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ABSTRACT ARTICLE HISTORY
We study the problem of asymptotically flat bi-axially symmetric sta- Received 5 January 2018
tionary solutions of the vacuum Einstein equations in 5-dimensional Accepted 30 July 2018

spacetime. In this setting, the cross section of any connected compo-
nent of the event horizon is a prime 3-manifold of positive Yamabe
type, namely the 3-sphere $3, the ring S' x $?, or the lens space L(p, NS

. . . . - event horizons; singular
q). The Einstein vacuum equations reduce to an axially symmetric harmonic maps; stationary
harmonic map with prescribed singularities from R* into the sym- black hole spacetime
metric space SL(3,R)/SO(3). In this paper, we solve the problem for
all possible topologies, and in particular the first candidates for
smooth vacuum non-degenerate black lenses are produced. In add-
ition, a generalization of this result is given in which the spacetime is
allowed to have orbifold singularities. We also formulate conditions for
the absence of conical singularities which guarantee a physically rele-
vant solution.

KEYWORDS
Lens space; non-spherical

1. Introduction

A result of Hawking [1] shows that a cross section of any connected component of the
event horizon in a 4-dimensional asymptotically flat stationary spacetime satisfying the
dominated energy condition has positive Euler characteristic, and hence must be topo-
logically a 2-sphere. The conclusion also holds without the stationarity condition pro-
vided one replaces a cross section of the event horizon with a stable apparent horizon.
These results were generalized by Galloway and Schoen [2] to show that a cross section
of any connected component of the event horizon in an n-dimensional asymptotically
flat stationary spacetime is an (n—2)-dimensional Riemannian manifold with positive
Yamabe invariant. In dimension 5, the additional hypothesis of bi-axial symmetry
restricts the possible topologies further, so that the only admissible topologies are S°,
S' x 8%, and L(p, q) [3]. Explicit examples of stationary vacuum bi-axisymmetric solu-
tions with horizon topology S’ and S' x $* have been constructed by Myers-Perry
(sphere) [4], Emparan-Reall (singly spinning ring) [5], and Pomeransky-Sen’kov (doubly
spinning ring) [6]. In particular, stationary vacuum black holes are not determined
solely by their mass and angular momenta in higher dimensions. That is, the no-hair
conjecture fails, as there exist black ring solutions having the same mass and angular
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momenta as a Myers-Perry black hole. Nonetheless, the underlying result supporting the
validity of the no-hair theorem in 4-dimensions, a uniqueness theorem for harmonic maps
with prescribed singularities into a nonpositively curved target, still holds in higher dimen-
sions. In particular, any bi-axially symmetric stationary vacuum solution is determined by a
finite set of parameters. It is the purpose of this paper to establish a partial converse: given
any admissible set of parameters, there is a unique solution of the reduced equations.
Whether this solution of the reduced equations then generates a physical spacetime solution
then depends on the absence of conical singularities on the axes.

The axes correspond to the locus where a closed-orbit Killing field degenerates, and
in the domain R’ of the harmonic map these are identified by a number of intervals on
the z-axis called axis rods. The axis rods are separated by intervals corresponding to
horizons, and by points which are referred to as corners. Note that this precludes the
case of degenerate horizons, in which horizons are represented by points instead of
intervals. In addition, the end points of the horizon rods are named poles. Denote by I'
the z-axis with the interior of all the horizon rods removed, and let {p;} represent the
corners and poles. Note that there are always two semi-infinite axes, labeled north and
south. We assign a pair of relatively prime integers (m;, n;) called the rod structure to
each axis rod I'j, such that the north and south semi-infinite axes are assigned the rod
structures (1, 0) and (0, 1), respectively. This pair of numbers indicates which linear
combination of rotational Killing fields vanishes on the associated rod. If (m;, n;) and
(my41,m141) are the rod structures assigned to two consecutive axis rods separated by a
corner, then the admissibility condition [3] is

det( o )zil. (1.1)

M1 N

This condition is to prevent orbifold singularities at the corners [7]. Horizon rods are
assigned the rod structure (0, 0). Finally, assign to each axis rod I'; a constant ¢; € R?,
the potential constant. The difference between the values of these constants on two axes
adjoining a horizon rod is proportional to the angular momenta of this horizon compo-
nent, as calculated by Komar integrals. A rod data set D consists of the corners and
poles {p;}, the rod structures {(m;,n;)}, and the potential constants {¢;} which are
assumed not to vary between two consecutive rods separated by a corner. This data
determines uniquely the prescribed singularities of the harmonic map ¢ : R*\ T —
SL(3,R)/SO(3) as described more precisely in the Section 4, and will be referred to as
admissible if it satisfies (1.1) at each corner. For technical reasons an additional com-
patibility condition will be imposed to aid the existence result. This condition only
applies when two consecutive corners are present. Let p;_; and p; be two consecutive
corners with axis rods I'j_; above p;_;, I'; between p;_; and p;, and I';;; below p. Then
the compatibility condition states that the first component of the rod structures for I';_;
and I'zy; have opposite sign if both are nonzero

mp_ympy; <0, (1.2)

whenever the determinants (1.1) for the two corners p;_; and p; are both +1. Note that
this latter requirement on the determinants may always be achieved by multiplying each
component of the rod structures for I';_; and I'; by —1 if necessary; this is an operation
which does not change the properties of a rod.
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In order to determine the physical relevance of a solution, define on each bounded
axis rod I'; a function b; to be the logarithm of the limiting ratio between the length of
the closed orbit of the Killing field degenerating on I';, and 27 times the radius from I
to this orbit. It turns out that b; is constant on I'). The absence of a conical singularity
on I'; is the balancing condition b;=0.

An asymptotically flat stationary vacuum spacetime will be referred to as well-behaved
if the orbits of the stationary Killing field are complete, the domain of outer communi-
cation (DOC) is globally hyperbolic, and the DOC contains an acausal spacelike con-
nected hypersurface which is asymptotic to the canonical slice in the asymptotic end
and whose boundary is a compact cross section of the horizon. These assumptions are
consistent with those of [8], and are used for the reduction of the stationary vacuum
equations. The main result may now be stated as follows.

Theorem 1.

(i) A well-behaved 5-dimensional asymptotically flat, stationary, bi-axially symmet-
ric solution of the vacuum Einstein equations without degenerate horizons gives
rise to a harmonic map ¢@ : R* \ T’ — SL(3,R)/SO(3) with prescribed singular-
ities associated with an admissible rod data set D, and satisfying by=0 on all
bounded axis rods.

(if)  Conversely, given an admissible rod data set D satisfying the compatibility con-
dition (1.2), there is a unique harmonic map ¢ : R>\ T — SL(3,R)/SO(3)
with prescribed singularities on I' corresponding to D.

(iii) A well-behaved 5-dimensional asymptotically flat, stationary, bi-axially symmet-
ric solution of the vacuum Einstein equations without degenerate horizons can
be constructed from ¢ if and only if the resulting metric coefficients are suffi-
ciently smooth across I' and by=0 on any bounded axis rod.

The reduction of the Einstein vacuum equations to a harmonic map is well known
[9,10] and follows closely the 4-dimensional case. However, there are several new difficulties
associated with the analysis of the resulting problem. First, even without angular momenta
the problem is nonlinear, in contrast to the linear structure present in the static 4D setting.
This makes the construction of a model map prescribing the singular behavior near I'
much more delicate, whereas in the 4D case the superposition of Schwarzschild solutions is
sufficient. Next, the target SL(3,R)/SO(3) is a rank 2 symmetric space with nonpositive
sectional curvature, rather than rank 1 with negative sectional curvature in 4 D. We recall
that the theory of harmonic maps into rank 1 symmetric spaces, in particular real hyper-
bolic space H", has been extensively investigated e.g. [11,12], yet comparatively little is
known for the cases of higher rank targets. These properties of the target hyperbolic space
H? = SL(2,R)/SO(2) in dimension four played a central role in obtaining a priori esti-
mates to prove existence, and without these properties in the 5D case new techniques must
be developed. Furthermore, in higher dimensions there is an abundance of possible rod
structures, and they must obey an admissibility condition (1.1) not present in four dimen-
sions. Finally, the study of conical singularities and their formulation as the balancing con-
dition b;=0, while similar to the 4D case, requires a more precise analysis.

Several explicit solutions of these equations and related ones have previously been
found. As mentioned above, the Myers-Perry black hole [4] generalizes the Kerr black
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hole to 5-dimensions, and is a 3-parameter family of solutions with spherical S horizon
topology. Emparan and Reall [5] found the first example with nontrivial topology,
namely a family of black ring solutions with an S' x §* horizon and one angular
momentum. These were later generalized by Pomeransky-Sen’kov [6] to a full 3-param-
eter family with two angular momenta. A multiple horizon solution with two compo-
nents consisting of an S° surrounded by an S' x $2, referred to as black saturn, was
constructed by Elvang and Figueras [13]. In this solution both the sphere and ring
rotate only in one plane which is associated with the S' direction of the ring. Further
multiple horizon solutions include the dipole black rings (or di-rings) [14,15] consisting
of two concentric singly spinning rings rotating in the same plane, and the bicycling
black rings (or bi-rings) [16,17] consisting of two singly spinning rings rotating in
orthogonal planes. In the minimal supergravity setting, Kunduri and Lucietti [18] found
the first examples of regular black holes having a lens space topology RP® = L(2,1).
These were generalized by Tomizawa and Nozawa to more general lens topology L(p, 1)
n [19]. Both of these black lens solutions are supersymmetric and hence extremal. It is
an important open problem to find regular vacuum black holes with lens topology. In
this direction Chen and Teo [20] found vacuum black lenses via the inverse scattering
method, however their solutions either possess conical singularities or have a naked sin-
gularity. A disadvantage of the methods used to construct the above examples is that
they cannot produce all possible regular solutions. In contrast, the PDE approach used
here generates all candidates with an admissible/compatible rod structure, where the
only obstruction is the possibility of conical singularities on the bounded components
of the axes. Furthermore, the variety of black holes that may be constructed from
admissible rod data which also satisfy the compatibility condition is vast. In particular,
multiple and single component black lenses L (p, q) are possible, for arbitrary relatively
prime p and g, as is shown in Proposition 3 of Section 4.

