with arbitrary values satisfying ‖η‖0 ≤ sm,
where s is the fraction of outliers, and w = {wi}mi=1 is
the bounded noise satisfying ‖w‖∞ ≤ c‖x‖2 for some
universal constant c.

It is straightforward that changing the sign of the
signal does not affect the measurements. The goal is to
recover the signal x, up to a global sign difference, from
the measurements y = {yi}mi=1 and the measurement
vectors {ai}mi=1. To this end, we define the Euclidean
distance between two vectors up to a global sign differ-
ence as the performance metric,

dist(z,x) := min{‖z + x‖, ‖z − x‖}. (12)

We propose two median-truncated gradient de-
scent algorithms, median-TWF in Section II-A and
median-RWF in Section II-B, based on different
choices of the loss functions. This leads to apply-
ing the truncation based on the sample median of{∣∣yi − |aTi z|2∣∣}mi=1

in median-TWF, and the sample
median of

{∣∣√yi − |aTi z|∣∣}mi=1
in median-RWF. Sec-

tion II-C provides the theoretical performance guaran-
tees of median-TWF and median-RWF, which turn out
to be almost the same at the order level except the choice
of constants. The empirical comparisons of median-
TWF and median-RWF are demonstrated in Section III.

A. Median-TWF Algorithm
In median-TWF, we adopt the Poisson loss function

of |aTi z|2 employed in TWF [15], given as

`(z) :=
1

2m

m∑
i=1

(
|aTi z|2 − yi log |aTi z|2

)
. (13)

The median-TWF algorithm, as described in Algo-
rithm 1, gradually eliminates the influence of outliers on
the way of minimizing (13). Specifically, it comprises
an initialization step and a truncated gradient descent
step.

1. Initialization: As in (14), we initialize z(0) by
the spectral method using a truncated set of samples,
where the threshold is determined by med({yi}mi=1). As
will be shown in Section IV-B, as long as the fraction
of outliers is not too large and the sample complexity

4We focus on real signals here, but our analysis can be extended
to complex signals.

Algorithm 1 Median Truncated Wirtinger Flow
(Median-TWF)
Input: y = {yi}mi=1, {ai}mi=1;
Parameters: thresholds αy , αh, αl, and αu, stepsize µ;
Initialization: Let z(0) = λ0z̃, where λ0 =√

med(y)/0.455 and z̃ is the leading eigenvector of

Y :=
1

m

m∑
i=1

yiaia
T
i 1{|yi|≤α2

yλ
2
0}. (14)

Gradient loop: for t = 0 : T − 1 do

z(t+1) = z(t) − µ

m

∑
i∈Et

|aTi z(t)|2 − yi
aTi z

(t)
ai, (15)

where

Et :=
{
i
∣∣∣αl‖z(t)‖ ≤ |aTi z(t)| ≤ αu‖z(t)‖ and

|yi − |aTi z(t)|2| ≤ αh
|aTi z(t)|
‖z(t)‖

med
(
{|yi − |aTi z(t)|2|}mi=1

)}
.

Output zT .

is large enough, our initialization is guaranteed to be
within a small neighborhood of the true signal.

2. Gradient loop: for each iteration 0 ≤ t ≤ T − 1,
median-TWF uses an iteration-varying truncated gradi-
ent given as

∇`tr(z(t)) =
1

m

∑
i∈Et

|aTi z(t)|2 − yi
aTi z

(t)
ai (16)

In order to remove the contribution of corrupted sam-
ples, from the definition of the set Et (see Algorithm 1),
it is clear that samples are truncated if their mea-
surement residuals evaluated using the current iterate
are much larger than the sample median. Moreover, in
order to better control the search direction, samples are
also truncated if the quantity |aTi z| is outside some
confidence interval. The median-TWF algorithm closely
resembles the TWF algorithm, except that the truncation
is guided by the sample median, rather than the sample
mean.

We set the step size in median-TWF to be a fixed
small constant, i.e., µ = 0.4. The rest of the parameters
{αy, αh, αl, αu} are set to satisfy

ζ1 := max
{
E
[
ξ21{|ξ|<√1.01αl or |ξ|>

√
0.99αu}

]
,

E
[
1{|ξ|<√1.01αl or |ξ|>

√
0.99αu}

]}
,

ζ2 := E
[
ξ21{|ξ|>0.248αh}

]
, (17)

2(ζ1 + ζ2) +
√

8/πα−1h < 1.99

αy ≥ 3,

where ξ ∼ N (0, 1). For example, we can set αl =
0.3, αu = 5, αy = 3 and αh = 12, and consequently
ζ1 ≈ 0.24 and ζ2 ≈ 0.032.
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Algorithm 2 Median Reshaped Wirtinger Flow
(median-RWF)
Input: y = {yi}mi=1, {ai}mi=1;
Parameters: threshold α′h, and step size µ;
Initialization: Same as median-TWF (see Algorithm 1).
Gradient loop: for t = 0 : T − 1 do

z(t+1) = z(t) − µ

m

∑
i∈E′t

(
aTi z

(t) −√yi
aTi z

(t)

|aTi z(t)|

)
ai,

(20)

where

E′t :=
{
i
∣∣ ∣∣∣√yi − |aTi z(t)|

∣∣∣
≤ α′h ·med

({∣∣∣√yi − |aTi z(t)|
∣∣∣}m
i=1

)}
.

Output zT .

B. Median-RWF Algorithm
In median-RWF, we adopt the reshaped quadratic loss

function of |aTi z| employed in RWF [67], given as

R(z) =
1

2m

m∑
i=1

(√
yi − |aTi z|

)2
, (18)

which has been shown to be advantageous over other
loss functions for phase retrieval [67].

Similarly to median-TWF, the median-RWF algo-
rithm as described in Algorithm 2, gradually eliminates
the influence of outliers on the way of minimizing (18).
Specifically, it also comprises an initialization step and
a truncated gradient descent step.

1. Initialization: we initialize in the same manner as
in median-TWF (Algorithm 1).

2. Gradient loop: for each iteration 0 ≤ t ≤ T − 1,
median-RWF uses the following iteration-varying trun-
cated gradient:

∇Rtr(z(t)) =
1

m

∑
i∈E′t

(
aTi z

(t) −√yi
aTi z

(t)

|aTi z(t)|

)
ai, (19)

From the definition of the set E′t (see Algorithm 2),
samples are truncated by the sample median of gradient
components evaluated at the current iteration. We set the
step size in median-RWF to be a fixed small constant,
i.e., µ = 0.8. Compared with median-TWF, the trun-
cation rule is much simpler with fewer parameters. We
simply set the truncation threshold α′h = 5. It is possible
that including a criteria on |aTi z| as in the definition of
Et may further improves the performance, but we wish
to highlight that, in this paper, the simple truncation
rule is already sufficient to guarantee both robustness
and efficiency of median-RWF.

C. Performance Guarantees
In this section, we characterize the performance

guarantees of median-TWF and median-RWF, which
turn out to be very similar though the proofs in fact

involve quite different techniques. To avoid repetition,
we present the guarantees together for both algorithms.
We note that the values of constants in the results can
vary for median-TWF and median-RWF.

We first show that median-TWF/median-RWF per-
forms well for the noise-free model in the following
proposition, which lends support to the model with
outliers. This also justifies that we can run median-
TWF/median-RWF without having to know whether the
underlying measurements are corrupted.

Proposition 1 (Exact recovery for the noise-free
model). Suppose that the measurements are noise-free,
i.e., ηi = 0 and wi = 0 for i = 1, · · · ,m in the model
(11). There exist constants µ0 > 0, 0 < ρ, ν < 1 and
c0, c1, c2 > 0 such that if m ≥ c0n log n and µ ≤ µ0,
then with probability at least 1−c1 exp(−c2m), median-
TWF/median-RWF yields

dist(z(t),x) ≤ ν(1− ρ)t‖x‖, ∀t ∈ N (21)

simultaneously for all x ∈ Rn\{0}.
Proposition 1 suggests that median-TWF/median-

RWF allows exact recovery at a linear rate of con-
vergence as long as the sample complexity is on the
order of n log n, which is in fact slightly worse, by
a logarithmic factor, than existing WF-type algorithms
(TWF, RWF and TAF) for the noise-free model. This
is a price due to working with the nonlinear operator
of median in the proof, and it is not clear whether it
is possible to further improve the result. Nonetheless,
as the median is quite stable as long as the number
of outliers is not so large, the following main theorem
indeed establishes that median-TWF/median-RWF still
performs well even in the presence of a constant fraction
of sparse outliers with the same sample complexity.

Theorem 1 (Exact recovery with sparse arbitrary
outliers). Suppose that the measurements are corrupted
by sparse outliers, i.e., wi = 0 for i = 1, · · · ,m in the
model (11). There exist constants µ0, s0 > 0, 0 < ρ, ν <
1 and c0, c1, c2 > 0 such that if m ≥ c0n log n, s < s0,
µ ≤ µ0, then with probability at least 1−c1 exp(−c2m),
median-TWF/median-RWF yields

dist(z(t),x) ≤ ν(1− ρ)t‖x‖, ∀t ∈ N (22)

simultaneously for all x ∈ Rn\{0}.
Theorem 1 indicates that median-TWF/median-RWF

admits exact recovery for all signals in the presence
of sparse outliers with arbitrary magnitudes even when
the number of outliers scales linearly with the number
of measurements, as long as the sample complexity
satisfies m & n log n. Moreover, median-TWF/median-
RWF converges at a linear rate using a constant step
size, with per-iteration cost O(mn) (note that the me-
dian can be computed in linear time [57]). To reach
ε-accuracy, i.e., dist(z(t),x) ≤ ε, only O(log 1/ε) iter-
ations are needed, yielding the total computational cost
as O(mn log 1/ε), which is highly efficient. Empirically
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in the numerical experiments in Section III, median-
RWF converges faster and tolerates a larger fraction of
outliers than median-TWF, which can be due to the use
of the reshaped quadratic loss function.

We next consider the model when the measurements
are corrupted by both sparse arbitrary outliers and dense
bounded noise. Our following theorem characterizes
that median-TWF/median-RWF is stable to coexistence
of the two types of noises.

Theorem 2 (Stability to sparse arbitrary outliers and
dense bounded noises). Consider the phase retrieval
problem given in (11) in which measurements are cor-
rupted by both sparse arbitrary and dense bounded
noises. There exist constants µ0, s0 > 0, 0 < ρ < 1
and c0, c1, c2 > 0 such that if m ≥ c0n log n, s < s0,
µ ≤ µ0, then with probability at least 1−c1 exp(−c2m),
median-TWF and median-RWF respectively yield

dist(z(t),x) .
‖w‖∞
‖x‖

+ (1− ρ)t‖x‖, ∀t ∈ N, (23)

dist(z(t),x) .
√
‖w‖∞ + (1− ρ)t‖x‖, ∀t ∈ N (24)

simultaneously for all x ∈ Rn\{0}.

Theorem 2 immediately implies the stability of
median-TWF/median-RWF when the measurements are
only corrupted by dense bounded noise.

Corollary 1. Consider the phase retrieval problem
in which measurements are corrupted only by dense
bounded noises, i.e., ηi = 0 for i = 1, · · · ,m in the
model (11). There exist constants µ0 > 0, 0 < ρ < 1
and c0, c1, c2 > 0 such that if m ≥ c0n log n, µ ≤ µ0,
then with probability at least 1−c1 exp(−c2m), median-
TWF and median-RWF respectively yield

dist(z(t),x) .
‖w‖∞
‖x‖

+ (1− ρ)t‖x‖, ∀t ∈ N, (25)

dist(z(t),x) .
√
‖w‖∞ + (1− ρ)t‖x‖, ∀t ∈ N (26)

simultaneously for all x ∈ Rn\{0}.

With both sparse arbitrary outliers and dense bounded
noises, Theorem 2 and Corollary 1 imply that median-
TWF/median-RWF achieves the same convergence rate
and the same level of estimation error as the model with
only bounded noise. In fact, together with Theorem 1
and Proposition 1, it can be seen that applying median-
TWF/median-RWF does not require the knowledge of
the existence of outliers. When there do exist outliers,
median-TWF/median-RWF achieves almost the same
performance as if outliers do not exist.

III. NUMERICAL EXPERIMENTS

In this section, we provide numerical experiments
to demonstrate the effectiveness of median-TWF and
median-RWF, which corroborate our theoretical find-
ings.

