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Abstract

Crowdsourcing platforms emerged as popular
venues for purchasing human intelligence at
low cost for large volume of tasks. As many
low-paid workers are prone to give noisy an-
swers, a common practice is to add redun-
dancy by assigning multiple workers to each
task and then simply average out these an-
swers. However, to fully harness the wisdom
of the crowd, one needs to learn the hetero-
geneous quality of each worker. We resolve
this fundamental challenge in crowdsourced
regression tasks, i.e., the answer takes con-
tinuous labels, where identifying good or bad
workers becomes much more non-trivial com-
pared to a classification setting of discrete la-
bels. In particular, we introduce a Bayesian
iterative scheme and show that it provably
achieves the optimal mean squared error.
Our evaluations on synthetic and real-world
datasets support our theoretical results and
show the superiority of the proposed scheme.

1 INTRODUCTION

Crowdsourcing systems provide a labor market where
numerous pieces of classification and regression tasks
are electronically distributed to a crowd of workers,
who are willing to solve such human intelligence tasks
at a low cost. However, because the pay is low and the
tasks are tedious, error is common even among those
who are willing. This is further complicated by abun-
dant spammers trying to make easy money with little
effort. To cope with such noise in the collected data,
adding redundancy is a common and powerful strategy
widely used in real-world crowdsourcing. Each task is
assigned to multiple workers and these responses are
aggregated by inference algorithms such as averaging
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(for real-valued answers) or majority voting (for cat-
egorial answers). As workers’ qualities are heteroge-
neous, such simple approaches can be significantly im-
proved upon by re-weighting the answers from reliable
workers. Here, the fundamental challenge is identi-
fying such workers, which requires estimating ground
truth answers and vice-versa. Our focus is solving
this inference problem, when neither true answers nor
worker reliabilities are known.

For a simpler problem of classification tasks, where
each task asks a worker to choose one label from a
discrete set, significant advances have been made in
the past decade (Karger et al., 2011; Liu et al., 2012;
Khetan and Oh, 2016; Shah et al., 2016; Zhou et al.,
2015; Zhang et al., 2014) based on the model proposed
in the seminal work of (Dawid and Skene, 1979). Deep
theoretical understanding of the model under a simple
but canonical case of binary classification has led to
the design of powerful inference algorithms, which sig-
nificantly improve upon the common practice of ma-
jority voting on real-world datasets. However, neither
the model nor the algorithms generalize to regression
tasks, where each task asks for a continuous valued
assessment, and possibly in multiple dimensions. De-
spite of the significance of the crowdsourced regression
evidenced by the empirical studies (Everingham et al.,
2015; Su et al., 2012; Deng et al., 2009; De Alfaro and
Shavlovsky, 2014; Piech et al., 2013), the theoretical
understanding of the crowdsourced regression has re-
mained limited.

To bridge this gap, we take a principled approach on
this crowdsourced regression problem to theoretically
investigate the tradeoff involved. More precisely, we
ask the fundamental question of how to achieve the
best accuracy given a budget constraint, or equiva-
lently how to achieve a target accuracy with minimum
budget. As in typical crowdsourcing systems, we as-
sume we pay a fixed amount for each response, and
thus the budget per task is proportional to the redun-
dancy: how many answers we collect for each task.

Contribution. Inspired by the simplicity of the
model in (Dawid and Skene, 1979) for crowdsourced
classification, we propose a simple, yet effective model
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for crowdsourced regression. We introduce a Bayesian
Iterative algorithm (BI) to solve the inference prob-
lem efficiently. We provide an upper bound on the
error achieved by the proposed BI (Theorem 1) that
captures (i) the fundamental tradeoff between redun-
dancy and the accuracy, and (ii) the performance loss
due to the difficulty in estimating workers’ reliabil-
ity. Further, we prove that it is information theoret-
ically impossible for any other algorithm to improve
upon BI. This is achieved by coupling the proposed
inference algorithm with a carefully constructed or-
acle estimator, and showing that there is no gap in
the performance between those two algorithms (The-
orem 2). Such strong guarantees are only known for
a few other cases even under more strict assumptions
(which we discuss later). Finally, in numerical evalua-
tion, we confirm our theoretical findings on synthetic
and real-world datasets.

Related work. Crowdsourcing systems are widely
used in practice for a variety of real-world tasks such
as protein folding (Peng et al., 2013), searching videos
(Bernstein et al., 2011; Salvo et al., 2013), ranking
(Lee et al., 2012), peer assessment (Piech et al., 2013;
Goldin and Ashley, 2011) and natural language pro-
cessing (Wu et al., 2012). However, recent theoretical
advances have been focused on crowdsourced classifi-
cation tasks to (a) design algorithms for aggregating
answers from multiple workers on the same task; (b)
analyze the performance achieved by such algorithms;
and (c) identify and compare against the fundamental
limit (Karger et al., 2011, 2013; Ghosh et al., 2011;
Zhang et al., 2014; Ok et al., 2016; Zhou et al., 2012;
Dalvi et al., 2013; Liu et al., 2012; Karger et al., 2014).
In this paper, we theoretically investigate these funda-
mental questions for crowdsourced regression.

There has been several novel algorithms recently pro-
posed for the crowdsourced regression. Raykar et al.
(2010) proposed a probabilistic model and a corre-
sponding maximum likelihood estimator, but no sup-
porting theoretical or empirical analysis is provided (as
the estimator is intractable). Zhou et al. (2015) pro-
pose a heuristic of quantizing the continuous valued
answers and reducing it to discrete models, i.e. crowd-
sourced classification. On top of being sensitive to hy-
perparameter choices such as the quantization level,
treating the answers as categories loses the fundamen-
tal aspect that the answers are given in a metric space
where distances are well-defined.

