
Quasi-Cyclic LDPC Codes with Parity-Check

Matrices of Column Weight Two for Erasure

Correction

Xin Xiao and Bane Vasić

University of Arizona

Tucson, AZ 85721, USA

Email: {7xinxiao7, vasic}@email.arizona.edu

Juane Li

Micron Technology Inc.

Milpitas, CA 95035, USA

Email: jueli@ucdavis.edu

Shu Lin and Khaled Abdel-Ghaffar

University of California

Davis, CA 95616, USA

Email: {shulin, ghaffar}@ucdavis.edu

Abstract—In his pioneering work on LDPC codes, Gallager
dismissed codes with parity-check matrices of weight two af-
ter proving that their minimum Hamming distances grow at
most logarithmically with their code lengths. Nevertheless, many
coding applications do not demand large minimum Hamming
distances such as correcting bursts of erasures. In this paper,
we revisit LDPC codes with parity-check matrices of weight
two, in particular, matrices composed of two rows of circulant
permutation matrices (CPMs). The quasi-cyclic structure of the
codes naturally defines a sectionalized structure for codewords.
We consider channels causing erasures confined to a number
of sections and show that codes with parity-check matrices
composed of two rows of CPMs are optimal compared to codes
with three or more rows.

I. INTRODUCTION

With the rediscovery of low-density parity-check (LDPC)

codes by the turn of the century, researchers have recognized

that LDPC codes have good erasure correcting capability in

addition to their superior performance over AWGN channels.

A simple “peeling” algorithm that can be applied to a sparse

parity-check matrix of the code to correct erasures was pro-

posed early on [1]. The algorithm may not correct all erasures

that can be corrected by an optimal maximum-likelihood (ML)

decoder. However, for long LDPC codes, it is very difficult

to determine the capability of an ML decoder to correct

erasures let alone implement such a decoder. Motivated by

potential applications of LDPC codes in storage systems and

communication over fading channels, researchers investigated

the capability of LDPC codes to correct erasure bursts, and in

particular one long burst of erasures [2]– [6].

In this paper, we consider the case in which a codeword

is partitioned into sections of equal length. Each section may

correspond, for example, to a part of a large file that is stored

at a node in a distributed storage system. That part of the

file may be subject to losses. In coding-theoretic context, the

file can be viewed as a sequence composed of sections, each

corresponding to a part of the file. Losses in part of a file

stored at a node can then be modeled as a “phased burst” of

erasures in which all the erasures are confined to a section.

We consider binary quasi-cyclic (QC) LDPC codes, with

parity-check matrices which are m × n arrays of circulant

permutation matrices (CPMs) of size t × t. These are the

most widely known, studied, and used QC-LDPC codes. A

codeword v can be written as v = (v0,v1, . . . ,vn−1), where

vj , 0 ≤ j < n, is a sequence of t bits that forms a section. We

assume that such a codeword is transmitted over a channel that

causes multiple phased bursts of erasures. Notice that no QC-

LDPC code with a parity-check matrix composed of CPMs can

correct two “solid” phased bursts, each having t erasures, i.e.,

all bits in a section are erased. Therefore, the best we can hope

for is to correct pairs of mutually “semi-solid” phased bursts

of erasures in which all the bits in two sections are erased

except for one bit. We show that a QC-LDPC code with parity-

check matrix of column weight two, i.e., composed of just two

row blocks of CPMs, if properly designed, can correct any

pair of such phased bursts using the peeling algorithm. Codes

with such parity-check matrices have the highest possible

dimension among all codes with this correction capability. Ge

and Xia call a parity-check matrix composed of two rows of

CPMs ultra sparse [7]. In our investigation, we determine the

dimensions and minimum Hamming distances of all codes

with such parity-check matrices as well as the girths of the

Tanner graphs representing these matrices.

This paper is organized as follows. The notation for burst

erasures, QC-LDPC codes, and their parity-check matrices

with some basic results are presented in Section II. The

main contributions are in Section III which covers QC-LDPC

codes with parity-check matrices of weight two. The paper is

concluded in Section IV. For smooth reading, all proofs are

relegated to appendices.

II. PRELIMINARIES

A. Correcting Bursts of Erasures

We consider binary transmission over an erasure channel

in which the value of a transmitted bit is either received

correctly or erased. The decoder knows exactly the set of

indices, J , of the erased bits. To be able to recover the values

of the erased bits, a binary linear code is used. An (N,K)
binary linear code, C, is the K-dimensional null space of an

M × N binary matrix, H, for some integer M ≥ N − K .

This matrix is a parity-check matrix for the code, the rank of

which is rank(H) = N −K , which we call the redundancy

of the code. For any codeword v in C, we have vH
T = 0

where computations are over GF(2) and T denotes transpose.

Suppose v is transmitted over the channel and e erasures occur

in the bits indexed by J . Then, an ML decoder [8], [9] can

recover the erased bits if and only if the code does not have

any nonzero codeword in which the indices of all bits of value

1 are confined to J . This is equivalent to the condition that the

rank of the submatrix, HJ , of H composed of the columns

indexed by J , is |J |. In this case, we say that the erasures

are recoverable by the ML decoder. By considering the values

of the erased bits to be unknowns in the codeword v, these

unknowns can be determined from vH
T = 0 which is a

system of M parity equations. A necessary condition for this to

be possible is that N−K ≥ e. Codes meeting this bound with

equality are said to be optimal for the erasures specified by J .

Although a code in general has many parity-check matrices,

its ability to correct erasures does not depend on the choice

of H to solve for the unknowns in the equation vH
T = 0.

