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Abstract— Increased interest in renewable energy production
has created demand for novel methods of electricity pro-
duction. With a high potential for low cost power genera-
tion in locations otherwise isolated from the grid, in-stream
hydrokinetic turbines could serve to help meet this grow-
ing demand. Hydrokinetic turbines possess higher operations
and maintenance (O&M) costs due to their isolated nature
and harsh operating environment when compared with other
sources of renewable energy. As such, techniques must be
developed to mitigate these costs through the application of
fault-tolerant control (FTC) and machine condition monitoring
(MCM) for increased reliability and maintenance forecasting.
Hence, the primary objective of this paper is to address a
key limitation in hydrokinetic turbine research: the lack of
widely available data for use in developing models by which
to conduct FTC and MCM. To this end, a 20 kW research
hydrokinetic turbine implemented in Fatigue Aerodynamics
Structures and Turbulence (FAST) is presented and housed
within the Matlab/Simulink environment. This paper details the
high-fidelity simulation platform development together with the
characteristics of generated data with a focus on future FTC
and MCM implementation.

I. INTRODUCTION

According to the Renewable Electricity Futures Study [1],
renewable electricity generation is expected to supply 80%
of total U.S. electricity generation in 2050. This increasing
demand for clean energy has produced a need for a wider
variety of methods by which to generate electricity. As such,
in-stream hydrokinetic turbine technologies have benefited
from numerous innovations achieved by academia and in-
dustry over the past decade, with companies such as Verdant
Power, IHI, ORPC, etc., developing hydrokinetic turbines for
use in tidal, ocean-current, and river electricity production.

One of the primary barriers to the proliferation of hy-
drokinetic power has been reliability concerns, as the in-
herently harsh operating environment and isolated nature
associated with these devices does not readily yield them to
maintenance. The primary motivation of this research is to
stimulate the development of tools and techniques by which
operation and maintenance (O&M) costs can be reduced.
Fault detection and isolation (FDI), fault-tolerant control
(FTC), machine condition monitoring (MCM) and predictive
maintenance (PdM) are all necessary means to reduce the

*This work was supported by the Walter & Lalita Janke Foundation
and the National Science Foundation under grant no. ECCS-1809164.

1Y. Tang, J. VanZwieten, D. Wilson, and B. Dunlap are with Florida
Atlantic University, Boca Raton, FL 33431, USA {tangy, jvanzwi,
bdunlap2013, davidwilson2016}@fau.edu

2Cornel Sultan is with Virginia Tech, 460 Old Turner St., Blacksburg,
VA 24061, USA csultan@vt.edu

3Nikolaos Xiros is with University of New Orleans, 2000 Lakeshore
Dr., New Orleans, LA 70148, USA nxiros@uno.edu

O&M costs of hydrokinetic turbines, and are relatively well
studied and applied within the wind industry. However, as
the field of hydrokinetic electricity production is relatively
immature, there remains a lack of available data for use
in applying these techniques in this domain. The goal of
this paper is to fill this gap by developing a high-fidelity
in-stream hydrokinetic turbine model for use in simulating
the complex multi-physical dynamics of turbines within a
stochastic hydrodynamic inflow field.

Previous marine hydrokinetic (MHK) turbine numerical
simulations have been constructed to predict performance,
loads, and power production, as well as for control system
development and evaluation. [2] and [3] present method-
ologies for utilizing the Fatigue Aerodynamics Structures
and Turbulence (FAST) code for accurate prediction of the
hydrodynamic loads on MHK rotor blades, as well as the
response of these blades to the applied loads, with a focus
on predicting rotor fatigue life. However, these models do not
account for controller feedback, drive-train dynamics, sensor
error, or faults. Several time domain numerical simulations
have been also developed by [4], [5] specifically for MHK
turbine controller development. However, these numerical
simulations do not include feedback from sensors or blade
elasticity. Moreover, models of MHK turbine electrical power
generation [6] and turbine faults [7] have been developed, but
using separate numerical simulation platforms.