The existence portion of Theorem 1 may be generalized by forgoing the admissibility
condition (1.1). This requires instead of (1.2) a generalized compatibility condition

m_1mMiyq det(ml_1 nl_l)det( i i > <o, (1.3)

m n M1 N

which is used in the construction of a model map. Note that if (1.1) is satisfied then
(1.3) reduces to (1.2). However, without the admissibility condition orbifold singularities
at corner points will be present.

Theorem 2. Given a rod data set D satisfying the generalized compatibility condition
(1.3), there is a unique harmonic map ¢ : R*\ T — SL(3,R)/SO(3) with prescribed sin-
gularities on I corresponding to D. From this map a well-behaved 5-dimensional asymp-
totically flat, stationary, bi-axially symmetric solution of the vacuum Einstein equations
without degenerate horizons can be constructed having orbifold singularities at the corners
if and only if the resulting metric coefficients are sufficiently smooth across I' and b;=0
on any bounded axis rod.

This result has been generalized in [21] to include the asymptotically Kaluza-Klein
and asymptotically locally Euclidean cases, in which cross sections at infinity are $' x S
and quotients of S°, respectively.
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The organization of this paper is as follows. In Section 2, we review the reduction of
the Einstein vacuum equations, in the bi-axially symmetric stationary setting, to a har-
monic map having the symmetric space SL(3,R)/SO(3) as target. Relevant aspects of
the geometry of this symmetric space are then discussed in Section 3. In Section 4 a
detailed analysis of rod structures and the hypotheses associated with them is given.
The model map is constructed in Section 5, and existence and uniqueness for the har-
monic map problem is proven in Section 7 using energy estimates established in
Section 6. Finally in Section 8 it is shown how the desired spacetime is produced from
the harmonic map, and regularity issues are discussed. An appendix is included in order
to give a topological characterization of corners.

2. Dimensional reduction of the vacuum Einstein equations

Let M’ be the domain of outer communication for a well-behaved asymptotically flat,
stationary vacuum, bi-axisymmetric spacetime. In particular its isometry group admits
R x U(1)* as a subgroup in which the R-generator ¢ (time translation) is time-like in
the asymptotic region, and the U(1)*-generators ), i =1, 2 yield spatial rotation.
Since the three generators for the isometry subgroup commute, they may be expressed
as coordinate vector fields ¢ = 9, and ') = 0yi. Moreover by abusing notation so that
the same symbols denote dual covectors it holds that

K (EAn D A Ade) =x(EAnD An® adnV) =«(E A AP Ady?) =0,
@.1)

where *x denotes the Hodge star operation. To see this, observe that the vacuum equa-
tions imply that the exterior derivative of the three quantities in (2.1) vanishes, and
since these functions vanish on the axis in the asymptotically flat end they must vanish
everywhere. Therefore, the Frobenius theorem applies to show that the 2-plane distribu-
tion orthogonal to the three Killing vectors is integrable. We may then take coordinates
on one of these resulting 2-dimensional orbit manifolds, and Lie-drag them to get a
system of coordinates such that the spacetime metric decomposes in the following way

3 5
g§= Y da(¥)dy'dy’ + > hea(x)dx‘dx’, (2.2)
a,b=1 c,d=4
where y = (¢', ¢*, t). The fiber metric may be expressed by
2
q=">_fi(dd' +vidt)(d§) + vidt)—f ' p*de’, (2.3)
ij=1

for some functions v where f = detf; and p* = —detggp. It is shown in [8, 22] that the
determinant of the fiber metric is nonpositive, and the vacuum equations imply that p
is harmonic with respect to the metric fh, since

Amp = PilRtt_Pfilfinij =0. (2.4)

From this it can be shown [8, 22] that p is a well-defined coordinate function on the
quotient M®/[R x U(1)’] away from the poles, that is |[Vp| # 0. Since the orbit space
is simply connected [23] there is a globally defined harmonic conjugate function z,
which together with p yields an isothermal coordinate system so that
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fh= e (dp? + d2?), (2.5)

for some function ¢ = a(p,z). We now have the canonical Weyl-Papapetrou expression
for the spacetime metric

g =1 (dp* + d2*)—f ' p*dt? + f;(dp' + vidt) () + Vidt). (2.6)
Let
g = ¢ (dp* + d2?) —p*dt?, AW = yidy, (2.7)
then
g=f"'g+f;(d¢' +a0) (d§/ + A1), (2.8)

This represents a Kaluza-Klein reduction with 2-torus fibers. In this setting the vacuum
Einstein equations yield a 3-dimensional version of Einstein-Maxwell theory, with the
‘Maxwell equations’ given by

d(ffij " dAU)) —0, (2.9)

where %3 is the Hodge star operation with respect to gs. It follows that there exist glo-
bally defined (due to simple connectivity) twist potentials satisfying

In particular, if v' are constant then the potentials w; are constant, and vice versa. To
explain the geometric meaning of the forms appearing on the right-hand side of (2.10)
observe that ) = f;(d¢/ + +/dt) is the dual 1-form to 0y> and according to Frobenius’
theorem the forms V) A 7® Ady') measure the lack of integrability of the orthogonal
complement distribution to the axisymmetric Killing fields. Moreover, it turns out that
these forms are directly related to (2.10). Indeed, let ¢, €3, and x; denote the volume
forms with respect to g and g;, and the Hodge star operator with respect to g;, respect-
ively, then since

dn = f;dAY) + dfj A (Fon(@) (2.11)
we have
«(0 an® Adn®) = f 5 (1 An® A dAD)
— fye( - Dy, 02, D1, ) (dAD)"
= Fies( - 01, 0 (A"
= ffj *; dAY).

(2.12)

Note also that since the spacetime is vacuum and 11<i> are dual to Killing fields, stand-
ard computations along with Cartan’s ‘magic’ formula show that the 1-forms

(Y A Ady) = 1,010 % dn (2.13)

are closed, where 1 denotes interior product. This yields an alternate proof of (2.9), and
confirms that the twist potentials ; agree with those associated with the Komar expres-
sion for angular momentum.
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Next, following Maison [10] define the following 3 x 3 matrix

f71 _fflw1 _fflwz
Q= | oy fut+flol  fo+flow (2.14)
—f oy fot+fTlow o+ fTo)

which is symmetric, positive definite, and has det ® = 1. The inverse matrix is

f+ ot + o + 2fPwim;, Moy + oy fPo; + 2o,
> = oy + f2m, M f . (215)
oy + 2w, I I

This allows for a simplified expression of the 3-dimensional reduced Einstein-Hilbert
action

S = J R¥sg1 + lTr(qudcb A *3D71dD). (2.16)
RX(MS/[RXU(I)Z]) 4

The Einstein-harmonic map system arising from this action is

1
RS)—ER(S)(&)H = Tu, divy: (@7'V®) = 0, (2.17)

where the stress-energy tensor for the harmonic map is

Ty = Te(i) 5 8" Trlnl) 85), (2.18)
with the current
Ji = 0 190. (2.19)
Note that by taking a trace the Einstein equations may be reexpressed as
RY = Tr(J ). (2.20)

Furthermore, in the ® portion of the action cancelations occur so that e2° does not
appear, and this results in the divergence of (2.17) with respect to the Euclidean metric

0 =dp* +dz* + p*d¢?, (2.21)

where ¢ is an auxiliary coordinate. This also implies that the stress-energy tensor is
divergence free with respect to the Euclidean metric

0 = (divs T)(9p) = 8, (pTpp) + D= (PTe), 0 = (divg: T)(82) = 9p(pT)z) + O:(pTz).

(2.22)

The divergence free property of T follows from the harmonic map equations. To see

this in a more general harmonic map setting, consider maps ¢ : (M, g) — (N,h) with
harmonic energy

1 1 .
E= —J |dop|*dxg = —J g hi8i ' 00" dxg. (2.23)
2 M 2 M



1212 M. KHURI ET AL.

The first variation is given by
0E 1 . 1
2| sl hpdio'dok — = |d 2“>d 2.24
5 2JMg<1k5€03)€0 5 ldol"g;; ) dxg, (2.24)
and the stress-energy tensor is
1
Ty = (09, So)n—5 dol'g;. (2.25)
The harmonic map equations

() = V'ap =0 (2.26)

then imply that the stress-energy tensor is divergence free;
ViTy = (V 80,80}, + (50, V 90),—8™ (V0h0, Ime)y, = 0. (2.27)

Here, V is the induced connection on the bundle T*M ® @ 1TN, and t(¢) denotes the
tension field which is a section of the pullback bundle ¢! TN.

The Einstein equations of (2.17) may be solved via quadrature. This may be shown
by computing each equation in terms of metric components. Recall that

RY =9, Tn—oIn + 0T 0T (2.28)
and
R = MR = —p 2Ry + e (Rﬁf,? + RS)). (2.29)

The Christoffel symbols are
Fy=0"p,  Ty=000p"",  Tj=0800+0600-0;0"0pc for ijt

(2.30)
It follows that
RY =R =0, i#t, R} = B0+ Lo,0, RY = —ARzG——a s, RY :% 0.
(2.31)
From this the quadrature equations for ¢ are found to be
Do = g (RE)?;)) - Riz)) (Tr(]p]p) Tr(J.J2) = pTpp = —pT, (2.32)
0,0 = pRﬁfZ) = pT, (2.33)
which may be rewritten more conveniently as
do = —1, %15 T (2.34)

where * is the Hodge star operation with respect to the metric  on R?, and 5 = 9. To
see this let ¢ denote the volume form for o, then

(#10.T); = e T" (2.35)

and hence
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(1 * 10.T); = e T = &(D, 0y, 0p) T + &(y, 8, 0:) T (2.36)
We then have
1y x19,T = pT,.dp—pT,.dz, (2.37)

which confirms (2.34). Moreover, for later use observe that this form is closed in light
of the harmonic map equations

d(1y %19, T) = —(divgs T)(0;)dp Adz = 0. (2.38)
Note that we also have to show that ¢ obtained from quadrature is bi-axisymmetric.
However this follows easily from (2.37), since

L,0do = 1,01y % 19, T = 0. (2.39)

3. The Riemannian geometry of SL(3,R)/SO(3)

The harmonic map arising from the dimensional reduction of the bi-axisymmetric sta-
tionary vacuum Einstein equations has as target space SL(3,R)/SO(3). The geometry of
this symmetric space plays an important role in the analysis of the harmonic map, and
in this section the relevant aspects will be described.