However, if e is large, say in the hundreds, then solving this

system of equations may be computationally intensive.

In 2001, Luby et al. [1] came up with a simple decoding

algorithm to correct erasures. The algorithm is applied to

a particular parity-check matrix of the code and its success

depends on this matrix. Although the algorithm may not be

able to recover all erasures recoverable by an ML decoder,

it is quite simple as it allows for the recovery of the erased

bits one by one. Basically, if there is a parity equation that

contains, i.e., checks, only one unknown erasure, then the

erased value can be determined from that equation by an XOR

operation and the number of unknowns is then reduced by one.

Next, if another parity equation is found that contains only

one of the remaining unknowns, then that unknown can be

determined and the number of unknowns is further reduced by

one. This may continue until all erasures are recovered or until

no equation is found that contains only one unknown erasure in

which case decoding fails and the remaining erased positions

form a stopping set [8]. Although there is no universal term

to identify this algorithm in the coding literature, some call

it figuratively the peeling algorithm [10], a term which we

will adopt. The peeling algorithm was initially developed for

randomly constructed low-density parity-check (LDPC) codes

and applied to their sparse parity-check matrices. The random-

ness makes it hard to develop erasure decoding algorithms

that exploit the structure of the codes. On the other hand,

the sparseness helps in having parity equations involving a

small number of terms for which the peeling algorithm is most

effective.

The peeling algorithm is best understood in terms of the

Tanner graph, G, representing the parity-check matrix H =
[hI,J]0≤I<M,0≤J<N [11]– [13]. This is a bipartite graph in

which the set of vertices is partitioned into a set of variable

nodes indexed by the columns of H and a set of check nodes

indexed by the rows of H. Edges connect only variable nodes

to check nodes. In particular, there is an edge connecting the

variable node corresponding to the J-th column to the check

node corresponding to the I-th row if and only if hI,J = 1.

Since the code is the null space of H, if the variable nodes

assume the bit values of a codeword, then the sum over GF(2)
of the values of the variable nodes adjacent to each check node

is zero. The peeling algorithm looks for a check node which

is adjacent to only one erased variable node and determines

its value as the sum over GF(2) of the values of all other

variable nodes adjacent to the check node. The number of

erasures is then reduced by one and the process is repeated

until all erased bits are recovered, in which case decoding

is successful, or there is no check node that checks exactly

one erased variable node, in which case decoding fails as the

remaining variable nodes form a stopping set. The success

of the peeling algorithm depends on the parity-check matrix

used or its associated Tanner graph. We say that a parity-

check matrix is peeling-decodable if every recoverable set

of erasures by an ML decoder can also be recovered by the

peeling algorithm.

Constructions of peeling-decodable parity-check matrices

for an (N,K) linear code are presented in [14]– [16] where the

number of rows of the constructed matrices is exponential in

N −K . For such matrices, the peeling algorithm may cease

to be appealing if N − K is large. As a motivation of our

investigation of codes with parity-check matrices of column

weight two we give the following result, the proof of which

is presented in Appendix A.

Theorem 1. Let H be a parity-check matrix of a linear code

in which each column has weight at most two. Then, H is

peeling-decodable.

B. QC-LDPC Codes and Their Parity-Check Matrices

Throughout this paper, we use (x)t for an integer x and

a positive integer t to denote the least nonnegative integer

congruent to x modulo t, i.e., (x)t = x− ⌊x/t⌋t. All indices

of vectors and of rows and columns of matrices are numbered

starting with 0.

By an m×n array H = [Hi,j]0≤i<m,0≤j<n of t×t matrices

Hi,j we mean the mt × nt matrix in which the (I, J) entry

in H, 0 ≤ I < mt, 0 ≤ J < nt, is the (i′, j′) entry in

Hi,j where i′ = (I)t, j
′ = (J)t, i = ⌊I/t⌋, and j = ⌊J/t⌋.

In general, we use (I, J), 0 ≤ I < mt, 0 ≤ J < nt, to

denote indices of entries in the mt × nt matrix H, (i′, j′),
0 ≤ i′, j′ < t, to denote indices of entries in a t× t submatrix,

and (i, j), 0 ≤ i < m, 0 ≤ j < n, to denote the indices

of the submatrix within the array H. For 0 ≤ i < m, the

t×nt submatrix [Hi,0,Hi,1,Hi,1, . . . ,Hi,n−1] of H is called

the i-th row block and for 0 ≤ j < n, the mt × t submatrix

[HT

0,j,H
T

1,j , . . . ,H
T

m−1,j]
T is called the j-th column block. For

0 ≤ i < m and 0 ≤ i′ < t, a row in H is indexed by (i; i′)
if it is the i′-th row in the i-th row block. Thus, a row in H

can be indexed by I for some I , 0 ≤ I < mt, or by the pair

(i; i′), 0 ≤ i < m, 0 ≤ i′ < t, where i′ = (I)t, i = ⌊I/t⌋,

and I = it+ i′. Similarly, a column in H can be indexed by

J for some J , 0 ≤ J < nt, or by the pair (j; j′), 0 ≤ j < n,

0 ≤ j′ < t, where j′ = (J)t, j = ⌊J/t⌋, and J = jt + j′,
indicating the j′-th column in the j-th column block.