Over the past decade significant advancement in FTC and
MCM has been made in the wind industry, while these
technologies are still in infancy in the hydrokinetic domain.
On the FTC side, preliminary work has been carried out in
[8], [9]. Different FTC strategies have been comparatively
studied in [10] for the marine current energy converter flow-
meter and its generator rotor speed/position sensor failures.
On the MCM side, several vibration-based approaches have
been tested for the condition monitoring of MHK turbines
[11], with these intrusive techniques requiring the installation
of additional sensors which are also subject to failures.
Recent developments for MHK turbine imbalance fault
detection include data normalization and empirical mode
decomposition (EMD) based methods using the generator
stator current signal [12] and sparse autoencoder (SA) and
softmax regression (SR) based technique using blade op-
erating image [13]. In short, these techniques were either
built using data collected from simple simulation models,
dynamometer testing, or field test, which are not effective
for new algorithm development, testing and validation.

Inspired from the wind turbine challenge [14], this paper
employs the FAST tool [15] from the National Renewable
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Fig. 1. FAST- and Simulink-based MCM/PHM benchmark model for in-stream hydrokinetic generation system. The 20-kW hydrokinetic turbine is
simulated within the FAST-based environment, while the sensor and actuator faults are implemented within the Simulink-based environment.

Energy Laboratory (NREL) to simulate an MHK turbine.

The FAST code includes a higher fidelity model of turbine

structural behaviors, with up to 24 degrees of freedom.

Moreover, this work differs from other models/challenges in

several ways:

• A comprehensive and flexible benchmark model, com-

prised of a FAST-based MHK turbine, representative

sensors and actuators, has been housed within a holistic

Matlab/Simulink platform such that rotor blade, sensor,

and actuator failures can be modeled for the assessment

and validation of FTC and MCM.

• Water inflow models, generated using the TurbSim

tool, have been integrated into FAST to simulate the

underwater operating environments. This allows the use

of more realistic “full field” water velocity inputs that

vary spatially across the rotor plane and with respect to

time, creating a realistic turbulent input to the turbine.

Three representative conditions based on measurements

made at different tidal energy sites have been modeled

that have relatively mild, moderate, and high turbulent

conditions.

• A recently developed turbine blade modeling approach,

designed for MHK applications, has been implemented

into our platform to accurately represent the interaction

of MHK blades coupled with hydrodynamic and hydro-

static forcing models improving the overall validity of

the simulation.

The benchmark presented in this paper is first-of-its-kind

for high-fidelity MHK turbine simulation, and we predict

that this work will facilitate FTC and MCM research and

development in the control and MHK communities, and

further help to reduce the levelized cost of energy (LCOE).

The rest of this paper is organized as follows. Section II

details the benchmark model development, including a FAST

preliminary, platform overview, inflow modeling, blade dy-

namics, sensor modeling, and actuator modeling. Section III

presents faults implemented in the platform, including imbal-

ance faults, sensor faults, and actuator faults, and Section IV

concludes the paper.

II. IN-STREAM HYDROKINETIC TURBINE MODELING

The developed high-fidelity numerical simulation platform

has many similarities to the 20 kW, 3-blade horizontal

axis MHK turbine located at Southeast National Marine

Renewable Energy Center (SNMREC) [16], [17]. In this

section, we detail the overall simulation platform, TurbSim

integration, underlying turbine specifications, and several

other key innovations including model construction and

model capabilities.

A. FAST Preliminary and Platform Overview

The latest FAST modularization framework is detailed in

[18]. This framework allows for the improvement of numeri-

cal performance and flexibility, essentially creating a unified

framework comprised of aerodynamic, hydrodynamic, servo-

dynamic, and structural-dynamic modules implemented in

different tool-sets which FAST “glues” together. In contrast

with previous FAST versions, this new framework greatly

streamlines the development and use of the toolkit, allowing

for more complex systems to be modeled with reduced effort.

