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Abstract

Significant advances have been made recently
on training neural networks, where the main
challenge is in solving an optimization prob-
lem with abundant critical points. However,
existing approaches to address this issue cru-
cially rely on a restrictive assumption: the
training data is drawn from a Gaussian dis-
tribution. In this paper, we provide a novel
unified framework to design loss functions
with desirable landscape properties for a wide
range of general input distributions. On these
loss functions, remarkably, stochastic gradient
descent theoretically recovers the true parame-
ters with global initializations and empirically
outperforms the existing approaches. Our loss
function design bridges the notion of score
functions with the topic of neural network
optimization. Central to our approach is the
task of estimating the score function from
samples, which is of basic and independent
interest to theoretical statistics. Traditional
estimation methods (example: kernel based)
fail right at the outset; we bring statistical
methods of local likelihood to design a novel
estimator of score functions, that provably
adapts to the local geometry of the unknown
density.

1 Introduction

Neural networks have made significant impacts over
the past decade, thanks to their successful applications
across multiple domains including computer vision,
natural language processing, and robotics. This suc-
cess partly owes to the mysterious phenomenon that
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(stochastic) gradient method applied to highly non-
convex loss functions converges to a model parameter
that achieves high test accuracy. We are in a dire need
of theoretical understanding of such phenomenon, in
order to guide the design of next generation neural
networks and training methods. Significant recent pro-
gresses have been made, by asking a simpler question:
can we efficiently learn a neural network model, when
there is a ground truth neural network that generated
the data?

Suppose the data (x,y) is generated by sampling x
from an unknown distribution fx(z) and y is gener-
ated by passing x through an unknown neural network
and adding some simple noise. Even if we train neural
networks on this “teacher network”, it is known to be a
hard problem without further assumptions (Brutzkus
and Globerson, 2017). Significant effort has been on de-
signing new approaches to learn simple neural networks
(such as one-hidden-layer neural network) on data from
simple distributions (such as Gaussian) (Tian, 2017;
Ge et al., 2017). This is followed by analyses on in-
creasingly more complex architectures (Brutzkus and
Globerson, 2017; Li and Yuan, 2017). However, the
analysis techniques critically depend on the Gaussian
input assumption, and further the proposed algorithms
are tailored specifically to Gaussian inputs. In this
paper, we provide a unified approach to design loss
functions that provably learn the true model for a wide
range of input distributions with smooth densities.

We consider a scenario where the data is generated
from a one-hidden-layer neural network

k
y = Zw;“g(@,f@) +7. (1)

where the true parameters are w} € R and a} € R?,
and 7 is a zero-mean noise independent of x, with some
non-linear activation function g : R — R. It has been
widely known that first order methods on the #5-loss
get stuck in bad local minima, even for this simple
one-hidden-layer neural networks (Livni et al., 2014).
If the input = is coming from a Gaussian distribution,
Ge et al. (2017) proposes a new loss function G(-) with
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a carefully designed landscape such that Stochastic
Gradient Descent (SGD) provably converges to the
true parameters. However, the proposed novel loss
function is specifically designed for Gaussian inputs,
and gets stuck at bad local minima when applied to
general non-Gaussian distributions. We showcase this
in Figure 3. Designing the optimization landscape for
general input distributions is a practically important
and technically challenging problem, as acknowledged
in Ge et al. (2017) and many existing works in the
literature (Brutzkus and Globerson, 2017; Tian, 2017;
Li and Yuan, 2017).

Our goal is to strictly generalize the approach of Ge
et al. (2017) and construct a loss function L(-) with a
good landscape such that SGD recovers the true param-
eters with global initializations. The main challenge is
in estimating the score function defined as a functional
of the probability density function f(z) of the input
data z:

V(m)fx(as)

Sm{e) Fx (@)

(2)

where V(™) fx(z) denotes the m-th order derivative
for an m € Z, which plays a crucial role in the land-
scape design. We need to evaluate this score function
at sample points, which is extremely challenging as
it involves the higher order derivatives of a pdf that
we do not know. Standard non-parametric density
estimation methods such as the Kernel Density Esti-
mators (KDE) (Fukunaga and Hostetler, 1975) and
k-Nearest Neighbor methods (kKNN) all fail to provide
a consistent estimator, as they are tailored for den-
sity estimation. Existing heuristics do not have even
consistency guarantees, which include score matching
based methods (Hyvérinen, 2005; Swersky et al., 2011),
and de-noising auto-encoder (DAE) based algorithms
(Janzamin et al., 2015b).