A circulant is a square matrix in which every row other

than the top row is the cyclic shift of the row above it by

one position to the right. It follows that the top row is also the

cyclic shift of the bottom row. Hence, a circulant is completely

characterized by its top row. A binary t× t matrix is called a

circulant permutation matrix (CPM) if its top row has weight

one. A CPM in which the single 1 in its top row is in position

p, 0 ≤ p < t, is denoted by CPMt(p). Notice that all

the entries in CPMt(p) are zeros except those in positions

(i′, (i′ + p)t) for 0 ≤ i′ < t, i.e., positions ((j′ − p)t, j
′)

for 0 ≤ j′ < t. Suppose that H is an m × n array of

t×t CPM’s, i.e., H = [CPMt(pi,j)]0≤i<m,0≤j<n. To capture

the parameters of H we denote it by Hm,n,t. The matrix

Hm,n,t is specified by the mn numbers pi,j , 0 ≤ pi,j < t,
0 ≤ i < m, 0 ≤ j < n.

A code is quasi-cyclic (QC) [12], [13] if it is the null

space of an array of circulants of equal size. In particular,

if Hm,n,t = [CPMt(pi,j)]0≤i<m,0≤j<n, then it is a parity-

check matrix of a QC code, Cm,n,t, of length nt and dimension

nt− rank(Hm,n,t). Assuming that t is not small, then Hm,n,t

is sparse and the code is a QC-LDPC code.

The composition of the parity-check matrix Hm,n,t as an

array of circulants, naturally defines a sectionalized structure

for codewords. A binary sequence v = (v0, v1, . . . , vnt−1)
composed of nt bits can be written as v = (v0,v1, . . . ,vn−1),
where vi = (vit, vit+1, . . . , vit+t−1), 0 ≤ i < n. Erasures

affecting only one section of the transmitted codeword form

a phased burst. Thus, a phased burst may contain up to t
erasures. If the number of erasures is t, then we say that the

phased burst is solid. We say that two phased bursts affecting

two sections are mutually semi-solid if the total number of

erasures is 2t− 1, i.e., one phased burst is solid and the other

contains t− 1 erasures.

Let e(r) be the maximum number of guaranteed correctable

erasures by an ML decoder if the channel causes erasures

confined to any r ≤ n sections. Clearly, e(1) = t as the

columns in any column block are linearly independent. We

also have e(n) = d − 1, where d is the minimum Hamming

distance of the code, as e(n) is the maximum number of

guaranteed correctable erasures that occur anywhere in a

codeword.

By circularly shifting the columns in each column

block and the rows in each row block of Hm,n,t =
[CPMt(pi,j)]0≤i<m,0≤j<n, we can put Hm,n,t in a form of

an m × n array of CPMs in which the 0-th row block and

the 0-th column block consist only of t× t identity matrices

CPMt(0). Such a form is called canonical. These shifting

operations do not change the rank of the matrix Hm,n,t and,

being confined to columns in the same column block, do not

change the capability of Cm,n,t to correct phased bursts using

ML decoding or the peeling algorithm. Therefore, from now

on, we only consider matrices Hm,n,t in canonical form.

Since the sum over GF(2) of the columns in any column

block is the all-one vector, the sum over GF(2) of the columns

in any two column blocks is the all-zero vector. We conclude

that the columns in any two column blocks are linearly

dependent. This implies that e(r) ≤ 2t − 1 for all r ≥ 2.

For m = 1, H1,n,t is just a row of CPMs and e(2) = 1.

Therefore, to have e(2) > 1, m should be at least two. We

will see that the upper bound 2t−1 on the number of erasures

that can be corrected in a pair of phased bursts can be attained

for m = 2. Since the code rate may decrease by increasing m,

it is interesting to consider the case m = 2 which is treated

in the next section.

III. QC CODES WITH PARITY-CHECK MATRICES

COMPOSED OF TWO ROWS OF CPMS

With m = 2, we consider a parity-check matrix, H2,n,t, in

the canonical form
[

CPMt(0) CPMt(0) · · · CPMt(0)
CPMt(p0) CPMt(p1) · · · CPMt(pn−1)

]

, (1)

where n ≥ 2 and p0 = 0. For convenience, we call the two

row blocks in H2,n,t the top row block and the bottom row

block. Then H2,n,t is a parity-check matrix of a QC-LDPC

code, C2,n,t, of length nt and dimension nt − rank(H2,n,t).
The rank of H2,n,t, which equals the redundancy of C2,n,t,

is given in the following theorem. The proof is presented in

Appendix B.

Theorem 2. The rank of the matrix H2,n,t in (1) equals

rank(H2,n,t) = 2t−GCD(p1, . . . , pn−1, t).

The following theorem, the proof of which is given in

Appendix C, gives the phased burst erasure correcting capa-

bilities, e(r), of the code C2,n,t. From Theorem 1, all these

erasures are also correctable by the peeling algorithm.

Theorem 3. For the code C2,n,t with the parity-check matrix

H2,n,t in (1), we have e(1) = t and

e(2) = 2t
max

0≤j0<j1<n
GCD(pj1−pj0 ,t)

− 1.

Furthermore, for 3 ≤ r ≤ n, e(r) = 1 if pj for 0 ≤ j < n,

are not distinct. If they are distinct, then e(r) = 3 if (pj1 −
pj0)t = (pj2 − pj3)t for distinct pairs (j0, j1) and (j3, j2)
such that 0 ≤ j0, j1, j2, j3 < n, j0 6= j1, and j2 6= j3 and, in

case r = 3, not all j0, j1, j2, j3 are distinct. Finally, if pj are

distinct for 0 ≤ j < n and there are no distinct pairs (j0, j1)
and (j3, j2) for which (pj1 − pj0)t = (pj2 − pj3)t such that

0 ≤ j0, j1, j2, j3 < n, j0 6= j1, and j2 6= j3 or such pairs exist

in case r = 3 but for all of them j0, j1, j2, j3 are not distinct,

then e(r) = 5.