At its core, the simulation platform outlined in Fig. 1 relies

on FAST for simulating the multibody dynamics inherent

in the MHK turbine system. In this work, the AeroDyn,

ElastoDyn, ServoDyn, and InflowWind modules are used

with input files set using parameters from SNMREC’s 20

kW MHK turbine. Stochastic turbulence models generated

by NWTC’s TurbSim platform, further discussed in Sec-

tion II-B, provide realistic underwater operating environ-

ments. From these modules, a number of parameters can be

selected as outputs to Simulink for fault-tolerant control and

condition monitoring.

The FAST model is directly coupled to Simulink via the

provided interface. As FAST generates output corresponding

to a given time step, a sensor module, fully implemented in

Simulink, feeds relevant data from the output vector into

sub-blocks that emulate selected sensors. For example, a

generator speed sensor is modeled by extracting the high-

speed shaft rotational velocity (HSShftV) from the FAST

output vector each time step which is fed into the sensor
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TABLE I
TURBULENCE INTENSITIES AND HUB HEIGHT CURRENT VELOCITIES AT

VARIOUS LOCATIONS.

Case Location TI [%] u [m/s] Ref

Mild Strangford Narrows 5 3 [19]
Moderate Puget Sound 10 1.8 [20]

High East River, NY 20 1.5 [21]

Fig. 2. Time histories of current speed and mean current velocity magnitude
calculated using current inflow models for each location.

block where band-limited white noise, discrete time sam-
pling, and discrete measurement precision are applied to
form a synthesized measurement signal. The platform is
highly adaptable for use in evaluating a wide variety of
fault scenarios. It can be adjusted to simulate faults such as
blade imbalance faults, pitch actuator faults, and a number
of sensor failures limited only by the output capabilities of
FAST itself.

B. Inflow Modeling

Realistic environmental characterization is important for
accurately simulating MHK turbine operation. This includes
accurately representing both temporal and spatial variations
in the flow field. To accomplish this, a stochastic, full-
field turbulence simulator called TurbSim is utilized, which
calculates three-component water velocity vectors on a two-
dimensional grid that is fixed in space [22]. Using Taylor’s
Hypothesis [23], this flow field is projected into the third
spatial dimension using the mean flow speed, V (y, z, t) →
V (x, y, z, t), such that correlated water velocities upstream
or downstream from the rotor plane can be calculated. This
is important as temporal and three dimensional spatial flow
field correlation significantly impacts turbine response, and
therefore signals found in generated electrical power that can
mask fault signatures.

TurbSim enables the numerical simulation of water tur-
bulence through its TIDAL-spectral model, which was de-
veloped using tidal channel data empirically derived from
the Admiralty Inlet in Puget Sound, Washington [20]. As
opposed to implicitly solved atmospheric boundary layer
theory, this method scales its spectral amplitude and shear
based on measured turbulent intensity (TI) and vertical

velocity magnitude shear (δu/δz). The velocity spectra used
in these models are expressed as follows:

SK(f) = σ2
Ks1,K

(
δu

δz

)−1

/

(
1 + s2,K

(
f

δu/δz

) 5
3

)
(1)

where σ2
K = U2

∗µK exp (−2π/zr) and zr is the referenced
hub height. The parameter f−5/3 is a well-known fractional
order representation that is used to describe the statistically
invariant turbulent kinetic energy spectrum as a function of
frequency [24]. Operators such as this, conveniently describe
natural phenomena and are useful for converting between the
frequency and time domains [25]. The parameter U∗, which
represents the friction velocity, is directly proportional to TI ,
U∗ = TIu [26]. These values are used to define the spatial
coherence fraction between grid points i and j within the
model as follows:
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)Ce

√(
fr

um

)2

+ (bkr)2

 (2)

where r is the distance between i and j grid points, Ce is the
coherence exponent, zm is the mean height of these points,
and um is the mean current velocity at the points. Constants
TI and u are based on measurements made at each modeled
tidal energy site [19]–[21], while remaining constants are left
at the default TIDAL-spectral model values [27].

