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Abstract—Quantum low-density parity check (QLDPC) codes
with asymptotically nonzero rate are promising candidates for
fault-tolerant quantum computation. Belief propagation based it-
erative decoding algorithms, a primary choice for classical LDPC
codes, perform poorly for QLDPC codes due to numerous cycles
in the associated Tanner graphs. Belief propagation algorithm
and its variants were also found to be inadequate in dealing
with a unique quantum feature called error degeneracy. Neural
network based iterative decoders are promising to address these
limitations. In this paper, we propose a general framework for
error correction in QLDPC codes using neural networks (NN).
The neural network performs the syndrome matching algorithm
over a depolarizing channel with noiseless error syndrome
measurements. We train our NN to minimize the bit error rate,
which is an accurate metric to measure the performance of
iterative decoders. Our NN uses straight through estimator (STE)
technique to tackle the zero-gradient problem of the objective
function and outperforms conventional min-sum algorithm upto
an order of magnitude of logical error rate.

I. INTRODUCTION

Deep Neural Network (DNN) is an actively pursued ap-
proach in both classical and quantum applications as it has
been shown to handle well the scenarios of unknown and
nonlinear channels (see [1]-[3] and references therein). In the
known channel case, the efforts have mainly focused on learn-
ing decoding algorithms for error-correction codes (ECC).
Recently, several research groups have shown that DNNs
can be used to efficiently learn various decoding algorithms,
including Belief Propagation (BP) decoding [4]-[9]. This trend
is not just limited to the classical decoding scenario. In the
quest towards achieving fault tolerant quantum computation,
topological codes and their decoding algorithms also employ
DNNs [8], [10], [11] to improve decoding thresholds.

Quantum low-density parity check (QLDPC) codes are a
promising candidate for both quantum computing and quantum
optical communications, with a history of success in classical
LDPC codes in admitting low-complexity decoding and near-
capacity performance. As pointed out by Gottesman [12] and
Kovalev and Pryadko [13], QLDPC codes are the only known
class of quantum error correction (QEC) codes that permit
fault-tolerant error correction with asymptotically nonzero
rate. QLDPC codes [14] based on the stabilizer formalism [15]
rely on classical decoding algorithms with the syndrome
measurements. Ref. [16] gives a historical account of progress
of these decoding algorithms. Decoding QLDPC codes is a
more challenging problem than decoding topological codes.

Due to the topology of Tanner graphs of finite-length QLDPC
codes and the symplectic inner product/commutativity con-
straint [14] among the stabilizer generators, the application
of traditional BP for QEC codes in general, and for QLDPC
codes in particular has some fundamental limitations. While
the syndrome-based BP algorithm [16] attempts to find the
most likely error, an optimal decoding algorithm should find
the most likely error coset based on the sum of the probabilities
of all degenerate errors. Poulin and Chung [17] investigated
heuristic methods to break the symmetric input channel values
to improve decoding performance. “Random perturbation”
method is shown to work well in such scenarios [17], [18].
This also gives intuition that the decoder message update rule
handles the above mentioned limitations better when it varies
over iterations. In a recent work, [19], Poulin’s group used
DNN-based decoder with a different loss function to tackle
error degeneracy issue in QLDPC decoding scenario.

One key property of DNNs ( [4]-[9]) is that the weight
matrices and activation functions over hidden layers are con-
strained to preserve the symmetry conditions of message-
passing update rules. This allows the training to be performed
on a single codeword and its noise realizations rather than
on the entire code space, thus opening up the possibility of
using DNN on long codes. In our preliminary work [20], we
have shown that DNNs can improve the decoding convergence
speed (number of iterations to achieve a desired frame error
rate) of conventional Min-Sum (MS) decoding algorithm.
Unlike well established theories on Density Evolution (DE)
[21] and Trapping Set (TS) [22], which are used to guide
decoder design for the waterfall and error-floor regions, re-
spectively, there is no existing theory for speeding up decoding
convergence. The multi-layer structure of DNNs can naturally
learn time-varying update rules that can provably outperform
fixed update rules, thereby, opening new decoding design
possibilities.