A related work is (Liu et al., 2013), in which the au-
thors provide a theoretical understanding in a semi-
supervised setting. All workers are first asked golden
questions with known answers, which is used to esti-
mate all unknown parameters of the workers. Then,
they are assigned to tasks with unknown answers, and

their responses are aggregated using the estimated pa-
rameters. As this two phase approach completely de-
couples the uncertainty in worker parameters and task
answers, the analysis is extremely simple and is not
applicable to our unsupervised setting.

Finally, we remark that the proposed algorithm BI
is a variant of the popular Belief propagation (BP).
Although BP enjoys numerous empirical successes in
various fields (Jordan, 2004), its theoretical analysis
has been limited to a few instances including commu-
nity detection (Mossel et al., 2014) and error correct-
ing codes (Kudekar et al., 2013). In particular, those
analyses showing the optimality of loopy BP (Mossel
et al., 2014; Ok et al., 2016) are limited to cases where
the corresponding factor graph has only factor degree
two. Our main result (Theorem 2) extends the hori-
zon of such cases where BI provably finds the optimal
inference under an arbitrary factor degree while the re-
gression problem is more challenging to analyze than
the discrete models studied in (Mossel et al., 2014; Ok
et al., 2016) as the regression error is unbounded.

2 PROBLEM FORMULATION

2.1 Crowdsourced Regression Model

The task requester has a set of n regression tasks, de-
noted by V = {1, . . . , n}, where task i ∈ V is asso-
ciated with the true position µi ∈ Rd. To estimate
these unknown true positions, we assign the tasks to
a set of m workers, denoted by W = {1, . . . ,m} ac-
cording to a bipartite graph G = (V,W,E), where
edge (i, u) ∈ E indicates that task i is assigned to
worker u. We also let Nu := {i ∈ V : (i, u) ∈ E} and
Mi := {u ∈ W : (i, u) ∈ E} denote the set of tasks
assigned to worker u and the set of workers to whom
task i is assigned, respectively.

When task i is assigned to worker u, she provides
her estimation/guess Aiu ∈ Rd for the true location
µi. Each worker u is parameterized by her noise
level σ2

u, such that the response Aiu suffers from an
additive spherical Gaussian noise with variance σ2

u.
Precisely, conditioned on µi and σ2

u, Aiu is indepen-
dently distributed with Gaussian pdf fAiu(x |µi, σ2

u) =
φ(x |µi, σ2

u) := exp(−‖x− µi‖22/(2σ2
u))/

√
(2πσ2

u)d.

We assume that each worker u’s variance σ2
u is inde-

pendently drawn from a finite set S = {σ2
1 , ..., σ

2
S} uni-

formly at random. We further assume that the true
position µi is independently drawn from a Gaussian
prior distribution φ(x | νi, τ2) for given mean νi ∈ Rd
and variance τ2 ∈ (0,∞), which can be interpreted as
a side information on true positions. Note that we just
take the Gaussian prior for the simple expression and
our analysis can be generalized to other distributions,
e.g., a uniform distribution on a Euclidean ball. Our



Jungseul Ok, Sewoong Oh, Yunhun Jang, Jinwoo Shin, Yung Yi

analysis is valid for arbitrarily large τ , i.e., no prior in-
formation, and our numerical experiments assume no
knowledge of the prior distribution by taking τ →∞.
Theoretical understanding of such a simple but canon-
ical model allows us to characterize the tradeoffs in-
volved and provides guidelines for designing practical
algorithms.

2.2 Optimal but Intractable Algorithm

Under the crowdsourcing model, our goal is to design
an efficient estimator µ̂(A) ∈ Rd×V of the unobserved
true position µ from the noisy answers A := {Aiu :
(i, u) ∈ E} reported by workers. In particular, we
are interested in minimizing the average of (expected)
mean squared error (MSE), i.e.,

minimize
µ̂:estimator

1
n

∑
i∈V E[MSE(µ̂i(A))] (1)

where we define MSE(µ̂i(A)) := E[‖µ̂i(A)− µi‖22 |A]
as the MSE conditioned on A. Using the equality
(µ̂i(A)− µi) = (µ̂i(A)− E[µi |A]) + (E[µi |A]− µi) ,
it is straightforward to check that for each i ∈ V ,
MSE is minimized at the Bayesian estimator µ̂∗i (A) :=
E[µi |A], which is

µ̂∗i (A) =
∑
σ2
Mi
∈SMi µ̄i

(
Ai, σ

2
Mi

)
P[σ2

Mi
|A] (2)

where we let Ai := {Aiu : u ∈Mi} and µ̄i(Ai, σ
2
Mi

) :=

E[µi |Ai, σ2
Mi

] = σ̄2
i

(
σ2
Mi

)
(νi/τ

2 +
∑
u∈Mi

Aiu/σ
2
u)

with σ̄2
i (σ2

Mi
) := (1/τ2 +

∑
u∈Mi

1/σ2
u)−1. We pro-

vide a derivation of this formula in the supplemen-
tary material. The calculation of the marginal poste-
rior P[σ2

Mi
|A] is computationally intractable in gen-

eral. More formally, the marginal posterior of σ2
Mi

can
be calculated by marginalizing out σ2

−i := {σ2
v : v ∈

W \Mi} from the joint probability of σ2, i.e.,

P[σ2
Mi
|A] =

∑
σ2
−i∈SW\Mi

P[σ2 |A] (3)

which requires exponentially many summations with
respect to m. Thus, the optimal estimator µ̂∗(A) in
(2), requiring the marginal posterior P[σ2

Mi
|A] in (3),

is computationally intractable in general.