Let G = SL(3,R) then K = SO(3) is a maximal compact subgroup. The quotient X =
G/K is the space of equivalence classes [A] in which

A €SL(3,R) and A~A" <= A" = AB for some B € SO(3). (3.1)
In other words, X is the space of left cosets of K in G and G acts transitively on X by
A'K—AA'K  for AE€G, (3.2)

so that K is the isotropy subgroup at xo = [Id]. Recall now the construction of the
canonical G-invariant Riemannian metric on the homogeneous space X, which yields a
Riemannian symmetric space structure. The Lie algebras will be denoted by

g=sl(3) ={Y egl3) | Try =0}, (3.3)
and
t=s(3)={Yeg3) | Y'=-Y}. (3.4)
Note that g is semi-simple since the Killing form B : g x g — R given by
B(Y,Z) = Tr(adY o adZ) = 6Tr(YZ) (3.5)

is nondegenerate. Let p be the orthogonal complement of f with respect to B, so that
we have the Cartan decomposition

g=IDp (3.6)
with
p={Yeg3) | Y=Y, TrY =0}, (3.7)

and satisfying the Cartan relations
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1 Ct, [p,p] C T, [f, »] C ». (3.8)

The Killing form B is negative definite on f and positive definite on p, in particular X
is of noncompact type.

Consider the Cartan involution 0 : g — g with 0|; = id, H\p = —id, where in our con-
text O(Y) = —Y". Then the quadratic form
2
~3B(Y.2) if Y,Z€t,
= 2
(Y, Z), —gB(Y, 0(z) if Y,Zep, (3.9)
0 if Yet, Zep,

is positive definite and Ad K-invariant. From this, the desired Riemannian metric at x,
is obtained by restricting the quadratic form to p which is identified with T, X, namely

g, (V,2) =4Tr(YZ') for Y,Zenp. (3.10)

This, in turn, gives rise to the metric globally on X via left translation. Let Ly : X — X
denote the left translation operator

Lp(x) = Lp([A]) = [BA], (3.11)

where A,B € SL(3,R) and x = [A]. Since SL(3,R) acts transitively on X, given x € X
there is a B € SL(3,R) such that Lg(xg) = x, and thus the G-invariant Riemannian met-
ric at x may be defined by pulling back the quadratic form at the identity

g, = L8, (3.12)

With this metric SL(3,R)/SO(3) becomes a symmetric space of noncompact type hav-
ing rank 2 (see [24]). In particular, it has nonpositive curvature, with the sectional
curvature of the plane, spanned by orthonormal vectors Y,Z € p given by — || [Y, Z] |].

In order to connect the metric (3.12) with the target space geometry associated to the
harmonic map of the previous section, the following characterization of X =
SL(3,R)/SO(3) will be needed. Recall the polar decomposition for matrices, namely any
A € SL(3,R) may be written uniquely as A = PO where O € SO(3) and P € X with

X = {A €SL(3,R) | A is symmetric and positive definite}. (3.13)

This indicates that X may be identified with X, and in fact this is accomplished with
the map 7 : X — X given by

Z(A) = [A?], Z-'([B]) = BB'. (3.14)

Observe that X can be interpreted as the set of all ellipsoids in R? centered at the ori-
gin with unit volume, and is diffeomorphic to R® (hence the same is true of X).
Moreover, SL(3,R) acts transitively on X by the analog of left translation
Ly =7 'oLgoZ, thatis

Lyz(A) = BAB'. (3.15)

The identification above naturally induces a pull-back metric g := Z*g on X. At the
identity this is
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gu(V,V) =g, (‘2/ Z) = Tr(VV'), (3.16)
for
Ve TuX ={WeMats,5(R) | W =W, TrW =0}. (3.17)
As for an arbitrary point A € X and V € TyX,
84(V,V) = g7(4)(dZa(V), dZ4(V))
= L8, (dZ4(V),dZA(V))
= 8, (A(Ly 0 T), (V) d(Ly 1 0 T),(V)) (3:18)

Ty ( (A4 ), (V)] [(dE 4 12) (V)] t) .
Since
(dLyr2) (V) = A2y (4712)', (3.19)
it follows that
g5,(v,V) = Tr(a 12y (4712) a-12y (47112)")
= Tr(a~2va-1v(4-1/2)") (320)
=Tr(A™'VA'V).
Recall from the previous section that a given 5-dimensional bi-axisymmetric station-
ary vacuum spacetime yields a map @ : R* \ ' — X, where R?® is parameterized by the

Weyl-Papapetrou coordinates (p,z, ¢), I denotes the z-axis, and X is parameterized by
(fij, ;). According to (3.20) the pull-back metric is then given by

g = Tr(01dd O 1dD). (3.21)

Since this agrees with the expression appearing in the reduced action (2.16), it follows
that the bi-axisymmetric stationary vacuum Einstein equations reduce to a harmonic
map problem with target space SL(3,R)/SO(3).

4. The rod structure

A well-behaved asymptotically flat, stationary vacuum, bi-axisymmetric spacetime
admits a global system of Weyl-Papapetrou coordinates in its domain of outer commu-
nication M, as described in Section 2, in which the metric takes the form

g =1 ' (dp* + d2*)—f ' p*di + f;(d’ + vVidt) (dy + vidt). (4.1)

The orbit space M°/[R x U(1)’] is diffeomorphic to the right-half plane
{(p,z)|p >0} (see [23]), and its boundary p =0 encodes nontrivial aspects of the top-
ology. Let g be the fiber metric (2.3) consisting of the last two terms in (4.1). In order
to avoid curvature singularities dim(ker q(0,z)) =1 except at isolated points p;, I =
1,...,L where the dimension of the kernel is 2 [3, 9]. It follows that the z-axis is broken
into L+ 1 intervals called rods
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I' =[z1,0), 1o =2,21), -y, L =[21,20-1], Ti41 = (—00,21], (4.2)

on which either |0; + Q0 + Q28¢z| vanishes (horizon rod) or (f;) fails to be of full
rank (axis rod). Here, ; denotes the angular velocity of the horizon and is given by
—v' restricted to the rod. This must be a constant and can be seen by solving for dv'
from (2.10) and showing that it vanishes on the rod. The condition for an axis rod
implies [3] that for each such I'; there is a pair of relatively prime integers (my, n;) so
that the Killing field

mla¢1 + n18¢2 (4.3)

vanishes on I';. Observe that m; and n; must be integers since elements of the isotropy
subgroup at the axis are of the form (&%, e™?) 0 < ¢ <27, and the isotropy subgroup
forms a proper closed subgroup of T? = S! x S!. That is, the isotropy subgroup yields a
simple closed curve in the torus exactly when the slope of its winding is rational. The
pair (my, n;) is referred to as the rod structure for the rod I', and (0, 0) serves as the
rod structure for any horizon rod. Note that the rod structure is not unique in terms of
the information that it encodes, although this type of uniqueness is valid when the rod
structure is viewed as an element of RP'.

The asymptotically flat condition is encoded by the rod structures of I'; and I'14; by
requiring them to be (*£1,0) and (0, =1) or vice versa. This, of course, arises from the
rod structure of Minkowski space R*! which will now be described in order to motivate
the definition of a ‘corner’. The Weyl-Papapetrou form of the Minkowski metric is
derived from the polar coordinate expression with the help of Hopf coordinates
0,9',¢%),¢" € [0,2n],0 € [0, /2] on the 3-sphere and a conformal mapping

& = —dtz + d?’z + rzdcu§3
= —dt* +dr’ + 1 [d@z + sin? 0(d¢")’ + cos® e(dqaz)z}

= qo + dr* + r*d0* (4.4)
=qo+ ‘h/ﬁ (dp? + d2*).
Here, the conformal map in the complex plane is given by
I Rs¢ x Rs¢ — pz—half plane, (4.5)
or rather
p = r?sin2 0, z =12 cos2 0. (4.6)
If x' denote cartesian coordinates then the Killing fields
Op = —x*00 + x'0p, Oy = —x*0s + X0y, (4.7)

vanish on the rods I'y =[0,00) and I'; = (—00,0], respectively. Therefore the rod
structures for these two rods are (1, 0) and (0, 1). Moreover, because the origin p; in
the pz-plane corresponds to the vertex of the right-half quadrant under the inverse con-
formal map this is called a corner. For a general set of rod structures, a corner point p;
is one which separates two axis rods, and a pole point is one which separates a horizon
rod from an axis rod.
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Potential constants ¢; = (c/,c}) € R* are prescribed on each axis rod I';, and are used
as boundary conditions for the twist potentials w;[r, = c;. The constants may be chosen
arbitrarily modulo the condition that they do not vary between adjacent rods separated
by a corner. This is necessary for the construction of a model map in the next section,
as well as a well-defined notion of angular momentum. In particular, the potential con-
stants can only change after passing over a horizon rod, and this difference yields the
angular momenta for each horizon component. Let S denote the 3-dimensional horizon
cross section component associated with a horizon rod I’y = [z, 21|, then (2.10),
(2.12), and (2.13) may be used to compute the Komar angular momenta of this compo-
nent by

1 ; T ; T T
Ji= QL * ' = EJH’"“) o x ' = Jrkdwi = [0i(pr) —oi(pr)). (48)

A rod data set D consists of the collection of corners and poles {p;}, rod structures
{(my,n;)}, and potential constants {c;}.

Consider now the topology of spacetime in a neighborhood of a corner point p,
which separates axis rods I'; and I';;; with rod structure (m;, n;) and (myy1,n501). As is
shown in the Appendix, new 2n-periodic coordinates (J)l, &52) may be chosen so that
the rod structures with respect to these coordinates are given by (1, 0) and (g, p),
p # 0. That is, the Killing fields 6(7) 1 and q@(zl + p@(ﬁz vanish on I'; and I'jy;, respect-
ively. Next, take any semicircle in the pz-half plane (orbit space) centered at p; that con-
nects a point on the interior of I'; to a point on the interior of I';;;. Note that each
point on the interior of this semicircle represents a 2-torus in a constant time slice. By
analyzing which 1-cycles collapse at the end points it follows that the semicircle repre-
sents a lens space L (p, g). Recall that L(1,q) = S, so that when p = =1 a neighbor-
hood of the corner in a time slice is foliated by spheres, or rather a neighborhood of
the corner in the spacetime is diffeomorphic to R”. It turns out that p = =1 if and only
if

My Ny

det( o >_ +1, (4.9)

and therefore the spacetime has trivial topology in a neighborhood of the corner if and
only if the admissibility condition (4.9) holds, otherwise it has an orbifold singularity.
The admissibility condition can be interpreted as stating that the intersection number of
the two 1-cycles that degenerate on either side of the corner is equal to +1.