Since the minimum Hamming distance of the code is

d = e(n) + 1, it follows that d is either 2, 4, or 6. Gallager

[17, Theorem 2.5] has shown that the minimum Hamming

distances of codes, with parity-check matrices in which each

column has weight two, grow at most logarithmically with

the code length. Theorem 3 gives a much more pessimistic

result in case the codes are quasi-cyclic. However, Theorem 1

implies that H2,n,t is optimal for peeling. In particular, all

erasures recoverable by an ML decoder, and not only those

limited in number by minimum Hamming distance, are also

correctable by the peeling algorithm. We also notice from

the proofs in Appendix C that the girth of the Tanner graph

representing H2,n,t is twice the minimum Hamming distance,

i.e., it is 4, 8, or 12. The fact that the girth of a Tanner graph

associated with a parity-check matrix composed of two row

blocks of circulants is divisible by 4 was observed by Fossorier

[19, Corollary 2.1] who has also shown that the girth is at

most 12 [19, Corollary 2.5]. Chen, Bai, and Wang [18] gave

necessary and sufficient conditions for the girth to be equal to

12.

As mentioned earlier, a linear (N,K) code is optimal for

some erasures if these erasures are correctable by the code and

the redundancy, N −K , equals the number of erasures. From

Theorem 3, it is clear that C2,n,t has poor erasure correcting

capability unless the erasures are confined to at most two

sections. If t is a prime and pj are distinct for 0 ≤ j < n,

then Theorem 3 implies that e(2) = 2t − 1, which equals

the redundancy as given in Theorem 2. In this case C2,n,t

is optimal for any two mutually semi-solid phased bursts of

erasures. No other code of the same length that can correct

the same erasures has higher dimension.

Example 1. Consider the parity-check matrix H2,n,t in (1) in

which t ≥ n ≥ 3, and pj = j for 0 ≤ j < n. From Theorem 2,

we have

rank(H2,n,t) = 2t−GCD(1, 2, . . . , n− 1, t) = 2t− 1.

Notice that pj are distinct for 0 ≤ j < n but (pj1−pj0)t are not

distinct for 0 ≤ j0 6= j1 < n. Indeed, (p1 − p0)t = (p2 − p1)t
as both equal 1. Hence, from Theorem 3, we have e(1) = t,

e(2) = 2t
max

0≤j0<j1<n
GCD(j0−j1,t)

− 1 =
2t

tn
− 1,

and e(r) = 3 for 3 ≤ r ≤ n, where tn is the largest factor of

t less than n. The code has minimum Hamming distance of

four. If t is a prime, then tn = 1 and the code can correct any

two mutually semi-solid phased bursts of erasures and, in this

case, it is optimal for these erasures.

Example 2. Consider the parity-check matrix H2,n,t in (1) in

which t = 2τ − 1, τ ≥ n ≥ 3, and pj = 2j − 1 for 0 ≤ j < n.

From Theorem 2, we have

rank(H2,n,t) = 2t−GCD(1, 3, . . . , 2n−1 − 1, t) = 2t− 1.

For 0 ≤ j0 ≤ j1 < n,

GCD(pj1 − pj0 , t) = GCD((2j1 − 1)− (2j0 − 1), t)

= GCD(2j1−j0 − 1, 2τ − 1)

= 2GCD(j1−j0,τ) − 1,

where we used the well-known fact that GCD(xa−1, xb−1) =
xGCD(a,b) − 1 for nonnegative integers a and b. Notice that

not only pj for 0 ≤ j < n are distinct, but also (pj1 − pj0)t
are distinct for 0 ≤ j0 6= j1 < n. Indeed, suppose that (pj1 −
pj0)t = (pj2 − pj3)t for distinct pairs (j0, j1) and (j3, j2)
such that 0 ≤ j0, j1, j2, j3 < n, j0 6= j1, and j2 6= j3. Then

2j3 − 2j2 + 2j1 − 2j0 is divisible by t. Since −2n + 2 ≤

2j3 − 2j2 +2j1 − 2j0 ≤ 2n − 2 and t ≥ 2n − 1, it follows that

2j3 − 2j2 + 2j1 − 2j0 = 0. Without loss of generality, assume

that j3 ≥ j0, j1, j2. Since 2j3 > 2j3−1 + 2j3−2 + · · ·+ 1, we

conclude that j2 = j3 and j1 = j0 or j0 = j3 and j1 = j2.

Both cases contradict the conditions imposed on the two pairs.

From Theorem 3, we have e(1) = t,

e(2) = 2t
max

0≤j0<j1<n
2GCD(j1−j0,τ)−1

− 1 =
2t

2τn − 1
− 1,

and e(r) = 5 for 3 ≤ r ≤ n, where τn is the largest factor of

τ less than n. The code has minimum Hamming distance of

six. If τ is a prime, then τn = 1 and the code can correct any

two mutually semi-solid phased bursts of erasures and, in this

case, it is optimal for these erasures.