3 ITERATIVE ALGORITHM

We now introduce a computationally tractable scheme,
the Bayesian iterative (BI) algorithm, and provide its
theoretical guarantees under the crowdsourced regres-
sion model. For its analytic tractablity, we consider
a popular assignment scheme, referred to as (`, r)-
regular task assignment, widely adopted in crowd-
sourcing (Karger et al., 2011; Ok et al., 2016). The
assignment graph G is a random (`, r)-regular bipar-
tite graph drawn uniformly at random out of all (`, r)-
regular graphs, where each task is assigned to ` work-
ers and each worker is assigned r tasks. Nevetheless,

we remark that the BI algorithm is applicable to any
(even, non-regular) task assignments.

3.1 Bayesian Iterative (BI) Algorithm

We first factorize the joint probability of σ2 in (3) as

P[σ2 |A] ∝
∏
i∈V Ci

(
Ai, σ

2
Mi

)
where Ci(Ai, σ2

Mi
) :=

(
σ̄2
i (σ2

Mi
)

τ2
∏
u∈Mi

2πσ2
u

)d
2

e−Di(Ai,σ
2
Mi

), and

Di(Ai, σ2
Mi

) :=
σ̄2
i (σ2

Mi
)

2

( ∑
u∈Mi

‖Aiu−νi‖22
σ2
uτ

2 +
∑

v∈Mi\{u}

‖Aiu−Aiv‖22
σ2
uσ

2
v

)
.

We provide a derivation of this formula in the sup-
plementary material. This factorization of the joint
probability of σ2 given A forms a factor graph (Jordan,
1998) where each worker u’s variance σ2

u and each task
i correspond to a variable and a local factor Ci(Ai, σ2

Mi
)

on the set of workers, Mi, to whom task i is assigned,
respectively. This probabilistic graphical model moti-
vates us to use the popular (sum-product) belief prop-
agation (BP) algorithm (Pearl, 1982) on the factor
graph of P[σ2|A] to approximate the intractable com-
putation of P[σ2

Mi
|A] in (3). However, BP is typically

used for approximating the marginal probability of a
single variable σ2

u, while we need the marginal proba-
bility of a subset of variables σ2

Mi
depending on each

other. Hence, to approximate the optimal Bayesian
estimator in (2), we build upon BP and propose an
iterative algorithm (BI) updating belief bi(σ

2
Mi

) from
messages mi→uand mu→i between task i and worker u:

mt+1
i→u(σ2

u) ∝
∑

σ2
Mi\{u}

Ci(Ai, σ2
Mi

)
∏

v∈Mi\{u}

mt
v→i(σ

2
v) (4)

mt+1
u→i(σ

2
u) ∝

∏
j∈Nu\{i}

mt+1
j→u(σ2

u) (5)

bt+1
i (σ2

Mi
) ∝ Ci(Ai, σ2

Mi
)
∏
u∈Mi

mt+1
u→i(σ

2
u) (6)

where we initialize the messages with a trivial constant
1/|S| and normalize the messages and beliefs so that∑
σ2
u
mt
i→u(σ2

u) =
∑
σ2
u
mt
u→i(σ

2
u) =

∑
σ2
Mi

bti(σ
2
Mi

) =

1. At the end of k iterations, as an approximation of
the optimal Bayesian estimator in (2), we estimate
µ̂BI(k)(A) using (2) with belief bki (σ2

Mi
) as an approxi-

mation of P[σ2
Mi
|A]. Formally,

µ̂
BI(k)
i (A) :=

∑
σ2
Mi
∈SMi µ̄i(Ai, σ

2
Mi

)bki (σ2
Mi

) . (7)

Although the messages and their updates are the same
as those of the typical BP, we use a specific form of
belief in (6) for approximating the marginal probabil-
ity of a subset of dependent variables. This allows us
to provide sharp performance guarantees in Section 3,
while the typical BP for single variable marginalization
has little known provable guarantees.
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We note that if the factor graph is a tree, i.e., having
no loop, then it is not hard to check that the iterative
algorithm calculates the exact value of the marginal
posterior of multiple variables σ2

Mi
since

P[σ2
Mi
|A] ∝ Ci(Ai, σ2

Mi
)
∏
u∈Mi

P[σ2
u |A−i]

where A−i := A\Ai. More formally, if the assignment
graph G is a tree from task i with depth 2k, then we
have bti(σ

2
Mi

) = P[σ2
Mi
|A] for all t ≥ k. However, for

general graphs with loops, the typical BP has no guar-
antee on neither the approximation error nor the con-
vergence of BP while it has been successfully applied
to many applications (Murphy et al., 1999; Yanover
et al., 2006). Perhaps surprisingly, we can analytically
explain such empirical success for crowdsourced regres-
sion with strong guarantees in the following section.

3.2 Quantitative Performance Guarantee

We first present a performance guarantee of BI esti-
mator that is close to that of an oracle estimator. The
proof is in Section 4.1.