A. Exact Recovery for Noise-free Data

We first show that, in the noise-free case, median-
TWF and median-RWF provide similar performance as
TWF [15] and RWF [67] for exact recovery. We set the
parameters of median-TWF and median-RWF as speci-
fied in Section II-A and Section II-B, and those of TWF
and RWF as suggested in [15] and [67], respectively.
Let the signal length n take values from 1000 to 10000
by a step size of 1000, and the ratio of the number
of measurements to the signal dimension, m/n, take
values from 2 to 6 by a step size of 0.1. For each pair
of (n,m/n), we generate a signal x ∼ N (0, In×n),
and the measurement vectors ai ∼ N (0, In×n) i.i.d.
for i = 1, . . . ,m. For all algorithms, a fixed number
of iterations T = 500 are run, and the trial is declared
successful if z(T ), the output of the algorithm, satisfies
dist(z(T ),x)/‖x‖ ≤ 10−8. Figure 1 shows the number
of successful trials out of 20 trials for all algorithms,
with respect to m/n and n. It can be seen that, as soon
as m is above 4n, exact recovery is achieved for all
four algorithms. Around the phase transition boundary,
the empirical sample complexity of median-TWF is
slightly worse than that of TWF, which is possibly due
to the inefficiency of median compared to mean in the
noise-free case [31]. Interestingly, the empirical sample
complexity of median-RWF is slightly better than RWF
because the truncation rule used in median-RWF allows
sample pruning that improves the performance.5
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(a) median-TWF
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(b) TWF
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(c) median-RWF (d) RWF

Fig. 1. Sample complexity of median-TWF, TWF, median-RWF,
and RWF for noise-free data: the gray scale of each cell (n,m/n)
indicates the number of successful recovery out of 20 trials.

B. Exact Recovery with Sparse Outliers

We next examine the performance of median-TWF
and median-RWF in the presence of sparse outliers. We

5The original RWF in [67] does not have sample truncation.
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compare the performance of median-TWF and median-
RWF with TWF [15], Robust-WF [13], RobustPhase-
Max [28] and AltGD [49]. Specifically, Robust-WF is
based on hard thresholding and requires knowing the
fraction s of outliers so that samples corresponding to
s̃m largest values in the measurements or gradients are
removed, where s̃ = 1.2s as suggested in [13]. We note
that AltGD [49] uses our robust initialization strategy.

We fix the signal length n = 32 and the number of
measurements m = 8n. Let each measurement yi be
corrupted with probability s ∈ [0, 0.4] independently,
where the corruption value ηi ∼ U(−ηmax/2, ηmax/2)
is randomly generated from a uniform distribution.
Figure 2 shows the success rate of exact recovery over
100 trials as a function of s at different levels of
outlier magnitudes ηmax/‖x‖2 = 0.1, 1, 10, 100, for the
six algorithms median-TWF, median-RWF, Robust-WF,
RobustPhaseMax, TWF and AltGD.

From Figure 2, it can be seen that median-TWF
and median-RWF allow exact recovery as long as s
is not too large for all levels of outlier magnitudes,
without assuming any knowledge of the outliers, which
validates our theoretical analysis. Empirically, median-
RWF can tolerate a larger fraction of outliers than
median-TWF. This could be due to the fact that the
lower-order objective adopted in median-RWF reduces
the variance and allows more stable search direction.
Unsurprisingly, TWF fails quickly even with a very
small fraction of outliers. No successful instance is
observed for TWF when s ≥ 0.02 irrespective of the
value of ηmax. Robust-WF, even knowing the number
of outliers, still does not exhibit a sharp phase transition,
and in general underperforms the proposed median-
TWF and median-RWF. Moreover, RobustPhaseMax,
which employs linear programming with slack variable
to handle outliers, does not perform well in these ex-
periments either. AltGD performs well when the values
of the outliers are small as can be seen in Figure 2 (a),
and deteriorates as the outliers have larger values as can
be observed in Figure 2 (b)-(d).

C. Stable Recovery with Sparse Outliers and Dense
Noise

We now examine the performance of median-TWF
and median-RWF in the presence of both sparse outliers
and dense bounded noise. The entries of the dense
bounded noise termw are generated independently from
U(0, wmax). The entries of the sparse outlier are then
generated as ηi ∼ ‖w‖ · Bernoulli(0.1) independently.
Figure 3(a) and Figure 3(b) depict the relative error
dist(z(t),x)/‖x‖ with respect to the iteration count
t, when wmax/‖x‖2 = 0.001 and 0.01 respectively.
In the presence of sparse outliers, it can be seen
that both median-TWF and median-RWF clearly out-
performs TWF under the same situation, and acts as
if the outliers do not exist by achieving almost the
same accuracy as TWF without outliers. Moreover, the
relative error of the reconstruction using median-TWF

or median-RWF has 10 times gain from Figure 3(a)
to Figure 3(b) as wmax shrinks by a factor of 10,
which corroborates Theorem 2 nicely. Furthermore, it
can be seen that median-RWF converges faster than the
other algorithms, due to the improved curvature of using
low-order objectives, corroborating the result in [67].
On the other hand, median-TWF returns more accurate
estimates, due to employing more delicate truncation
rules that may help reduce the noise.

We also consider the case when the measurements are
corrupted by both Poisson noise and outliers, modeling
photon detection in optical imaging applications. We
generate each measurement as yi ∼ Poisson(|〈ai,x〉|2),
for i = 1, · · · ,m, which is then corrupted with prob-
ability s = 0.1 by outliers. The entries of the outlier
are obtained by first generating ηi ∼ ‖x‖2 · U(0, 1)
independently, and then rounding it to the nearest inte-
ger. Figure 4 depicts the relative error dist(z(t),x)/‖x‖
with respect to the iteration count t, where median-TWF
and median-RWF under both outliers and Poisson noise
have almost the same accuracy as, if not better than,
TWF under only the Poisson noise.

Finally, we consider the case with the noise generated
from a Gaussian mixture model (GMM). The probabil-
ity density function of the two-term GMM is given by

p(w) =

2∑
i=1

ci√
2πσi

exp

(
− w2

2σ2
i

)
, (27)

where ci ∈ [0, 1] and σ2
i are the fraction and the variance

of the ith term, respectively, and c1 + c2 = 1. This can
model the scenario of outliers embedded in Gaussian
background noise if σ2

2 � σ2
1 and c2 � c2. We define

the SNR as

SNR := 10 log10

EA‖Ax‖4

Ew‖w‖2
. (28)

Then we have SNR = 10 log10
3‖x‖4∑
i ciσ

2
i

for measure-
ments A consisting of ai ∼ N (0, In×n) and w ∼ p(w)
in (27). In our experiment, we set the signal dimension
n = 100 and the number of measurements m = 800,
and set σ2

2 = 10000σ2
1 , c2 = 0.1. We let SNR vary from

10 dB to 100 dB and record the relative error of the sig-
nals recovered by the five algorithms, i.e., median-TWF,
median-RWF, Robust-WF, RobustPhaseMax, TWF and
AltGD.

From Figure 5, we see that the relative errors achieved
by our algorithms are significantly lower than Robust-
PhaseMax [28] and slightly lower than Robust-WF [13].
We also note that median-TWF performs slightly better
than median-RWF. This is because for the model (11),
median-RWF requires the square root of yi (see equa-
tion (20)) which produces extra multiplicative noise. We
also observe that AltGD achieves as good (or perhaps
slightly better) MSE-SNR performance as the median
based algorithms under the model with the Gaussian
mixture noises.
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(d) ηmax = 100‖x‖2

Fig. 2. Success rate of exact recovery with respect to the fraction of sparse outliers for median-TWF, median-RWF, Robust-WF, RobustPhaseMax
and TWF at different levels of outlier magnitudes.

IV. PRELIMINARIES AND PROOF ROADMAP

Broadly speaking, the proofs for median-TWF and
median-RWF follow the same roadmap. The crux is
to use the statistical properties of the median to show
that the median-truncated gradients satisfy the so-called
Regularity Condition [10], which guarantees the linear
convergence of the update rule, provided the initializa-
tion provably lands in a small neighborhood of the true
signal.

We first develop a few statistical properties of median
that will be useful throughout our analysis in Sec-
tion IV-A. Section IV-B analyzes the initialization that is
used in both algorithms. We then state the definition of
Regularity Condition in Section IV-C and explain how it
leads to the linear convergence rate. We provide separate
detailed proofs for two algorithms in Section V and
Section VI, respectively, because they involve different
bounding techniques that may be of independent interest
due to different loss functions.

At high level, we first prove the performance guaran-
tees of median-TWF and median-RWF for the noise-
free case (Proposition 1) by showing the regularity
condition holds for the truncated gradient, which uses
the concentration properties of the sample median. We
then extend to the corrupted case (Theorem 1) by

observing that similar bounds hold for order statistics
near the median. The main challenge lies in developing
the concentration properties of the sample median and
applying them to establish the regularity condition.

A. Properties of Median

We start by the definitions of the quantile of a
population distribution and its sample version.

Definition 1 (Generalized quantile function). Let 0 <
p < 1. For a cumulative distribution function (CDF) F ,
the generalized quantile function is defined as

F−1(p) = inf{x ∈ R : F (x) ≥ p}. (29)

For simplicity, denote θp(F ) = F−1(p) as the
p-quantile of F . Moreover for a sample sequence
{Xi}mi=1, the sample p-quantile θp({Xi}) means θp(F̂ ),
where F̂ is the empirical distribution of the samples
{Xi}mi=1 .

Remark 1. We note that the median med({Xi}) =
θ1/2({Xi}), and we use both notations interchangeably.

Next, we show that as long as the sample size is
large enough, the sample quantile concentrates around
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Fig. 3. The relative error with respect to the iteration count for median-TWF, median-RWF and TWF with both dense noise and sparse outliers,
and TWF with only dense noise. In (a) and (b), the dense noise is generated uniformly at different levels.
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Fig. 4. The relative error with respect to the iteration count for
median-TWF, median-RWF and TWF with both Poisson noise and
sparse outliers, and TWF with only Poisson noise.

the population quantile (motivated from [12]), as in
Lemma 1.

Lemma 1. Suppose F (·) is cumulative distribution
function (i.e., non-decreasing and right-continuous)
with continuous density function F ′(·). Assume the sam-
ples {Xi}mi=1 are i.i.d. drawn from F . Let 0 < p < 1.
If l < F ′(θ) < L for all θ in {θ : |θ − θp| ≤ ε}, then

|θp({Xi}mi=1)− θp(F )| < ε (30)

holds with probability at least 1− 2 exp(−2mε2l2).

Proof: See Appendix A.
Lemma 2 bounds the distance between the median of

two sequences.

Lemma 2. Given a vector X = (X1, X2, ..., Xn),
reorder the entries in a non-decreasing manner

X(1) ≤ X(2) ≤ ... ≤ X(n−1) ≤ X(n).
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Fig. 5. The relative error with respect to SNR for median-
TWF, median-RWF, Robust-WF, RobustPhaseMax and TWF with two
Gaussian noises.

Given another vector Y = (Y1, Y2, ..., Yn), then

|X(k) − Y(k)| ≤ ‖X − Y ‖∞, (31)

holds for all k = 1, ..., n.

Proof: See Appendix B.
Lemma 3, as a key robustness property of median,

suggests that in the presence of outliers, one can bound
the sample median from both sides by neighboring
quantiles of the corresponding clean samples.

Lemma 3. Consider clean samples {X̃i}mi=1. If a frac-
tion s (s < 1

2 ) of them are corrupted by outliers, one
obtains contaminated samples {Xi}mi=1 which contain
sm corrupted samples and (1 − s)m clean samples.
Then for a quantile p such that s < p < 1− s, we have

θp−s({X̃i}) ≤ θp({Xi}) ≤ θp+s({X̃i}).

Proof: See Appendix C.
Finally, Lemma 4 is related to bound the value of

the median, as well as the density at the median for the
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product of two possibly correlated standard Gaussian
random variables.

Lemma 4. Let u, v ∼ N (0, 1) which can be correlated
with the correlation coefficient |ρ| ≤ 1. Let r = |uv|,
and ψρ(x) represent the density of r. Denote θ 1

2
(ψρ) as

the median of r, and the value of ψρ(x) at the median
as ψρ(θ1/2). Then for all ρ,

0.348 < θ1/2(ψρ) < 0.455,

0.47 < ψρ(θ1/2) < 0.76.

Proof: See Appendix D.

B. Robust Initialization with Outliers
Considering the model that the measurements are

corrupted by both bounded noise and sparse outliers
given by (11), we show that the initialization provided
by the median-truncated spectral method in (14) is close
enough to the ground truth, i.e., dist(z(0),x) ≤ δ‖x‖.
Proposition 2. Fix δ > 0 and x ∈ Rn, and consider
the model given by (11). Suppose that ‖w‖∞ ≤ c‖x‖2
for some sufficiently small constant c > 0 and that
‖η‖0 ≤ sm for some sufficiently small constant s. With
probability at least 1− exp(−Ω(m)), the initialization
given by the median-truncated spectral method obeys6

dist(z(0),x) ≤ δ‖x‖, (32)

provided that m > c0n for some constant c0 > 0.

Proof: See Appendix D.

C. Regularity Condition
Once the initialization is guaranteed to be within

a small neighborhood of the ground truth, we only
need to show that the truncated gradient (16) and
(19) satisfy the Regularity Condition (RC) [10], [15],
which guarantees the geometric convergence of median-
TWF/median-RWF once the initialization lands into this
neighborhood.