To represent specific tidal energy sites locations with
relatively mild, moderate, and high turbulence levels, three
sites targeted or utilized for hydrokinetic turbine installation
and operation have been selected. A mild case with TI = 5%
is located in Northern Ireland’s Strangford Lough, where
the 1.2 MW SeaGen project was installed [19]. These mea-
surements were performed using an electromagnetic current
meter with velocity measurements calibrated using an ADCP.
To represent a moderate case of TI = 10%, ADCP and
ADV data collected in the Puget Sound was referenced
[20]. Finally, the study in the East River measured an
average TI = 20%. The year-long study based near the
Roosevelt Island Tidal Energy (RITE) project provides a high
turbulence case. Table I provides model constants derived
from these measurements, and Fig. 2 shows time histories of
hub-height water speed, as well as hub-height mean current
velocity magnitudes from each inflow model. These data
provide insight by clearly showing the increasing current
fluctuations as a function of TI and u.

C. Rotor Modeling

This section focuses on the rotor modeling techniques
specific to MHK turbines used in this paper. These modeling
techniques are presented in detail in [28], and summarized
here to help provide a complete description of the simu-
lation platform. Both hydrodynamic and hydro-static forces
are included in this model, with system response to these
forces dictated by inertial, stiffness, damping and actuator
characteristics, as well as controller feedback.

The simulated rotor was designed using the approach
specified in [29], with the build process and hydrodynamic
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characteristics summarized in [17]. Hydrodynamic forcing
is calculated using lift and drag characteristics of individual
hydrofoil shapes, using a Blade Element Momentum (BEM)
approach that accounts for blade motion and inflow velocity
field perturbations induced by the rotor [30]. Added mass
forces are modeled by modifying the mass and inertia prop-
erties of the rotor blades, with hydro-static forcing introduced
by modifying the gravitational constant using the relationship
between net buoyant and gravitational forcing on the rotor
as suggested by [2]: gm = gFB/FG, where FB is the total
buoyant force, FG is the total gravitational force and g is the
gravitational constant.

Both flap-wise and edge-wise rotor blade bending are
enabled, along with relative rotation between the rotor and
generator stater accounting for the elasticity of the rotor shaft
and gearbox. Rotor blade elasticity and damping values, as
specified by [28], account for foam core material utilized in
MHK blades but not in wind turbine blades.

D. Sensor Modeling

To ensure measurable feedback is available for FTC and
MCM, turbine states output by FAST are fed through sensor
models that limit sampling rates, while adding appropriate
error to each data point. Values suggested for each sensor
type (shown in Table II) are based on measured sensor per-
formance, manufacturer specifications, and previous studies.
Modeled sensors include IMUs (accelerometers, rate gyros
and tilt/heading), water velocity sensors, torque meters, pitch
angle sensors, rotor speed sensors, generator speed sensors,
and electric power sensors.

The IMU model uses FAST calculated accelerations, ro-
tation rates, tilts and heading as inputs. These variables
are converted into an IMU reference frame (gravitational
forcing is first included into acceleration measurements in
the Inertial frame) with sensor error included. IMU update
rates, as well as acceleration and rotational velocity noise
levels (Table II), are set to those of an XSENSE MTi IMU
[31] as suggested by [32]. This IMU’s Kalman filter uses
magnetic field mapping algorithms that merge 3D gyroscope,
accelerometer and magnetometer data to correct for drift
errors in calculated Euler outputs. Therefore, simply inject-
ing noise into calculated attitude states is not appropriate.
Instead, an approach suggested by [32] is followed where
modeled rate gyro errors are converted to Euler angle rate
errors, integrated, and high-pass filtered at 0.0015 Hz before
being added to the calculated Euler angles.

Flow measurements are assumed to be made from a
Doppler Profiler attached to the MHK turbine. Using the
Doppler effect, this instrument measures water velocity up-
stream from the turbine. The assumed measurement location
is 6 m (2 rotor diameters) upstream from the rotor at hub-
height. Water velocity estimates at this location utilize Turb-
Sim generated data. Assuming the velocity field is frozen
allows a simple time shift, δt, to account for this separation,
δx, using the mean flow velocity u, δt = uδx. Sensor error
is added to these time shifted data based on the published
performance of 2 MHz Aquadopp Profilers [33], assuming

TABLE II
AVAILABLE SENSORS FOR THE BENCHMARK. THESE SENSORS ARE

REPRESENTATIVE OF A KW-SCALE TESTING TURBINE.