Theorem 1. Consider the crowdsourced regression
model with S = {σ2

1 , ..., σ
2
S} and a random (`, r)-

regular graph G consisting of n tasks and (`/r)n work-
ers. For given ε, σ2

min, σ
2
max > 0 and ` ≥ 2, if

(i) |σ2
s − σ2

s′ | > ε and σ2
min ≤ σ2

s ≤ σ2
max for all

1 ≤ s 6= s′ ≤ S, and (ii) 2 ≤ r, k ≤ log log n, then for
sufficiently large n, BI in (7) with k iterations achieves

E
[

1

n

∑
i∈V

MSE(µ̂
BI(k)
i (A))

]
≤ d

n

∑
i∈V

E
[
σ̄2
i

(
σ2
Mi

)]
(8a)

+ E`,S`1/4
(

4 exp
(
− ε2r

8(8ε+ 1)σ2
max

)
+ 2−k

)1/4

(8b)

where E`,S := 2d( 1
τ2 + `

σ2
max

σ4
min

)( 1
τ2 + `

σ2
min

)−2 and the

expectation is taken w.r.t. G and A.

We provide three interpretations of Theorem 1. First,
consider an oracle estimator that knows the hid-
den variances σ2

u’s and makes optimal inference as
µ̂ora
i (A, σ2) := E[µi |A, σ2] = µ̄i

(
Ai, σ

2
Mi

)
. This gives

the MSE of µ̂ora
i (A, σ2):

E
[

1

n

∑
i∈V

MSE(µ̂ora
i (A, σ2))

]
=
d

n

∑
i∈V

E
[
σ̄2
i

(
σ2
Mi

)]
.

Note that the oracle estimator µ̂ora always outperforms
even the optimal estimator µ̂∗ in (2), providing a lower
bound on the MSE of any estimator. This coincides
with (8a) in our bound, implying that the gap (8b)
to the oracle performance (8a) quantifies the difficulty
in identifying reliable workers. We stress that con-
sidering a weaker oracle that captures the difficulty
in estimating worker reliability, should give a tighter
lower bound than (8a). This is stated precisely in the
following section (see Theorem 2).

Second, for sufficiently large n, when the number r of
per-worker tasks and the total iterations k grow with
n, the performance of BI quickly approaches that of
the oracle estimator, as (8b) vanishes exponentially.
This is because under (`, r)-regular task assignment,
for increasing r with the total number of tasks n, the
iterative algorithm accurately infers all workers’ vari-
ances and thus optimally estimates the true positions
µ. Note that the above performance limit holds for any
r = ω(1), implying that a reasonable number of tasks
per worker is enough to achieve a performance close to
the oracle bound.

Third, we compare BI with simple averaging, i.e.,
µ̂avg
i (A) :=

∑
u∈Mi

Aiu/|Mi|, which achieves

E
[

1

n

∑
i∈V

MSE(µ̂avg
i (A))

]
=
d

n

∑
i∈V

E
[∑

u∈Mi
σ2
u

|Mi|2

]
.

Note that E[MSE(µ̂avg
i (A))] increases proportionally to

the arithmetic mean of variances of workers assigned to

each task, while E[MSE(µ̂
BI(k)
i (A))] is proportional to

the harmonic mean of variances of workers and prior,

i.e., E[MSE(µ̂avg
i (A))] ≥ E[MSE(µ̂

BI(k)
i (A))]. This gap

can be made arbitrarily large by increasing the differ-
ence between the maximum and minimum variances
of workers. For example, if a single worker u ∈ Mi

assigned to task i has high accuracy, i.e., σ2
u ' 0, and

the others’ variances are x’s, then E[MSE(µ̂avg
i (A))] '

(d/|Mi|)x but E[MSE(µ̂
BI(k)
i (A))] ' 0. Hence, the ex-

istence of a single worker with high precision in each
task can reduce MSE significantly. Our estimator iter-
atively refines its belief and identifies those good work-
ers, when r is sufficiently large.

3.3 Relative Performance Guarantee

We present the relative performance of BI by compar-
ing to the optimal estimator, in particular, when the
quantitative guarantee in Theorem 1 is not tight, i.e.,
r is small and thus estimating reliability is difficult.

Theorem 2. Consider the crowdsourced regression
model with S = {σ2

min, σ
2
max} and a random (`, r)-

regular graph G consisting of n tasks and (`/r)n work-
ers. For given ε > 0 and `, there exists a con-
stant C`,ε, depending on only ` and ε, such that if (i)
σ2

min +ε ≤ σ2
max ≤ 2σ2

min, and (ii) C`,ε ≤ r ≤ log log n,
then BI in (7) with k = log log n iterations achieves

E
[

1

n

∑
i∈V

(
MSE(µ̂∗i (A))−MSE(µ̂

BI(k)
i (A))

)]
→ 0 (9)

as n → ∞. The expectation here is taken w.r.t. the
distribution of G and A.

This result is not directly comparable to Theorem 1
as it applies to different regimes of the parameters.
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The oracle optimality gap (8b) does not vanish for fi-
nite ` and r. This is perhaps because the oracle is
too strong to compete against when ` and r are small.
Hence, to obtain the tight result in (9), we construct
a more practical lower bound on the optimal estima-
tor in (3) that takes account of the worker reliability
estimation. We use the fact that the random (`, r)-
regular bipartite graph has a locally tree-like structure
with depth k ≤ log log n and our message update is
exact on the local tree (Pearl, 1982). By revealing the
ground truths at the boundary of this local tree of
depth k, we construct a weaker oracle estimator that
gives a tighter lower bound. We show that the gap
between our estimator (without the ground truths at
the boundary) and the weaker oracle vanishes as the
tree depth increases. This is made clear by establish-
ing decaying correlation from the information on the
outside of the local tree to the root. A formal proof of
Theorem 2 is presented in Section 4.2.

