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Stationary vacuum black holes in 5 dimensions

Marcus Khuria, Gilbert Weinsteinb, and Sumio Yamadac

aDepartment of Mathematics, Stony Brook University, Stony Brook, NY, USA; bPhysics Department and
Department of Mathematics, Ariel University, Ariel, Israel; cDepartment of Mathematics, Gakushuin
University, Tokyo, Japan

ABSTRACT
We study the problem of asymptotically flat bi-axially symmetric sta-
tionary solutions of the vacuum Einstein equations in 5-dimensional
spacetime. In this setting, the cross section of any connected compo-
nent of the event horizon is a prime 3-manifold of positive Yamabe
type, namely the 3-sphere S3, the ring S1 � S2, or the lens space L(p,
q). The Einstein vacuum equations reduce to an axially symmetric
harmonic map with prescribed singularities from R

3 into the sym-
metric space SLð3;RÞ=SOð3Þ. In this paper, we solve the problem for
all possible topologies, and in particular the first candidates for
smooth vacuum non-degenerate black lenses are produced. In add-
ition, a generalization of this result is given in which the spacetime is
allowed to have orbifold singularities. We also formulate conditions for
the absence of conical singularities which guarantee a physically rele-
vant solution.
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1. Introduction

A result of Hawking [1] shows that a cross section of any connected component of the
event horizon in a 4-dimensional asymptotically flat stationary spacetime satisfying the
dominated energy condition has positive Euler characteristic, and hence must be topo-
logically a 2-sphere. The conclusion also holds without the stationarity condition pro-
vided one replaces a cross section of the event horizon with a stable apparent horizon.
These results were generalized by Galloway and Schoen [2] to show that a cross section
of any connected component of the event horizon in an n-dimensional asymptotically
flat stationary spacetime is an ðn�2Þ-dimensional Riemannian manifold with positive
Yamabe invariant. In dimension 5, the additional hypothesis of bi-axial symmetry
restricts the possible topologies further, so that the only admissible topologies are S3,
S1 � S2, and L(p, q) [3]. Explicit examples of stationary vacuum bi-axisymmetric solu-
tions with horizon topology S3 and S1 � S2 have been constructed by Myers-Perry
(sphere) [4], Emparan-Reall (singly spinning ring) [5], and Pomeransky-Sen’kov (doubly
spinning ring) [6]. In particular, stationary vacuum black holes are not determined
solely by their mass and angular momenta in higher dimensions. That is, the no-hair
conjecture fails, as there exist black ring solutions having the same mass and angular
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momenta as a Myers-Perry black hole. Nonetheless, the underlying result supporting the
validity of the no-hair theorem in 4-dimensions, a uniqueness theorem for harmonic maps
with prescribed singularities into a nonpositively curved target, still holds in higher dimen-
sions. In particular, any bi-axially symmetric stationary vacuum solution is determined by a
finite set of parameters. It is the purpose of this paper to establish a partial converse: given
any admissible set of parameters, there is a unique solution of the reduced equations.
Whether this solution of the reduced equations then generates a physical spacetime solution
then depends on the absence of conical singularities on the axes.
The axes correspond to the locus where a closed-orbit Killing field degenerates, and

in the domain R
3 of the harmonic map these are identified by a number of intervals on

the z-axis called axis rods. The axis rods are separated by intervals corresponding to
horizons, and by points which are referred to as corners. Note that this precludes the
case of degenerate horizons, in which horizons are represented by points instead of
intervals. In addition, the end points of the horizon rods are named poles. Denote by C
the z-axis with the interior of all the horizon rods removed, and let fplg represent the
corners and poles. Note that there are always two semi-infinite axes, labeled north and
south. We assign a pair of relatively prime integers (ml, nl) called the rod structure to
each axis rod Cl, such that the north and south semi-infinite axes are assigned the rod
structures (1, 0) and (0, 1), respectively. This pair of numbers indicates which linear
combination of rotational Killing fields vanishes on the associated rod. If (ml, nl) and
ðmlþ1; nlþ1Þ are the rod structures assigned to two consecutive axis rods separated by a
corner, then the admissibility condition [3] is

det
ml nl
mlþ1 nlþ1

� �
¼ 61: (1.1)