In addition to (4.9), the main results of this paper rely on what will be referred to as
the compatibility condition. This supplementary requirement is only valid when two
consecutive corners are present. As described above, let p; be a corner separating axis
rods I'; and I';;;, and suppose that there is another corner p;_; at the top end of I
connecting it to axis rod I';_;. Assuming that the admissibility condition (4.9) holds at
the two points p;_; and p;, it may be arranged that these two determinants are +1 by
multiplying each component of the rod structures by —1 if necessary. Observe that this
operation on the rod structures does not change their properties, since the linear combi-
nations of Killing fields that vanish at the rods is preserved. The compatibility condition
then states that the first component of the rod structures for I';_; and I';;; have oppos-
ite sign if both are nonzero
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mj_ympyy < 0. (4.10)

This technical condition is used only in the construction of the model map in the
next section. Unlike the admissibility condition, it is not known whether Theorem 1
remains true without it. As mentioned in the introduction, if the admissibility condition
is not assumed so that orbifold singularities are allowed then (4.10) should be enhanced
to the generalized compatibility condition

MMy det(m“ ”“)det( o >§0. (4.11)

my np M1 N

Note that the only way this quantity can vanish is if either m;_; =0 or m;; =0,
since for a corner the determinant is always nonzero.

Each connected component cross section of the event horizon has one of the follow-
ing topologies [23]: the sphere S°, the ring S' x $2, or a lens space L(p, q). These mani-
folds have a singular foliation whose leaves are 2-dimensional tori, and whose singular
leaves are circles resulting from the degeneration of a 1-cycle in the torus. This can be
observed geometrically from the canonical metric on each manifold as follows. The
round metric on S® in Hopf coordinates is given by

d0? + sin® 0(d")” + cos? 0(d¢?)’, (4.12)

where 0 € [0,7/2], ¢' € [0,27]. For 0< 0 < 7/2 the level set {0 = const.} is a flat 2-torus,
and when 0 = 0,7/2 the level sets degenerates to S'. These singular leaves are character-
ized by the fact that the Killing fields 9,1 and 0> vanish at 0 = 0, 7/2, respectively. Thus
if 0 is viewed as parameterizing a horizon rod, then the rod structure at the two poles (end
points) is {(1,0), (0,1)}. For the ring S! x §? the canonical product metric is

[dez + sin? e(dqsl)z} + (d¢?)’, (4.13)

where 0 € [0,7], ¢' € [0,27]. The torus fibers are once again the level sets of 0, and the
singular leaves occur when 0 = 0, and coincide with the vanishing of the Killing field
Oy1> while the other Killing field J;. never degenerates. The associated rod structure at
the poles is then {(1,0),(1,0)}.

Consider now the lens space L(p,q) = $*/Z, which inherits its canonical metric

N2 N2
d6* + sin® 0(dd") + cos? 0(d”) (4.14)
from the 3-sphere, where
~1 q .- ~2 1 5
¢ =¢'—=-¢% b =-¢ (4.15)
p p

with 0 € [0,7/2],¢" € [0,2n]. Since ¢* has period 27, the following identifications are
made
~1 ~1 2mq ~2 ~2 2m
p p
The singular leaves at § = 0, 7/2 are characterized by the vanishing of the Killing fields
8(])1 = 8¢1, (f“)qsz = q6¢1 +p8¢z, (4.17)

(4.16)
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P1

Figure 1. Identification Space.

respectively, so that the associated rod structure at the poles is {(1,0), (q,p)}. Recall the
model of the lens space as a quotient space of the unit sphere $* = {(z;,z,) €
C?| |z1|* + |z2|* = 1} via the equivalence relation

~1 ~2

(ZI’ZZ) = (rle¢ i7 rze(b 1) ~ (rle((z)I‘FZTCq/P)I’ r2e<(7)2+2n/13)i). (4.18)

Here, the pair of variables (r,, r,) correspond to (sinf, cos 0) in the coordinates with
which the lens space metric is written. A visualization of the lens space may be obtained by
appropriately identifying the top, bottom, and sides of a solid cylinder as in Figure 1.
Namely, first collapse the external cylinder {0 = ©/2} by identifying each vertical segment
to a point, then identify the top and bottom discs via an orthogonal projection after per-
forming a 27q/p rotation of the top disc. The singular torus fibers occur where the action
of the coordinate fields 8&)1 and 8(;)2 degenerate, that is at 0 = 0, /2.

Using a similar analysis the topology of arbitrary rod structures may be understood.
In Figure 2 four different rod structures for the orbit space are given, labeled by the
topology of their horizons. Consider the first rod structure on the left in this diagram.
The two semi-infinite rods are foliated by circle fibers none of which collapse, and
hence they are 2-planes with an open disc removed. The finite rod has rod structure (0,
0) meaning that none of the rotational Killing fields vanish there. It is foliated by 2-tori
such that each of the two 1-cycles generators in the torus degenerate on opposite poles.
According to the description above, this yields an 3-sphere. Similarly, any simple curve
in the pz-plane connecting the two semi-infinite rods also produces an S°. In the second
and third rod structures of Figure 2, it is clear that, by comparing with the singular foli-
ations described above, these horizon rods represent a ring S' x $* and a lens L(p, 1),
respectively. In these two examples there is also a different type of rod not present in
the first example, namely a finite rod bounded by a pole on top and a corner on the
bottom. This type of rod is foliated by circles with a singular leaf at the corner, and
thus it gives a topological disc. The last example in Figure 2 has two horizon compo-
nents in which the inner one is a lens L(p, 1) and the outer one is a ring S' x %, and
hence the name ‘Black Lens Saturn’.

Observe that the rod structures of Figure 2 satisfy the admissibility condition (4.9)
with +1 determinants, and the compatibility condition is vacuous. A natural question
arises whether it is possible to produce a rod structure with a single horizon component
having the general lens topology L(p, q) without restricting to g=1, while at the same
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93 S x 52 L(p,1) Black Lens Saturn

(1,0) (1,0) (1,0) (1,0)

(0,0)

(0,0) (0,0) (0,0) (1,0)

(1,0 (Lp) ©.0)

(0,1) (1,p)
(0,1) (0,1)

(0,1)

Figure 2. Rod Strucures.

time satisfying the admissibility condition (4.9) and compatibility condition (4.10). The
following proposition answers this question affirmatively.

Proposition 3. Let p and q be integers satisfying gcd(p,q) = 1 and p>q > 1. Then there
exists a rod structure appropriate for an asymptotically flat spacetime of the form

{(170)7 (0’0)7 (qap)v (qlvpl)a ey (%;Pn)v (07 il)}? (4-19)

which has a single lens space horizon L(p, q), satisfies the admissibility condition (4.9)
with positive determinants, and satisfies the compatibility condition (4.10).

As an example observe that the single lens horizon L(9, 7) is realized by the rod
structures

{(1,0),(0,0),(7,9), (—4, —5), (=3, —4),(1,1), (0, 1)}, (4.20)

which clearly satisfy the admissibility condition with positive determinants as well as
the compatibility condition. In order to prove Proposition 3 we need a slightly modified
version of Bezout’s Lemma.

Lemma 4. Let a # 1 and b # 1 be relatively prime positive integers, then there exist inte-
gers x and y of the same sign such that

ax—by =1, (4.21)
with ged(x,y) =1 and 1 < |x| <b,1 < |y| <a. Furthermore, if a <b then |x| > |y|.

Proof. By Bezout’s Lemma there exist integers X,y such that ax + by = 1 with x| < b
and |y| < a. Moreover, one of these may be an equality only if a|b or bla. Since
ged(a, b) = 1 it must hold that |x| < b and |y| < a. Furthermore, since a,b>1 we must
have one of X,y negative and the other positive. Thus there are X >0,y >0 so that
ax—by = *£1, with x<b and y<a. If ged(kX,y) =c>1 then X =cx,y =¢y and
c(ax—by) = *=1. This, however, is impossible since ¢>1, and hence ged(X,y) = 1. If
ax—by =1 then choose (x,y)=(%,y), and if ax—by=—1 then choose
(x,y) = (—x, —y). Lastly, neither x nor y may vanish as a,b > 1.

Consider now the case when a < b. It then follows from the equation ax—by =1 that
either x >y (when x,y>0) or x < y (when x,y <0). Hence |x| > |y| when a <b. O
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Proof of Proposition 3. If g=1 then append the rod structure (0, 1) after (g, p) to solve
the problem. Assume now that p and g are relatively prime with p>g>1. Apply
Bezout’s Lemma with (a,b) = (gq,p) to find a pair (q;, p;) of relatively prime integers
satisfying
as well as

1< |qi|<q, 1< |pi| <p. (4.23)

If |q1| = 1, then by appending the rod structure (0,*1) after (q;,p1) = (=1,p;) the
desired result follows.

Consider now the case when |g;|>1. Again apply Bezout’s Lemma to find (g,,p,)
relatively prime and satisfying

1P~ lprlg, =1 (4.24)
as well as
1 <[g,| <|ql, 1 < [p,| < |pal- (4.25)
Next define (g,,p,) = *£(q,,p,) where the sign is chosen so that
qip,—p14, = 1. (4.26)

The compatibility condition require goq, <0, and since gy =g >0 this can be

achieved by setting (q2,p2) = (4,,P,) if 4, <0, and (q2,p2) = (G, —|a1], o =Ipal) if
d, > 0. Clearly this also satisfies the admissibility condition

qip2—p192 =1 (4.27)
as well as
1 < |ga| <lqil, 1< |pa| < |p1l, (4.28)

and (4.27) implies that g, and p, are relatively prime. Note that if it were the case that
qo <0 then (|q1],|p1|) should be added in the last step, rather than subtracted, in order
to satisfy the compatibility condition. This iterative process may be continued until
|gn| = 1. Then at that point, append the rod structure (0, *1) after (g, p,) = (£1,ps)
in order to achieve the stated outcome. O

We end this section by noting an important property of the horizon rods, which cor-
responds to a well-known result in 4-dimensional spacetime [25, Proposition 9.3.1].
Recall that a horizon rod is defined as an interval on the z-axis where the matrix (f;) is
invertible, so that the torus fibers are nondegenerate there. These fibers together with
the horizon rod form a codimension 2 surface in the spacetime, which will be referred
to as a horizon rod surface.