Definition 2. The gradient ∇`(z) is said to satisfy the
Regularity Condition RC(µ, λ, c) if

〈∇`(z), z − x〉 ≥ µ

2
‖∇`(z)‖2 +

λ

2
‖z − x‖2 (33)

for all z obeying ‖z − x‖ ≤ c‖x‖.
The above RC guarantees that the gradient descent

update z(t+1) = z(t) − µ∇`(z) converges to the true
signal x geometrically [15] if µλ < 1. We repeat this
argument below for completeness.

dist2(z − µ∇`(z),x) ≤ ‖z − µ∇`(z)− x‖2

= ‖z − x‖2 + ‖µ∇`(z)‖2 − 2µ 〈z − x,∇`(z)〉
≤ ‖z − x‖2 + ‖µ∇`(z)‖2 − µ2‖∇`(z)‖2 − µλ ‖z − x‖2

= (1− µλ)dist2(z,x).

6Notation f(n) = Ω(g(n)) or f(n) & g(n) means that there
exists a constant c > 0 such that |f(n)| ≥ c|g(n)|.

V. PROOFS FOR MEDIAN-TWF

We first show that ∇`tr(z) in (16) satisfies the RC
for the noise-free case in Section V-A, and then extend
it to the model with only sparse outliers in Section V-B,
thus together with Proposition 2 establishing the global
convergence of median-TWF in both cases. Section V-C
proves Theorem 2 in the presence of both sparse outliers
and dense bounded noise.

A. Proof of Proposition 1
We consider the noise-free model. The central step

to establish the RC is to show that the sample median
used in the truncation rule of median-TWF concentrates
at the level ‖z − x‖‖z‖ as stated in the following
proposition.

Proposition 3. If m > c0n log n, then with probability
at least 1− c1 exp(−c2m),

0.6‖z‖‖z − x‖ ≤ θ0.49, θ0.51
({∣∣∣|aTi x|2 − |aTi z|2∣∣∣}m

i=1

)
≤ ‖z‖‖z − x‖, (34)

holds for all z,x satisfying ‖z − x‖ < 1/11‖z‖.
Proof: Detailed proof is provided in Appendix A.

We note that a similar property for the sample mean
has been shown in [15] as long as the number m
of measurements is on the order of n. In fact, the
sample median is much more challenging to bound due
to its non-linearity, which also causes slightly more
measurements compared to the sample mean.

Then we can establish that 〈∇`tr(z), z − x〉 is lower
bounded on the order of ‖z−x‖2, as in Proposition 4,
and that ‖∇`tr(z)‖ is upper bounded on the order of
‖z − x‖, as in Proposition 5.

Proposition 4 (Adapted version of Proposition 2 of
[15]). Consider the noise-free case yi = |aTi x|2 for
i = 1, · · · ,m, and any fixed constant ε > 0. Under the
condition (17), if m > c0n log n, then with probability
at least 1− c1 exp(−c2ε−2m),

〈∇`tr(z), z − x〉 ≥ (35){
1.99− 2(ζ1 + ζ2)−

√
8/πα−1

h − ε
}
‖z − x‖2 (36)

holds uniformly over all x, z ∈ Rn satisfying

‖z − x‖
‖z‖

≤ min

{
1

11
,
αl
αh
,
αl
6
,

√
98/3(αl)

2

2αu + αl

}
, (37)

where c0, c1, c2 > 0 are some universal constants, and
ζ1, ζ2, αl, αu and αh are defined in (17).

The proof of Proposition 4 adapts the proof of Propo-
sition 2 of [15], by properly setting parameters based
on the properties of sample median. For completeness,
we include a short outline of the proof in Appendix B.

Proposition 5 (Lemma 7 of [15]). Under the same
condition as in Proposition 4, if m > c0n, then
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there exist some constants c1, c2 > 0 such that with
probability at least 1− c1 exp(−c2m),

‖∇`tr(z)‖ ≤ (1 + δ) · 2
√

1.02 + 2/αh‖z − x‖ (38)

holds uniformly over all x, z ∈ Rn satisfying

‖z − x‖
‖z‖

≤ min

{
1

11
,
αl
αh
,
αl
6
,

√
98/3(αl)

2

2αu + αl

}
, (39)

where δ can be arbitrarily small as long as m/n
sufficiently large, and αl, αu and αh are given in (17).

Proof: See the proof of Lemma 7 in [15].
With these two propositions and (17), RC is guaran-

teed by setting

µ < µ0 :=
(1.99− 2(ζ1 + ζ2)−

√
8/πα−1h

2(1 + δ)2 · (1.02 + 2/αh)
,

λ+ µ · 4(1 + δ)2 · (1.02 + 2/αh)

< 2
{

1.99− 2(ζ1 + ζ2)−
√

8/πα−1h − ε
}
.

B. Proof of Theorem 1
We next consider the model (11) with only sparse

outliers. It suffices to show that ∇`tr(z) continues to
satisfy the RC. The critical step is to bound the sample
median of the corrupted measurements. Lemma 3 yields

θ 1
2−s

({|(aTi x)2 − (aTi z)2|}) ≤ θ 1
2
({|yi − (aTi z)2|})

≤ θ 1
2+s

({|(aTi x)2 − (aTi z)2|}. (40)

For simplicity of notation, we let h := z − x. Then
for the instance of s = 0.01, by Proposition 3, we have
with probability at least 1− 2 exp(−Ω(m)),

0.6‖z‖‖h‖ ≤ θ 1
2
({|yi − (aTi z)2|}) ≤ ‖z‖‖h‖. (41)

Based on the definition of set Et in Algorithm 1, we
introduce two events7:
Ei1 :=

{
αl‖z‖ ≤ |aTi z| ≤ αu‖z‖

}
, (42)

Ei2 :=

{
|yi − |aTi z|

2| ≤ αhmed{|yi − |aTi z|
2|}
|aTi z|
‖z‖

}
. (43)

To differentiate from E i2, we further define Ẽ i2 :={∣∣(aTi x)2 − (aTi z)2
∣∣ ≤ αhmed

{∣∣yi − (aTi z)2
∣∣} |aTi z|
‖z‖

}
.

We then have

∇`tr(z) =
1

m

m∑
i=1

(aTi z)
2 − yi

aTi z
ai1Ei1∩E

i
2

=
1

m

m∑
i=1

(aTi z)
2 − (aTi x)

2

aTi z
ai1Ei1∩Ẽ

i
2︸ ︷︷ ︸

∇clean`tr(z)

+

1

m

∑
i∈S

(
(aTi z)

2 − yi
aTi z

1Ei1∩E
i
2
−

(aTi z)
2 − (aTi x)

2

aTi z
1Ei1∩Ẽ

i
2

)
ai︸ ︷︷ ︸

∇extra`tr(z)

.

7Since the analysis is on one step of the algorithm, the iterate t is
omitted for simplicity.

Choosing ε small enough, it is easy to verify that
Propositions 4 and 5 are still valid on ∇clean`tr(z).
Thus, one has

〈∇clean`tr(z),h〉 ≥
{
1.99− 2(ζ1 + ζ2)−

√
8/πα

−1
h − ε

}
‖h‖2,∥∥∥∇clean`tr(z)∥∥∥ ≤ (1 + δ) · 2

√
1.02 + 2/αh‖h‖.

We next bound the contribution of ∇extra`tr(z).
Introduce q = [q1, . . . , qm]T , where

qi :=

(
(aTi z)

2 − yi
aTi z

1Ei1∩E
i
2
−

(aTi z)
2 − (aTi x)

2

aTi z
1Ei1∩Ẽ

i
2

)
1{i∈S}.

It can be seen that |qi| ≤ 2αh‖h‖. Thus ‖q‖ ≤
√
sm ·

2αh‖h‖, and∥∥∇extra`tr(z)∥∥ =
1

m

∥∥∥ATq
∥∥∥ ≤ 2(1 + δ)

√
sαh‖h‖,∣∣〈∇extra`tr(z),h〉∣∣ ≤ ‖h‖ · ∥∥∥∥ 1

m
∇extra`tr(z)

∥∥∥∥
≤ 2(1 + δ)

√
sαh‖h‖2,

where A = [a1, . . . ,am]T . Then, we have

− 〈∇`tr(z),h〉 ≥
〈
∇clean`tr(z),h

〉
−
∣∣∣〈∇extra`tr(z),h〉∣∣∣

≥
(
1.99− 2(ζ1 + ζ2)−

√
8/πα

−1
h − ε− 2(1 + δ)

√
sαh

)
‖h‖2,

and

‖∇`tr(z)‖ ≤
∥∥∇clean`tr(z)

∥∥+
∥∥∇extra`tr(z)

∥∥
≤ 2(1 + δ)

(√
1.02 + 2/αh +

√
sαh

)
‖h‖. (44)

Therefore, the RC is guaranteed if µ, λ, ε are chosen
properly and s is sufficiently small.

C. Proof of Theorem 2
We consider the model (11), and split our analysis of

the gradient loop into two regimes.
• Regime 1: c4‖z‖ ≥ ‖h‖ ≥ c3 ‖w‖∞‖z‖ . In this regime,

error contraction by each gradient step is given by

dist (z − µ∇`tr(z),x) ≤ (1− ρ)dist(z,x).

It suffices to justify that ∇`tr(z) satisfies the RC.
Denote ỹi := (aTi x)2 + wi. Then by Lemma 3, we
have

θ 1
2−s

{∣∣ỹi − (aTi z)2
∣∣} ≤ med

{∣∣yi − (aTi z)2
∣∣}

≤ θ 1
2+s

{∣∣ỹi − (aTi z)2
∣∣} .

Moreover, by Lemma 2 we have∣∣∣∣θ 1
2
+s

{∣∣∣ỹi − (a
T
i z)

2
∣∣∣}− θ 1

2
+s

{∣∣∣(aTi x)2 − (a
T
i z)

2
∣∣∣}∣∣∣∣ ≤ ‖w‖∞,∣∣∣∣θ 1

2
−s

{∣∣∣ỹi − (a
T
i z)

2
∣∣∣}− θ 1

2
−s

{∣∣∣(aTi x)2 − (a
T
i z)

2
∣∣∣}∣∣∣∣ ≤ ‖w‖∞.

Assume that s = 0.01. By Proposition 3, if c3 is
sufficiently large (i.e., c3 > 100), we still shave

0.6‖x− z‖‖z‖ ≤ med
{∣∣∣yi − (aTi z)

2
∣∣∣} ≤ ‖x− z‖‖z‖.

(45)
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Furthermore, recall Ẽ i2 :=
{ ∣∣(aTi x)2 − (aTi z)2

∣∣ ≤
αhmed

{∣∣(aTi z)2 − yi
∣∣} |aTi z|
‖z‖

}
. Then,

∇`tr(z) =
1

m

m∑
i=1

(aTi z)
2 − yi

aTi z
ai1Ei1∩Ei2

=
1

m

∑
i/∈S

(aTi z)
2 − (aTi x)

2

aTi z
ai1Ei1∩Ei2

+
1

m

∑
i∈S

(aTi z)
2 − (aTi x)

2

aTi z
ai1Ei1∩Ẽi2

− 1

m

∑
i/∈S

wi

aTi z
ai1Ei1∩Ei2︸ ︷︷ ︸

∇noise`tr(z)

+
1

m

∑
i∈S

(aTi z)
2 − yi

aTi z
ai1Ei1∩Ei2

− 1

m

∑
i∈S

(aTi z)
2 − (aTi x)

2

aTi z
ai1Ei1∩Ẽi2

,

where we use∇clean`tr(z) to denote the first two terms
and ∇extra`tr(z) to denote the last two terms. We note
that all the proof arguments for Propositions 4 and 5
are also valid for ∇clean`tr(z), and hence

〈∇clean`tr(z),h〉 ≥
{
1.99− 2(ζ1 + ζ2)−

√
8/πα

−1
h − ε

}
‖h‖2,∥∥∥∇clean`tr(z)∥∥∥ ≤ (1 + δ) · 2

√
1.02 + 2/αh‖h‖.

Next, we turn to control the contribution of the noise.
Let w̃i = wi

aTi z
1Ei1∩Ei2 , and then we have

‖∇noise`tr(z)‖ =

∥∥∥∥ 1

m
AT w̃

∥∥∥∥ ≤ ∥∥∥∥ 1√
m
AT

∥∥∥∥ ∥∥∥∥ w̃√m
∥∥∥∥

≤ (1 + δ)‖w̃‖∞ ≤ (1 + δ)
‖w‖∞
αl‖z‖

,

when m/n is sufficiently large. Given the regime con-
dition ‖h‖ ≥ c3 ‖w‖∞‖z‖ , we further have

‖∇noise`tr(z)‖ ≤
(1 + δ)

c3αl
‖h‖,∣∣∣〈∇noise`tr(z),h〉∣∣∣ ≤ ∥∥∥∇noise`tr(z)∥∥∥ · ‖h‖ ≤ (1 + δ)

c3αl
‖h‖2.

We next bound the contribution of ∇extra`tr(z). In-
troduce q = [q1, . . . , qm]T , where

qi :=

(
(aTi z)

2 − yi
aTi z

1Ei1∩E
i
2
−

(aTi z)
2 − (aTi x)

2

aTi z
1Ei1∩Ẽ

i
2

)
1{i∈S}.