Sensor Type Unit Noise Power Rate (Hz)

Water Vel. [x/y,z] m/s 1.7e−2/5.2e−2 1.0
Rotor Speed rad/s 1e−4 120
Gen. Speed rad/s 2e−4 120
Gen. Torque Nm 9e−1 120

Pitch Angle (the i-th blade) deg/◦ 1.5e−3 120
Electric Power Watt 1e+1 120

IMU (acc, x/y/z) m/s2 [8.1/8.5/8.5]e−3 100
IMU (rot vel, x/y/z) rad/s [5.5/6.0/5.1]e−3 100
IMU (Euler, φ/θ/ψ) rad NA 100

data is collected at 1 Hz using 1 m bins while pinging as
quickly as possible for an 8 m range. Errors associated with
rotor and generator rotational velocity, generator torque, and
generated electrical power measurements are set to values
suggested by [14].

E. Actuator Modeling
Actuator models for the generator and blade pitch are

utilized in this benchmark simulation.
Generator Actuator Model: FAST can simulate generators
inside the ServoDyn module. However, the electrical system
and its controllers in the hydrokinetic turbine have much
faster dynamics making it necessary to consider the gener-
ator control loop separately from the turbine control loop
due to time constant separation [34]. Generator dynamics
and generated power have been modeled in the Simulink
environment using the following relationships:{

τg (s) /τg,r (s) = αgc/ (s+ αgc)

Pg(t) = ηgωg(t)τg (t)
(3)

where αgc depends on the capacity of the generator, which
has been set as αgc = 20 corresponding to the 20 kW
research MHK turbine; and ηg is the efficiency of the
generator, which has been set as ηg = 0.98.

While this generator model is quite simplistic, it ade-
quately represents most generator topologies for the model
resolution and selected faults in this paper [14]. Moreover,
since this has been modeled in the Simulink environment,
it can be easily extended to model more complex genera-
tors, such as the permanent magnet synchronous generator
(PMSG) shown in [35].
Pitch Actuator Model: The hydraulic pitch system is mod-
eled as a closed loop, second order transfer function from
the pitch angle reference βr to the actual pitch angle β as:

β (s)

βr (s)
=

ω2
n

s2 + 2ζωns+ ω2
n

(4)

where ζ is the damping factor and ωn is the natural fre-
quency. A transfer function is associated with each of the
three pitch systems, which are identical when no fault exists.
Similarly to [14], for the no fault case, we use the parameters
ζ = 0.6 and ωn = 11.11. In addition, constraints on the
pitch actuator include the pitch angle being restricted to the
interval −2◦ to 90◦ deg and the pitch rate being restricted
to the interval −8 ◦/s to 8 ◦/s.
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TABLE III
IMBALANCE, SENSOR AND ACTUATOR FAULT SCENARIOS.

Fault No. Fault Description Fault Type

Blade Fault 1 Pitch Imbalance Offset
Blade Fault 2 Mass Imbalance Offset
Sensor Fault 1 Water Vel. Sensor Missing/Error Scaling
Sensor Fault 2 Generator Speed Sensor Scaling
Sensor Fault 3 Generator Power Sensor Scaling
Sensor Fault 4 Pitch Angle Sensor Stuck
Sensor Fault 5 IMU Offset

Actuator Fault 1 Pitch Actuator Change in Dynamics
Actuator Fault 2 Generator Torque Offset

III. FAULT DESCRIPTION

Blade faults account for approximately 13% of failures
and 9% of total downtime experienced for maintenance and
repairs, while sensor and control system faults combined ac-
count for 27% of failures and 24% of downtime experienced
in wind turbines [36]. These metrics will likely increase for
MHK turbines due to their harsh underwater operating en-
vironments. Therefore, the platform has simulated scenarios
corresponding to blade imbalance, sensor and actuator faults.