For the analytic tractability, we need a constant lower
bound of r ≥ C`,ε and |S| = 2. Similar conditions
are also required in other BP analysis (Ok et al., 2016;
Mossel et al., 2014), while ours is more general in terms
of `, i.e., factor degree since the other analysis made
on only factor degree 2 but also more challenging due
to the unboundedness of the regression error. We also
assume σ2

min + ε ≤ σ2
max ≤ 2σ2

min. However, this is
the most challenging regime for any inference algo-
rithms since it is hard to distinguish the workers’ vari-
ances. Note that when this assumption is violated, i.e.,
σmin � σmax, Theorem 1 provides the near-optimality
of BI since the MSE gap between BI and Oracle van-
ishes as the variance gap increases. The experimental
results in Section 5 indeed suggest the BI’s optimality
even when such assumptions are violated.

4 PROOFS OF THEOREMS

4.1 Proof of Theorem 1

We start with an upper bound on the conditional ex-

pectation of MSE of µ̂
BI(k)
i (A) conditioned on σ2 =

σ̃2 ∈ SW . Let Eσ̃2 be the conditional expecta-
tion given σ2 = σ̃2. Using Cauchy-Schwarz inequal-
ity for random variables X and Y , i.e., |E[XY ]| ≤√
E[X2]E[Y 2], it is not hard to obtain that (see the

supplementary material for the detailed derivation)

Eσ̃2

[
‖µ̂BI(k)

i (A)− µi‖22
]

≤ dσ̄2
i (σ̃2

Mi
) + E`,S

(
1− Eσ̃2

[
bki (σ̃2

Mi
)
])1/4

. (10)

To complete the proof, we will obtain an upper bound
of the last term in the RHS of (10) using the known
fact that a random (`, r)-regular bipartite graph G is
a locally tree-like. Pick an arbitrary task τ ∈ V . Let

Gτ,2k+1 = (Vτ,2k+1,Wτ,2k+1, Eτ,2k+1) denote the sub-
graph of G induced by all the nodes within (graph)
distance 2k+1 from root τ . From Lemma 5 in (Karger
et al., 2014), we have that for sufficiently large n,

P[Gτ,2k+1 is not tree] ≤ 3(`r)2k+2

n
≤ 2−k (11)

where the last inequality follows from the choice of
r, k ≤ log log n and large n. Thus, we obtain that

E
[
1− Eσ̃2 [bkτ (σ̃2

Mτ
)]
]

≤ E
[
1− Eσ̃2 [bkτ (σ̃2

Mτ
) |Gτ,2k+1 is a tree]

]
+ 2−k (12)

where E is taken w.r.t. G and σ2.

Let Aτ,2k+1 := {Aiu : (i, u) ∈ Eτ,2k+1}. The exactness
of BI on tree implies that if Gτ,2k+1 is tree, bkτ (σ′2Mτ

) is
the likelihood of σ2

Mτ
= σ′2Mτ

given Aτ,2k+1 and thus

1− Eσ̃2 [bkτ (σ̃2
Mτ

)] = Eσ̃2 [P[σ2
Mτ
6= σ̃2

Mτ
|Aτ,2k+1]]

≤
∑
u∈Mτ

Eσ̃2 [P[σ2
u 6= σ̃2

u |Aτ,2k+1]] (13)

where the inequality is due to the union bound. Hence,
it suffices to show that if Gτ,2k+1 is tree, for any u ∈
Mτ , the marginal probability of σ2

u concentrated at σ̃2
u.

Lemma 1. For given ρ ∈ W , suppose Gρ,2k =
(Vρ,2k,Wρ,2k, Eρ,2k) 1 is a (`, r)-regular bipartite graph
with ` ≥ 2 and r ≥ 1 and it is a tree rooted from worker
ρ with depth 2k ≥ 2. For given ε, σ2

min, σ
2
max > 0, con-

sider S = {σ2
1 , ..., σ

2
S} such that (i) |σ2

s − σ2
s′ | > ε and

σ2
min ≤ σ2

s ≤ σ2
max for all 1 ≤ s 6= s′ ≤ S. Then,

E
[
Eσ̃2

[
P
[
σ2
ρ 6= σ̃2

ρ |Aρ,2k
]]]
≤ 4e

− ε2r
8(8ε+1)σ2max

where the inner expectation Eσ̃2 is taken w.r.t. Aρ,2k
from the crowdsourced regression model given σ2 =
σ̃2 ∈ SW , and the outer expectation E is taken w.r.t.
σ̃2 ∈ SW drawn uniformly at random.

The proof of Lemma 1 is in the supplementary mate-
rial. Combining (12), (13) and Lemma 1 leads to

E
[
(1− Eσ̃2 [bkτ (σ̃2

Mτ
)])1/4

]
≤
(
1− E[Eσ̃2 [bkτ (σ̃2

Mτ
)]]
)1/4

≤
(

4`e
− ε2r

8(8ε+1)σ2max + 2−k
)1/4

where the first inequality is from the fact that (1−x)1/4

is concave, i.e., E[(1 − X)1/4] ≤ (1 − E[X])1/4. This
completes the proof of Theorem 1 with (10) because
of the arbitrary choice of root task τ ∈ V .

4.2 Proof of Theorem 2

Pick an arbitrary task τ ∈ V . Recalling the exactness
of BI on tree, it is clear that in the case of ` = 1,

µ̂
BI(k)
τ (A) is identical to the optimal estimator µ̂∗τ (A).

We so focus on ` ≥ 2. Recall that the Bayesian op-
timal estimator µ̂∗τ (A) minimizes the MSE given A.