Then |qi| ≤ 2αh‖h‖, and ‖q‖ ≤
√
sm · 2αh‖h‖. We

thus have∥∥∥∇extra`tr(z)∥∥∥ =
1

m

∥∥∥AT
q
∥∥∥ ≤ 2(1 + δ)

√
sαh‖h‖,∣∣∣〈∇extra`tr(z),h〉∣∣∣ ≤ ‖h‖ · ∥∥∥∇extra`tr(z)∥∥∥ ≤ 2(1 + δ)

√
sαh‖h‖2.

Putting these together, one has

〈∇`tr(z),h〉

≥
〈
∇clean`tr(z),h

〉
−
∣∣∣〈∇noise`tr(z),h〉∣∣∣− ∣∣∣〈∇extra`tr(z),h〉∣∣∣

≥
(
1.99− 2(ζ1 + ζ2)−

√
8/πα

−1
h − ε

− (1 + δ)(1/(c3α
l
z) + 2

√
sαh)

)
‖h‖2, (46)

and

‖∇`tr(z)‖ ≤
∥∥∥∇clean`tr(z)∥∥∥+

∥∥∥∇noise`tr(z)∥∥∥+
∥∥∥∇extra`tr(z)∥∥∥

≤ (1 + δ)

(
2
√

1.02 + 2/αh + 1/(c3α
l
z) + 2

√
sαh

)
‖h‖. (47)

The RC is guaranteed if µ, λ, ε are chosen properly,
c3 is sufficiently large and s is sufficiently small.
• Regime 2: Once the iterate enters this regime with

‖h‖ ≤ c3‖w‖∞
‖z‖ , each gradient iterate may not reduce

the estimation error. However, in this regime each move
size µ∇`tr(z) is at most O(‖w‖∞/‖z‖). Then the
estimation error cannot increase by more than ‖w‖∞

‖z‖
with a constant factor. Thus one has

dist (z − µ∇`tr(z),x) ≤ c5
‖w‖∞
‖x‖

for some constant c5. As long as ‖w‖∞/‖x‖2 is suffi-
ciently small, it is guaranteed that c5

‖w‖∞
‖x‖ ≤ c4‖x‖. If

the iterate jumps out of Regime 2, it falls into Regime
1.

VI. PROOFS FOR MEDIAN-RWF

We first show that ∇Rtr(z) in (19) satisfies the
RC for the noise-free case in Section VI-A, and then
extend it to the model with only sparse outliers in Sec-
tion VI-B, thus together with Proposition 2 establishing
the global convergence of median-RWF in both cases.
Section VI-C proves Theorem 2 in the presence of both
sparse outliers and dense bounded noise.

A. Proof of Proposition 1

The central step to establish the RC is to show that the
sample median used in the truncation rule of median-
RWF concentrates on the order of ‖z−x‖ as stated in
the following proposition.

Proposition 6. If m > c0n log n, then with probability
at least 1− c1 exp(−c2m),

0.5‖z − x‖ ≤ θ0.49, θ0.51
({∣∣|aTi z| − |aTi x|∣∣}mi=1

)
≤ 0.8‖z − x‖, (48)

holds for all z,x satisfying ‖z − x‖ < 1/11‖z‖.
Proof: See Appendix A.

Next we give a bound on the left hand side of RC.

Proposition 7 (Adapted version of Proposition 2 of
[15]). Consider the noise-free measurements yi =
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|aTi x| and any fixed constant ε > 0. If m > c0n log n,
then with probability at least 1− c1 exp(−c2m),

〈∇Rtr(z), z − x〉 ≥ {0.88− ζ ′1 − ζ ′2 − ε} ‖z − x‖2
(49)

holds uniformly over all x, z ∈ Rn satisfying ‖z−x‖‖z‖ ≤
1
20 , where c0, c1, c2 > 0 are some universal constants,
and ζ ′1, ζ

′
2 are given by

ζ ′1 := 1−min
{
E
[
ξ21{ξ≥0.5

√
1.01α′h

‖z−x‖
‖x‖ }

]
,

E
[
1{ξ≥0.5

√
1.01α′h

‖z−x‖
‖x‖ }

]}
ζ ′2 := E

[
ξ21{|ξ|>0.5

√
0.99α′h}

]
for some ξ ∼ N (0, 1) and α′h = 5.

Proof: See Appendix B.
Proposition 7 indicates that 〈∇Rtr(z), z − x〉 is

lower bounded by ‖z−x‖2 with some positive constant
coefficient. In order to prove the RC, it suffices to
show that ‖∇Rtr(z)‖ is upper bounded by the order
of ‖z − x‖ when z is within the neighborhood of true
signal x.

Proposition 8 (Lemma 7 of [15]). If m > c0n, then
there exist some constants c1, c2 > 0 such that with
probability at least 1− c1 exp(−c2m),

‖∇Rtr(z)‖ ≤ (1.8 + δ)‖z − x‖ (50)

holds uniformly over all x, z ∈ Rn satisfying ‖x−z‖ ≤
1
11‖x‖ where δ can be arbitrarily small as long as c0
sufficiently large.

Proof: See Appendix C.
With the above two propositions, RC is guaranteed

by setting µ < µ0 :=
2(0.88−ζ′1−ζ

′
2−ε)

(1.8+δ)2 and λ+µ · (1.8+

δ)2 < 2(0.88− ζ ′1 − ζ ′2 − ε).

B. Proof of Theorem 1

We consider the model (11) with only outliers, i.e.,
yi = |〈ai,x〉|2 + ηi for i = 1, · · · ,m. It suffices to
show that ∇Rtr(z) satisfies the RC. The critical step
is to lower and upper bound the sample median of the
corrupted measurements. Lemma 3 yields

θ 1
2−s

({||aTi x| − |aTi z||}) ≤ θ 1
2
({|√yi − |aTi z||})

≤ θ 1
2+s

({||aTi x| − |aTi z||}. (51)

For the simplicity of notation, we let h := z−x. Then
for the instance of s = 0.01, Proposition 6 yields that
if m > c0n log n, then

0.5‖h‖ ≤ θ 1
2
({|√yi − |aTi z||}) ≤ 0.8‖h‖ (52)

holds with probability at least 1− 2 exp(−Ω(m)).

Based on the definition of set E′t in Algorithm 2, we
introduce events8

T i :=
{∣∣√yi − |aTi z|∣∣ ≤ α′h ·med

{∣∣√yi − |aTi z|∣∣}} .
(53)

Differentiating from T i, we further define
T̃ i :=

{∣∣|aTi x| − |aTi z|∣∣ ≤ α′hmed
{∣∣√yi − |aTi z|∣∣}}.

We then have

∇Rtr(z) =
1

m

m∑
i=1

(
|aTi z| −

√
yi
)
ai1T i

=
1

m

m∑
i=1

(
|aTi z| −

√
yi
)
ai1T̃ i︸ ︷︷ ︸

∇cleanRtr(z)

+
1

m

∑
i∈S

((
|aTi z| −

√
yi
)
1T i −

(
|aTi z| − |a

T
i x|

)
1T̃ i

)
ai︸ ︷︷ ︸

∇extraRtr(z)

.

We note that all the proof arguments for Propositions
7 and 8 are also valid to ∇cleanRtr(z). Thus, one has〈
∇cleanRtr(z),h

〉
≥ (0.88− ζ ′1 − ζ ′2 − ε) ‖h‖2,∥∥∇cleanRtr(z)

∥∥ ≤ (1.8 + δ)‖h‖.

We next bound the contribution of ∇extraRtr(z).
Introduce q = [q1, . . . , qm]T , where

qi :=
((
|aTi z| −

√
yi
)
1T i −

(
|aTi z| − |aTi x|

)
1T̃ i

)
1{i∈S},

and then |qi| ≤ 1.6α′h‖h‖. Thus, ‖q‖ ≤
√
sm ·

1.6α′h‖h‖, and∥∥∇extraRtr(z)∥∥ =
1

m

∥∥∥ATq
∥∥∥ ≤ 1.6(1 + δ)

√
sα′h‖h‖,∣∣〈∇extraRtr(z),h〉∣∣ ≤ ‖h‖ · ∥∥∇extraRtr(z)∥∥

≤ 1.6(1 + δ)
√
sα′h‖h‖2,

where A = [a1, . . . ,am]T . Then, we have

〈∇Rtr(z),h〉 ≥
〈
∇cleanRtr(z),h

〉
−
∣∣∣〈∇extraRtr(z),h〉∣∣∣

≥
(
0.88− ζ′1 − ζ

′
2 − ε− 1.6(1 + δ)

√
sα
′
h

)
‖h‖2,

and

‖∇Rtr(z)‖ ≤
∥∥∇cleanRtr(z)

∥∥+
∥∥∇extraRtr(z)

∥∥
≤
(
1.8 + δ + 1.6(1 + δ)

√
sα′h

)
‖h‖.

Therefore the RC is guaranteed if µ, λ are chosen prop-
erly, δ is chosen sufficiently small and s is sufficiently
small.

C. Proof of Theorem 2
We consider the model (11) with outliers and

bounded noise. We split our analysis of the gradient
loop into two regimes.
• Regime 1: c4‖z‖ ≥ ‖h‖ ≥ c3

√
‖w‖∞. In this

regime, error contraction by each gradient step is given
by

dist (z − µ∇Rtr(z),x) ≤ (1− ρ)dist(z,x). (54)

8Again, we drop the iterate t subscript or superscript for simplicity.
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It suffices to justify that ∇Rtr(z) satisfies the RC.
Denote ỹi := (aTi x)2 + wi. Then by Lemma 3, we
have

θ 1
2−s

{∣∣∣√ỹi − |aTi z|∣∣∣}
≤ med

{∣∣√yi − |aTi z|∣∣} ≤ θ 1
2+s

{∣∣∣√ỹi − |aTi z|∣∣∣} .
Moreover, by Lemma 2 we have∣∣∣∣θ 1

2
+s

{∣∣∣√ỹi − |aTi z|∣∣∣}− θ 1
2
+s

{∣∣∣|aTi x| − |aTi z|∣∣∣}∣∣∣∣ ≤√‖w‖∞,∣∣∣∣θ 1
2
−s

{∣∣∣√ỹi − |aTi z|∣∣∣}− θ 1
2
−s

{∣∣∣|aTi x| − |aTi z|∣∣∣}∣∣∣∣ ≤√‖w‖∞.
Assume that s = 0.01. By Proposition 6, if c3 is

sufficiently large (i.e., c3 > 100), we still have

0.5‖h‖ ≤ med
{∣∣√yi − |aTi z|∣∣} ≤ 0.8‖h‖. (55)

Furthermore, recall T̃ i :={∣∣|aTi x| − |aTi z|∣∣ ≤ α′hmed
{∣∣|aTi z| − √yi∣∣}}.

Then,

∇Rtr(z) =
1

m

m∑
i=1

(
|aTi z| −

√
yi
)
ai1T i

=
1

m

∑
i/∈S

(
|aTi z| − |aTi x|

)
ai1T i

+
1

m

∑
i∈S

(
|aTi z| − |aTi x|

)
ai1T̃ i

− 1

m

∑
i/∈S

(
√
yi − |aTi x|)ai1T i︸ ︷︷ ︸
∇noiseRtr(z)

+
1

m

∑
i∈S

(
|aTi z| −

√
yi
)
ai1T i

− 1

m

∑
i∈S

(
|aTi z| − |aTi x|

)
ai1T̃ i ,

where we use ∇cleanRtr(z) to denote the first two
terms and ∇extraRtr(z) to denote the last two terms.
All the proof arguments for Propositions 7 and 8 are
also valid for ∇cleanRtr(z), and thus we have〈
∇cleanRtr(z),h

〉
≥ (0.88− ζ ′1 − ζ ′2 − ε) ‖h‖2,∥∥∇cleanRtr(z)

∥∥ ≤ (1.8 + δ)‖h‖.
Next, we turn to control the contribution of the noise.

Let w̃i = (
√
yi − |aTi x|)1T i . Then |w̃i| <

√
|wi| and

we have

‖∇noiseRtr(z)‖ =

∥∥∥∥ 1

m
AT w̃

∥∥∥∥ ≤ ∥∥∥∥ 1√
m
AT

∥∥∥∥ ∥∥∥∥ w̃√m
∥∥∥∥

≤ (1 + δ)‖w̃‖∞ ≤ (1 + δ)
√
‖w‖∞,

when m/n is sufficiently large. Given the regime con-
dition ‖h‖ ≥ c3

√
‖w‖∞, we further have

‖∇noiseRtr(z)‖ ≤
(1 + δ)

c3
‖h‖,∣∣∣〈∇noiseRtr(z),h〉∣∣∣ ≤ ∥∥∥∇noiseRtr(z)∥∥∥ ‖h‖ ≤ (1 + δ)

c3
‖h‖2.

We next bound the contribution of ∇extraRtr(z).
Introduce q = [q1, . . . , qm]T , where

qi :=
(
(|aTi z| −

√
yi)1T i − (|aTi z| − |aTi x|)1T̃ i

)
1{i∈S}.