Recall that a collection of integers p0, p1, . . . , pn−1 forms

a t-modular Golomb ruler [20] if (pj1 − pj0)t are nonzero

and distinct for 0 ≤ j0 6= j1 < n. This means that for every

positive integer less than t, there is at most one pair of i and j
such that (pi−pj)t equals this integer1. Theorem 3 implies that

the minimum Hamming distance is at most six with equality if

and only if p0, p1, . . . , pn−1 form a t-modular Golomb ruler as

in Example 2 where the size of the circulants, t, is exponential

in the number, n, of circulants in a row block. Although

this leads to a simple construction of a matrix satisfying the

modular Golomb ruler property, such an exponential growth of

t as a function of n may not be desirable. Fortunately, this need

not be the case. Let tmin(n) be the minimum value of t such

that there are n nonnegative integers p0 = 0, p1, . . . , pn−1 less

than t that form a t-modular Golomb ruler. This function has

been studied extensively, see e.g., [20]. It is stated in [26] that

n2 − n+ 1 ≤ tmin(n) ≤ n2 +O(n36/23),

which shows that quadratic growth in n is sufficient. Con-

structions of t-modular Golomb rulers are due to Singer [27]

(n = p + 1, t = p2 + p + 1, p is a prime power), Bose [28]

(n = p, t = p2 − 1, p is a prime power), and Ruzsa [29]

(n = p− 1, t = p(p− 1), p is a prime).

Although the code C2,n,t cannot correct two solid phased

bursts of 2t erasures, if it can correct any two mutually semi-

solid phased bursts of erasures, then it is easy to come up with

a subcode, C, of C2,n,t that can correct any two solid phased

bursts of erasures. Since any vector of weight 2t in which

all its 1’s are confined to two sections is in the null space

of H2,n,t, a parity-check matrix, H, of C can be obtained

by augmenting H2,n,t with a matrix that does not have any

such vector in its null space. Hence, the sums over GF(2) of

the columns in each column block in the augmenting matrix

should be distinct. Therefore, the number of rows in the

augmenting matrix is at least ⌈log2(n)⌉. A possible choice

for such matrix with that many rows is to have the (j; 0)

1In case (pi − pj)t is replaced by (pi + pj)t, the sequence is a t-modular
Sidon sequence [21] while if the difference sign is kept but “at most” is
replaced by “exactly”, the modular Golomb ruler is a perfect difference set
[20, Section 19.3]. These combinatorial objects and variations thereof were
used in numerous papers, e.g., [18], [22]– [25], to construct LDPC codes with
Tanner graphs of large girths.

column to be the binary representation of j, 0 ≤ j < n,

and all other columns to be all-zero columns. Notice that the

augmenting matrix is not composed of CPMs and the code C
is not quasi-cyclic. For 0 ≤ j < n, the (j; 0) columns in the

augmenting matrix are all distinct and hence for any pair of

such columns there is a row with a 1 in exactly one of the

two columns. Hence, if the channel causes two solid phased

bursts of erasures, then there is a parity-check that can be

used to recover one of the erased bits. Again, the remaining

erasures form two mutually semi-solid phased bursts which

are within the correcting capability of C2,n,t. In particular,

the peeling algorithm applied to the augmented parity-check

matrix can correct any two solid phased bursts of erasures

although it is not optimal for such erasures. However, subject

to the restriction that it is a subcode of C2,n,t, its redundancy

is minimum among all codes that can correct two solid phased

bursts. Without this restriction, if n ≤ 2t, one can construct

a code which is optimal for any two solid phased bursts of

erasures. Indeed, a (possibly shortened or lengthened) Reed-

Solomon code of length n and dimension n−2 over GF(2t) in

which each symbol is represented by a binary vector of length

t is optimal for pairs of solid phased bursts of erasures. The

issue with this construction is that if the length of the section,

t, is large, e.g., in the hundreds, then decoding is prohibitive

as it involves computations over GF(2t).

IV. CONCLUSION

In this paper, we investigated the erasure correction capabili-

ties of QC-LDPC codes with parity-check matricies composed

of two rows of CPMs. We completely determined the dimen-

sions and minimum Hamming distances of these codes as well

as the girth of the Tanner graphs associated with their parity-

check matrices. In spite of their poor minimum Hamming

distances, these codes have good correcting capabilities for

phased erasures confined to two sections of a codeword. In

particular, we have shown that there are codes among this

class of codes that are optimal for any two mutually semi-solid

phased bursts of erasures. These codes may find applications

in distributed data storage.

APPENDIX A

PROOF OF THEOREM 1

Suppose H is not peeling-decodable. Then, there is a

nonempty set, J , of variable nodes in G that forms a stopping

set such that the columns of HJ are linearly independent.

Let I be the set of check nodes in the subgraph G(J) of G
induced by J . As every column in HJ has weight at most

two, the number of edges incident on J is at most 2|J |. Since

J forms a stopping set, every check node in I is adjacent to

at least two variable nodes in J . Hence, the number of edges

incident on these check nodes is at least 2|I|. As the edges

in G(J) incident on I are the same as those incident on J ,

we have 2|J | ≥ 2|I|. Since the columns of HJ are linearly

independent, we have |J | ≤ |I|. We conclude that |I| = |J |
and every node in I or J is incident on exactly two edges.

This is equivalent to saying that every row in HJ has weight

two, contradicting the assumption that the columns indexed by

J are linearly independent.

APPENDIX B

PROOF OF THEOREM 2

We start with the following lemma which gives the rank of

an array of circulants that are not necessarily CPMs. The proof

is based on Bézout’s identity which states that given polyno-

mials a1(x), . . . , an(x) over some field with greatest common

divisor (GCD) f(x), there exist polynomials q1(x), . . . , qn(x)
such that f(x) = q1(x)a1(x)+ · · ·+qn(x)an(x), see e.g., [30,

Corollary 1.37].