In this paper, we propose to use neural networks (NNs)
to optimize syndrome-based iterative decoders for quantum
LDPC codes over a depolarizing channel. By assigning and
training weights and biases over edges in Tanner graph appro-
priately, the NN has capability to compensate short cycles and
reduce degenerate errors. We use bit error rate (BER) as the
objective function, since it is a more common and accurate
metric to measure the performance of iterative decoders.
However, the BER causes a critical issue that its gradient
vanishes almost everywhere, making backward propagation



inapplicable. To solve this challenge, we rely on very recent
results on training quantized NNs which is of great interest on
its own [23]-[26]. We focus on a technique named straight-
through estimators (STE), for the reason that it handles the
zero derivatives in the backward propagation. The simulation
results show that the NN-based syndrome iterative decoding
achieves lower logical error rate of one order of magnitude.

The rest of the paper is organized as follows. Section II
gives the necessary background of Quantum LDPC codes and
NNs. Section III presents the NN framework for syndrome
decoding followed by the training in Section IV. Section V
demonstrates the simulation results. We conclude with future
directions in Section VI.

II. PRELIMINARIES

A. Quantum LDPC codes using Stabilizer Formalism

Let us denote by P, = i'{I,X,Y,Z}®" 0 <[ < 3, the
n-qubit Pauli group, where ®n is the n-fold tensor product,
X, Y and Z are the Pauli matrices, [ is the 2 x 2 identity
matrix, and ' is the phase factor. Let S =< S, Sa,. .., Spm >,
—1 ¢ S, be an Abelian subgroup of P,, with generators S;,
1 <i<m.A (n, k) quantum stabilizer code [27] is defined
as a 2F-dimensional subspace C of the Hilbert space (C2)®"
that is a common +1 eigenspace of S:

C={lp), st Sil)=[¥),Vi}. (1)

Every element of stabilizer generators of S is mapped to a
binary tuple as follows: I — (0,0), X — (1,0), Z —
(0,1), Y — (1,1). This mapping leads to the binary rep-
resentation H of the stabilizer matrix of dimension m x 2n
given by

H = [Hx | Hz] . @

where Hx and Hy represent binary matrices for bit flip and
phase flip operators, respectively. Similar to the commutativity
relation defined for stabilizer generators in Pauli representa-
tion, the generators commute with respect to the symplectic
inner product in binary representation [28].

We focus on a widely studied model called quantum de-
polarizing channel (memoryless Pauli channel), characterized
by the depolarizing probability p wherein the error on a qubit
is independent of the error on other qubits. An error on a
qubit is called a Pauli error, denoted by E, which is in the
set {I,X,Y,Z}. In particular, Pr(E = X)=Pr(E=Y) =
Pr(E=2)=p/3,Pr(E=1I)=1-p. A Pauli error vector
on the n qubits can be expressed as a binary error vector of
length 2n with the mapping from Pauli elements to binary
tuples as follows: I — (0,0),X — (1,0),Z — (0,1),Y —
(1,1). An error vector e gives the syndrome measurement as
s = He'.

For a (n,k) quantum LDPC code C, let H be the parity
check matrix corresponding to its stabilizer generators, and
G = (V,C, F) be its Tanner graph, where V' (respectively, C)
is the set of variable (respectively, check) nodes, and F' is the
set of edges. H has the form of Eq. (2), thus if the number of
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Fig. 1. Block diagram of a NN-based syndrome matching.

columns in H is NV, the number of parity check equations is
m, and the number of edges in G is I, then |[V| = N = 2n,
|C| = m, and |F| = I. Denote the i-th variable node as v;,
Jj-th check node as c;, and the edge connecting v; and c;
as (v;,c;) which is indexed by some integer (¢), 1 < ¢ <
N,1 < j <m,1 <t < I The syndrome is denoted by
s = (81,82,...,8m). Suppose that the message update rules
of variable nodes and check nodes which the NN aims to
optimize are defined as vy, ., = ®(\;,p;) and pe; 50, =
U(sj,4q;), respectively, where \; is the likelihood message of
v;, and p; (q;) is the incoming message to a variable node
v; (check node c¢;). i = T (\i, pi) denotes the likelihood
message approximation for variable node v;, which will be
optimized by NN as well.