Then |qi| ≤ 1.6α′h‖h‖, and ‖q‖ ≤
√
sm · 1.6α′h‖h‖.

We thus have∥∥∇extraRtr(z)∥∥ =
1

m

∥∥∥ATq
∥∥∥ ≤ 1.6(1 + δ)

√
sα′h‖h‖,∣∣〈∇extraRtr(z),h〉∣∣ ≤ ‖h‖ ∥∥∇extraRtr(z)∥∥

≤ 1.6(1 + δ)
√
sα′h‖h‖2.

Putting these together, one has

〈∇Rtr(z),h〉

≥
〈
∇cleanRtr(z),h

〉
−
∣∣∣〈∇noiseRtr(z),h〉∣∣∣

−
∣∣∣〈∇extraRtr(z),h〉∣∣∣

≥
(
0.88− ζ′1 − ζ

′
2 − ε− (1 + δ)(1/c3 − 1.6

√
sα
′
h)
)
‖h‖2,

and

‖∇Rtr(z)‖

≤
∥∥∥∇cleanRtr(z)∥∥∥+

∥∥∥∇noiseRtr(z)∥∥∥+
∥∥∥∇extraRtr(z)∥∥∥

≤
(
1.8 + δ + (1 + δ) · (1/c3 + 1.6

√
sα
′
h)
)
‖h‖. (56)

Thus, the RC is guaranteed if µ, λ, ε are chosen
properly, c0, c3 are sufficiently large and s is sufficiently
small.
• Regime 2: Once the iterate enters this regime

with ‖h‖ ≤ c3
√
‖w‖∞, each gradient iterate may not

reduce the estimation error. However, in this regime
each move size µ∇Rtr(z) is at most O(

√
‖w‖∞).

Then the estimation error cannot increase by more than√
‖w‖∞ with a constant factor. Thus one has

dist (z − µ∇Rtr(z),x) ≤ c5
√
‖w‖∞ (57)

for some constant c5. As long as
√
‖w‖∞ is sufficiently

small, it is guaranteed that c5
√
‖w‖∞ ≤ c4‖x‖. If the

iterate jumps out of Regime 2, it falls into Regime 1.

VII. CONCLUSION AND DISCUSSION

In this paper, we propose provably effective ap-
proaches, median-TWF and median-RWF, for phase
retrieval when the measurements are corrupted by sparse
outliers that can take arbitrary values. Our strategy is to
apply gradient descent with respect to carefully chosen
loss functions, where both the initialization and the
search directions are pruned by the sample median.
We show that both algorithms allow exact recovery
even with a constant proportion of arbitrary outliers for
robust phase retrieval using a near-optimal number of
measurements up to a logarithmic factor. We also show
our algorithms perform well for phase retrieval problem
under sparse corruptions by extensive experiments. We
anticipate that the technique developed in this paper will
be useful for designing provably robust algorithms for
other inference problems under sparse corruptions. Re-
cently, [43] studied the low-rank matrix recovery from
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random linear measurements and applied the median
approach to resist sparse corruptions.

At last, we would like to discuss several points related
with this work. As the reader may notice, our algorithms
are applicable to both the complex case and the real case
but the proof of performance guarantee is developed for
the real case. One key difference in the analysis lies in
the fact that sgn(·) for the real case becomes phase(·)
for the complex case, which takes continuous values and
requires very different analysis technique. Two recent
papers [61] and [51] have made some progress along
this direction but are not sufficient to establish the
bounds for our purpose. We leave the further elaborative
investigation as future work.

In order to establish the performance guarantee of
our algorithms, we assume the measurement vectors are
composed of i.i.d. Gaussian entries. This assumption
brings convenience for the proof but does not fit the
practical application well. Another interesting direction
is to consider the non-i.i.d. measurement vectors like the
Fourier basis measurements in the coded diffraction pat-
terns [9] and the circulant measurement in convolutional
phase retrieval [51]. These structured measurements
require much less memory and also less computations
via fast Fourier transform. It is interesting to study the
robustness of the under these non-i.i.d. scenarios and
analyze the performance of our median-approach.



16

APPENDIX

Appendix

A. Proof of Lemma 1

For simplicity, denote θp := θp(F ) and θ̂p :=
θp({Xi}mi=1). Since F ′ is continuous and positive, for an
ε, there exists a constant δ1 such that P(X ≤ θp− ε) =
p− δ1, where δ1 ∈ (εl, εL). Then one has

P
(
θ̂p < θp − ε

)
(a)
= P

(
m∑
i=1

1{Xi≤θp−ε} ≥ pm

)

= P

(
1

m

m∑
i=1

1{Xi≤θp−ε} ≥ (p− δ1) + δ1

)
(b)

≤ exp(−2mδ21) ≤ exp(−2mε2l2),

where (a) is due to the definition of the quantile function
in (29) and (b) is due to the fact that 1{Xi≤θp−ε} ∼
Bernoulli(p − δ1) i.i.d., followed by the Hoeffding in-
equality. Similarly, one can show for some δ2 ∈ (εl, εL),

P
(
θ̂p > θp + ε

)
≤ exp(−2mδ22) ≤ exp(−2mε2l2).

Combining these two inequalities, one has the conclu-
sion.

B. Proof of Lemma 2

It suffices to show that

|X(k)−Y(k)| ≤ max
l
|Xl−Yl|, ∀k = 1, · · · , n. (58)

Case 1: k = n, suppose X(n) = Xi and Y(n) =
Yj , i.e., Xi is the largest among {Xl}nl=1 and Yj is
the largest among {Yl}nl=1. Then we have either Xj ≤
Xi ≤ Yj or Yi ≤ Yj ≤ Xi. Hence,

|X(n) − Y(n)| = |Xi − Yj | ≤ max{|Xi − Yi|, |Xj − Yj |}.

Case 2: k = 1, suppose that X(1) = Xi and Y(1) =
Yj . Similarly

|X(1) − Y(1)| = |Xi − Yj | ≤ max{|Xi − Yi|, |Xj − Yj |}.

Case 3: 1 < k < n, suppose that X(k) = Xi, Y(k) =
Yj , and without loss of generality assume that Xi < Yj
(if Xi = Yj , 0 = |X(k) − Y(k)| ≤ maxl |Xl − Yl| holds
trivially). We show the conclusion by contradiction.

Assume |X(k) − Y(k)| > maxl |Xl − Yl|. Then one
must have Yi < Yj and Xj > Xi and i 6= j. Moreover
for any p < k and q > k, the index of X(p) cannot be
equal to the index of Y(q); otherwise the assumption is
violated.

Thus, all Y(q) for q > k must share the same index
set with X(p) for p > k. However, Xj , which is larger
than Xi (thus if Xj = X(k′), then k′ > k), shares
the same index with Yj , where Yj = Y(k). This yields
contradiction.

C. Proof of Lemma 3

Assume that sm is an integer. Since there
are sm corrupted samples in total, one can se-
lect at least d(p− s)me clean samples from the
left p portion of ordered contaminated samples
{θ1/m({Xi}), θ2/m({Xi}), · · · , θp({Xi})}. Thus one
has the left inequality. Furthermore, one can also select
out at least d(1− p− s)me clean samples from the
right 1 − p portion of ordered contaminated samples
{θp({Xi}), · · · , θ1({Xi})}. One has the right inequal-
ity.

D. Proof of Lemma 4

First we introduce some general facts for the distribu-
tion of the product of two correlated standard Gaussian
random variables [22]. Let u ∼ N (0, 1), v ∼ N (0, 1),
and their correlation coefficient be ρ ∈ [−1, 1]. Then
the density of uv is given by

φρ(x) =
1

π
√

1− ρ2
exp

(
ρx

1− ρ2

)
K0

(
|x|

1− ρ2

)
, x 6= 0,

where K0(·) is the modified Bessel function of the
second kind. Thus the density of r = |uv| is

ψρ(x) =
1

π
√

1− ρ2

[
exp

(
ρx

1− ρ2

)
+ exp

(
− ρx

1− ρ2

)]
·K0

(
|x|

1− ρ2

)
, x > 0, (59)

for |ρ| < 1. If |ρ| = 1, r becomes a χ2
1 random variable,

with the density

ψ|ρ|=1(x) =
1√
2π
x−1/2 exp(−x/2), x > 0.

It can be seen from (59) that the density of r only relates
to the correlation coefficient ρ ∈ [−1, 1].

Let θ1/2(ψρ) be the 1/2 quantile (median) of the
distribution ψρ(x), and ψρ(θ1/2) be the value of the
function ψρ at the point θ1/2(ψρ). Although it is difficult
to derive the analytical expressions of θ1/2(ψρ) and
ψρ(θ1/2) due to the complicated form of ψρ in (59),
due to the continuity of ψρ(x) and θ1/2(ψρ), we can
calculate them numerically, as illustrated in Figure 6.
From the numerical calculation, one can see that both
ψρ(θ1/2) and θ1/2(ψρ) are bounded from below and
above for all ρ ∈ [0, 1] (ψρ(·) is symmetric over ρ,
hence it is sufficient to consider ρ ∈ [0, 1]), satisfying

0.348 < θ1/2(ψρ) < 0.455, 0.47 < ψρ(θ1/2) < 0.76.
(60)

Denote ỹi := |aTi x|2 + wi for convenience. We first
bound the concentration of med({yi}), also denoted by
θ 1

2
({yi}). Lemma 3 yields

θ 1
2−s

({ỹi}) < θ 1
2
({yi}) < θ 1

2+s
({ỹi}). (61)
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Fig. 6. Quantiles and density at quantiles of ψρ(x) across ρ.

Moreover, Lemma 2 indicates that

θ 1
2−s

({ỹi}) ≥ θ 1
2−s

({|aTi x|2})− ‖w‖∞, (62)

θ 1
2+s

({ỹi}) ≤ θ 1
2+s

({|aTi x|2}) + ‖w‖∞. (63)

Observe that aTi x = ã2i1‖x‖2, where
ãi1 = aTi x/‖x‖ is a standard Gaussian random
variable. Thus |ãi1|2 is a χ2

1 random variable,
whose cumulative distribution function is denoted
as K(x). Moreover by Lemma 1, for a small
ε, one has

∣∣∣θ 1
2−s

({|ãi1|2})− θ 1
2−s

(K)
∣∣∣ < ε and∣∣∣θ 1

2+s
({|ãi1|2})− θ 1

2+s
(K)

∣∣∣ < ε with probability
1− 2 exp(−cmε2) and c is a constant around 2× 0.472

(see Figure 6). We note that θ 1
2
(K) = 0.455 and both

θ 1
2−s

(K) and θ 1
2+s

(K) can be arbitrarily close to
θ 1

2
(K) simultaneously as long as s is small enough

(independent of n). Thus, one has(
θ 1

2
−s(K)− ε− c

)
‖x‖2 < θ 1

2
({yi}) <

(
θ 1

2
+s

(K) + ε+ c

)
‖x‖2,

(64)

with probability at least 1 − exp(−cmε2). For the
sake of simplicity, we introduce two new notations
ζs := θ 1

2−s
(K) and ζs := θ 1

2+s
(K). Specifically for

the instance of s = 0.01, one has ζs = 0.434 and
ζs = 0.477. It is easy to see that ζs − ζs can be
arbitrarily small if s is small enough.

We next estimate the direction of x, assuming ‖x‖ =
1. On the event that (64) holds, the truncation function

has the following bounds,

1{yi≤α2
yθ1/2({yi})/0.455} ≤ 1{yi≤α2

y(ζ
s+ε)/0.455}

≤ 1{(aTi x)2≤α2
y(ζ

s+ε+c)/0.455}
1{yi≤α2

yθ1/2({yi})/0.455} ≥ 1{yi≤α2
y(ζs−ε)/0.455}

≥ 1{(aTi x)2≤α2
y(ζs−ε−c)/0.455}.

On the other hand, denote the support of the outliers
as S, and we have

Y =
1

m

∑
i/∈S

aia
T
i ỹi1{(aTi x)2≤α2

yθ1/2({yi})/0.455}

+
1

m

∑
i∈S

aia
T
i yi1{yi≤α2

yθ1/2({yi})/0.455}.

Consequently, one can bound Y as

Y1 :=
1

m

∑
i/∈S

aia
T
i (a

T
i x)

21{(aTi x)2≤α2
y(ζs−ε−c)/0.455}

− c · 1
m

∑
i/∈S

aia
T
i � Y

� 1

m

∑
i/∈S

aia
T
i (a

T
i x)

21{(aTi x)2≤α2
y(ζ

s+ε+c)/0.455}

+ c · 1
m

∑
i/∈S

aia
T
i +

1

m

∑
i∈S

aia
T
i α

2
y(ζ

s + ε+ c)/0.455 =: Y2,

where we have

E[Y1] = (1− s)(β1xxT + β2I − cI),

E[Y2] = (1− s)(β3xxT + β4I + cI) + sα2
y

(ζs + ε)

0.455
I,

with

β1 := E
[
ξ41{|ξ|≤αy√(ζs−ε−c)/0.455

}]
− E

[
ξ21{|ξ|≤αy√(ζs−ε−c)/0.455

}]
β2 := E

[
ξ21{|ξ|≤αy√(ζs−ε−c)/0.455

}]
β3 := E

[
ξ41{|ξ|≤αy√(ζs+ε+c)/0.455

}]
− E

[
ξ21{|ξ|≤αy√(ζs+ε+c)/0.455

}]
β4 := E

[
ξ21{|ξ|≤αy√(ζs+ε+c)/0.455

}]
where ξ ∼ N (0, 1).