Lemma 1. Let A1, . . . ,An−1 be t × t circulants over some

field and A = [A1, . . . ,An−1]. For 1 ≤ j < n, let aj =
(a0,j , a1,j, . . . , at−1,j) be the top row of Aj and aj(x) =
a0,j+a1,jx+· · ·+at−1,jx

t−1. Then, rank(A) = t−deg(f(x))
where f(x) = GCD(a1(x), . . . , an−1(x), x

t − 1).

Proof: Let f(x) =
∑t−1

j=0 fix
j and define the sequence

f = (f0, f1, . . . , ft−1). Then, with an(x) = xt − 1, Bézout’s

identity implies that

f(x) ≡ q1(x)a1(x) + · · ·+ qn−1(x)an−1(x) (mod xt − 1)

for some polynomials q1(x), . . . , qn−1(x). Hence, f is a linear

combination of a1, . . . , an−1 and their cyclic shifts, i.e., it is

in the column space of the matrix A. Notice that f ends with

t− deg(f(x)) − 1 zeros. Hence, f and its t− deg(f(x))− 1
cyclic shifts are linearly independent. Since f is in the column

space of A which is a row of circulants, all cyclic shifts of f

are also in the same column space. Thus, A has rank at least

t − deg(f(x)) as it contains that many linearly independent

vectors. To show that the rank of A does not exceed t −
deg(f(x)), we argue that every vector s = (s0, s1, . . . , st−1)
in the column space of A is a linear combination of these

t−deg(f(x)) linearly independent vectors. Indeed, let s(x) =
∑t−1

i=0 six
i. Then, as s is in the column space of A, it is a linear

combination of a1, . . . , an−1 and their t − 1 cyclic shifts. In

particular, for some polynomials u1(x), . . . , un−1(x), we have

s(x) ≡ u1(x)a1(x) + · · ·+ un−1(x)an−1(x) (mod xt − 1).

Since f(x) = GCD(a1(x), . . . , an−1(x), x
t − 1), it follows

that f(x) divides s(x), i.e., s(x) = q(x)f(x) for some

polynomial q(x) of degree less than t − deg(f(x)). This is

equivalent to saying that s is a linear combination of f and its

n− deg(f(x))− 1 cyclic shifts.

To complete the proof of Theorem 2, we subtract the top

row block of H2,n,t as given in (1) from the bottom row block

to obtain the matrix

H
′ =

[

CPMt(0) CPMt(0) · · · CPMt(0)
0 A1 · · · An−1

]

,

where 0 is the t× t all-zero matrix and Aj = CPMt(pj)−
CPMt(0). For 1 ≤ j < n, the matrix Aj is a circulant in

which its top row is either the all-zero vector or has exactly

two 1’s at positions pj and 0. Since H
′ is obtained from

H2,n,t by elementary row operations, they have the same rank.

Furthermore, as CPMt(0), being an identity matrix, has rank

t, we have

rank(H2,n,t) = rank(H′) = t+ rank(A), (2)

where A = [A1, . . . ,An−1] is composed of n− 1 circulants.

We invoke Lemma 1 to find the rank of this matrix. For this

purpose, let aj(x) = xpj − 1 for 1 ≤ j < n. Then,

f(x) = GCD(a1(x), . . . , an−1(x), x
t − 1)

= GCD(xp1 − 1, . . . , xpn−1 − 1, xt − 1)

= xGCD(p1...,pn−1,t) − 1.

The result now follows directly from Lemma 1 and (2).

APPENDIX C

PROOF OF THEOREM 3

Since the t columns in any column block are linearly

independent, e(1) = t. As any r column blocks, where

2 ≤ r ≤ n, have linearly dependent columns, e(r) is one

less than the minimum number of linearly dependent columns

confined to r column blocks. Since each column in H2,n,t has

a single 1 in the top row block and a single 1 in the bottom

row block, only an even number of columns in H2,n,t can

sum up to the all-zero vector and, therefore, e(r) is odd for

2 ≤ r ≤ n. The following lemma relates linear dependence of

columns in H2,n,t to cycles in the Tanner graph G representing

H2,n,t.

Lemma 2. The columns of H2,n,t indexed by a nonempty set

J of indices are linearly dependent if and only if there is a

cycle in the subgraph, G(J), of G induced by J .

Proof: The columns indexed by J are linearly dependent if

and only if there is a nonempty subset J0 ⊆ J of indices

of columns that sum over GF(2) to the all-zero vector such

that no proper nonempty subset of J0 has this property. This

is the case if and only if every row in the matrix HJ0
, the

submatrix of H2,n,t composed of the columns indexed by J0,

has weight two which holds if and only if the nodes in the

subgraph G(J0) form a cycle.

Without loss of generality, we can assume that a cycle in G
starts with the variable node (j0; j

′
0) followed by a check node

in the top row block followed by the variable node (j1; j
′
0)

followed by a check node in the bottom row block and so

on until it reaches a variable node (je−1; j
′
e−1) followed by a

check node in the bottom row block and finally ends at the

variable node (je; j
′
e) = (j0; j

′
0) we started with. Based on

this, the cycle can be completely specified by the sequence

(j0; j
′
0), (j1; j

′
1), . . . , (je−1; j

′
e−1) of variable nodes without

listing the check nodes or the ending variable node which

is the same as the starting node. The length of the cycle is 2e.