In this paper, we first address this fundamental ques-
tion of how to estimate the score functions from samples
in a principled manner. We introduce a novel approach
to adaptively capture the local geometry of the pdf to
design a consistent estimator for score functions. To
achieve this, we bring ideas from local likelihood meth-
ods (Loader et al., 1996; Hjort and Jones, 1996) from
statistics to the context of score function estimation
and also prove the convergence rate of our estimator
(LLSFE), which is of independent mathematical in-
terest. We further introduce a new loss function for
training one-hidden-layer neural networks, that builds
upon the estimated score functions. We show that this
provably has the desired landscape for general input
distributions.

In summary, our main contributions are:

e Score function estimation. In this paper, we
provide the first consistent estimator for score
functions (and hence the gradients of L(-)), which
play crucial roles in several recent model parame-
ter learning problems (Hyvérinen, 2005; Swersky
et al., 2011; Janzamin et al., 2015b). Our provably
consistent estimation of score functions, LLSFE,
from samples, with local geometry adaptations, is
of independent mathematical interest.

e Optimization landscape for general distri-
butions. For a large class of input distributions,
with an appropriate score transformation for the
input and appropriate tensor projection, we design
a loss function L(-) for one-hidden-layer neural net-
work with good landscape properties. In particular,
our result is a strict generalization of (Ge et al.,
2017) which was restricted to Gaussian inputs, in
both mathematical and abstract view-points.

Related work. Several recent works have provided
provable algorithms for training neural networks (Liang
et al., 2018; Choromanska et al., 2015; Soudry and Hof-
fer, 2017; Goel and Klivans, 2017; Freeman and Bruna,
2016; Nguyen and Hein, 2017; Boob and Lan, 2017).
(Arora et al., 2014) is an early work on provable learn-
ing guarantees on deep generative models for sparse
weights. Brutzkus and Globerson (2017); Tian (2017)
analyze one-hidden-layer neural network with Gaus-
sian input and hidden variables with disjoint supports.
(Li and Yuan, 2017) analyzed the convergence of one-
hidden layer neural network with Gaussian input when
the true weights are close to identity. (Andoni et al.,
2014), (Panigrahy et al., 2018), (Du and Lee, 2018)
and (Soltanolkotabi et al., 2017) studied the optimiza-
tion landscape of neural networks for some specific
activation functions.

Tensor methods have been used to build provable
algorithms for training neural networks (Janzamin
et al., 2015a; Zhong et al., 2017). Our work is built
upon (Ge et al., 2017), which uses a fourth-order
tensor based objective function and show good land-
scape properties. Most of the aforementioned works
requires specific assumptions on the input distribution
(example: Gaussian), while we only require generic
smoothness of the underlying (unknown) density. In
a recent work, Ge et al. (2018) provided a learning
algorithm using the method of moments for symmetric
input distributions. However their techniques are very
specific to ReLU activation and do not generalize
to general activation functions which we can handle.
Zhang et al. (2018) show that gradient descent on
empirical loss function based on least squares can
recover the true parameters provided the parameters
have a good initialization; in contrast, we use global
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initializations for our algorithm.

Notations. We use T (z1,...,2,;,) to denote the in-
ner product for an m-th order tensor 7 and vectors
T1,...,Tm. We use 1 ® T9 ® -+ ® x,, to denote
outer product of vectors/matrices/tensors. 2%/ =
T ® -+ ® x denotes the j-th order tensor power of
xand 290 = 1. ||T |lsp = maxy, <1 T (u1,ug, . .., )
and ||[T||lr = \/Z” Ty oryig))? denotes the
spectral norm and Frobemus norm of matrix and

high-order tensor. sym(7) denotes the symmtrify

operator of a tensor T as sym(7)g,,. . i, =

..........

1
ml Z(jl,...,jm)eﬂ(il,...,im) 7-(j17---7jm)'

2 Score Function Estimation

In this section, we introduce a new approach for estimat-
ing score functions defined in (2) from i.i.d. samples
from a distribution. As the score functions involve
higher order derivatives of the pdf, it is critical to
capture the rate of changes in the pdf. Further, we
aim to apply it to data coming from a broad range
of distributions. Such sharp estimates for such broad
class of distributions can only be achieved by combin-
ing the strengths of two popular approaches in density
estimation: simple parametric density estimators and
complex non-parametric density estimators. We bridge
this gap by borrowing the techniques from Local Likeli-
hood Density Estimators (LLDE) and bring them to a
new light in order to provide the first consistent score
function estimators.