1We denote by τ ∈ V and ρ ∈W task and worker roots.
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However, its analysis is very challenging due to loops
in its corresponding graphical model. To overcome
this issue, we use the locally tree like structure of ran-
dom (`, r)-regular bipartite graph, again. Intuitively,
we will first construct an artificial but (analytically)
tractable estimator outperforming µ̂∗τ (A) in terms of
MSE and then we will show the diminishing gap be-
tween MSE’s of BI and the constructed estimator.

Let ∂Wτ,2k+1 be the set of all workers at distance 2k+1
from root τ in subgraph Gτ,2k+1. Consider an oracle

estimator µ̂
ora(k)
τ (A) of µτ with free access to true vari-

ances of leaf-workers ∂Wτ,2k+1, formally defined as

µ̂ora(k)
τ (A) :=

∑
σ2
Mτ
∈SMτ

µ̄τ(Aτ , σ
2
Mτ

)P[σ2
Mτ
|A, σ2

∂Wτ,2k+1
]

=
∑

σ2
Mτ
∈SMτ

µ̄i
(
Aτ , σ

2
Mτ

)
P[σ2

Mτ
|Aτ,2k+1, σ

2
∂Wτ,2k+1

]

where for the last equality, we use the con-
ditional independence between Aτ,2k+1 and A \
Aτ,2k+1 given the additional information σ2

∂Wτ,2k+1
.

Using the equality (µ̂∗τ (A) − µτ ) = (µ̂∗τ (A) −
E[µτ |A, σ2

∂Wτ,2k+1
]) + (E[µτ |A, σ2

∂Wτ,2k+1
] − µτ ), it

is not hard to check that µ̂
ora(k)
τ has smaller ex-

pected MSE than µ̂∗τ (A), i.e., E[MSE(µ̂
ora(k)
τ (A))] ≤

E[MSE(µ̂∗τ (A))] ≤ E[MSE(µ̂
BI(k)
τ (A))]. Thus, it is

enough to show that as n→∞,

E
[∣∣∣MSE(µ̂ora(k)

τ (A))−MSE(µ̂BI(k)
τ (A))

∣∣∣]→ 0 . (14)

Since the only difference between µ̂
ora(k)
τ (A) and

µ̂
BI(k)
τ (A) is the estimation on σ2

Mτ
, i.e., BI uses

bkτ (σ2
Mτ

) instead of P[σ2
Mτ
|A, σ2

∂Wτ,2k+1
]. Using

Cauchy-Schwarz inequality and some calculus, simi-
larly as (10), we derive an upper bound on the ex-

pected difference between MSE’s of µ
ora(k)
τ (A) and

µ
BI(k)
τ (A) as follows:

E
[∣∣MSE(µ̂ora(k)

τ (A))−MSE(µ̂BI(k)
τ (A))

∣∣]
≤ E`,S

∑
σ′2Mτ ,σ

′′2
Mτ
∈S`

√
E
[(
Dτ,k(σ′2Mτ

, σ′′2Mτ
)
)2]

(15)

where Dτ,k(σ′2Mτ
, σ′′2Mτ

) := bkτ (σ′2Mτ
)bkτ (σ′′2Mτ

)− P[σ2
Mτ

=
σ′2Mτ
|A, σ2

∂Wτ,2k+1
]P[σ2

Mτ
= σ′′2Mτ

|A, σ2
∂Wτ,2k+1

]. We

provide the detailed steps for (15) in the supplemen-
tary material. Then, from the same decomposition in
(12), it follows that for each σ′2Mτ

, σ′′2Mτ
∈ S` and suffi-

ciently large n,

E
[(
Dτ,k(σ′2Mτ

, σ′′2Mτ

)2] ≤ E
[
Dτ,k(σ′2Mτ

, σ′′2Mτ

]
≤ E

[ ∣∣Dτ,k(σ′2Mτ
, σ′′2Mτ

)
∣∣ |Gτ,2k+1 is tree

]
+ 2−k (16)

where the first inequality follows from that 0 ≤
Dτ,k(σ′2Mτ

, σ′′2Mτ
) ≤ 1.

Suppose Gτ,2k+1 is tree. Then, the graph subtracted
from Gτ,2k+1 to task τ and edges between task τ and
workers in Mτ is partitioned into r sub-trees denoted
by {Gρ,2k = (Vρ,2k,Wρ,2k, Eρ,2k) : ρ ∈ Mτ} each of
which is rooted from worker ρ ∈ Mτ with depth 2k
in the subtracted graph. From the exactness of BI on
tree, it follows that

bkτ (σ′2Mτ
) = P[σ2

Mτ
= σ′2Mτ

|Aτ,2k+1]

∝ Cτ (Aτ , σ
2
Mτ

)P[σ2
Mτ

= σ′2Mτ
|Aτ,2k+1 \Aτ ]

= Cτ (Aτ , σ
2
Mτ

)
∏
ρ∈Mτ

P[σ2
ρ = σ′2ρ |Aρ,2k]

where Aρ,2k := {Aiu : (i, u) ∈ Eρ,2k} and for the last
equality, we use the conditional independence among
σ2
Mτ

given Aτ,2k+1 \Aτ decomposed into Aρ,2k. Simi-
larly, we also obtain

P[σ2
Mτ

= σ′2Mτ
|A, σ2

∂Wτ,2k+1
]

∝ Cτ (Aτ , σ
2
Mτ

)P[σ2
Mτ

= σ′2Mτ
|Aτ,2k+1 \Aτ , σ2

∂Wτ,2k+1
]

= Cτ (Aτ , σ
2
Mτ

)
∏
ρ∈Mτ

P[σ2
ρ = σ′2ρ |Aρ,2k, σ2

∂Wτ,2k+1
] .