For such a sequence to form a cycle it is necessary that

1) jℓ 6= jℓ+1 for 0 ≤ ℓ < e where je = j0 as no check node

is adjacent to two variable nodes in the same column

block;

2) If ℓ is even, then j′ℓ = j′ℓ+1 for the variables nodes

(jℓ; j
′
ℓ) and (jℓ+1; j

′
ℓ+1) to be adjacent to a check node

in the top row block;

3) If ℓ is odd, then (j′ℓ − pjℓ)t = (j′ℓ+1 − pjℓ+1
)t, where

(je; j
′
e) = (j0; j

′
0), for the variables nodes (jℓ; j

′
ℓ) and

(jℓ+1; j
′
ℓ+1) to be adjacent to a check node in the bottom

row block.

Combined with the condition that (j0; j
′
0), (j1; j

′
1), . . . ,

(je−1; j
′
e−1) are distinct gives a necessary and sufficient con-

dition for the sequence to form a cycle. If this extra condition

is not met, then the sequence represents a closed walk that

contains a cycle of length less than 2e.

To determine e(2), we consider the minimum number of

linearly dependent columns confined to the column blocks

j0 and j1, where 0 ≤ j0 6= j1 < n. From Lemma 2,

there are e such columns only if there is a sequence

(j0; j
′
0), (j1; j

′
1), . . . , (je−1; j

′
e−1) of variable nodes satisfying

conditions 1), 2), and 3). Then, for even ℓ we have jℓ = j0 and

j′ℓ = j′ℓ+1 while for odd ℓ we have jℓ = j1 and (j′ℓ − pjℓ)t =
(j′ℓ+1 − pjℓ+1

)t. Summing over ℓ = 0, 1, . . . , e − 1, we get
1
2 (pj1 − pj0)e ≡ 0 (mod t). The minimum value of e for this

congruency to hold is 2t/GCD(pj1 − pj0 , t). Hence, there is

no cycle of length less than 2e with e = 2t/GCD(pj1 −pj0 , t)
involving only variable nodes confined to the column blocks

j0 and j1. For such e, we can find a closed walk of length 2e.

Indeed, let (jℓ; j
′
ℓ) = (j0; ((pj0−pj1)

ℓ
2)t) if ℓ = 0, 2, . . . , e and

(jℓ; j
′
ℓ) = (j1; ((pj0 − pj1)

ℓ−1
2)t) if ℓ = 1, 3, . . . , e− 1. Then,

(je; j
′
e) = (j0; j

′
0) and the three conditions 1), 2), 3) hold. We

conclude that the length of a shortest cycle of variable nodes

confined to the column blocks j0 and j1 is 2e and e is the

minimum number of linearly dependent columns confined to

these column blocks. From this, the expression of e(2) follows.

Next, we consider e(r) in case 3 ≤ r ≤ n. If pj0 = pj1 ,

where 0 ≤ j0 6= j1 < n, then the j′-th column, 0 ≤ j′ < t, in

the j0-th column block is the same as the j′-th column in the

j1-th column block and e(r) = 1. In the following, we assume

that p0, p1, . . . , pn−1 are distinct. Then no two columns in

H2,n,t are identical and e(r) > 1 which implies that e(r) ≥ 3.

Suppose (pj1 − pj0)t = (pj2 − pj3)t for distinct pairs (j0, j1)
and (j3, j2) such that 0 ≤ j0, j1, j2, j3 < n, j0 6= j1, and

j2 6= j3. Then j1 6= j2 otherwise pj0 = pj3 which implies

that j0 = j3 as p0, p1, . . . , pn−1 are distinct. Similarly, j3 6=
j0. The sequence of variable nodes (j0; 0), (j1; 0), (j2; (pj2 −
pj1)t), (j3; (pj2 − pj1)t) satisfies conditions 1), 2), and 3) and

forms a cycle of length eight. From Lemma 2, the columns

of H2,n,t indexed by these four variable nodes are linearly

dependent. Hence, e(r) ≤ 3 if the four variable nodes are

confined to r column blocks. Otherwise, if there are no such

pairs (j0, j1) and (j3, j2) confined to r column blocks, then

e(r) > 3 which implies that e(r) ≥ 5.

Finally, consider the sequence of the six variable nodes

(j0; 0), (j1; 0), (j2; (pj2 − pj1)t), (j0; (pj2 − pj1)t), (j1; (pj2 −
pj0)t), (j2; (pj2 − pj0)t), where 0 ≤ j0 < j1 < j2 < n.

This sequence satisfies conditions 1), 2), and 3). Hence, we

conclude from Lemma 2 that the columns of H2,n,t indexed

by these six variable nodes which are confined to three column

blocks are linearly dependent. This proves that e(r) ≤ 5 for

all 3 ≤ r ≤ n.

ACKNOWLEDGMENT

The work of B. Vasić is funded in part by the NSF under

grants NSF ECCS-1500170 and NSF SaTC-1813401.

REFERENCES

[1] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman
“Efficient erasure correcting codes,” IEEE Trans. Inf. Theory, vol. 47,
no. 2, pp. 569–584, Feb. 2001.

[2] M. Yang and W. E. Ryan, “Performance of efficiently encodable low-
density parity-check codes in noise bursts on the EPR4 channel,” IEEE

Trans. Magn., vol. 40, no. 2, pp. 507–512, Mar. 2004.
[3] G. Hosoya, H. Yagi, T. Matsushima, and S. Hirasawa, “A modification

method for constructing low-density parity-check codes for burst era-
sures,” ICICE Trans. Fundamentals, vol. E89-A, no. 10, pp. 2501–2509,
Oct. 2006.