A. Blade Faults

Blade imbalances usually arise either as a result of de-
fects that occur during the manufacturing and construction
phases of the turbine and its parts, manifest themselves
slowly over time due to simple wear and tear, or are the
result of a traumatic event. Imbalance faults typically fall
into two categories, pitch (hydrodynamic) imbalance faults,
where hydrodynamic loading is blade dependent, and mass
imbalance faults, where the mass properties of the blades
are not consistent (Blade Faults 1 and 2 in Table III). Blade
imbalances have the ability to induce large dynamic loads
and vibrations on the rotor shaft that interfere with the shaft’s
natural operating frequency.

• Pitch imbalance fault: This fault occurs when the pitch
angle of a single rotor blade is offset from the others,
which is modeled by including an offset into the pitch of
one rotor blade within FAST. This results in unbalanced
hydrodynamic loading, with a forcing frequency equal
to the blade rotation rate. These fluctuations primarily
occur in the downstream and torsional direction, directly
affecting the dynamics of the system. As an example,
both power production and bearing loads are directly
impacted by this fault, as shown in Fig. 3. Four cases
have been considered with values of 5, 10, 15 and 20◦.

• Mass imbalance fault: This fault occurs when the mass
of one rotor blade differs from the others, which will
most likely occur due to bio-fouling or water intrusion.
This fault can be modeled by increasing the mass
properties of a single blade. This will induce an unbal-
anced torque on the rotor hub caused by gravitational
forcing, as well as an unbalanced radial force due to
centripetal acceleration. Both of those forcing functions
will cyclically occur at the rotor rotation rate. Four
cases have been considered with the mass of one blade
increased by 5, 10, 15 and 20% of its original mass.

Fig. 3. Generated power and cross-flow bearing force resulting from a
single blade pitch offset of 5, 10, 15, and 20◦.

B. Sensor and Actuator Faults

Sensors faults include measurements that are “stuck,”
“scaled” from the true values, “offset” from the true values,
“missing” measured feedback and “error scaling”, as indi-
cated for Sensor Faults 1-5 in Table III, and with an example
shown in Fig. 4. Actuator faults are associated with actuators
used by the turbine blade pitch drives and generator torque,
which are indicated by Actuator Faults 1 and 2 in Table III.

• Water velocity sensor fault: Two cases have been con-
sidered in the velocity sensor fault. Measurement noise
levels doubled (error scaling) due to low levels of
particulate in the water (or sensor bio-fouling), and a
more severe case where water velocity measurements
are missing.

• Generator speed sensor fault: The speed sensor fault
causes the generator speed measurement to be scaled
by a factor of 0.95.

• Generator power sensor fault: While power sensor fault
is occurring, the measured generator power is scaled
with a factor of 1.1.

• Pitch angle sensor fault: This fault results in one blade
having a stuck pitch angle sensor, which holds a con-
stant value of 5◦.

• IMU sensor fault: This fault results in an offset of -0.5
m/s2 on the tower top accelerometer in both the fore-aft
and side-to-side directions.

• Pitch actuator fault: There are two types of pitch actu-
ator faults, abrupt and slow change in dynamics caused
by hydraulic power drop and increased air content,
respectively. These two types of fault are modeled by
changing the parameters ζ and ωn in the relevant pitch
actuator model in Equ. (4). The two parameters for
the pressure drop case are denoted as ζ = 0.45 and
ωn = 5.73 and the two parameters for the increased air
content model are denoted as ζ = 0.09 and ωn = 3.42.

• Generator torque fault: This fault indicates an offset on
the generator torque, which can be caused by an error
in the initialization of the converter controller. In this
benchmark, the offset has been set to 100 Nm.

4446



Fig. 4. Effects of a faulty generator speed sensor on turbine dynamics.

IV. CONCLUSIONS

In this paper, we have presented a benchmark model for
use in designing and testing FTC and MCM algorithms for
in-stream hydrokinetic turbines *. This model is high-fidelity,
using well-recognized FAST code with redeveloped modules
to better represent the underwater environments. Blade, sen-
sor and actuator faults have been provided and discussed to
better reflect the state-of-the-art of the hydrokinetic industry.
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