2.1 Local Likelihood Density Estimator
(LLDE)

How do we estimate the normalized derivatives of the
density? We address this question in a principled man-
ner utilizing the notion local likelihood density estima-
tion (LLDE) from non-parametric methods (Loader
et al., 1996; Hjort and Jones, 1996). LLDE is originally
designed for estimating density for distributions with
complicated local geometry, and can be further applied
to estimate functionals of density such as information
entropy (Gao et al., 2016). Inspired by the fact that
LLDEs capture the local geometry of the pdf, we build
upon the LLDE estimators to design a new estima-
tor of the higher order derivatives, which is the main
bottleneck in score function estimation.

The local likelihood density estimator is specified by
a nonnegative function K : R? — R (also called a
Kernel function), a degree p € Z* of the polynomial
approximation, and a bandwidth A € RT. It is the
solution of a maximization of the local log-likelihood

function:

§jK( =) log f(X,)
—n/K(u;x)f(u)du. (3)

For each x, we maximize this function over a paramet-
ric family of functions f(-), using the following local
polynomial approximation of log f(x):

1
log f(z) = a0+a1T(U—9U)+§(U—$)TA2(U—$)
1
+~~+ﬁAp(u Lsu—x), (4)
parameterized by a = (ag, a1, Az, ..., A,) € R x R? x

R? x ... x R¥. The local likelihood derlsity estimate
(LLDE) at point x is defined as f(x) = e, where a =
(ao, an, ;12, e ,uzl\p) is the maximizer around a point z:
a € argmaxy L;(f). The optimization problem can be
solved by setting the derivatives L. (p)/0A; = 0 for
j €40,...,p}. The optimal solution @ can be obtained
from solving the following equations,

1
[ explan + af (=) oot Sy fu = 0)°7)
Rd .

() K (=) du
I~ Xi—z g, Xi—
= G LCRYEE, oF (5)

We build upon this idea to first introduce the score
function estimator, and focus on the statistical aspect of
this estimator. We discuss the computational aspect of
finding the solution to this optimization in Section 2.4.

2.2 From LLDE to local likelihood score
function estimator (LLSFE)

We build upon the techniques from LLDE to design our
local likelihood score function estimator (LLSFE). No-
tice that the score function S,,, () satisfies the following
recursive formula from (Janzamin et al., 2014),

Sm(z) = —Sp-1(w)
and S1(z) = —Vlogf(z). This recursion re-
veals us that the score function can be rep-
resented as a polynomial function of the gra-
dients of log-density (g1(z),G ( S 0m(x)) =

(Vlog f(z), VP log f(z),..., V(™ logf( )). For ex-
ample, the polynomial for 52(33) and Sy(x) are given

® Vg, log f(x) — ViSm—1(x),
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below:
Sa() g1(7) ® g1(z) + Ga(x) (6)
Si(z) = qi(z) ®g1(7) ® g1(7) @ g1()

+6sym(Ga(z) ® g1(x) ® g1(x))
+3 (Ga(r) @ Ga(x))
+4sym(Gs(z) ® g1(z)) + Ga(z) (7)

More generally, the m-th order score function can be
represented as:

Sm(@) = Y (D)"enN)sym(@Gi) . (8)

AEA M, JEA

where A,, denotes the set of partitions of integer m, for
example, Ay = {{1,1,1,1},{2,1,1},{2,2},{3,1}, {4}}
and ¢, () is a positive constant depends on m and the
partition. Given the polynomial representation of a
score function, the LLSFE is given by

ST (=1 em(V) sym(R) AP . (9)

A, JEA

S (z) =&

where A;p ) is the LLDE estimator of G; by p-degree
polynomial approximation.

2.3 Convergence rate of LLSFE

As LLDE captures the local geometry of the pdf,
LLSFE inherits this property and is able to consis-
tently estimate the derivatives. This is made precise
in the following theorem, where we provide an upper
bound of the spectral norm error of the estimated m-
th order score function. First, we formally state our
assumptions.

Assumption 1. (a) The degree of polynomial p is
greater than or equal to m.