Applying standard results on random matrices with
non-isotropic sub-Gaussian rows [59, equation (5.26)]
and noticing that aiaTi (aTi x)21{|aTi x|≤c} can be rewrit-
ten as bibTi where bi := ai(a

T
i x)1{|aTi x|≤c} is sub-

Gaussian, one can obtain

‖Y1 − E[Y1]‖ ≤ δ, ‖Y2 − E[Y2]‖ ≤ δ (65)

with probability 1 − exp(−Ω(m)), provided that m/n
exceeds some large constant. Furthermore, when ε, c
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and s are sufficiently small, one further has ‖E[Y1] −
E[Y2]‖ ≤ δ. Putting these together, one has

‖Y − (1− s)(β1xxT + β2I − cI)‖ ≤ 3δ. (66)

Let z̃(0) be the normalized leading eigenvector of Y .
Repeating the same argument as in [10, Section 7.8]
and taking δ, ε to be sufficiently small, one has

dist(z̃(0),x) ≤ δ̃, (67)

for a given δ̃ > 0, as long as m/n exceeds some large
constant.

Furthermore let z(0) =
√

med{yi}/0.455z̃(0) to
handle cases ‖x‖ 6= 1. By the bound (64), one has

∣∣∣∣med({yi})
0.455

− ‖x‖2
∣∣∣∣

≤ max

{∣∣∣∣ζs − ε− c0.455
− 1

∣∣∣∣ , ∣∣∣∣ζs + ε+ c

0.455
− 1

∣∣∣∣} ‖x‖2
≤ ζs − ζs + 2ε+ 2c

0.455
‖x‖2.

Thus

dist(z(0),x) ≤ ζs − ζs + 2ε+ 2c

0.455
‖x‖+ δ̃‖x‖ ≤ 1

11
‖x‖

as long as s and c are small enough constants.

SUPPORTING PROOFS FOR MEDIAN-TWF

A. Proof of Proposition 3

We show that the sample median used in the trunca-
tion rule concentrates at the level ‖z − x‖‖z‖. Along
the way, we also establish that the sample quantiles
around the median are also concentrated at the level
‖z − x‖‖z‖.

We first show that for a fixed pair z and x, (34)
holds with high probability. For simplicity of notation,
we let h := z − x. Let ri = |(aTi x)2 − (aTi z)2|. Then
ri’s are i.i.d. copies of a random variable r, where r =
|(aTx)2 − (aTz)2| with the entries of a composed of
i.i.d. standard Gaussian random variables. Note that the
distribution of r is fixed once given h and z. Let x(1)
denote the first element of a generic vector x, and x−1
denote the remaining vector of x after eliminating the
first element. Let Uh be an orthonormal matrix with first
row being hT /‖h‖, ã = Uha, and z̃ = Uhz. Similarly,
define Uz̃−1

and let b̃ = Uz̃−1
ã−1. Then ã(1) and b̃(1)

are independent standard normal random variables. We

further express r as follows.

r = |(aTz)2 − (aTx)2|
= |(2aTz − aTh)(aTh)|
= |(2ãT z̃ − ã(1)‖h‖)(ã(1)‖h‖)|
= |(2hTz − ‖h‖2)ã(1)2 + 2(ãT−1z̃−1)(ã(1)‖h‖)|
= |(2hTz − ‖h‖2)ã(1)2 + 2b̃(1)‖z̃−1‖ã(1)‖h‖|
= |(2hTz − ‖h‖2)ã(1)2

+ 2
√
‖z‖2 − z̃(1)2ã(1)b̃(1)‖h‖|

=
∣∣∣ (2

hTz

‖h‖‖z‖
− ‖h‖
‖z‖

)
ã(1)2

+ 2

√
1−

(
hTz

‖h‖‖z‖

)2

ã(1)b̃(1)
∣∣∣ · ‖h‖‖z‖

=:
∣∣∣(2 cos(ω)− t)ã(1)2 + 2

√
1− cos2(ω)ã(1)b̃(1)

∣∣∣
· ‖h‖‖z‖

=: |uṽ| · ‖h‖‖z‖

where ω is the angle between h and z, and t =
‖h‖/‖z‖ < 1/11. Consequently, u = ã(1) ∼ N (0, 1)
and ṽ = (2 cos(ω) − t)ã(1) + 2| sin(ω)|b̃(1) is also
a Gaussian random variable with variance 3.6 <
Var(ṽ) < 4 under the assumption t < 1/11.

Let v = ṽ/
√
Var(ṽ), and then v ∼ N (0, 1). Further-

more, let r′ = |uv|. Denote the density function of r′
as ψρ(·) and the 1/2-quantile point of r′ as θ1/2(ψρ).
By Lemma 4, we have

0.47 < ψρ(θ1/2) < 0.76,

0.348 < θ1/2(ψρ) < 0.455.

By Lemma 1, we have with probability at least 1 −
2 exp(−cmε2) (here c is around 2× 0.472),

0.348− ε < med({r′i}mi=1) < 0.455 + ε.

The same arguments carry over to other quantiles
θ0.49({r′i}) and θ0.51({r′i}). From Figure. 6, we observe
that for ρ ∈ [0, 1]

0.45 < ψρ(θ0.49), ψρ(θ0.51) < 0.78,

0.34 < θ0.49(ψρ), θ0.51(ψρ) < 0.48

and then we have with probability at least 1 −
2 exp(−cmε2) (here c is around 2× 0.452),

0.34− ε < θ0.49({r′m}), θ0.51({r′m}) < 0.48 + ε. (68)

Hence, by multiplying by
√
Var(ṽ), we have with

probability 1− 2 exp(−cmε2),

(0.65− ε)‖z − x‖‖z‖ ≤ med
({
|(aTi z)2 − (aTi x)

2|
})

≤ (0.91 + ε)‖z − x‖‖z‖, (69)

(0.63− ε)‖z − x‖‖z‖ ≤ θ0.49, θ0.51
({
|(aTi z)2 − (aTi x)

2|
})

≤ (0.95 + ε)‖z − x‖‖z‖. (70)

We note that, to keep notation simple, c and ε may
vary line by line within constant factors.
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Up to now, we prove that for any fixed z
and x, the median or neighboring quantiles of{
|(aTi z)2 − (aTi x)2|

}
are upper and lower bounded by

‖z − x‖‖z‖ times constant factors. To prove (34) for
all z and x with ‖z − x‖ ≤ 1

11‖z‖, we use the net
covering argument. Still we argue for median first and
the same arguments carry over to other quantiles.

To proceed, we restate (69) as

(0.65− ε) ≤ med

({∣∣∣∣(2(aTi z)

‖z‖ − aTi h

‖h‖
‖h‖
‖z‖

)
aTi h

‖h‖

∣∣∣∣})
≤ (0.91 + ε)

holds with probability at least 1− 2 exp(−cmε2) for a
given pair h, z satisfying ‖h‖/‖z‖ ≤ 1/11.

Let τ = ε/(6n+ 6m), let Sτ be a τ -net covering the
unit sphere, Lτ be a τ -net covering a line with length
1/11, and set

Nτ = {(z0,h0, t0) : (z0,h0, t0) ∈ Sτ × Sτ × Lτ}. (71)

One has cardinality bound (i.e., the upper bound on
the covering number) |Nτ | ≤ (1 + 2/τ)2n/(11τ) <
(1 + 2/τ)2n+1. Taking the union bound, we have

(0.65− ε) ≤ med
({
|2(aTi z0)− (aTi h0)t0||aTi h0|

})
≤ (0.91 + ε), ∀(z0,h0, t0) ∈ Nε (72)

with probability at least 1−(1+2/τ)2n+1 exp(−cmε2).
We next argue that (72) holds with probability 1 −

c1 exp(−c2mε2) for some constants c1, c2 as long as
m ≥ c0(ε−2 log ε−1)n log n for sufficiently large con-
stant c0. To prove this claim, we first observe

(1 + 2/τ)2n+1 � exp(2n(log(n+m) + log 12 + log(1/ε)))

� exp(2n(logm)).

We note that once ε is chosen, it is fixed in the whole
proof and does not scale with m or n. For simplicity,
assume that ε < 1/e. Fix some positive constant c′ <
c− c2. It then suffices to show that there exists a large
constant c0 such that if m ≥ c0(ε−2 log ε−1)n log n,
then

2n logm < c′mε2. (73)

For any fixed n, if (73) holds for some m and m >
(2/c′)ε−2n, then (73) always holds for larger m, be-
cause

2n log(m+ 1) = 2n logm+ 2n(log(m+ 1)− logm)

= 2n logm+
2n

m
log(1 +

1

m
)m

≤ 2n logm+
2n

m
≤ c′mε2 + c′ε2 = c′(m+ 1)ε2.

Next, for any n, we can always find a constant c0 such
that (73) holds for m = c0(ε−2 log ε−1)n log n. Such c0
can be easily found for large n. For example, c0 = 4/c′

is a valid option if

(4/c′)(ε−2 log ε−1)n log n < n2. (74)

Moreover, since the number of n that violates (74) is
finite, the maximum over all such c0 serves the purpose.

Next, one needs to bound∣∣∣med
({
|2(aTi z0)− (aTi h0)t0||aTi h0|

})
−med

({
|2(aTi z)− (aTi h)t||aTi h|

}) ∣∣∣
for any ‖z−z0‖ < τ, ‖z−z0‖ < τ and ‖t− t0‖ < τ .

By Lemma 2 and the inequality
∣∣|x| − |y|∣∣ ≤ |x− y|,

we have∣∣med
({
|2(aTi z0)− (aTi h0)t0||aTi h0|

})
−med

({
|2(aTi z)− (aTi h)t||aTi h|

}) ∣∣
≤ max
i∈[m]

∣∣ (2(aTi z0)− (aTi h0)t0
)
(aTi h0)

−
(
2(aTi z)− (aTi h)t

)
(aTi h)

∣∣
≤ max
i∈[m]

∣∣ (2(aTi z0)− (aTi h0)t0
)
(aTi h0)

−
(
2(aTi z)− (aTi h)t

)
(aTi h0)

∣∣
+ max
i∈[m]

∣∣ (2(aTi z)− (aTi h)t
)
(aTi h0)

−
(
2(aTi z)− (aTi h)t

)
(aTi h)

∣∣
≤ max
i∈[m]

(∣∣∣2aTi (z0 − z)
∣∣∣+ ∣∣∣(aTi h0)t0 − (aTi h)t

∣∣∣) ∣∣∣aTi h0

∣∣∣
+ max
i∈[m]

∣∣∣2(aTi z)− (aTi h)t
∣∣∣ |aTi (h0 − h)|

≤ max
i∈[m]

‖ai‖2(3 + t)τ + max
i∈[m]

‖ai‖2(2 + t)τ

≤ max
i∈[m]

‖ai‖2(5 + 2t)τ

On the event E1 :=
{

maxi∈[m] ‖ai‖2 ≤ m+ n
}

,
one can show that∣∣med

({
|2(aTi z0)− (aTi h0)t0||aTi h0|

})
−med

({
|2(aTi z)− (aTi h)t||aTi h|

}) ∣∣
< 6(m+ n)τ < ε. (75)

We claim that E1 holds with probability at least
1 − m exp(−m/8) if m > n. This can be argued as
follows. Note that ‖ai‖2 =

∑n
j=1 ai(j)

2, where ai(j)
is the j-th element of ai. Hence, ‖ai‖2 is a sum of n
i.i.d. χ2

1 random variables. Applying the Bernstein-type
inequality [59, Corollary 5.17] and observing that the
sub-exponential norm of χ2

1 is smaller than 2, we have

P
{
‖ai‖2 ≥ m+ n

}
≤ exp(−m/8). (76)

Then a union bound concludes the claim.
Further note that (72) holds on an event E2, which

has probability 1 − c1 exp(−c2mε2) as long as m ≥
c0(ε−2 log 1

ε )n log n. On the intersection of E1 and E2,
inequality for θ 1

2
(i.e., median) in (34) holds. Such net

covering arguments can also carry over to show that
inequalities of θ0.49 and θ0.51 in (34) also hold for all
x and z obeying ‖x− z‖ ≤ 1

11‖z‖.
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B. Proof of Proposition 4

The proof adapts that of [15, Proposition 2]. We
outline the main steps for completeness. Observe that
for the noise-free case, yi = (aTi x)2. We obtain

∇`tr(z) =
1

m

m∑
i=1

(aTi z)2 − (aTi x)2

aTi z
ai1Ei1∩Ei2

=
1

m

m∑
i=1

2(aTi h)ai1Ei1∩Ei2 −
1

m

m∑
i=1

(aTi h)2

aTi z
ai1Ei1∩Ei2 .

