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Abstract—Quantum low-density parity check (QLDPC) codes
with asymptotically nonzero rate are promising candidates for
fault-tolerant quantum computation. Belief propagation based it-
erative decoding algorithms, a primary choice for classical LDPC
codes, perform poorly for QLDPC codes due to numerous cycles
in the associated Tanner graphs. Belief propagation algorithm
and its variants were also found to be inadequate in dealing
with a unique quantum feature called error degeneracy. Neural
network based iterative decoders are promising to address these
limitations. In this paper, we propose a general framework for
error correction in QLDPC codes using neural networks (NN).
The neural network performs the syndrome matching algorithm
over a depolarizing channel with noiseless error syndrome
measurements. We train our NN to minimize the bit error rate,
which is an accurate metric to measure the performance of
iterative decoders. Our NN uses straight through estimator (STE)
technique to tackle the zero-gradient problem of the objective
function and outperforms conventional min-sum algorithm upto
an order of magnitude of logical error rate.

I. INTRODUCTION

Deep Neural Network (DNN) is an actively pursued ap-

proach in both classical and quantum applications as it has

been shown to handle well the scenarios of unknown and

nonlinear channels (see [1]–[3] and references therein). In the

known channel case, the efforts have mainly focused on learn-

ing decoding algorithms for error-correction codes (ECC).

Recently, several research groups have shown that DNNs

can be used to efficiently learn various decoding algorithms,

including Belief Propagation (BP) decoding [4]–[9]. This trend

is not just limited to the classical decoding scenario. In the

quest towards achieving fault tolerant quantum computation,

topological codes and their decoding algorithms also employ

DNNs [8], [10], [11] to improve decoding thresholds.

Quantum low-density parity check (QLDPC) codes are a

promising candidate for both quantum computing and quantum

optical communications, with a history of success in classical

LDPC codes in admitting low-complexity decoding and near-

capacity performance. As pointed out by Gottesman [12] and

Kovalev and Pryadko [13], QLDPC codes are the only known

class of quantum error correction (QEC) codes that permit

fault-tolerant error correction with asymptotically nonzero

rate. QLDPC codes [14] based on the stabilizer formalism [15]

rely on classical decoding algorithms with the syndrome

measurements. Ref. [16] gives a historical account of progress

of these decoding algorithms. Decoding QLDPC codes is a

more challenging problem than decoding topological codes.

Due to the topology of Tanner graphs of finite-length QLDPC

codes and the symplectic inner product/commutativity con-

straint [14] among the stabilizer generators, the application

of traditional BP for QEC codes in general, and for QLDPC

codes in particular has some fundamental limitations. While

the syndrome-based BP algorithm [16] attempts to find the

most likely error, an optimal decoding algorithm should find

the most likely error coset based on the sum of the probabilities

of all degenerate errors. Poulin and Chung [17] investigated

heuristic methods to break the symmetric input channel values

to improve decoding performance. “Random perturbation”

method is shown to work well in such scenarios [17], [18].

This also gives intuition that the decoder message update rule

handles the above mentioned limitations better when it varies

over iterations. In a recent work, [19], Poulin’s group used

DNN-based decoder with a different loss function to tackle

error degeneracy issue in QLDPC decoding scenario.

One key property of DNNs ( [4]–[9]) is that the weight

matrices and activation functions over hidden layers are con-

strained to preserve the symmetry conditions of message-

passing update rules. This allows the training to be performed

on a single codeword and its noise realizations rather than

on the entire code space, thus opening up the possibility of

using DNN on long codes. In our preliminary work [20], we

have shown that DNNs can improve the decoding convergence

speed (number of iterations to achieve a desired frame error

rate) of conventional Min-Sum (MS) decoding algorithm.

Unlike well established theories on Density Evolution (DE)

[21] and Trapping Set (TS) [22], which are used to guide

decoder design for the waterfall and error-floor regions, re-

spectively, there is no existing theory for speeding up decoding

convergence. The multi-layer structure of DNNs can naturally

learn time-varying update rules that can provably outperform

fixed update rules, thereby, opening new decoding design

possibilities.