(b) The gradient of log-density V) log f(x) at x exists
and ||V log f(2)|lsp < C;(x) for all j € [p+ 1].

(¢) The non-negative kernel function K satisfies
Jga |ziP K (x)dx < +oo for any i € [d].

(d) Bandwidth h depends on n such that h — 0 and
nhdt?m 5 00 as n — oo.

The following theorem provides an upper bound on
the convergence rate of the proposed score function
estimator.

Theorem 1. Under Assumption 1, the spectral norm

error of the LLSFE S,(yf)(a:) defined in (9) is upper
bounded by

IS (2) = S (@) sp
< O(dm/2hp+17m)+Op(dm/2(nhd+2m)fl/2010)

Proof. (Sketch) Note that the estimator is de-
rived by replacing the truth gradients of log-
density (g1(z),Ga(x),...,Gm(x)) by the estimates
(@o(z),a1(x), Az(x), . .., Ap(z)). Since we assumes that
IG;(z)|lsp < Cj, so it suffices to upper bound the spec-
tral norm of the error ||.¢Z§-p) () — Gj(x)|sp- The fol-
lowing lemma provides upper bounds for each entry of
Agp)(x) — G,;(x). For simplicity of notation, we fix an
x drop the dependency on .

Lemma 2.1. (Loader et al., 1996, Theorem 1) Under
Assumption 1 we have

1)
<Aj )(il vvvvv i) (gj)(ilvwij)
= O(WH )+ 0y(nh™*) 712, (1)

for any j € {1,...,p} and i1,...,i; € [d).

The spectral norm of of the error ||.,Zl\;p) — Gjllsp s
upper bounded by the Frobenius norm. Then applying
Lemma 2.1, we have,

1A = Gl
< O(dPhPH=9) 4 Oy (/3 (nh@T2) 712 (12)

Substituting this result into the polynomial representa-
tions (8) and (9), we obtain the desired rate. O

Remark 1. By setting h = n~1/(2»+2+4) e obtain

IS (@) = S (@) lsp
< Op(dm/Qn—(p+1—m)/(2p+2+d)). (13)

Remark 2. It was shown in (Stone, 1980) that
the optimal rate for estimating an entry of G; is
O, (n~PH1=m)/(2p+2+d))  We conjecture that LLSFE
is also minimax rate-optimal.

2.4 Second Degree LLSFE

In the previous subsection, we proved the convergence
rate of the LLSFE. However, the computational cost
of LLSFE can be large since numerical integration is
needed to compute the integral in (5). To trade off the
accuracy and computational cost, we choose Gaussian
kernel K (u) oc exp{||ul|?/2} and degree p = 2. This
makes the integration in the LHS of (5) tractable and
we obtain closed-form expressions for ag, a; and A,.
Using ideas from (Gao et al., 2016, Proposition 1), our
estimators for a; and Ay are:

- Mo My My p 1 M
~ M My, M
— p2 (222 2Ly 2Ty -1
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where M; = >0 (X; — )% exp{—%} for j €
{0,1,2}.

The second degree LLSFE is derived by plugging a;
and Ay into (9). The computational complexity of
second degree LLDFE is O(n - d?). In the experiments
below, we use this second degree estimator and prac-
tically show that using second degree estimator as an
compromise does not hurt the performance by much.

2.5 Synthetic Simulations of LLSFE

In this experiment we validate the performance of
LLSFE, for both Gaussian and non-Gaussian distri-
butions. For Gaussian distribution, we choose x ~
N(0,1,) and d = 2. The ground truth score functions
are So = xaxl — I; and Sy = 2% — 6sym(z ® z ®
1)+ 31; ® I;. We show the spectral error ||§2 — Salsp
versus number of sample n for estimation of Sy, and
the Frobenius error ||Sy — S4f|+ for estimation of Sy
(since computing spectral norm of high-order tensor
is NP-hard Hillar and Lim (2013)). We plot the
{95%, 75%, 50%, 25%, 5%} percentiles of our estimation
error over 10,000 independent trials for the estimation
of S; and 50,000 independent trails for the estimation
of 84.

We can see from Figure 1 that all the percentiles of the
estimation error decrease as n increases. The log-log
scale plot is closed to linear, and the average slope is
—0.5143 for ||52 — SQHSP and —0.4984 for ||S4 — 84”].‘.
This suggests that LLSFE is consistent and the error
decreases at a faster rate than the theoretical upper
bound in Remark 1.