Hence it is enough to show the vanishing correlation
of true variances of workers at leaves to inferring the
root worker’s variance. Formally, we provide Lemma 2
that captures a decreasing rate of the correlation.

Lemma 2. Suppose Gρ,2k = (Vρ,2k,Wρ,2k, Eρ,2k)
is induced from (`, r)-regular bipartite graph G =
(V,W,E) and it is a tree with depth 2k ≥ 2. Let
∂Wρ,2k be the set of workers at the leaves in Gρ,2k.
For given ε, σ2

min, σ
2
max > 0, consider S = {σ2

min, σ
2
max}

such that σ2
min + ε ≤ σ2

max ≤ 2σ2
min. Then, for any

given σ̃2 ∈ SW , there exists a constant C`,ε such that
if r ≥ C`,ε, then

Eσ̃2

[∣∣∣P[σ2
ρ = σ̃2

ρ |Aρ,2k, σ2
∂Wρ,2k

]− P[σ2
ρ = σ̃2

ρ |Aρ,2k]
∣∣∣]

≤ 2−k (17)

where the expectation is taken w.r.t. A from the crowd-
sourced regression model given σ2 = σ̃2 and G.

The proof of Lemma 2 is given in the supplementary
material. This lemma completes the proof of Theo-
rem 2 with (15) and (16).

5 EXPERIMENTAL RESULTS

We experiment the following five algorithms:

◦ BI is implemented without any prior information on
true positions by taking the limit τ → ∞, i.e., it
outputs µBI(A) in (4)–(6) with limτ→∞ Ci(Ai, σ2

Mi
).

Note that our theoretical guarantees on BI still hold
in this regime.

◦ NBI is an iterative algorithm of non-Bayesian type.
It recursively updating workers’ variances and tasks’
answers based on workers’ consensus. Formally, ini-
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Figure 1: The average MSE of various algorithms on the synthetic datasets consisting of 200 tasks and workers
with Ssmall ={10, 100, 1000} and Slarge ={10, 100, 5000}; (a)-(b) `=5 with varying r; (c)-(d) r=5 with varying `.

tialized with σ̂2
0,u = 1, it estimates µ

NBI(t)
i (A) :=

limτ→∞ µ̄i(Ai, σ̂
2
t,Mi

) and σ̂2
t+1,u :=

∑
i∈Nu ‖Aiu −

µ
NBI(t)
i (A)‖2/|Nu|.

◦ Average just takes the average of workers’ obser-
vations without learning workers’ variances, i.e.,
µavg
i (A) := 1

|Mi|
∑
u∈Mi

Aiu.

◦ Strong/Weak-Oracle are two artificial estimators
which have free access to workers’ variances σ2.
They would outperform all existing algorithms, even
including the optimal estimator. For each task i,
Strong-Oracle uses every worker’s true variance, i.e.,
µstrong
i (A, σ2) := limτ→∞ E[µi |A, σ2]. Weak-Oracle

uses just the true variances of leaf workers, denoted
by ∂Ti, in Breadth-first search tree, denoted by Ti,
of root i, i.e., µweak

i (A, σ2) := limτ→∞ E[µi |A, σ2
∂Ti

].

Recall that the true positions µi’s are assumed to be
drawn from the spherical Gaussian with mean νi and
variance τ . As νi’s and τ are hard to obtain in practice,
in all experiments, we implement BI with no knowledge
on the prior distribution of the true positions of the
tasks by taking the limit of BI as τ →∞. Note that our
theoretical guarantees on BI still hold in this regime.

Our baseline comparisons include the ones with a sim-
ple approach of Average and the fundamental lower
bounds from Strong/Weak-Oracle. Strong-Oracle and
Weak-Oracle correspond to the fundamental limits that
we compare with BI in Theorems 1 and 2, respectively.
As we use the prior distribution in the synthetic exper-
iments, one may ask about what is the gain of this side
information. To address this, we test a non-Bayesian
algorithm (NBI) that does not assume such prior infor-
mation, iteratively estimating task answers and worker
variances based on consensus. Note that a similar idea
has been also investigated in (Raykar et al., 2010).

5.1 Synthetic Datasets

Since our theoretical results cover a large n regime, we
test a more challenging regime of modest size n = 200.
Synthetic datasets are generated by the set of random
(`, r)-regular bipartite graphs of 200 object detection
tasks where each task i is associated with the true po-

sition µi chosen uniformly at random in a 100 × 100
image. We randomly choose each worker’s variance us-
ing Ssmall = {10, 100, 1000} or Slarge = {10, 100, 5000}.
The simulation results with varying r and ` are plot-
ted in Figures 1(a)-(b) and 1(c)-(d), where we take the
average of 50 random instances.

Optimality of BI. As discussed in Section 3, Fig-
ures 1(a)-(d) show that for all (`, r), BI closely achieves
the fundamental limit of Weak-Oracle, whereas Average
and NBI have the suboptimal performance. We also
observe that Weak-Oracle with the challenge of iden-
tifying reliable workers indeed provides tighter funda-
mental limit than Strong-Oracle, as discussed in Sec-
tion 3. Overall, NBI has a small constant gap to
BI, which quantifies the gain of BI using the matched
prior distribution. Average shows the significant per-
formance loss, compared to the optimal BI or even
NBI. For example, in Figures 1(c)-(d), in order to
make MSE less than 100 with Ssmall, BI and NBI re-
quire only ` ≥ 3, but Average requires ` ≥ 9, implying
that Average needs to hire three times more workers
per task than others.