In this paper, we propose to use neural networks (NNs)

to optimize syndrome-based iterative decoders for quantum

LDPC codes over a depolarizing channel. By assigning and

training weights and biases over edges in Tanner graph appro-

priately, the NN has capability to compensate short cycles and

reduce degenerate errors. We use bit error rate (BER) as the

objective function, since it is a more common and accurate

metric to measure the performance of iterative decoders.

However, the BER causes a critical issue that its gradient

vanishes almost everywhere, making backward propagation





rules Φ and Ψ can be provided by any conventional syndrome-

based iterative decoder such as sum-product decoder, bit-

flipping decoder, etc. In this work, we take Φ and Ψ from MS

decoder. The input layer is set to be all-one vector: r0 = 1, i.e.,

the syndrome matching is initialized with all-zero codeword.

Every two hidden layers correspond to one iteration, with

odd (respectively, even) hidden layer representing variable

(respectively, check) nodes message update. Each neuron in

hidden layers stands for an edge. The value of the k-th hidden

layer (k > 1) is computed as follows:

rk =

{

Φ(b(k)1,W(k)rk−1), if k is odd,

Ψ(s, rk−1), if k is even
(3)

where s is the stabilizer syndrome mentioned in part A, and

for any (t) = (vi, cj), if k is odd,

rk,t = b
(k)
t +

∑

(t′)=(vi,cj′ ),j
′ 6=j

w
(k)
t,t′rk−1,t′ ,

if k is even,

rk,t =
(−1)sj

∏

(t′)=(vi′ ,cj),i
′ 6=i

sgn(rk−1,t′) · min
(t′)=(vi′ ,cj),i

′ 6=i
|rk−1,t′ |

In particular, the first hidden layer is the initialization of

syndrome matching decoding, and its value is calculated by

r1 = W(1)1, (4)

where r1,t = w
(1)
t,i , ∀(t) = (vi, cj). We force all nonzero en-

tries in W(k) to share the same value, i.e., W(k)(i, j) = w(k)

if W(k)(i, j) is a nonzero entry in W(k). After each k-th layer

where k is even (corresponding to check node update), for

each training sample, we check whether the current syndrome

of its estimated codeword matches the stabilizer syndrome s

or not. If so, this training sample will skip the rest layers and

its estimated likelihood message at the current k-th layer will

be directly used to calculate the objective function, namely,

rK+1 = Υ(1, w(k+1)rk), (5)

if
(1−sgn((Υ(1,w(k+1)rk))

T ))
2 ·HT = s. Noted that in

each iteration, the same weight is used for both

variable node update and likelihood message estimation.

When training is completed, the NN-based syndrome

iterative decoder has the following time-varying rules:

ν
(`)
vi→cj = Φ(b

(2`+1)
i , w(2`+1)pi), µ

(`)
cj→vi = Ψ(sj ,qj), λ̃

(`)
i =

Υ(1, w(2`+1)pi).

IV. TRAINING WITH NN

Since the channel is output-symmetric, and the NN’s ac-

tivations preserve symmetry conditions, we can assume that

the all-zero codeword is transmitted, i.e., x = 0. With

the symmetry conditions on the weight matrices, it is suffi-

cient to use a database composed of the noisy realizations

y = (y1, y2, . . . , yN ). The syndrome s of y is fed into the

NN as parameters used in the activation over even hidden

layers. The weight assigned over each edge is initialized by

1. All the biases are initialized by 1. Let u = rK+1 be the

value of the output layer. Then, J0 = JK+1 = N = 2n.

Denote the decoded codeword by ŷ, which is computed by

ŷ = (1− sgn(u))/2.