(77)

One expects the contribution of the second term in (77)
to be small as ‖h‖/‖z‖ decreases.

For each i, we introduce two new events

E i3 := {
∣∣(aTi x)2 − (aTi z)2

∣∣ ≤ 0.6αh‖h‖ · |aTi z|},
E i4 := {

∣∣(aTi x)2 − (aTi z)2
∣∣ ≤ 1.0αh‖h‖ · |aTi z|}.

One the event that Proposition 3 holds, the following
inclusion property

E i3 ⊆ E i2 ⊆ E i4 (78)

is true for all i, where E i2 is defined in (43). It is easier
to work with these new events because E i3’s (resp. E i4’s)
are statistically independent across i for any fixed x and
z. To further decouple the quadratic inequalities in E i3
and E i4 into linear inequalities, we introduce two more
events and state their properties in the following lemma.

Lemma 5 (Lemma 3 in [15]). For any γ > 0, define

Diγ := {
∣∣(aTi x)2 − (aTi z)2

∣∣ ≤ γ‖h‖|aTi z|}, (79)

Di,1γ :=

{
|aTi h|
‖h‖

≤ γ
}
, (80)

Di,2γ :=

{∣∣∣∣aTi h‖h‖ − 2aTi z

‖h‖

∣∣∣∣ ≤ γ} . (81)

On the event E i1 defined in Algorithm 1, the quadratic
inequality specifying Diγ implicates that aTi h belongs to
two intervals centered around 0 and 2aTi z, respectively,
i.e., Di,1γ and Di,2γ . The following inclusion property
holds(

Di,1γ
1+
√

2

∩ E i1
)
∪
(
Di,2γ

1+
√

2

∩ E i1
)

⊆ Diγ ∩ E i1 ⊆
(
Di,1γ ∩ E i1

)
∪
(
Di,2γ ∩ E i1

)
. (82)

Specifically, following the two inclusion properties
(78) and (82), we have

Di,1γ3 ∩ E
i
1,γ3 ⊆ E

i
3 ∩ E i1 ⊆ E i2 ∩ E i1

⊆ E i4 ∩ E i1 ⊆ (Di,1γ4 ∪ D
i,2
γ4 ) ∩ E i1 (83)

where the parameters γ3, γ4 are given by

γ3 := 0.248αh, and γ4 := αh.

Further using the identity (77), we have the following
lower bound

〈∇`tr(z),h〉 ≥
2

m

m∑
i=1

(aTi h)
21Ei1∩D

i,1
γ3

− 1

m

m∑
i=1

|aTi h|3

|aTi z|
1Di,1γ4 ∩E

i
1
− 1

m

m∑
i=1

|aTi h|3

|aTi z|
1Di,2γ4 ∩E

i
1
.

(84)

The three terms in (84) can be bounded following
Lemmas 4, 5, and 6 in [15], which concludes the proof.

SUPPORTING PROOFS FOR MEDIAN-RWF

A. Proof of Proposition 6

Observe that

||aTi x| − |aTi z|| ={
|aTi h|, if (aTi x)(aTi z) ≥ 0;

|2aTi x+ aTi h|, if (aTi x)(aTi z) < 0.

The following lemma states that {(aTi x)(aTi z) <
0} are rare events when ‖x − z‖ is small.
Hence, med

({∣∣|aTi x| − |aTi z|∣∣}mi=1

)
can be viewed as

med({|aTi h|}mi=1) with a small perturbation.

Lemma 6. If m > c0n, then with probability at least
1− c1 exp(−c2m),

1

m

m∑
i=1

1{(aTi x)(aTi z)<0} < 0.05 (85)

holds for all z,x satisfying ‖z − x‖ < 1
11‖x‖.

Proof: See Appendix D.
By Lemma 3 and Lemma 6, we have

θp−0.05
(
{|aTi h|}

)
≤ θp

({∣∣|aTi x| − |aTi z|∣∣})
≤ θp+0.05

(
{|aTi h|}

)
(86)

for all x and z satisfying ‖x− z‖ ≤ 1
11‖z‖ with high

probability.
For the model (2) with a fraction s of outliers, due

to Lemma 3, we have that

θ 1
2−s

({
∣∣|aTi x| − |aTi z|∣∣}) ≤ θ 1

2
({|√yi − |aTi z||})

≤ θ 1
2+s

({
∣∣|aTi x| − |aTi z|∣∣}). (87)

Combining with (86), we obtain that

θ0.45−s({|aTi h|}) ≤ θ 1
2
({|√yi − |aTi z||}) ≤ θ0.55+s({|a

T
i h|}).

(88)

Next it suffices to show that θ0.45−s, θ0.55+s({|aTi h|})
are on the order of ‖h‖ for small s.

Let ãi = |aTi h|/‖h‖. Then ãi’s are i.i.d. copies of
a folded standard Gaussian random variable (i.e., |ξ|
where ξ ∼ N (0, 1)). We use φ(·) to denote the density
of folded standard Gaussian distribution.
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For s = 0.01, we calculate that

φ(θ0.44) = 0.67, φ(θ0.45) = 0.67,

φ(θ0.55) = 0.60, φ(θ0.56) = 0.59,

θ0.44(φ) = 0.58, θ0.45(φ) = 0.6,

θ0.55(φ) = 0.76, θ0.56(φ) = 0.78.

By Lemma 1, the sample quantiles concentrate on
population quantiles. Thus, for any fixed pair (x, z),

(0.6− ε)‖h‖ ≤ θ1/2({
∣∣|aTi x| − |aTi z|∣∣}mi=1)

≤ (0.76 + ε)‖h‖, (89)

holds with probability at least 1− 2 exp(−cmε−2).
Following the argument of net covering similarly to

that in Appendix A, the proposition is proved.

B. Proof of Proposition 7

The proof adapts the proof of Proposition 2 in [15].
We outline the main steps for completeness. Observe
that for the noise-free case, yi = |aTi x|. We obtain

∇Rtr(z) =
1

m

m∑
i=1

(
(aTi z)− |aTi x| ·

aTi z

|aTi z|

)
ai1T i

=
1

m

∑
i/∈B

(aTi h)ai1T i +
1

m

∑
i∈B

(aTi z + aTi x)ai1T i (90)

where B := {i : (aTi x)(aTi z) < 0}. If ‖h‖/‖x‖ is
small enough, the cardinality of B is small and thus
one expects the contribution of the second term in (90)
to be negligible.

We note that events T i (53) are not statistically
independent. To remove such dependency, we introduce
two new series of events

T i1 := {
∣∣|aTi x| − |aTi z|∣∣ ≤ 0.5α′h‖h‖}, (91)

T i2 := {
∣∣|aTi x| − |aTi z|∣∣ ≤ 0.8α′h‖h‖}. (92)

Due to Proposition 6, the following inclusion property

T i1 ⊆ T i ⊆ T i2 (93)

holds for all i, where T i is defined in Algorithm 2. It
is easier to work with these new events because T i1 ’s
(resp. T i2 ’s) are statistically independent for any fixed x
and z. Because of the inclusion property (93), we have

〈∇Rtr(z),h〉 ≥ 1

m

∑
i/∈B

(aTi h)21T i1

− 1

m

∑
i∈B
|aTi z + aTi x| · |aTi h|1T i2 . (94)

Under the condition i /∈ B, we have T i1 = {
∣∣aTi h∣∣ ≤

0.5α′h‖h‖}. Under the condition i ∈ B, we have T i2 =
{
∣∣aTi x+ aTi z

∣∣ ≤ 0.8α′h‖h‖}. For convenience, we
introduce two parameters γ1 = 0.5α′h and γ2 = 0.8α′h.

We next bound the two terms in (94) respectively.
For the first term, because of the inclusion B ⊆ {i :
|aTi x| < |aTi h|}, we have

1

m

∑
i/∈B

(aTi h)21T i1 =
1

m

∑
i/∈B

(aTi h)21{|aTi h|≤γ1‖h‖}

≥ 1

m

m∑
i=1

(aTi h)21{|aTi h|≤γ1‖h‖}1{|aTi x|≥|aTi h|}

≥ 1

m

m∑
i=1

(aTi h)21{|aTi h|≤γ1‖h‖}1{|aTi x|≥γ1‖h‖}.

A simpler version of Lemma 4 in [15] gives that if
m > c0n, with probability at least 1− c1 exp(−c2mε2)

1

m

m∑
i=1

(aTi h)21{|aTi h|≤γ1‖h‖}1{|aTi x|≥γ1‖h‖}

≥ (1− ζ ′1 − ζ ′2 − ε)‖h‖2 (95)

holds for all h ∈ Rn, where ζ ′1 :=

1−min
{
E
[
ξ21{ξ≥

√
1.01γ1

‖h‖
‖x‖ }

]
,E
[
1{ξ≥

√
1.01γ1

‖h‖
‖x‖ }

]}
and ζ ′2 := E

[
ξ21{|ξ|>

√
0.99γ1}

]
for ξ ∼ N (0, 1).

For the second term, we have
1

m

∑
i∈B
|aTi z + aTi x| · |aTi h|1T i2 ≤ γ2‖h‖

1

m

∑
i∈B
|aTi h|

≤ γ2‖h‖
1

m

m∑
i=1

|aTi h|1{|aTi x|<|aTi h|}, (96)

where the second inequality is due to the inclusion
property B ⊆ {i : |aTi x| < |aTi h|}.
Lemma 7. For any ε > 0, if m > c0nε

−2 log ε−1, then
with probability at least 1− C exp(−c1ε2m),

1

m

m∑
i=1

|aTi h| · 1{|aTi x|<|aTi h|} ≤ (0.12 + ε) ‖h‖ (97)

holds for all non-zero vectors x,h ∈ Rn satisfying
‖h‖ ≤ 1

20‖x‖. Here, c0, c1, C > 0 are some universal
constants.

Proof: See Appendix E.
Thus, putting together (95), (96) and Lemma 7 con-

cludes the proof.

C. Proof of Proposition 8
This proof adapts the proof of Lemma 7 in [15].

Denote vi :=
(
aTi z − |aTi x|sgn(aTi z)

)
1T i . Then

∇Rtr(z) =
1

m
ATv,

where A is a matrix with each row being aTi and v is a
m−dimensional vector with each entry being vi. Thus,
for sufficiently large m/n, we have

‖∇Rtr(z)‖ =

∥∥∥∥ 1

m
ATv

∥∥∥∥ ≤ 1

m
‖A‖ · ‖v‖ ≤ (1 + δ)

‖v‖√
m
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where the last inequality is due to the spectral norm
bound ‖A‖ ≤

√
m(1+δ) following from [59, Theorem

5.32].
We next bound ‖v‖. Let v = v(1) + v(2), where

v
(1)
i = aTi h1T i\Bi and v

(2)
i = (aTi x + aTi z)1T i∩Bi ,

where Bi := {(aTi x)(aTi z) < 0}. By triangle in-
equality, we have ‖v‖ ≤ ‖v(1)‖+ ‖v(2)‖. Furthermore,
given m > c0n, by [11, Lemma 3.1] with probability
1− exp(−cm), we have

1

m
‖v(1)‖2 =

1

m

m∑
i=1

(aTi h)2 ≤ (1 + δ)‖h‖2.

By Lemma 6, we have with probability 1 −
C exp(−c1m)

1

m
‖v(2)‖2 ≤ (0.8α′h‖h‖)2 ·

(
1

m

m∑
i=1

1{(aTi x)(aTi z)<0}

)
≤ 0.8‖h‖2

holds, where the last inequality is due to Lemma 6.
Hence,

‖v‖√
m
≤
(√

1 + δ +
√

0.8
)
‖h‖.

This concludes the proof.

D. Proof of Lemma 6

Denote correlation ρ := zTx
‖z‖‖x‖ . Under the condition

‖z − x‖ ≤ 1
11‖x‖, simple calculation yields 0.995 <

ρ ≤ 1. It suffices to show that the result holds with high
probability for all x and z satisfying ρ > 0.995. Since
now the claim is invariant with the norms of x and z,
we assume that both x and z have unit length without
loss of generality.

We first establish the result for any fixed x and z
and then develop a uniform bound by covering net
argument in the end. We introduce a Lipschitz function
to approximate the indicator function. Define

χ(t) :=


1, if t < 0;

− 1
δ · t+ 1, if 0 ≤ t ≤ δ;

0, else;

and then χ(t) is a Lipschitz function with Lipschitz
constant 1

δ . In the following proof, we set δ = 0.001.
We further have

1{(aTi x)(aTi z)<0} ≤ χ
(
(aTi x)(aTi z)

)
≤ 1{(aTi x)(aTi z)<δ}.

For convenience, we denote bi := aTi x and b̃i := aTi z.
Then (bi, b̃i) takes the jointly Gaussian distribution with
mean µ = (0, 0)T and correlation ρ (bi and b̃i have
unit variance). We next estimate the expectation of
1{(aTi x)(aTi z)<δ} as follows.