Importance of worker identification. Comparing
Figures 1(c)-(d), we observe that under the minimum
of workers’ variances fixed, both BI and NBI, which
identify reliable workers and adaptively weight their
answers, sustain good performance for both small and
large maximum worker variances. However, the perfor-
mance of Average, which does not distinguish workers,
is significantly degenerated by spammers with large
variance from Slarge. This shows the importance of
classifying workers in making the estimator robust to
spammers or adversary.

Impact of (`, r). As Figures 1(c)-(d) show, increas-
ing ` (or budget) exponentially reduces MSE’s of all
algorithms, while the value of exponent varies for each
algorithm. In Figures 1(a)-(b), the gap between the
optimal BI (or Weak-Oracle) and Strong-Oracle quan-
tifies the difficulty in identifying reliable workers. As
studied in Theorem 1, the gap is diminishing exponen-
tially fast with increasing r, whereas the fundamental
limit of Strong-Oracle does not change with r. Hence,
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Table 1: Estimation quality of Average, NBI, BI with
Sest, PG1 and Weak/Strong-Oracle’s on crowdsourced
FG-NET datasets from Amazon MTurk workers.

Estimator Average NBI BI PG1 Weak Strong
Oracle Oracle

Data noise 34.99 32.80 28.72 33.54 28.68 28.45
(MSE)

for efficiency from the worker identification, the task
requester needs to assign each worker so as to answer a
certain number of tasks at least, while letting a worker
solve too many tasks may be impractical but also un-
helpful to increase accuracy.

5.2 Human Age Prediction

We also present experiment results on datasets from
a real-world crowdsourcing system. We use FG-NET
datasets which has been widely used as a benchmark
for facial age estimation (Lanitis, 2008). The dataset
contains 1, 002 photos of 82 individuals’ faces, in which
each photo is labeled with a biological age as the
ground truth. Furthermore, Han et al. (2015) provide
crowdsourced labels on FG-NET datasets, in which 165
workers in Amazon Mechanical Turk (MTurk) answer
their own age estimation on given subset of 1, 002 pho-
tos, so that each photo has 10 answers from workers,
while each worker provides a different number (from 1
to 457) of answers, and 60.73 answers on average.

Prior estimation. In processing the real-world
dataset, the prior distribution on noise level is not pro-
vided in advance, while it is required to run BI. To
infer the prior distribution, we first study workers’ an-
swer patterns. We often observe two extreme classes of
answers for a task: a few outliers and consensus among
majority. For example, in Figures 2(a) and 2(b), there
exist noisy answers 5 and 7, respectively, which are far
from the majority’s answers, 1 and 55, respectively.
Such observations suggest to choose a simple support,
e.g. S = {σ2

good, σ
2
bad}. In particular, without any use

of ground truth, we first run NBI and use the top 10%
and bottom 10% workers’ reliabilities as the binary
support, which is Sest = {6.687, 62.56}.

Validation on the estimated prior. For FG-NET,
we additionally test PG1 which is Gibbs sampling algo-
rithm2 relying on a sophisticated worker model, called
PG1 model in (Piech et al., 2013), with biased Gaus-
sian noises where worker variance and bias are drawn
from continuous supports. In Table 1, we compare
the estimation of BI to other algorithms. Observe
that MSE of BI with the binary support Sest is close
to those of Weak/Strong-Oracle, while the other algo-
rithms have some gaps. Despite using a sophisticated

2As suggested in (Piech et al., 2013), we use 800 it-
erations of Gibbs sampling after discarding the initial 80
burn-in samples.

(a) 1-year-old (b) 35-year-old

Figure 2: Easy and hard samples from FG-NET in
terms of average absolute error of workers’ answers:
(1,1,1,1,1,1,1,1,2,5) and (7,51,52,55,55,55,59,63,66,67)
on photo of (a) 1-year-old, and (b) 35-year-old, resp.

model, PG1, PG1 is observed to perform worse than
BI. This is because PG1 needs non-trivial parameter
optimization based on training dataset, which incurs
overfitting. This result from the real workers supports
the value of our simplified modeling on workers’ noise.
For interested readers, we also report the regression
accuracy of deep neural networks trained using the
pruned dataset produced by different algorithm in the
supplementary material.

6 CONCLUSION

We study a model to address the problem of aggre-
gating real-valued responses from a crowd of work-
ers with heterogeneous noise level. In particular, in-
spired by the observation on answer pattern of Amazon
MTurk workers, we use a canonical noise model. This
modeling allows us to pose this crowdsourced regres-
sion problem as an inference problem over a graphi-
cal model, naturally motivating the proposed BI algo-
rithm based on BP. Typically, the analysis of such it-
erative algorithms is not tractable even for estimating
discrete labels. However, our theoretical framework,
inspired by recent advances in BP, e.g. (Mossel et al.,
2014), provides sharp guarantees on BI and shows its
optimality for a broad range of parameters.

An important research direction is in generalizing the
proposed noise model. First natural generalization is
to allow differing task difficulties, by adding an addi-
tional independent Gaussian with variance σ2

i for an-
swers on task i. Larger variance represents more dif-
ficult tasks. Second natural generalization is to allow
worker biases, by adding a constant shift of value µu
for answers given by worker u as Piech et al. (2013)
considered. Our observations on the crowdsourced FG-
NET datasets also suggest heterogeneous task diffi-
culty and boundary effect on tasks. As in the examples
in Figure 2, we often observe less estimation error for
photos of younger individuals: MSE 15.00 for 233 pho-
tos of under-5-year olds, and MSE 85.39 for 769 pho-
tos over-5-year olds. This shows heterogeneous task
difficulty and boundary effect at the same time: age
prediction on older individual is more challenging due
to more variations, and human age cannot be negative.
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