B. Neural networks

The NN consists of one input layer, K hidden layers and
one output layer. Let ro (rx41) be the value of input (output)
layer, and r;,1 < k < K be the value of the k-th hidden
layer. In particular, r, = (71, k.2, ...Tk;’Jk)T, where J}, is the
number of neurons in k-th layer, and 7, is the output value
of the t-th neuron in k-th layer, 0 < k < K+ 1,1 <t < Ji.
The (k — 1)-th layer and k-th layer are connected by a
trainable neuron weight matrix Wf,i)x Ji_1® and the bias
vector in the k-th layer is denoted by bk,

III. NN FRAMEWORK
A. NN-based syndrome matching

We provide the basic framework of decoding stabilizer
codes as illustrated in Fig. 1, performing syndrome matching
and stabilizer error recovery. Quantum state [¢)) decodes to
erroneous quantum state |¢) = E [¢). A stabilizer syndrome
s computed by concatenating the eigenvalues of |¢) for the
stabilizer generators is fed into the NN based syndrome
matching algorithm to find the error estimate E. We retrieve
the quantum state after applying the recovery operator.

B. NN structure

The proposed NN is constructed as an “unwrapped” Tanner
graph, with a set of activations defined by syndrome-based
iterative decoding. More specifically, there are two types of
activations defined by ® and W. In general, the message update



rules ® and ¥ can be provided by any conventional syndrome-
based iterative decoder such as sum-product decoder, bit-
flipping decoder, etc. In this work, we take ® and ¥ from MS
decoder. The input layer is set to be all-one vector: ro = 1, i.e.,
the syndrome matching is initialized with all-zero codeword.
Every two hidden layers correspond to one iteration, with
odd (respectively, even) hidden layer representing variable
(respectively, check) nodes message update. Each neuron in
hidden layers stands for an edge. The value of the k-th hidden
layer (k > 1) is computed as follows:

. {(I)(b(k)l,W(k)rkl), if k is odd,
=

if k is even

3
\Ij(sarkfl)a ( )

where s is the stabilizer syndrome mentioned in part A, and

for any (t) = (v;,¢;), if k is odd,
rre = 0" + > wt(?/mfl,tu
(t)=(vi,c;jr),5'#J
if k is even,
Tkt =
(=1~ I1 sgn(rg—1,0/) - re—1,]
(t #

(vir,e5),0 #i

() =(vys ;)i i )=

In particular, the first hidden layer is the initialization of
syndrome matching decoding, and its value is calculated by

r; = Wi, €

where 71, = wg ) ,V(t) = (vi,¢;). We force all nonzero en-
tries in W(k) to share the same value, i.e., W) (i, j) = w(®)
if W() (i, §) is a nonzero entry in W(*)_ After each k-th layer
where k is even (corresponding to check node update), for
each training sample, we check whether the current syndrome
of its estimated codeword matches the stabilizer syndrome s
or not. If so, this training sample will skip the rest layers and
its estimated likelihood message at the current k-th layer will
be directly used to calculate the objective function, namely,

rie1 = T(1,w* ), (5)
if Q=sen(@e™De)))) gT 5 Noted that in
each iteration, the same weight is wused for both

variable node update and likelihood message estimation.
When training is completed, the NN-based syndrome
iterative decoder has the following time-varying rules:
M(}e)_}C — % b(2z+1) w+Dp,), Mg)—wz = U(s;,q;), )\(2) _
T( ,w(%“‘l)p)

IV. TRAINING WITH NN

Since the channel is output-symmetric, and the NN’s ac-
tivations preserve symmetry conditions, we can assume that
the all-zero codeword is transmitted, i.e 0. With
the symmetry conditions on the weight matrices, it is suffi-
cient to use a database composed of the noisy realizations
vy = (y1,%2,...,yn). The syndrome s of y is fed into the
NN as parameters used in the activation over even hidden

b X -

layers. The weight assigned over each edge is initialized by
1. All the biases are initialized by 1. Let u = rx; be the
value of the output layer. Then, Jy = Jx41 = N = 2n.
Denote the decoded codeword by ¥y, which is computed by