Lemma 5. A horizon rod surface is a future apparent horizon, and within the t =0 slice

it is a minimal surface.

Proof. At the beginning of this section we found that associated with a horizon rod
there is a Killing field
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IC - 6t + Qla¢l + Qza¢2, Qi S R, (429)

which is null on the horizon rod surface S. Since the tangent space to S is spanned by
the vector fields 9, and 8¢i, it easily follows from the structure of the spacetime metric
(4.1) and the values for Q; that K is normal to S. The second fundamental form of S in
the KC-direction is then given by

Iy = g(Va,IC, ), (4.30)
where 0, denotes a tangent vector to S. Since K is Killing
g(Vo,IC,0p) = —g(Vs,K, 04), (4.31)
and hence II,;, is antisymmetric. Let
y=f'e¥dZ + fd¢'dd! (4.32)
be the induced metric on the horizon rod surface, then the future null expansion is
0, = I, =0, (4.33)

since y* is symmetric. By definition, S is then a future apparent horizon.
In order to show that S is minimal within the t=0 slice, let

v=(V1)3, = g"0, + gV 0 (4.34)

be the unnormalized normal to the slice. Then the second fundamental form of the slice
is given by

ke = g(Va,v, Oa). (4.35)
Observe that
WIk(y, D) = gttg<Va¢,. o, 04,) + gf¢’g(v%. a0, a(,,) (4.36)
is antisymmetric, and
vIk(D:, 0.) = g"g(Vo.0r, 02) + ' g (Vo,0,,0:) =0, (4.37)

since 0, 0, are Killing. It follows that
Trsk = 9" ko = fe *°k(0, 0.) + [k (8, 0,45) = 0. (4.38)
Let n denote the outward unit normal to S within the t=0 slice, then n+ v/|v| =
YIC for some function ¥ on S. We then have
0= lp9+ = Hs + Trsk = HS (439)

where Hs denotes mean curvature, and therefore S is a minimal surface within the
slice. O

5. The model map

In this section a so-called model map ®,:R*\T — X 22 SL(3,R)/SO(3) is con-
structed, which encodes the prescribed asymptotic behavior near the axis and at infinity
for the desired harmonic map, and also has finite tension. It may be viewed as an
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approximate solution to the singular harmonic map problem near the axes and
at infinity.

The construction bears some similarity to the one in [26], but is more complex due
to the abundance of rod structures, and the fact that even the non-rotating case is
already nonlinear. We detail the construction in the case of a single component but the
same approach works for all rod structures satisfying the compatibility condition.
Where needed, we will point out differences required to make the approach work in the
more general case.

The canonical Riemannian metric on X was constructed in Section 3, and it was
noted that this space is parameterized by a 2 x 2 symmetric positive definite matrix F =
(fj) and a 2-vector @ = (w, ®,)". If f = det F then the metric in these coordinates [27]
is given by

_ldf* 1 1 fidwdw,
g=4 o dfadfy + 1 oo

4 f2 2 f
1 . 2 1 . . ldcot F' do
4[Tr(F dF)] +4Tr(F dF F71dF) + T

A computation shows that the components of the tension (2.26) of a map @y =
(F,w) are

(5.1)

i = Aﬁj—fkmvﬂﬁmv,ﬁj _|_f*1VMleﬂa)j’

79 = ij_fklv”ﬁlvuwk_f_lflmvﬂﬁmvuwj, (52)

where A is the Laplacian and V the connection associated with the flat metric (2.21) on
R’. This yields the harmonic map equations 7 =0 in these coordinates. Let
H=F'VF, G=f"'"F'(Vo), K=f'F'Vo, (5.3)
that is
H/j ="y, G =f"f"Vor V', K/ =f"fIV,0 (5.4)
and observe that
(div H+ G); = fle,  (divK) = f'fIz. (5.5)
We then have
|7]* = ;L [Tr(div H + G)]* + %Tr[(div H+ G)(divH + G)] + %f(div K)'F(divK). (5.6)

In order to state the main result of this section we will say that a map ®y = (F, )
respects a rod data set D, if (my, n;) is the rod structure and ¢; the potential constant
within D for an axis rod I'; then

(my, ny) € ker F|1-], a)|1—l =q. (5.7)

Theorem 6. Given a rod data set D satisfying the generalized compatibility condition
(4.11), there exists a model map @y : R’ \ T — X with uniformly bounded tension having
decay |t| = O(r~7/?) which respects D.
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Figure 3. Model map construction.

Proof. As mentioned above, we give a detailed proof for the case of the rod configur-
ation corresponding to a single lens horizon L(p, 1), see Figure 3. However, we will
indicate below the changes required for the general case.

The only requirement of the map @, within the white area in Figure 3 will be that it
is a smooth extension of the map which will be defined explicitly in the gray region.
This can easily be achieved since the white area remains a fixed distance away from the
singular set I', and this clearly implies that the tension is bounded within the
white area.

For convenience, we define a pair of harmonic functions needed in the construction.
For a € R let r, be the Euclidean distance from the point z=a on the z-axis, and let 0,
be the polar angle about this center. Then set

U, = log(ra—(z—a)) = log(2r,sin*( 0,/2)), v = log(rs + (z—a)) = log(2r, cos*( 0,/2)).
(5.8)

It is easy to check that these functions are harmonic. Furthermore u, behaves like
2log p near the z>a part of the z-axis and is locally bounded below on the z<a part
of the z-axis. Also, clearly u,(p,z—a) = v,(p, —(z—a)) and hence v, behaves like 2log p
on the z<a part of the z-axis and is locally bounded below on the z>a part of the
z-axis.

We begin with the definition of @, outside a large ball. The map there is based on
the Minkowski metric (4.4) and is given by

F= (euo 0 > » = o(0), (5.9)

0 eV log2

where 6 = 0y. The function w(f) is smooth and chosen so that w is the appropriate
constant on [0, €] U [n—e, 7], with 0 < e < 7/2 fixed so that @ is constant on the regions
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Ny and Sy. Observe that this map is harmonic wherever  is constant, since G=0 and
div F~'VF = 0. It will now be shown that the tension |t| decays like O(r~7/?), which as
will be seen later is sufficient for the main existence and uniqueness arguments. Since
the tension vanishes for 0 € [0, €] U [n—e, 7|, we need only estimate |t on the interval
[e, t—€]. An explicit calculation gives

f(div K)'F(divK) = w [esc*(0/2) (@] —(escl + 2cot6)w’1)2
+ 4esc?0(wl) + (csc6—2cot9)w’2)2] (5.10)
=0(r7),
and

esc2(0/2)sec?(0/2) [ wPesc?(0/2)  wlwacsc?(0/2) o
¢= r» (w/lwzsecz(ﬂ/Z) o sec2(0/2) )—O(r ). 6D

Since div H = 0, it follows that |t| = O(r~7/?).

It remains to define the map inside the two tubular neighborhoods capped with
hemispheres. Consider first the northern tubular neighborhood. Let z=¥b indicate the
location of the point N. Then in this region define

0
F:(eo ev>, o= c, (5.12)
where
u = A(up—log2) + (1—2)uy, v = A(vo—log2), (5.13)

and 1 = A(z) is a smooth cutoff function with =1 in Ny and 2=0 in N;. This leads
to the correct rod structure, and the definitions outside the large ball and in N agree.
Moreover

o A[i(uo—ub)] 0
divH = ( 0 Alivo] ) (5.14)
which is bounded. Indeed
A[i(uo—ub)} = (uo—up) AL + 2(0.2) 0, (o—up), (5.15)

and O,u, = 1/r, (on the z-axis) for a = 0,b is clearly bounded in the transition region.
Similarly A[Avo] is bounded since 0,vy = —1/ry = —1/r (on the z-axis) is bounded. It
follows that |7| is bounded in the northern region, as G=0 and K=0 due to the con-
stancy of w.

Consider now the southern tubular neighborhood. The map in S, is defined exactly
as in NV, that is with the same F but with @ = c,. In fact w is set to be the constant ¢,
in the entire southern tubular neighborhood. Next, let the south pole S and corner
point C be located at z=c and z=0, respectively. Then in S, the remainder of the map
is defined by

F = hFh' = h(eo eov)hf, (5.16)
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where
_ (1 -»
h= <0 ] ) (5.17)
and v = vy—log 2, u = ug—u,. As before div (F;'VF,y) = 0 and hence
div (F7'VF) = h™'div (F,'VFy)h' = 0, (5.18)

where for notational convenience h~* := (h')~'. It follows that ®; is a harmonic map in
S1. In order to verify that the rod structure is correct, observe that

(- () )0 e

From this, it is clear that the only direction which degenerates on the disk rod
(between S and C) is (1,p), and the only direction that degenerates on the south rod
(below C) is (0, 1). Furthermore, since F, is nonsingular on the horizon rod the same is
true of F.

Lastly, the map will be defined on the southern transition region. Recall that @ is con-
stant. Moreover, if F defined in S; can be transitioned to a diagonal F satisfying
div (F"'VF) = 0, then we can complete the transition in the same manner as in the north-
ern transition region. Thus, it remains to demonstrate the transition to a diagonal F. Set

F=h(z)Foh(2)',  h(z) = ((1) ‘Pf(Z)), (5.20)
where F, is as above, and A(z) is a smooth cutoff function which is equal to 1 near S;
and equal to 0 near Sy. To verify that div(F'VF) is bounded in the transition region
compute

F'VF = (Foh') " (K" 'VR)Foh' + h™* (Fy 'V Fy)h' + h™'Vh, (5.21)
and
div (F'VF) = [V(Foh') '] - (W 'VR)Foh! + (Foht) ™ div (k™' VR)Foh!
+ (Foh") " (h™'Vh) - V(Foh') + (Vh™) - (Fy 'V E) bt (5.22)

+ h~'div (Fy'VFy)h' + h ™ (F,'VFy) - VA" + div (h'Vh).