This condition is to prevent orbifold singularities at the corners [7]. Horizon rods are
assigned the rod structure (0, 0). Finally, assign to each axis rod Cl a constant cl 2 R

2,
the potential constant. The difference between the values of these constants on two axes
adjoining a horizon rod is proportional to the angular momenta of this horizon compo-
nent, as calculated by Komar integrals. A rod data set D consists of the corners and
poles fplg, the rod structures fðml; nlÞg, and the potential constants fclg which are
assumed not to vary between two consecutive rods separated by a corner. This data
determines uniquely the prescribed singularities of the harmonic map u : R3 n C !
SLð3;RÞ=SOð3Þ as described more precisely in the Section 4, and will be referred to as
admissible if it satisfies (1.1) at each corner. For technical reasons an additional com-
patibility condition will be imposed to aid the existence result. This condition only
applies when two consecutive corners are present. Let pl�1 and pl be two consecutive
corners with axis rods Cl�1 above pl�1, Cl between pl�1 and pl, and Clþ1 below pl. Then
the compatibility condition states that the first component of the rod structures for Cl�1

and Clþ1 have opposite sign if both are nonzero

ml�1mlþ1 � 0; (1.2)

whenever the determinants (1.1) for the two corners pl�1 and pl are both þ1. Note that
this latter requirement on the determinants may always be achieved by multiplying each
component of the rod structures for Cl�1 and Cl by �1 if necessary; this is an operation
which does not change the properties of a rod.
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In order to determine the physical relevance of a solution, define on each bounded
axis rod Cl a function bl to be the logarithm of the limiting ratio between the length of
the closed orbit of the Killing field degenerating on Cl, and 2p times the radius from Cl

to this orbit. It turns out that bl is constant on Cl. The absence of a conical singularity
on Cl is the balancing condition bl¼ 0.
An asymptotically flat stationary vacuum spacetime will be referred to as well-behaved

if the orbits of the stationary Killing field are complete, the domain of outer communi-
cation (DOC) is globally hyperbolic, and the DOC contains an acausal spacelike con-
nected hypersurface which is asymptotic to the canonical slice in the asymptotic end
and whose boundary is a compact cross section of the horizon. These assumptions are
consistent with those of [8], and are used for the reduction of the stationary vacuum
equations. The main result may now be stated as follows.

Theorem 1.
(i) A well-behaved 5-dimensional asymptotically flat, stationary, bi-axially symmet-

ric solution of the vacuum Einstein equations without degenerate horizons gives
rise to a harmonic map u : R3 n C ! SLð3;RÞ=SOð3Þ with prescribed singular-
ities associated with an admissible rod data set D, and satisfying bl¼ 0 on all
bounded axis rods.

(ii) Conversely, given an admissible rod data set D satisfying the compatibility con-
dition (1.2), there is a unique harmonic map u : R3 n C ! SLð3;RÞ=SOð3Þ
with prescribed singularities on C corresponding to D.

(iii) A well-behaved 5-dimensional asymptotically flat, stationary, bi-axially symmet-
ric solution of the vacuum Einstein equations without degenerate horizons can
be constructed from u if and only if the resulting metric coefficients are suffi-
ciently smooth across C and bl¼ 0 on any bounded axis rod.

The reduction of the Einstein vacuum equations to a harmonic map is well known
[9,10] and follows closely the 4-dimensional case. However, there are several new difficulties
associated with the analysis of the resulting problem. First, even without angular momenta
the problem is nonlinear, in contrast to the linear structure present in the static 4D setting.
This makes the construction of a model map prescribing the singular behavior near C
much more delicate, whereas in the 4D case the superposition of Schwarzschild solutions is
sufficient. Next, the target SLð3;RÞ=SOð3Þ is a rank 2 symmetric space with nonpositive
sectional curvature, rather than rank 1 with negative sectional curvature in 4D. We recall
that the theory of harmonic maps into rank 1 symmetric spaces, in particular real hyper-
bolic space H

n, has been extensively investigated e.g. [11,12], yet comparatively little is
known for the cases of higher rank targets. These properties of the target hyperbolic space
H