— (1 - sgn(w)) /2.
A. BER-based objective function

The output u consists of the estimate of likelihood messages
of training samples. In most related works of using neural net-
works to optimize channel decoders, the binary cross entropy
(BCE) function is widely applied as objective function, since it
is a measurement of “soft” bit error rate, and it is differentiable
everywhere. However, the BCE function is an approximation
of BER. Training NNs to minimize BCE cannot guarantee
to minimize BER. To see this, consider the following BCE
function for each sample:

N
_ _% S yilog(1 — o (us)) + (1 — y:) log(o(u;)),

i=1

A(u,y)

where the o(-) is the sigmoid function defined as o(xz) =
(1+e~%)~L If the i-th bit is decoded correctly (equals to y;)
by the NN, then there exists a positive value 0 < ¢; < 1/2
such that the 4-th term in the summation of A(u,y) equals to
log( + ¢;); otherwise there exists a positive value 0 < ¢; <
1/2 such that the i-th term in the summation of A(u,y) equals
to log(3 —¢;). Then Al(u, y) can be expressed as: A(u,y) =
: 1

A1C + A, with A, = 5 Zjly _g;10g(1/2+¢;)7" and A, =
~ Zj:yjﬁj log(1/2 —€;)~". Noted that A, and A, are the
costs contributed by the bits decoded by NN correctly and
wrongly, respectively. Each term in the summation of A, is
within [0, 1], and each term in the summation of A, is larger
than 1.

Consider two samples y® and y?, whose output values of
NN, denoted by u(®) and u®, have the following conditions:

D Au®,y®) = AD 4 AL Au®, y@) = AP ¢

AP
2) There are d terms in Aél) and d — 1 terms in Ag);

3) ALY — AP < L;and
4) d max log(l/Qfegl))*1 + 1 < (d —
sy £ ‘
T @)y —1
0, Binest/2 =

Condition (2) implies that the first and second samples have
d and d — 1 bits in error after NN decoding, respectively, and
AY <1-4 AP < 1-42L Condition (3) and (4) together
indicate that the first sample has smaller objective function,
ie, AW yM) < A(u® y®@). In fact,

A, y0) = A £ AD < A 4 Ly ap
1 d
<AD ¢ — 4 — max, log(1/2—el))*1
‘ NN Gy #95"
@, d-1 2)
<AEY 4+ —— min log (1/2 —¢; )t

Jt yﬂfy

< AR 4 AR = A(u®), y@)



Therefore, a smaller BCE loss cannot guarantee a smaller
BER.

In this work, instead of using BCE function, we consider the
following mean square error objective function for each sam-
ple, which measures the hamming distance between received
channel output vector y and the decoded codeword ¥,

NZ i)

I'(u,y) is an actual and practical metric to measure the perfor-
mance of iterative decoders. Minimizing I'(u,y) is equivalent
to minimize BER. However, it has derivatives of zero almost
everywhere because of the sign (sgn(-)) function. To solve the
zero gradients problem of Eq. (6), we apply straight-through
estimators in the chain rule to calculate the gradients, which
are introduced below.

1- sgn(u).

5 (6)

wy) , Where § =

B. Straight-through estimators

The straight-through estimator (STE) is a proxy derivative
used in the quantized NN training to replace the zero derivative
of quantization function in the chain rule [29]. Intuitively, STE
is an estimate of the true partial gradient. In [29], it was found
that the most efficient training of quantized NNs was using
STEs, which was a good way to provide a non-trivial search
direction.