Each term may now be estimated individually. First note that the fifth term vanishes
and the seventh term is clearly bounded. Furthermore

F;IVF, = <V0” VOV>, (5.23)

and since h depends only on z we may replace Vu and Vv in (5.22) by 0,u and 0,v,
respectively. As explained above these z-derivatives are bounded, and since k', h™*, 0,h!
and O,h~" are bounded it follows that the fourth and sixth terms are bounded. Next
observe that the second term becomes

— . _ V1 1! ;L —1
(Fol’lt) 1le (h IVh)Foht = pe A (p‘g/hz —pi)’ (524)
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which is bounded. Furthermore the sum of the first and third terms is
[V(Eh!) '] - (W 'Vh)Eoht + (Foh') " (h='Wh) - V(Eoh')

= pe’ ) p[;“(azv_azu)'f‘)u/} O, u—0,v (5.25)
. AL Ov-0.0) +20) —pliDv—0) + 7] )

which again is bounded. It follows that |t| is bounded in the southern region, and this
completes the proof for the rod data set associated with a single component lens hori-
zon L(p, 1).

Remark 1. We note that in the argument above showing that div (F'VF) is bounded no
use was made of the fact that p is an integer. This is will be important in what follows.

Consider now the case of a general rod data set, in which consecutive corners may be
present. In this situation, the map will be defined inductively one corner at a time, with a
transition region between any two consecutive corners, as well as a transition region on
each of the two semi-infinite rods. The only feature which remains to be treated is the case
of two consecutive corners. Suppose then that consecutive corners occur at points Cy and
Cs along the z-axis, with z = a and z = b at Cy and Cs, respectively. Let there be rod struc-
tures (m, n) above Cy, (p, q) between Cy and Cg, and (1, s) below Cs. It will be assumed
that m # 0,p # 0,r # 0, and that the generalized compatibility condition is satisfied

mr(ps—rq)(mq—np) < 0. (5.26)

Note that this quantity is nonzero (and hence negative) since ps—rq # 0 and mg—np # 0
due to the fact that Cy and Cg are genuine corners.
Let v = u,—u, and u = 2log p—v and set

e 0
FO_ <0 ev)a (527)

so that F, gives rod structure (1, 0) above Cy and below Cs, and (0, 1) between Cy and
Cs. Next define Fy = hyFyhy, near Cy and Fs = hgFoh§ near Cs, where

hN:<_‘i/p _”/m>, hs=<_‘i/p _Sl/r>. (5.28)

1

It is straightforward to check that the maps Fy and Fs yield the desired rod structures
on each of the three rods in neighborhoods of Cy and Cg respectively, and that (Fy, ®)
and (Fs,w) are harmonic whenever o is constant. This latter property arises from the
fact that although F— hFh!, @+ ho is an isometry of X if and only if det h = =1, this
determinant condition is not required here for the harmonic map equations to be satis-
fied since  is constant. It remains to define F in a transition region between Cy and
Cs. In order to do this first let Fy = kFok' and Fs = F,, where

p(ms—nr)
_ m(ps — gr
k= holhy — 0 f{’mq_qn }2) . (5.29)

m(ps — qr)



1228 M. KHURI ET AL.

If there is a smooth transition k = k(z) from hg'hy to

p(ms—nr)
m(ps —qr) |, (5.30)
0 1

then by Remark 1 it is clear that we can further transition k to the identity as in the
arguments above the remark, since the only difference between (5.30) and /4 in (5.17) is
the fact that the off-diagonal element is an integer in the latter matrix. It follows that F
would then be defined in the whole region encompassing both corners, having the
property that it is equal to Fy near Cy and equal to Fgs near Cs. Finally, taking F =
hSPh’S produces a map with finite tension which coincides with Fy near Cy and Fg
near Cs.
It remains to define the transition from (5.29) to (5.30). Set

1 ¢ p(ms—nr)
k(z) = c=— 5.31
(Z) <0 A(Z))’ G m(ps—qr)’ ( )
where A(z) is a smooth cutoff function satisfying A(z) = — ;STPZ:’;I: )) near Cy and A(z) =

1 for z<(a+Db)/2. According to the generalized compatibility condition (5.26), A(z)
may be chosen strictly positive. The arguments following (5.22) may now be repeated to
show that the tension remains bounded. In particular, the terms four through seven of
(5.22) are bounded in the current setting. By denoting Fx = Fyk' the second term
becomes

¢
-2 -1
FlzldiV (k71Vk)Fk = Qev_u/ll QZ + gufv ,.Zeufv s (532)
22 ch
and the sum of the first and third terms is
VE ! - (kK 'VK)F, + F ' (k' Vk) - VF,
- vy
M v
= ce' %)/ ” , (5.33)
> gzi(uz—vz) + (q2 + e”“’ﬂ/) S(ve—uy)
23 2

both of which are bounded. Similar arguments may be used to treat the cases when one
of m, p, r is zero. O

6. Energy estimates

In the rank 1 case treated in [26], a priori estimates for the singular harmonic map
problem relied heavily on the uniformly strict negative curvature of the target spaces. In
the current setting the target symmetric space X = SL(3,R)/SO(3) is of rank 2, that is
the dimension of a maximal flat subspace is 2. It follows that X is of nonpositive curva-
ture and the methods of [26] breaks down. In order to overcome this difficulty, we will
employ a generalization of horospherical coordinates from hyperbolic space so that the
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flat directions as well as the coordinate planes of strict negative curvature are explicitly
identified, and are thus more easily exploited. Coordinate systems of the symmetric
space X = SL(3,R)/SO(3) have been investigated previously, as in [28], yet what we
need requires a different set of properties.

Consider the Iwasawa decomposition [24] of G = SL(3,R) given by G=KAN where
the three subgroups are K = SO(3),

A= {diag(/ll,},z,h) | /l,‘ >0, for i = 1,2,3, /1122/13 = 1}, (61)
and
N = {upper triangular matrices with 1’s on the diagonal}. (6.2)

For each g € G there exist unique elements k € K,a € A, and n € N such that g=kan.
Moreover by taking inverses we have G=NAK, and hence X = G/K may be identified
with the subgroup NA. Let xo = [Id] € X then the orbit A - x, represents a maximal flat
so that it is a totally geodesic submanifold with vanishing curvature. The last property
follows from the curvature formula in Section 3, and the fact that the Lie algebra

a= {diag<11,,12,z3) S A= o} (6.3)

associated with A is abelian ie. [0, 0] =0 for all o;,a, € a. On the other hand, the
orbit N - x; is a horocycle determined by the Weyl chamber

at = {diag(il,iz,/lg) | > da>ds Y A= o} Ca (6.4)

It is a closed submanifold with the property that every flat which is asymptotic to the
Weyl chamber at infinity

wh = (A" - x)(o0) = {y(oo)

7(s) = explsa™) - xp, o € a+}, (6.5)

intersects the horocycle orthogonally in exactly one point; recall that a flat F is asymp-
totic to a Weyl chamber w at infinity if w C F(o0). In particular, the horocycle N - x,
and flat 7, := A - x; intersect orthogonally at x,, as can be seen from the orthogonality
between the respective Lie algebras n (all upper triangular matrices with zeros on the
diagonal) and a with respect to the Riemannian metric at x, given in Section 3.
A foliation by flats may be constructed [24] from the action of N. More precisely
X=Un-F,, (6.6)

nenN

where n-F,, Nn'-Fy, =0 for n#n and each n-F, is asymptotic to the Weyl
chamber w*. Since each point x € X can be uniquely written as na - xo, and a - F, =
F, as sets, the assignment x+— F, = na - F, defines a smooth foliation of X whose
leaves are the set of totally geodesic submanifolds {# - Fy, },.y» €ach of which is isomet-
ric to R?. By homogeneity of X = G/K, the 3-dimensional horocycle N -x and the
2-dimensional flat F, intersect orthogonally at (and only at) x. In this sense, the pair
(a, n) gives a horocyclic orthogonal coordinate system for X.

Let 7, (s) be an arc-length parameterized geodesic satisfying 7y, (0) = xo, and
V%, (00) € w'. Equivalently y, '(0) € T, X is an element of a Weyl chamber a*, so that
7, is regular in the sense that it is contained in a unique 2-dimensional flat, namely
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Fy,- Since the action by na on X is isometric and preserves the combinatorial structure
of the Weyl chambers projected to X(c0), it follows that y,(s) := na -y, (s) is a regular
geodesic contained in the flat n-F,,, and is asymptotic to w'. In fact, the distance
dx (1 - 7,,(5),7x,(s)) decays exponentially and dx(na - 7, (s),7,,(s)) — dx(a - xo, Xo).

On the flat F,, there is a natural Euclidean coordinate system r = (ry,r,), where the
origin is identified with x,, the r;-axis coincides with the regular geodesic y, (s), and
the r,-axis is the orthogonal line to 7, (s). The r, axis is chosen to have the opposite
orientation from that of y, , so that r, — co corresponds to s — —o0, and similarly for
t5. The (11, ;) coordinate system may then be pushed forward to the flat n - F,, where
the origin is identified with 7 - xo, the ri-axis is the geodesic 7, (s), and the r,-axis is
again the orthogonal line to 7, (s) in the flat. Hence, the horocyclic coordinates (a, 1)
may be represented by (r, n). Moreover, for each n' € N there is an isometry which pre-
serves the r-coordinates and for each 7' there is a diffecomorphism which preserves the
n-coordinates

Ep i (r1,1r2,n) = (r1,12,1'n), Byt (r,r2,n)— (rn+ 1, +15,n). (6.7)

The r-translations map horocycles to horocylces, and thus if 0 = (0*, 6%, 6°) is a sys-
tem of global coordinates on N - xo = R?, they may be pushed forward to all horocycles
by the action of E,. It follows that (r,0) form a system of global coordinates on X with
the property that the coordinate fields 0,, and 0, are orthogonal. By combining the
observations above, the G-invariant Riemannian metric on X can be expressed in these
coordinates by

g = dr* + Q(d0,d0) = dr} + dr; + Q;d0'dy, (6.8)

where the coefficients Q;; = Q;(r, 0) are smooth functions.