[4] Y. Y. Tai, L. Lan, L. Zeng, S. Lin, and K. A. S. Abdel-Ghaffar,
“Algebraic construction of quasi-cyclic LDPC codes for the AWGN and
erasure channels,” IEEE Trans. Commun., vol. 54, pp. 1765–1774, Oct.
2006.

[5] S. J. Johnson, “Burst erasure correcting LDPC codes,” IEEE Trans.
Commun., vol. 57, no. 3, pp. 641–652, Mar. 2009.

[6] K. Li, A. Kavc̆ić, and M. F. Erden, “Construction of burst-erasure
efficient LDPC codes for use with belief propagation decoding,” in Proc.

IEEE Int. Conf. Commun. (ICC), Cape Town, South Africa, May 23–27,
2010, pp. 1–5

[7] X. Ge and S. -T. Xia, “Structured non-binary LDPC codes with large
girth,” Electron. Lett., vol. 43, no. 22, pp. 1220–1221, Oct. 2007.

[8] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke,
“Finite-length analysis of low-density parity-check codes on the binary
erasure channel,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1570–1579,
Jun. 2002.

[9] H. Pishro-Nik and F. Fekri, “On decoding of low-density parity-check
codes over the binary erasure channel,” IEEE Trans. Inf. Theory, vol.
50, no. 3, pp. 439–454, Mar. 2004.

[10] V. Savin, “LDPC decoders,” in Channel Coding: Theory, Algorithms,

and Applications, D. Declercq, M. Fossorier, and E. Biglieri Eds.,
Oxford, UK: Academic Press, 2014.

[11] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inf. Theory, vol. 27, no. 5, pp. 533 – 547, Sep. 1981.

[12] S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and

Applications, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2004.
[13] W. E. Ryan and S. Lin, Channel Codes: Classical and Modern. New

York, NY: Cambridge University Press, 2009.

[14] H. D. L. Hollmann and L. M. G. M. Tolhuizen, “Generic erasure
correcting sets: bounds and constructions,” J. Combin. Theory, Ser. A,
vol. 113, no. 8, pp. 1746–1759, Nov. 2006.

[15] H. D. L. Hollmann and L. M. G. M. Tolhuizen, “On parity check
collections for iterative erasure decoding that correct all correctable
erasure patterns of a given size,” IEEE Trans. Inf. Theory, vol. 53, no.
2, pp. 823–828, Feb. 2007.

[16] J. H. Weber and K. A. S. Abdel-Ghaffar, “Results on parity-check
matrices with optimal stopping and/or dead-end set enumerators,” IEEE

Trans. Inf. Theory, vol. 54, no. 3, pp. 1368–1374, Mar. 2008.
[17] R. G. Gallager, Low Density Parity Check Codes. Cambridge, MA: MIT

Press, 1963.
[18] C. Chen, B. Bai, and X. Wang. “Construction of nonbinary quasi-

cyclic LDPC cycle codes based on Singer perfect difference set,” IEEE
Commun. Lett., vol. 14, no. 2, pp. 181–183, Feb. 2010.

[19] M. P. C. Fossorier, “Quasi-cyclic low-density parity-check codes from
circulant permutation matrices,” IEEE Trans. Inf. Theory, vol. 50, no. 8,
pp. 1788–1793, Aug. 2004.

[20] C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Designs,
2nd ed. CRC Press: Boca Raton, FL, 2007.

[21] K. O’Bryant, “A complete annotated bibliography of work related to
Sidon sequences,” Electron. J. Combin., vol. DS11, pp. 1–39, Jul. 2004.

[22] B. Vasic and O. Milenkovic, “Combinatorial constructions of low-
density parity-check codes for iterative decoding,” IEEE Trans. Inf.

Theory, vol. 50, no. 6, pp. 1156–1176, Jun. 2004.
[23] M. Esmaeili and M. Javedankherad, “4-cycle free LDPC codes based on

difference sets,” IEEE Trans. Commun., vol. 60, no. 12, pp. 3579–3586,
Dec. 2012.

[24] G. Zhang, R. Sun, and X. Wang “New quasi-cyclic LDPC codes with
girth at least eight based on Sidon sequences,” in Proc. Int. Symp.

Turbo Codes and Iterative Information Processing (ISTC), Gothenburg,
Sweden, Aug. 27–31, 2012, pp. 31–35.

[25] H. Park, S. Hong, J.-S. No, and D. -J. Shin, “Construction of high-rate
regular quasi-cyclic LDPC codes based on cyclic difference families,”
IEEE Trans. Commun., vol. 61, no. 8, pp. 3108–3113, Aug. 2013.

[26] R. L. Grahams and N. J. A. Sloane, “On additive bases and harmonious
graphs,” SIAM J. Alg. Disc. Meth., vol. 1, no. 4, Dec. 1980.

[27] J. Singer, “A theorem in finite projective geometry and some applications
to number theory,” Trans. Amer. Math. Soc., vol. 43, no. 3, pp. 377–385,
May 1938.

[28] R. C. Bose, “An affine analogue of Singer’s theorem,” J. Indian Math.

Soc., vol. 6, pp. 1–15, 1942.
[29] I. Z. Ruzsa, “Solving a linear equation in a set of integers I,” Acta Arith.,

vol. 65, no. 3, 259–282, 1993.
[30] P. A. Fuhrmann, A Polynomial Approach to Linear Algebra, 2nd ed.

New York, NY: Springer, 2012.