A. BER-based objective function

The output u consists of the estimate of likelihood messages

of training samples. In most related works of using neural net-

works to optimize channel decoders, the binary cross entropy

(BCE) function is widely applied as objective function, since it

is a measurement of “soft” bit error rate, and it is differentiable

everywhere. However, the BCE function is an approximation

of BER. Training NNs to minimize BCE cannot guarantee

to minimize BER. To see this, consider the following BCE

function for each sample:

∆(u,y) = −
1

N

N
∑

i=1

yi log(1− σ(ui)) + (1− yi) log(σ(ui)),

where the σ(·) is the sigmoid function defined as σ(x) =
(1+e−x)−1. If the i-th bit is decoded correctly (equals to yi)
by the NN, then there exists a positive value 0 < εi < 1/2
such that the i-th term in the summation of ∆(u,y) equals to

log( 12 + εi); otherwise there exists a positive value 0 < εi <
1/2 such that the i-th term in the summation of ∆(u,y) equals

to log( 12 − εi). Then ∆(u,y) can be expressed as: ∆(u,y) =
∆c +∆e, with ∆c =

1
N

∑

j:yj=ŷj
log(1/2 + εj)

−1 and ∆e =
1
N

∑

j:yj 6=ŷj
log(1/2− εj)

−1. Noted that ∆c and ∆e are the

costs contributed by the bits decoded by NN correctly and

wrongly, respectively. Each term in the summation of ∆c is

within [0, 1], and each term in the summation of ∆e is larger

than 1.

Consider two samples y(1) and y(2), whose output values of

NN, denoted by u(1) and u(2), have the following conditions:

1) ∆(u(1),y(1)) = ∆
(1)
c + ∆

(1)
e ,∆(u(2),y(2)) = ∆

(2)
c +

∆
(2)
e ;

2) There are d terms in ∆
(1)
e and d− 1 terms in ∆

(2)
e ;

3) |∆
(1)
c −∆

(2)
c | < 1

N
; and

4) d max
j:y

(1)
j

6=ŷ
(1)
j

log (1/2− ε
(1)
j )−1 + 1 ≤ (d −

1) min
j:y

(2)
j

6=ŷ
(2)
j

log (1/2− ε
(2)
j )−1.

Condition (2) implies that the first and second samples have

d and d− 1 bits in error after NN decoding, respectively, and

∆
(1)
c < 1− d

N
,∆

(2)
c < 1− d−1

N
. Condition (3) and (4) together

indicate that the first sample has smaller objective function,

i.e., ∆(u(1),y(1)) < ∆(u(2),y(2)). In fact,

∆(u(1),y(1)) = ∆(1)
c +∆(1)

e < ∆(2)
c +

1

N
+∆(1)

e

≤ ∆(2)
c +

1

N
+

d

N
max

j:yj 6=ŷ
(1)
j

log (1/2− ε
(1)
j )−1

≤ ∆(2)
c +

d− 1

N
min

j:yj 6=ŷ
(2)
j

log (1/2− ε
(2)
j )−1

≤ ∆(2)
c +∆(2)

e = ∆(u(2),y(2))



Therefore, a smaller BCE loss cannot guarantee a smaller

BER.

In this work, instead of using BCE function, we consider the

following mean square error objective function for each sam-

ple, which measures the hamming distance between received

channel output vector y and the decoded codeword ŷ,

Γ(u,y) =
1

N

N
∑

i=1

(yi − ŷi)
2
, where ŷ =

1− sgn(u)

2
. (6)

Γ(u,y) is an actual and practical metric to measure the perfor-

mance of iterative decoders. Minimizing Γ(u,y) is equivalent

to minimize BER. However, it has derivatives of zero almost

everywhere because of the sign (sgn(·)) function. To solve the

zero gradients problem of Eq. (6), we apply straight-through

estimators in the chain rule to calculate the gradients, which

are introduced below.

B. Straight-through estimators

The straight-through estimator (STE) is a proxy derivative

used in the quantized NN training to replace the zero derivative

of quantization function in the chain rule [29]. Intuitively, STE

is an estimate of the true partial gradient. In [29], it was found

that the most efficient training of quantized NNs was using

STEs, which was a good way to provide a non-trivial search

direction.

To see how STE works for proposed NN, we take a look

at the backward propagation. The partial derivative of the

objective function Γ(u,y) as defined in Eq. (6), with respect

to w(k) is calculated using chain rule as follows

∂Γ(u,y)

∂w(k)
=

1

N

N
∑

i=1

∂(yi − ŷi)
2

∂w(k)
=

1

N

N
∑

i=1

(−2) (yi − ŷi)
∂(ŷi)

∂w(k)

=
1

N

N
∑

i=1

(−2) (yi − ŷi)
∂(0.5− 0.5sgn(ui))

∂w(k)

=
1

N

N
∑

i=1

(yi − ŷi) ·
∂(sgn(ui))

∂ui

·
∂ui

∂w(k)

(7)

Apparently,
∂(sgn(ui))

∂ui
is zero almost everywhere, making the

weight updates still. To solve this, we use a proper surrogate

derivative
∂h(ui)
∂ui

, called STE, to replace
∂(sgn(ui))

∂ui
in Eq. (7).