E[1{(aTi x)(aTi z)<δ}] = P
{

(aTi x)(aTi z) < δ
}

=

∫∫
τ1·τ2<δ

f(τ1, τ2)dτ1dτ2, (98)

where f(τ1, τ2) is the density of the jointly Gaussian
random variables (bi, b̃i). Note that E[1{(aTi x)(aTi z)<δ}]
is decreasing on ρ and for the case ρ = 0.995 we cal-
culate E[1{(aTi x)(aTi z)<δ}] = 0.045 numerically. This
implies that

E[χ
(
(aTi x)(aTi z)

)
] ≤ 0.045

for δ = 0.001. Furthermore, χ
(
(aTi x)(aTi z)

)
for all

i are bounded and hence sub-Gaussian. By Hoeffding
type inequality for sub-Gaussian tail [59], we have

P
[

1

m

m∑
i=1

χ
(
(a
T
i x)(a

T
i z)

)
> (0.045 + ε)

]
< exp(−cmε2), (99)

for some universal constant c, as long as ρ ≥ 0.995.
We have proved so far that the claim holds for fixed

x and z. We next obtain a uniform bound over all x
and z with unit length. Let N ′ε be an ε-net covering the
unit sphere in Rn and set

Nε = {(x0, z0) : (x0, z0) ∈ N ′ε ×N ′ε}. (100)

One has cardinality bound (i.e., the upper bound on the
covering number) |Nε| ≤ (1 + 2/ε)2n. Then for any
pair (x, z) with ‖x‖ = ‖z‖ = 1, there exists a pair
(x0, z0) ∈ Nε such that ‖x−x0‖ ≤ ε and ‖z−z0‖ ≤ ε.
Taking the union bound for all the points on the net, we
claim that

1

m

m∑
i=1

χ
(
(a
T
i x0)(a

T
i z0)

)
≤ 0.045 + ε, ∀(x0, z0) ∈ Nε (101)

holds with probability at least 1 − (1 +
2/ε)2n exp(−cmε2).

Since χ(t) is Lipschitz with constant 1/δ, we have∣∣χ ((aTi x)(aTi z)
)
− χ

(
(aTi x0)(aTi z0)

)∣∣
≤ 1

δ

∣∣(aTi x)(aTi z)− (aTi x0)(aTi z0)
∣∣ . (102)

Moreover, by [15, Lemma 1] for all symmetric rank-2
matrices M ∈ Rn×n,

1

m
‖A(M)‖1 ≤ c2‖M‖F , (103)

holds with probability at least 1 − C exp(−c1m) as
long as m > c0n for some constants C, c0, c1, c2 > 0.
Consequently, on the event that (103) holds, we have∣∣∣∣∣ 1

m

m∑
i=1

χ
(
(aTi x)(aTi z)

)
− 1

m

m∑
i=1

χ
(
(aTi x0)(aTi z0)

)∣∣∣∣∣
≤ 1

m

m∑
i=1

∣∣χ ((aTi x)(aTi z)
)
− χ

(
(aTi x0)(aTi z0)

)∣∣
≤ 1

δ
· 1

m
‖A(xzT − x0z

T
0 )‖1 due to (102)

≤ 1

δ
· c2‖xzT − x0z

T
0 ‖F due to (103)

≤ 1

δ
· c2(‖x− x0‖ · ‖z‖+ ‖z − z0‖ · ‖x0‖) ≤ 2c3ε/δ.
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On the intersection of events that (101) and (103)
hold, we have

1

m

m∑
i=1

χ
(
(aTi x)(aTi z)

)
≤ (0.045 + ε+ 2c3ε/δ) ,

(104)

for all x and z with unit length and ρ ≥ 0.995. Since
ε can be arbitrarily small, the proof is completed.

E. Proof of Lemma 7

We first observe that for any γ,

1{|aTi x|<|aTi h|} ≤ 1{|aTi x|<γ‖x‖} + 1{|aTi h|≥γ‖x‖}

≤ 1{|aTi x|<γ‖x‖} + 1{|aTi h|≥20γ‖h‖} (105)

where the last inequality is due to the assumption ‖h‖‖x‖ ≤
1
20 .

To establish the lemma, we set γ = 0.15 and denote
γ′ := 20γ = 3. We next respectively show that

1

m

m∑
i=1

|aTi h|1{|aTi x|<γ‖x‖} ≤ (0.11 + ε)‖h‖ (106)

for all x,h ∈ Rn, and

1

m

m∑
i=1

|aTi h|1{|aTi h|>γ′‖h‖} ≤ (0.01 + ε)‖h‖ (107)

for all h ∈ Rn.
We first prove (106). Without loss of generality, we

assume that h and x have unit length. We introduce
a Lipschitz function to approximate the indicator func-
tions, which is defined as

χx(t) :=


1, if |t| < γ;
1
δ (γ − |t|) + 1, if γ ≤ |t| ≤ γ + δ;

0, else.

Then χx(t) is a Lipschitz function with constant 1
δ . We

further have

1{|aTi x|<γ} ≤ χx(aTi x) ≤ 1{|aTi x|<γ+δ}. (108)

We first prove bounds for any fixed pair h,x, and then
develop a uniform bound later on.

We next estimate the expectation of
|aTi h|1{|aTi x|<γ+δ},

E[|aTi h|1{|aTi x|<γ+δ}]

=

∫∫ ∞
−∞
|τ1|1{|τ2|<γ+δ} · f(τ1, τ2)dτ1dτ2, (109)

where f(τ1, τ2) is the density of two jointly Gaussian
random variables with correlation ρ = hTx

‖h‖‖x‖ 6= ±1.

We then continue to derive

E[|aTi h|1{|aT
i

x|<γ+δ}]

=
1

2π
√

1− ρ2

∫ ∞
−∞
|τ1| exp

(
−
τ2
1

2

)

·
∫ γ+δ

−(γ+δ)

exp

(
−

(τ2 − ρτ1)2

2(1− ρ2)

)
dτ2dτ1 (110)

=
1
√
2π

∫ ∞
−∞
|τ1| exp

(
−
τ2
1

2

)
·
∫ γ+δ−ρτ1√

2(1−ρ2)

−γ−δ−ρτ1√
2(1−ρ2)

exp
(
−τ2

)
dτdτ1

=
1
√
8π

∫ ∞
−∞
|τ1| exp

(
−
τ2
1

2

)

·
(

erf

(
γ + δ − ρτ1√

2(1− ρ2)

)
− erf

(
−γ − δ − ρτ1√

2(1− ρ2)

))
dτ1 (111)

For |ρ| < 1, E[|aTi h|1{|aTi x|<γ+δ}] is a continuous
function of ρ. The last integral (111) can be calculated
numerically. Figure 7 plots E[|aTi h|1{|aTi x|<γ+δ}] for
γ = 0.15 and δ = 0.01 over ρ ∈ (−1, 1). Furthermore,
(110) indicates that E[|aTi h|1{|aTi x|<γ+δ}] is monoton-
ically increasing with both θ and δ. Thus, we obtain a
universal bound

E[|aTi h|1{|aT
i

x|<γ+δ}] ≤ 0.11‖h‖ for γ < 0.15 and δ = 0.01,

(112)

which further implies E[|aTi h|χx(aTi x)] ≤ 0.11‖h‖
for γ < 0.15 and δ = 0.01. Furthermore,
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Fig. 7. E[|aTi h|1{|aTi x|<γ+δ}] with respect to ρ

|aTi h|χx(aTi x)’s are sub-Gaussian with sub-Gaussian
norm O(‖h‖). By the Hoeffding type of sub-Gaussian
tail bound [59], we have

P

[
1

m

m∑
i=1

|aTi h|χx(aTi x) > (0.11 + ε) ‖h‖

]
< exp(−cmε2), (113)

for some universal constant c.
We have proved so far that the claim holds for a fixed

pair h,x. We next obtain a uniform bound over all x
and h with unit length. Let N ′ε be a ε-net covering the
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unit sphere in Rn and set

Nε = {(x0,h0) : (x0,h0) ∈ N ′ε ×N ′ε}.

One has cardinality bound (i.e., the upper bound on the
covering number) |Nε| ≤ (1 + 2/ε)2n. Then for any
pair (x,h) with ‖x‖ = ‖h‖ = 1, there exists a pair
(x0,h0) ∈ Nε such that ‖x−x0‖ ≤ ε and ‖h−h0‖ ≤
ε. Taking the union bound for all the points on the net,
one can show ∀(x0,h0) ∈ Nε

1

m

m∑
i=1

|aTi h0|χx
(
aTi x0

)
≤ 0.11 + ε, (114)

holds with probability at least 1 − (1 +
2/ε)2n exp(−cmε2).

Since χx(t) is Lipschitz with constant 1/δ, we have
the following bound∣∣χx (aTi x)− χx (aTi x0

)∣∣ ≤ 1

δ

∣∣aTi (x− x0)
∣∣ . (115)

Consequently, on the event that (103) holds, we have∣∣∣∣∣ 1

m

m∑
i=1

|aTi h|χx
(
aTi x

)
− 1

m

m∑
i=1

|aTi h0|χx
(
aTi x0

)∣∣∣∣∣
≤ 1

m

m∑
i=1

∣∣|aTi h|χx (aTi x)− |aTi h0|χx
(
aTi x0

)∣∣
≤ 1

m

m∑
i=1

(∣∣aTi (h− h0)
∣∣+

1

δ

∣∣aTi h0

∣∣ ∣∣aTi x− aTi x0

∣∣)
≤ c′2‖h− h0‖+

1

δ
· c2‖h0(x− x0)T ‖F ≤ c3ε/δ.

On the intersection of events that (114) and (103)
hold, we have

1

m

m∑
i=1

|aTi h|χx
(
aTi x0

)
≤ (0.11 + ε+ 2c3ε/δ) ,

(116)

for all x and h with unit length.
We next prove (107). Without loss of generality, we

assume that h has unit length. We introduce a Lipschitz
function to approximate the indicator functions, which
is defined as

χh(t) :=


|t|, if |t| > γ′;
1
δ (|t| − γ′) + γ′, if γ′(1− δ) ≤ |t| ≤ γ′;
0, else.

Then, χh(t) is a Lipschitz function with constant 1
δ . We

further have

|aTi h|1{|aTi h|>γ′‖h‖} ≤ χh(aTi h)

≤ |aTi h|1{|aTi h|>γ′(1−δ)‖h‖}. (117)

We first prove bounds for any fixed h, and then develop
a uniform bound later on.

We next estimate the expectation of
|aTi h|1{|aTi h|>γ′(1−δ)‖h‖} as follows:

E[|aTi h|1{|aTi h|>γ′(1−δ)‖h‖}]

=

∫ ∞
−∞
|τ |1{|τ |>γ′(1−δ)} · f(τ)dτ,

= 2 · 1√
2π

∫ ∞
γ′(1−δ)

τ exp

(
−τ

2

2

)
dτ

=

√
2

π
exp(−γ′2(1− δ)2/2) < 0.01 (118)

where f(τ) is the density of the standard Gaus-
sian distribution and the last inequality is given
by choosing γ′ = 3, δ = 0.01. We note that
E[|aTi h|1{|aTi h|>γ′(1−δ)‖h‖}] is monotonically increas-
ing with δ and decreasing with γ′. Furthermore,
E[χh(aTi h)] ≤ 0.01‖h‖ for γ′ ≥ 3 and δ ≤ 0.01.

Moreover, χh(aTi h) for all i are sub-Gaussian with
sub-Gaussian normO(‖h‖). By the Hoeffding type sub-
Gaussian tail bound [59], we have

P

[
1

m

m∑
i=1

χh(aTi h) > (0.01 + ε) ‖h‖

]
< exp(−cmε2),

(119)
for some universal constant c.

We have proved so far that the claim holds for a fixed
h. We next obtain a uniform bound over all h with unit
length. Let Nε be an ε-net covering the unit sphere in
Rn. One has cardinality bound (i.e., the upper bound
on the covering number) |Nε| ≤ (1 + 2/ε)n. Then for
any h with unit length, there exists a h0 ∈ Nε such
that ‖h− h0‖ ≤ ε. Taking the union bound for all the
points on the net, one can show

1

m

m∑
i=1

χh(aTi h0) ≤ 0.01 + ε, ∀h0 ∈ Nε (120)

holds with probability at least 1 − (1 +
2/ε)n exp(−cmε2).

Consequently, we have∣∣∣∣∣ 1

m

m∑
i=1

χh(aTi h)− 1

m

m∑
i=1

χh(aTi h0)

∣∣∣∣∣
≤ 1

m

m∑
i=1

∣∣χh(aTi h)− χh(aTi h0)
∣∣

≤ 1

δ
· 1

m

m∑
i=1

∣∣aTi (h− h0)
∣∣

≤ 1

δ
c′2‖h− h0‖ ≤ c3ε/δ,

where the second inequality is because χh(t) is Lips-
chitz continuous with constant 1/δ.

On the intersection of events that (120) and (103)
hold, we have

1

m

m∑
i=1

χh(aTi h) ≤ (0.01 + ε+ c3ε/δ) , (121)
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for all h with unit length.
Putting together (116) and (121), and since ε can be

arbitrarily small, the proof is completed.
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