As a demonstration of this framework in the simpler setting of rank 1, consider the
hyperbolic plane H?. The half plane coordinates (U, V), U>0 may be transformed to
orthogonal horocyclic coordinates (r,0) by r = logU and 0 = V to find

dU? 4+ dv?
8= 2
Here the flat F,, in the upper half plane model with xo = (0, 1) is the positive U-axis

{V = 0}, and the horocycle N - x is the horizontal line {U = 1}.
For any unit tangent vector Z € T, X perpendicular to F, the sectional curvature

K(Z,7,(0)) = (R(Z,7,(0))7,(0),2) (6.10)

is negative, since F, is a flat of maximal dimension. Moreover, such curvatures are uni-
formly negative (bounded away from zero) by compactness of the set of unit normal
vectors to F, and the homogeneity of X. The uniform (in x as well as choice of
2-plane) upper and the lower bounds of these curvatures will be denoted by

—2<K<-V<o. (6.11)

=dr* + e ¥d6*. (6.9)

Lemma 7. Let ] be a Jacobi field perpendicular to the flat F along an arc-length para-
meterized geodesic y(s) € Fx. Assume further that the Jacobi field is stable in that it is
bounded as s — —oo, then
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e”[1(0)] < [1(s)| < €®[J(0)]. (6.12)

Proof. This follows with slight modification from the proof of Theorem 2.4 in [29],
which relies on Proposition 4.1 in [30]. The key observation is that the proof of
Proposition 4.1 in [30] does not use the bounds on all sectional curvatures, but rather
only those appearing in (6.11). O

Lemma 8. For any vector & € Riandi=1,2

2bQ(¢,€) < 9,Q(¢, €) < 2¢Q(E, €). (6.13)

Proof. Let y : R> — X denote the global coordinate patch constructed above, so that
Y~ '(x) = (r(x),0(x)). Consider the geodesics 7; ,,: : s+ (5,0, & + &) where ¢ is a
variation parameter and &, € R? is fixed. If v = (0,¢) € R® then J: = di(v) is a Jacobi
field along the geodesic y; . Moreover this Jacobi field is stable since dx (7 1.:(5); Ve, (5))
is bounded as s — —oo. Observe that

Qul&,8) = g(dlry o (), iy (1)) = V(@) (6.14)

so the inequalities (6.13) measure the logarithmic growth rate of stable Jacobi fields.
If s < t then Lemma 7 implies that

XN (1, (9) < Ve (g, (D) < e (3, () (6.15)
The desired result now follows for i=1 by taking logarithms, dividing by ¢ - s, and
letting t — s. Similar arguments hold for i =2. O

Consider a smooth map ¢ : R’ \ I' — X with Dirichlet energy density
ldo|” =V (r o @) + V(0 0)l" + V(00 ¢), V(00 ), (6.16)
where the norms are computed with respect to the Euclidean metric J in (2.21) and
Q(V(00¢), V(0o ) =Q;(9,00,00 + 0.0°0.0). (6.17)

Let Q C R?\ T be the closure of a bounded domain situated away from the axis, and
define the local Dirichlet energy

1
Eq(¢) :J |do|*. (6.18)
2Jo
Two of the harmonic map equations associated with the Dirichlet energy are

Asti = 8,Q(V0,V0), i=1,2. (6.19)

__It then follows from Lemma 8 that each r; is subharmonic. Therefore if Q c Q with
Q CR*\T and y € C*(Q) is a cutoff function with y =1 on Q, then multiplying by
x’r; and integrating by parts produces

J 22|Vl §4<supri2>J A\ (6.20)
Q/ Q/ Q/
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Next combine (6.13) with (6.19) to obtain

Asri > 2bQ(V0O, V). (6.21)
Then multiplying by 7%, integrating by parts, and applying (6.20) yields
1 2
J #Q(V0,V0) < —J (Vy-Vr <= (sup ri) |Vx|2. (6.22)
Q b Qo b o (94

Together (6.20) and (6.22) give the desired local energy estimate

2
Eq(¢) < [4 <sup 11 + sup r%) + . <sup r1 + sup r2> 2, (6.23)

Vi
Q o o o Jo

Theorem 9. Let ¢ : R*\ T — X be a harmonic map and Q C R°\ T be a bounded
domain. If ¢ : Q — Br(x,) then

Eq(¢) < C, (6.24)

where the constant C depends only on the radius R of the geodesic ball and Q.

7. Existence and uniqueness

In this section, we complete the proof of Theorem 1 and prove the existence and
uniqueness of a harmonic map ¢ : R*\ I’ — X asymptotic to the model map ¢, con-
structed in Section 5. Now that all the ingredients are in place, the proof is the same as
in [26]. Nevertheless, we include it here for the sake of completeness. Let ¢>0 and
define Q, = {y € R’ :dp:(y,I') >¢, y € B;/,(0)}. Since the target X is nonpositively
curved, there is a smooth harmonic map ¢, : Q, — X such that ¢, = ¢, on 0Q,. We
quote the following lemma from [26], which essentially shows that the obstruction to a
subharmonic distance function is given by the tension.

Lemma 10. Let ¢, ¢, : Q — X be smooth maps into a nonpositively curved target. Then

A( 1+dx(€01a€02)2) > —(lt(e1)| + |t(@2)])- (7.1)

Set ¢, = ¢, and ¢, = @,, and note that 7(¢,) = 0. The remaining tension may be
estimated by Aw < —|t(¢,)|, where w>0 and w — 0 at infinity in R’. This is possible
due to the boundedness and decay of |t(¢,)| as given in Theorem 6. In particular we
may take w = ¢(1 +2)"'/* so that

Aw < —Zi(l +) 7 < —|t(@y)l, (7.2)

if the constant ¢ > 0 is chosen sufficiently large. It follows that

A( 1+ dx (¢, o) — w) >0, 1+dx (¢, @)’ —w <1 on 0Q,. (7.3)
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The maximum principle then yields a uniform L* bound

\/1 + distx (¢, qoo)2 <1l4+w on Q.. (7.4)

Fix a domain Q such that Q C R*\ I and take &> 0 small enough to have Q C Q,.
The L estimate combined with Theorem 9 produces an energy bound on Q independ-
ent of &. Furthermore, consider the Bochner identity

Aldg, [ = [Vdg, '~ Riem(dp,, dp,, do,, dp,). (7.5)
Nonpositivity of the curvature shows that |dg,|* is subharmonic. Thus a Moser iter-
ation may be applied to find a uniform pointwise bound from the the energy estimate,

namely
supldo,[* < | ldo,f < 76)
QI

where Q' Cc Q. Finally, using the harmonic map equations combined with the pointwise
gradient and L> bounds, we may now bootstrap to obtain uniform a priori estimates
for all derivatives of ¢, on Q. By letting ¢ — 0, it follows that there exists a subse-
quence which converges together with any number of derivatives on . In the usual
way, by choosing a sequence of exhausting domains and taking a diagonal subsequence,
a sequence ¢, is produced which converges uniformly on compact subsets as & — 0.
The limit ¢ is smooth and harmonic, and satisfies the L> bound so that it is also
asymptotic to ¢,.

The proof of uniqueness is straightforward. If ¢, and ¢, are two harmonic maps
asymptotic to ¢,, then they are asymptotic to each other so that dx(¢;,,) < C.
Moreover

A< 1+ dx((pl,(p2)2> >0, (7.7)

and since the set I' on which dx(¢,, ¢,) may not be fully regular is of codimension 2,
1+dx(¢,,9,)° is weakly subharmonic and the maximum principle applies

[31]*Lemma 8. As 1+dx(¢,,@,)° —1 at infinity, it follows that
1+ dx(¢;,9,)” < 1. Consequently ¢, = ¢,.

7.1. Rod data for the harmonic map

Having constructed a harmonic map asymptotic to a prescribed model map, it remains
to show that the rod data set arising from the harmonic map agrees with that of the
model map. Let ® = (F,») : R*\ T — X = SL(3,R)/SO(3) denote the characterization
of the harmonic map in the space of symmetric positive definite matrices, and let @y =
(Fo, o) denote the model map asymptotic to ®@. Recall that F = (f;j) is a 2 x 2 symmet-
ric positive definite matrix on R* \ T representing the fiber metric (associated with the
rotational Killing directions) in a bi-axisymmetric stationary spacetime, and w =
(w1, @,)" are the twist potentials. The rod data associated with ® consists of the kernel
of F and the value of w on the axis.
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Theorem 11. If @ is asymptotic to @y then ker F = ker Fy at each point of I', and w =
Wy on each axis rod. In particular, the two maps respect the same rod data set.
Furthermore, if ® is harmonic then dg(®, ®) — 0 at infinity in R’.

Before proving this result we record several observations. Since the metric on X is
G-invariant, the distance function is preserved under the action of left translation

dﬁ(q)07 (I)) = df( (Idv i’B’1 (I))7 (78)
where B € SL(3,R) satisfies BB' = ®y,. Note that
Lp®=Blo(B) =¥ (7.9)

for some symmetric W with Tr W = 0. Since the Riemannian exponential map and the
matrix exponential coincide for X, Hadamard’s theorem applies (using the fact that X
is complete, simply connected, with nonpositive curvature) to show that the exponential
map is a diffeomorphism, and the geodesic y(¢) = ¢"¥ is minimizing. Therefore (3.16)
yields

dg (1d, L-®) = [y/(0)] = [W| = VTr(WW*) = v/Tr(W?). (7.10)
Now consider the function from the Mazur identity [27], namely
Tr(0;'®) = Tr((B™)'B~'®(B™)'B')
—Tr(B (™)) (7.11)
=Tr e".

Since e" is symmetric and positive definite it may be diagonalized with positive
eigenvalues /;, i=1, 2, 3. We then have

Tr e = A + A + /s, Tr(W?) = (log 1)> + (log /2)* + (log 23)%,  (7.12)

and since W has zero trace
log 4; + log 4, + log A3 = 0. (7.13)
If Tr e <c then it is not difficult to see that (7.13) implies Tr(W?) < ¢.

Conversely if Tr(W?) < ¢ then each |log ;| < ¢, and it holds that Tr " < 3e‘. We
have thus proved the following.

Lemma 12. dg (®g, @) is uniformly bounded if and only if the Mazur quantity Tr(®,'®)
is uniformly bounded.