Therefore, the partial derivative with respect to w(k) can be

approximated by

f(w(k)) =
1

N

N
∑

i=1

(yi − ŷi) ·
∂(h(ui))

∂ui

·
∂ui

∂w(k)
(8)

The problem of designing good STEs has been studied

extensively in [23]–[26]. We introduce the following function,

whose gradient is chosen as the STE for the sign function used

in Eq. (6):

hsgn(x) =

{

x if |x| < T
sgn(x)T otherwise

, (9)

Fig. 2. The mechanism of STE in Eq. (10) assuming that y = 0. The bit
locations that contribute to the weight gradients are marked by orange color,
e.g., the 4-th, 7-th and so on.

where T is a pre-defined threshold. The gradient of hsgn(x)
with respect to x is given below, which is the STE we use:

∂hsgn(x)

∂x
=

{

1 if |x| < T
0 otherwise

. (10)

From Eq. (8), also as shown in Fig. 2, for each bit in a

sample, if it is decoded correctly (i.e., ŷi = yi), it will have

no influence on the weight change. If not, and the magnitude

of its likelihood message |ui| is large enough (larger than some

threshold T ), it will not affect the weight gradient (it is treated

as “decoded correctly”). The only case which contributes to

the weight change is when the bit is decoded wrongly, and

|ui| < T (its likelihood message is not strong enough).

V. NUMERICAL RESULTS

We built NN framework in Python3.6 and used Pytorch

library for training. The NN is optimized by ADAM. The

training set consists of realizations of depolarizing noise

vectors assuming that all-zero codeword is transmitted. The

measure of performance is the frame-error-rate (FER). We

compared the performance of syndrome MS decoding and

syndrome NN decoding with same number of iterations.

We consider a class of non-CSS codes introduced in [30],

which are quasi-cyclic (QC) QLDPC codes. Each QC QLDPC

code Cqc of this class has code length of 2dq and dq parity

check equations, where d is a positive integer and 4d + 1 is

an odd prime. Hqc of Cqc has dimension of dq × 4dq, whose

circulant permutation matrix has size of q. Hqc has regular

column and row weights of d and 4d, respectively. HX and

HZ are based on multiplicative groups of order 4d. Cqc does

not have cycles of length 4.

In this experiment, we take d = 3, q = 78. Hqc has

dimension of 234× 936, and regular column and row weights

of 3 and 12, respectively. We construct a neural network of 10

hidden layers corresponding to 5 iterations. Each hidden layer

has 2808 neurons (= 936 × 3). The input layer and output

layer have 936 neurons.

The training set consists of 5000 samples at depolarizing

p = 0.0008. The number of epochs is 200, and the learning

rate of ADAM is 0.01, with mini-batch size of 100. The

pre-defined threshold T is set to be 20. The maximum number

of iterations is set to be 5. Fig. 3 gives the FER performance

of syndrome MS decoding and syndrome NN decoding with

5 iterations. It is shown that the syndrome NN decoding



Fig. 3. FER Performance of syndrome MS decoding and syndrome NN
decoding of Quantum code for five iterations.

can achieve lower logical error rate of one order of magnitude.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we introduce a general framework for error

correction in QLDPC codes using neural networks. We con-

struct a neural network to perform the syndrome matching

algorithm over a depolarizing channel. We propose the BER-

based objective function for training. In the training, we

introduce a STE to around zero derivatives of the sign function

used in hard decision. Simulation results show that within

5 iterations, the syndrome NN decoding can achieve lower

logical error rate of one order of magnitude at additional trivial

complexity.

We remark that in this work, the STE is chosen based on

the channel model. Open questions are left for future research

such as how to chose STE, what property is necessary that

a STE should have to guarantee convergence for different

channel models.
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