To see how STE works for proposed NN, we take a look
at the backward propagation. The partial derivative of the
objective function I'(u,y) as defined in Eq. (6), with respect
to w*) is calculated using chain rule as follows

OC(wy) _ 1 ~0ly—i)" _ 1 ) 9@)
R DSy e aa DI A e
N
1 ., 0(0.5 — 0.5sgn(u;))
SR L (AT
N
1 .. O(sgn(u;))  Ouy
(7
Apparently, M is zero almost everywhere, making the

weight updates stlll To solve this, we use a prog)er surrogate
derivative 2 8(“7) called STE, to replace ‘%gn(“ ) in Eq. (7).
Therefore, the partial derivative with respect to w®) can be
approximated by

A(h(ui))

(“)uz-

3ui
" ow®

1 N
N2 wi—i 8)
i=1
The problem of designing good STEs has been studied
extensively in [23]-[26]. We introduce the following function,
whose gradient is chosen as the STE for the sign function used
in Eq. (6):

hoEn () — { x if |z|<T 7 ©)

sgn(z)T  otherwise

|us]

N

1234?56[7

bit location

Fig. 2. The mechanism of STE in Eq. (10) assuming that y = 0. The bit
locations that contribute to the weight gradients are marked by orange color,
e.g., the 4-th, 7-th and so on.

where T is a pre-defined threshold. The gradient of h®8"(z)
with respect to = is given below, which is the STE we use:

or#(x) (1 if |z|<T
Or | 0 otherwise

From Eq. (8), also as shown in Fig. 2, for each bit in a
sample, if it is decoded correctly (i.e., §; = y;), it will have
no influence on the weight change. If not, and the magnitude
of its likelihood message |u;| is large enough (larger than some
threshold 7T'), it will not affect the weight gradient (it is treated
as “decoded correctly”’). The only case which contributes to
the weight change is when the bit is decoded wrongly, and
|u;| < T (its likelihood message is not strong enough).

(10)

V. NUMERICAL RESULTS

We built NN framework in Python3.6 and used Pytorch
library for training. The NN is optimized by ADAM. The
training set consists of realizations of depolarizing noise
vectors assuming that all-zero codeword is transmitted. The
measure of performance is the frame-error-rate (FER). We
compared the performance of syndrome MS decoding and
syndrome NN decoding with same number of iterations.

We consider a class of non-CSS codes introduced in [30],
which are quasi-cyclic (QC) QLDPC codes. Each QC QLDPC
code C,. of this class has code length of 2dg and dgq parity
check equations, where d is a positive integer and 4d + 1 is
an odd prime. H. of Cy. has dimension of dg x 4dq, whose
circulant permutation matrix has size of ¢. Hy. has regular
column and row weights of d and 4d, respectively. Hx and
Hz are based on multiplicative groups of order 4d. C,. does
not have cycles of length 4.

In this experiment, we take d = 3,¢g = 78. H,. has
dimension of 234 x 936, and regular column and row weights
of 3 and 12, respectively. We construct a neural network of 10
hidden layers corresponding to 5 iterations. Each hidden layer
has 2808 neurons (= 936 x 3). The input layer and output
layer have 936 neurons.

The training set consists of 5000 samples at depolarizing
p = 0.0008. The number of epochs is 200, and the learning
rate of ADAM is 0.01, with mini-batch size of 100. The
pre-defined threshold 7' is set to be 20. The maximum number
of iterations is set to be 5. Fig. 3 gives the FER performance
of syndrome MS decoding and syndrome NN decoding with
5 iterations. It is shown that the syndrome NN decoding
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Fig. 3. FER Performance of syndrome MS decoding and syndrome NN

decoding of Quantum code for five iterations.

can achieve lower logical error rate of one order of magnitude.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we introduce a general framework for error
correction in QLDPC codes using neural networks. We con-
struct a neural network to perform the syndrome matching
algorithm over a depolarizing channel. We propose the BER-
based objective function for training. In the training, we
introduce a STE to around zero derivatives of the sign function
used in hard decision. Simulation results show that within
5 iterations, the syndrome NN decoding can achieve lower
logical error rate of one order of magnitude at additional trivial
complexity.

We remark that in this work, the STE is chosen based on
the channel model. Open questions are left for future research
such as how to chose STE, what property is necessary that
a STE should have to guarantee convergence for different
channel models.
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