For the non-Gaussian case, we choose = ~
0.5N (14, I4) + 0.5N (=14, I4) where 14 is the all-1 vec-
tor and d = 2. We also plot the percentiles of the
estimation errors in log-log scale in Figure 2. We can
see that LLSFE gives a consistent estimate for the
non-Gaussian case too, and the rate is —0.2587 for
|S2 — Sallsp and —0.1343 for ||Sy — S4l| 7, which are
also faster than the upper bound in Remark 1.

3 Design of landscape

In this section, we show how the proposed density
functional estimators can be applied to design a loss
function with desired properties, for regression prob-
lems under a neural network model. This gives a novel
loss function that does not require the data to be
distributed as Gaussian, as typically done in existing
literature (cf. Section 1 Related work).

Concretely, we consider the problem of training a one-
hidden-layer neural network where, for each input x €

95% —=— |
75%

50% —=—
25% —=—

o}
_2 03} 5% 1

)
| 0.1+ 4

%)
0.03 i

00 1000 1000
sample size n

95% —=—
30l 75%

50% —=—

25% —=—
=l 5% |
= L
0)
|
(3 03} 1

0.1f

100 1000 1000
sample size n

Figure 1: Error of score function estimator versus sam-
ple size for  ~ N(0, ;). Top: ||S2 — S2||sp- Bottom:
[Sa — Sal| 7.

R?, the corresponding output is given by

k
@) = S wigllana)), (16)
=1

with weights are w; € R and a; € R<, non-linear activa-
tion is g : R — R, and the number of hidden neurons is
k < d. Given labeled training data (x,y) coming from
some distribution, a standard approach to training such
a network is to use the ¢5 loss:

02(A) = E[g(=) —yl?]

as the training objective, where A denotes the weights
of the neural network model. However, traditional
optimization techniques on /5 can easily get stuck in
local optima as empirically shown in (Livni et al., 2014).
This phenomenon can be explained precisely under a
canonical scenario where the data is generated from a
“teacher neural network”:

(17)

k
y = Zwi‘g((aﬁ,@) + 1. (18)

where the true parameters are v} € R and a} € RY,
and 7 is a zero-mean noise independent of x. This
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Figure 2: Error of score function estimator versus
sample size for x ~ 0.5N (u, 1a) + 0.5N (—p, Iq). Top:
||82 - SQHSp Bottom: HS4 — S4H]:

assumption that the data also comes from a one-hidden-
layer neural network is critical in recent mathematical
understanding of neural networks, in showing the gain
of a shallow ResNet by Li and Yuan (2017), various
properties of the critical points by Tian (2017), and
showing that the standard ¢ minimization is prone to
get stuck at non-optimal critical points by Ge et al.
(2017). A major limitation of this line of research is
that they rely critically on the Gaussian assumption
on the data x. The analysis techniques use specific
properties of spherical Gaussian random variables such
that the theoretical findings do not generalize to any
other distributions. Further, the estimators designed
as per those analyses fail to give consistent estimates
for non-Gaussian data.

We showcase this limitation in Figure 3, where the
data is generated from a Laplacian distribution. The
details of this experiment is provided in Section 4.1.
Minimizing ¢5 loss converges slowly and gets stuck at
sub-optimal critical points, consistent with previous
observations (Li and Yuan, 2017). To overcome this
weakness Ge et al. (2017) proposed applying Stochas-
tic Gradient Descent (SGD) on a novel loss function
G(A) designed from the analysis under the Gaussian
assumption. This fails to converge to an optimal criti-

cal point for non-Gaussian distributions. To overcome
this limitation, we propose a novel loss function L(A)
that generalizes to a broad class of distributions.

We focus on the task of recovering the weights a;’s, and
denote the set by a matrix AT = [a4]...|az] € R¥¥F,
The scalar weights w;’s can be separately estimated
using standard least squares, once A has been recovered.
We propose applying SGD on a new loss function L(A),
defined as

L) = Y
i€ LK) i#]

—,uZEy ta(x, a;) —|—/\Z lai|| — )%, (19)

1€[k]

Ely - t1(z, a;, a;)]

where p, A > 0 are regularization coefficients, and

ti(x,u,v) = Sa(z)(u,u,v,v),

to(z,u) = Si(x)(u,u,u,u), u,v € R (20)

are the applications of the score functions S,,(z) =
V) f(x)/f(x) on the weight vectors a;’s that
we are optimizing over, ie. Sy(z)(u,v,w,z) =
(1/f($)) Eil,i27i3,i4 vwil TigTigTiy f('r)uilviz Wig Ziy - We
provide formulas for some simple distributions below.