Proof of Theorem 11. If ® is asymptotic to @y then dg (Dy, @) < ¢y, that is the distance
is uniformly bounded, in particular near I'. By Lemma 12 this implies that the Mazur
function is also uniformly bounded

Tr(®;'®) <c. (7.14)

Moreover this quantity may be computed in terms of F, Fy, o, and @, as
1
Tr (D, ' @) —f;—f + Tr(FF,") 7 (w—wo)'Fy ' (w—ay), (7.15)
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where f = det F and f; = det F,. Since each of the terms on the right-hand side is non-
negative and the roles of ® and @, maybe reversed, we have

1
fo < f <c, Tr(FF,') <, — (w—w)'Fy ! (0—wp) < c. (7.16)
f Jo f
It follows that
Uy < f < . (7.17)

Next, since F, is symmetric it may be diagonalized with an orthogonal matrix O so
that Fy = ODO' where D = diag(p,, 1,). Working now at a point on an axis rod, the
kernel of F, is 1-dimensional and so it may be assumed without loss of generality that
o <uy <cfyand 0< ¢! <, < c Let F = O'FO then

Tr(FF,') = Tr(FOD'0') = Tr(0O'FOD ' 0") = Tr(ED ™) = f,, 17" + f oty -

(7.18)
Therefore
Frutty +fomy < ey = oy, (7.19)
so that
~ - Cﬁ)
fll < Cf07 fzz < ll_ <q. (7.20)
1
Furthermore

f :]?1117‘22_]??2 S]:‘111?22 < CfOJ?zzv (7.21)

which produces the lower bound
Fp>SLset (7.22)

In order to control the cross terms, observe that from the above

~2 ~ ~
fo=fufn+tf<ch (7.23)
In conclusion we obtain
fn < ¢fo, [f12| < C\/va ! szz <c (7.24)

Therefore, on an axis rod both D = O'F,0 and F = O'FO have the same kernel, and
thus F and F have the same kernel. Similar arguments hold for a horizon rod.
Let us now show that the potentials agree on an axis rod. From (7.16) it holds that

(—ao) D™ (0—adg) = (w—wp)'Fy l(a)—wo) < ¢f < cifo, (7.25)
where
(D—ag) = O (w—wy). (7.26)
It follows that

,ufl((bl—(bé) + (w (uo) < ¢fo, (7.27)
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which implies
f (@' =) + (@—a7)" < af. (7.28)
We then have
|—aol* < cfy = lw—awo|* < cfp, (7.29)

showing that w = wy on an axis rod.

Lastly if @ is harmonic then according to the L> bound (7.4), which holds globally
for ¢ in place of ¢,, it must hold that dg(®,, ®) — 0 at infinity in R* since w — 0 in
this limit. 0

8. Reconstruction of the spacetime metric

Let ® = (F,w):R*\ T — X 2 SL(3,R)/SO(3) be the harmonic map constructed in
the previous section, represented in the space of symmetric positive definite matrices.
Here, we show how to build an asymptotically flat bi-axisymmetric stationary vacuum
spacetime, which inherits the prescribed rod data set associated with the harmonic map.
Note that the functions F = (f;) and @ = (w1, ;)" comprising the harmonic map are
defined and smooth on the right-half plane {(p,z)|p >0}, which will serve as the orbit
space for the spacetime. The spacetime metric is given by (2.6), and it suffices to show
how each coefficient in (2.6) arises from ®. The resulting spacetime will be asymptotic-
ally flat in light of the decay of the model map @, and the fact that, by Theorem 11,
dg (®g, ®) — 0 at infinity in R’.

First observe that ¢ is immediately obtained from (2.34), since the orbit space is sim-
ply connected and the form on the right-hand side is closed as a result of the harmonic
map equations. It remains to find A®) = vidt, which will be derived from the harmonic
map components ;. By solving for dA") in (2.10) we get

dA — 7% FY %5 do. 8.1)
Observe that from Cartan’s magic formula and the fact that 0, is a Killing field
19,dAY = —diy AV = —dy'. (8.2)
It follows that if
1o, (f”f"f s dwj> (8.3)
is closed, then we may find v' by quadrature from the equation
v =210, (71 % doy). (8.4)

It turns out that showing (8.3) is closed is equivalent to parts of the harmonic map
equations. To see this, let ¢; denote the volume form of g;. Then

(*3dey)™ = e 0.00;, (8.5)

and
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19, *3 dw; = €3(0, 0y, 0.)0° widp + €3(0y, 0z, 0.) 0 wjdz
= pez"azwjdpfpezgapa)jdz (8.6)
= pO.wjdp—pI,w;dz.

Therefore
d(f IALRS dwj) = d(pfflfi"@zwjdp - pf’lfifapwjdz)
= [0.(or ' Fi0.005) + 0, (of ' f0y05;) | dz ndp
= divg: <f‘1 fffva)j) dzndp
o,

(8.7)

where the last equality arises from the second set of harmonic maps equations in (5.2).
Another way to obtain this calculation is to observe that

S g x5 doy = +(f ' fdoy) (8.8)

and divys = *dx, where * is the Hodge star operator with respect to 6 on R’. Lastly, it
is clear from the equations involved that ¢ and v' are bi-axisymmetric.

8.1. Regularity

The metric reconstructed above from a solution of the harmonic map problem is
defined on R x (R*\ ') x U(1). In order to extend this metric across I', two steps
must be completed as described below.

8.1.1. Analytic regularity

The metric coefficients in (2.6) must be shown to be smooth and even in p up to I'.
This was achieved in the 4D case in [32], and then extended to the non-axially symmet-
ric case in [33]. We believe that these methods are applicable to the 5D setting as well.

8.1.2. Conical singularities

In addition to the analytic regularity mentioned above, conical singularities on axis rods
must be ruled out. A conical singularity at a point on an axis rod I'; is measured by the
angle deficiency 0 € (—o0,27) given by

2n ) 27 - Radius ) f: Vflee p*f~le?e
— = lim — = lim —— = lim 4 [ ———, (8.9)
2w — 60  p—o0Circumference p—0 / fiju'n p—0 \[ fyu'w

where u = (u!, u?) = (my, n;) is the associated rod structure so that u is in the kernel of
F at p=0. Absence of a conical singularity is characterized by a zero angle deficiency
that is when the right-hand side is 1; this is referred to as the balancing condition in
Section 1. By a standard change of coordinates from polar to Cartesian, it is straightfor-
ward to check that once analytic regularity has been established this condition is neces-
sary and sufficient for the metric to be extendable across the axis.
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Let us denote by b; the value of log (;2%;) on the axis rod I'.. Then, similarly to the
4D case, it can be shown from (2.34) that b, is constant on I';. Moreover asymptotic
flatness implies that b;=0 on the two semi-infinite axis rods, I = 1,L + 1. Thus it it
remains to investigate the value of b; on the bounded axis rods. In the example from
Figure 3, to show regularity would only require showing that b; = 0 so that the angle
deficit vanishes on the disk rod, between points S and C.

In 4D very few cases have been worked out, see [34,35]. In the current 5D setting, it
is known that some configurations without any conical singularity do exist as men-
tioned in the introduction. We conjecture that many more such regular solutions can
be found. These questions will be investigated in a future paper.
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Appendix A. Topology of corners

Proposition 13. In a stationary bi-axisymmetric spacetime, consider a corner defined by a top
rod of structure (m, n) and a bottom rod of structure (r, s), with gcd(m, n) = ged(r,s) = 1. If

det<m ”) =+, (A.1)

s
then the spacetime is locally diffeomorphic to R® near the corner.

Proof. Let
V =mdy + ndy, W =10, + 50, (A.2)
be the Killing fields which vanish at the top rod and bottom rod, respectively. The first goal is to

show that there exists a change of variables (qﬁ (f) ), which are also 27-periodic, such that the
Killing fields take the form

V= (9(2)1 + 1/8&)2, W= (9(1)2, (A.3)

for some integer v. The coordinate transformation may be realized by a 2 x 2 matrix having inte-
ger entries

A= <‘Z Z), (A4)
with det A = —1. Namely
¢ =ag +be?, ¢! =—dg’ +bo’, (A5)
(Z)Z:C(f)l-f—dd)z, ¢2:C($1_a€$2~ .

To see that the new variables are 27m-periodic consider the translation (;51 — (}51 + 27, which
corresponds to

¢'— p'—2nd and $* — P + 2mc. (A.6)
Since ¢,d € Z and ¢' are 27n-periodic, it follows that 45 has a period less than or equal to 2.

If the period is 2om for 0 <o <1, then the translation qﬁl — qb + 27 would map to the same
points, and as a consequence the shifts

¢! — @' —2mad and ¢* — ¢* + 2mac (A7)
would give the identity map. This implies that ad and oc are integers, which is impossible since
1> o = a|det A| = |a(ad)—b(ac)| # 0. (A.8)

Similar arguments show that q?)z has period 27.
To find the matrix A observe that

V= (ma+nb)8 L+ (mc—i—nd)@ W= (ra+sb)6 L+ (rc—i—sd)a (A9)
1 m ma + nb
(y):A<n>:<mc+nd) (A.10)
r ra + sb
A(s) - <r6+sd>' (A-11)

Thus we aim to solve

(A.10) and

N
_— O
N—
Il
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Consider the second pair of equations

ra+sb =0,
rc+sd =1. (A.12)
Choose a = —s and b=r to solve the first equation. The integers ¢ and d may be found using
Bezout’s Lemma (Lemma 4), which gives a solution satisfying |c| < |s| and |d| < |r|, resulting in
—s T
as (1) a

with det A = —sd—cr = —1.
We now have integers u and v defined by

A(2)-)

It turns out that u=1. To see this note that

m r\ _(u 0
A ) =(2 ) e
so det A = —1 together with the hypothesis of this proposition produces

= detAdet(Z’ Z) =71 (A.16)

If u = —1, simply choose

s —r
A= (s 7) an
to achieve =1 if necessary.

In the new coordinate system, the corner is defined by the rod structures (1,v) and (0, 1).
Then as described in Section 4, any simple curve in the 2-dimensional orbit space which encircles
the corner and connects the top rod to the bottom rod represents a lens space L(1,v) = S
Therefore by foliating a neighborhood of the corner in the orbit space by such curves, we find
that a punctured neighborhood of the corner in a time slice has topology R x §> = R*\ {0}. It
follows that there is a spacetime neighborhood of the corner which is diffeomorphic to R°. =]
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