Example 1 (Gaussian). If z ~ N(0,1;), we have

that t“)(x,u) = (@) = 6l w2 + 3 Jul’
and tg (z,u,v) = (uTx)Q(vTx) ||u|| (v'x)? —
A(uTz) (0 ) (ul o) ol (uT @)+ [|u]® [[o]*+2(uv)%.
Example 2 (Mixture of Gaussians). If z ~

pN (1, Ig)+(1—p)N (uz, I4), we have that ¢ (z,u,v) =
plt:(LG)(x — p1,u,0) + (1= pl)tgG (x — p2,u,v) where

; N PN (1,1a)
the posterior p; = NG T T NG s
for t2.

Similarly

The proposed L(-) is carefully designed to ensure that
the loss surface has a desired landscape with no local
minima. Here, we give the intuition behind the design
principle, and make it precise in the main results of
Theorems 2 and 3. This landscape explains the experi-
mental superiority of L(-) in Figures 3 and 4. Suppose
k = d and a’s are orthogonal vectors. After some

calculus, an alternative characterization for L is given
by

L(A)

= Yk Y (afa)al,

ield)  jkeld),j#k

—n Y wilad, et A (laill® —1)%(21)

i,j€[d] i€[d]

for scalar k¥ = wE[g® ((a¥, z))] that does not depend
on the variables we optimize over.

CLk>2
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Figure 3: SGD to learn a one-layer-ReLU network in (18) on the proposed objective function L(A) defined in
(19) converges to a global minimum with random initialization, whereas on f5-loss ¢5(A) and G(A), it gets stuck
at bad local minima. Left: First 500 iterations. Right: 500-10,000 iterations.

Notice that when the weights are recovered up to a
permutation, that is a; = ia;(i) for some permutation
m, the first term in (21) equals zero. We can show that
these are the only possible local minima in the mini-
mization of the first term under unit-norm constraints,
whenever all k7 = 1. Thus in order to account for this
weighted tensor based loss and to avoid spurious local
minima, the regularization term 13, iy 57 (@], a;)t
forces these spurious minima to lie close to a permuta-
tion of a; up to a sign flip. This is made precise in the
characterization of the landscape of L(-) in the proof
of Theorem 2. The proof strategy is inspired by the
landscape analysis technique of Ge et al. (2017), where
a similar analysis was done for Gaussian data x.

3.1 Theoretical results

We now formally state the assumptions for our theo-
retical results.

Assumption 2. (a) The ground-truth parameters
wi,a are such that wE[g® ((a’,z))] has the

177"

same sign for all 7 € [k].

(b) Defining wiE[gW ((af,z))] and w*
max; £} /(min; k7), we choose u < ¢/k* and A\ >

K ax/c for ¢ < 0.01.

(c) k=dand A € R¥? is an orthogonal matrix.

The following theorem characterizes the landscape of
L(-).

Theorem 2. Under Assumption 2, the objective func-
tion L(-) satisfies that

1. All local minima of L are also global. Furthermore,
all approximate local minima are also close to the
global minimum. More concretely, for e > 0, let A
satisfy that

[VL(A)|| < & and Amin (V2L(A)) > -1,

where 7 = cmin{ukt,, /(k*d),\}. Then A =
PDA* + EA*, where P is a permutation ma-
triz, D is a diagonal matriz with D;; € {£1 +
O(pkax/AN) Y, and |Eloee < O (e/(Kiyin))-

2. Any saddle point A has a strictly negative curva-
ture, i.e. Amin (VQL(A)) < —7.

Remark 3. For the case when aq,...,a; are linearly
independent with k < d, similar conclusion hold (see
Appendix B.3).

3.2 Finite Sample Regime

In the finite sample regime, we replace the population
expectation in (19) with empirical expectation [ and
optimize on the corresponding loss L. The following
theorem establishes that L also exhibits similar land-
scape properties as that of L (under some mild technical
assumptions outlined in Assumption 3 in Appendix B).

Theorem 3. Assume that Assumption 2 and Assump-
tion 3 (defined in Appendix B.2) hold. Then there
exists a polynomial poly(d,1/e) such that whenever
n > poly(d, 1/e), with high probability, L ezhibits the
same landscape properties as that of L, established in
Theorem 2.

A major bottleneck in applying the proposed loss (19)
directly to real data is that the knowledge of the prob-
ability density function of the data x is required. As
we saw in the Examples 1 and 2, the loss function ¢;
and to depends on the pdf of x. In the next section,
we show how we can combine the LLSFE to compute
(the gradients of) those functions to introduce a novel
consistent estimator with a desirable landscape.
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4 Experiments

4.1 Landscape of L(-)

In this simulation, we show that the landscape of the
loss function L(A) is well-behaved, if we know the score
function Ss(x). We choose x = (x4, ...,x4), where ;
are i.i.d. symmetric exponential distributed random
variables, i.e., f(z;) = (1/2) exp{—|z;|}. The fourth-
order score function is given by S;(z) = sgn(z)®%.
We compare our loss function L(A) with an ¢p-loss,
¢(+), as well as the loss function G(-) proposed in (Ge
et al., 2017), and evaluate the performance through
the parameter error (which verifies if A*~1A is close to
a permutation matrix)

e(A) = min{l — minmax |[(A*"1A),;],
i
1 — minmax | (A" A), 1} (22)
J 7
For the experiment, we choose A* = I;, w* = 1,

o = ReLU, k = d = 50 and use full-batch gradi-
ent descent with sample size 8192 and learning rate
n="5x 1073 for £3 loss and n = 5 x 107> for L(A) and
G(A). Regularization parameter is 4 = 30 for both
L(A) and G(A). The results are illustrated in Figure 3,
which shows that (i) ¢2(-) converges slowly and to a
suboptimal critical point indicating the existence of
local minima; (i7) G(-) converges to a suboptimal criti-
cal point due to the mismatched Gaussian assumption;
and (i4i) L(-) converges to a global minima.

4.2 Combine with LLSFE

Now we use our estimator LLSFE to construct the
empirical loss L(A) to train a one-hidden-layer neural
network (18). The setting of this experiment is same
as that of Subsection 4.1 with k = d = 2 for simplicity.

In the left panel of Figure. 4, we choose Gaussian input
x ~ N(0,1;) so that the loss G(A) coincides with L(A)
if the ground truth Sy(z) is known. We can see that
using estimation error using L(-) operates close to that
of the ground-truth G(-) In the right panel of Figure 4,
we choose x ~ 0.5N(14,14) + 0.5N (=14, 14). In this
case, G(A) converges to a local minimum, thus incur-
ring higher parameter error, whereas LLSFE-based
objective function converges to the global minima very
quickly. This confirms that when the data is not com-
ing from a Gaussian distribution, it is critical to use
properly matched estimator, which is provided by the
proposed LLSFE approach.

5 Conclusion

Stochastic gradient descent is the dominant method
for training neural networks. As SGD on the standard
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Figure 4: Learning curve of objective function G(A)
(blue line) and LLSFE based objective function
L(A) (19) (red line). Top: z is Gaussian. Bottom:
x is Gaussian-mixture.

{5 loss fails to converge to the true parameters of the
“teacher” networks, from which the data is generated,
there have been significant efforts to design a loss func-
tion with a good landscape. However, those new loss
functions are typically tailored only for Gaussian dis-
tributions; a common assumption in theory of neural
networks, but far from the real data.

To bridge this gap, we propose a new framework for
designing the landscape for general smooth distribu-
tions. Using local likelihood density estimators, which
can capture the local geometry of the probability den-
sity function, we introduce a novel estimator for score
functions which () involve higher-order derivatives of
the input pdf and (i) are critical in the landscape
design. This resolves one of the challenges in general-
izing the Gaussian assumption, namely score function
estimation.

There are other challenges in removing the Gaussian as-
sumption in the analysis of more complicated networks,
for example in Brutzkus and Globerson (2017); Li and
Yuan (2017). Innovative analysis techniques are needed
to complete the generalization of the Gaussian assump-
tion, which is a promising direction for future research.
Also, the time complexity of our approach is polyno-
mial of the dimension of input, but the exact order of
is unknown. Further improvement on time complexity
could be a promising future research direction.
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