2 ¼ SLð2;RÞ=SOð2Þ in dimension four played a central role in obtaining a priori esti-
mates to prove existence, and without these properties in the 5D case new techniques must
be developed. Furthermore, in higher dimensions there is an abundance of possible rod
structures, and they must obey an admissibility condition (1.1) not present in four dimen-
sions. Finally, the study of conical singularities and their formulation as the balancing con-
dition bi¼ 0, while similar to the 4D case, requires a more precise analysis.
Several explicit solutions of these equations and related ones have previously been

found. As mentioned above, the Myers-Perry black hole [4] generalizes the Kerr black
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hole to 5-dimensions, and is a 3-parameter family of solutions with spherical S3 horizon
topology. Emparan and Reall [5] found the first example with nontrivial topology,
namely a family of black ring solutions with an S1 � S2 horizon and one angular
momentum. These were later generalized by Pomeransky-Sen’kov [6] to a full 3-param-
eter family with two angular momenta. A multiple horizon solution with two compo-
nents consisting of an S3 surrounded by an S1 � S2, referred to as black saturn, was
constructed by Elvang and Figueras [13]. In this solution both the sphere and ring
rotate only in one plane which is associated with the S1 direction of the ring. Further
multiple horizon solutions include the dipole black rings (or di-rings) [14,15] consisting
of two concentric singly spinning rings rotating in the same plane, and the bicycling
black rings (or bi-rings) [16,17] consisting of two singly spinning rings rotating in
orthogonal planes. In the minimal supergravity setting, Kunduri and Lucietti [18] found
the first examples of regular black holes having a lens space topology RP

3 ¼ Lð2; 1Þ.
These were generalized by Tomizawa and Nozawa to more general lens topology Lðp; 1Þ
in [19]. Both of these black lens solutions are supersymmetric and hence extremal. It is
an important open problem to find regular vacuum black holes with lens topology. In
this direction Chen and Teo [20] found vacuum black lenses via the inverse scattering
method, however their solutions either possess conical singularities or have a naked sin-
gularity. A disadvantage of the methods used to construct the above examples is that
they cannot produce all possible regular solutions. In contrast, the PDE approach used
here generates all candidates with an admissible/compatible rod structure, where the
only obstruction is the possibility of conical singularities on the bounded components
of the axes. Furthermore, the variety of black holes that may be constructed from
admissible rod data which also satisfy the compatibility condition is vast. In particular,
multiple and single component black lenses L (p, q) are possible, for arbitrary relatively
prime p and q, as is shown in Proposition 3 of Section 4.
The existence portion of Theorem 1 may be generalized by forgoing the admissibility

condition (1.1). This requires instead of (1.2) a generalized compatibility condition

ml�1mlþ1 det
ml�1 nl�1

ml nl

� �
det

ml nl
mlþ1 nlþ1

� �
� 0; (1.3)

which is used in the construction of a model map. Note that if (1.1) is satisfied then
(1.3) reduces to (1.2). However, without the admissibility condition orbifold singularities
at corner points will be present.

Theorem 2. Given a rod data set D satisfying the generalized compatibility condition
(1.3), there is a unique harmonic map u : R3 n C ! SLð3;RÞ=SOð3Þ with prescribed sin-
gularities on C corresponding to D. From this map a well-behaved 5-dimensional asymp-
totically flat, stationary, bi-axially symmetric solution of the vacuum Einstein equations
without degenerate horizons can be constructed having orbifold singularities at the corners
if and only if the resulting metric coefficients are sufficiently smooth across C and bl¼ 0
on any bounded axis rod.

This result has been generalized in [21] to include the asymptotically Kaluza-Klein
and asymptotically locally Euclidean cases, in which cross sections at infinity are S1 � S2

and quotients of S3, respectively.
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The organization of this paper is as follows. In Section 2, we review the reduction of
the Einstein vacuum equations, in the bi-axially symmetric stationary setting, to a har-
monic map having the symmetric space SLð3;RÞ=SOð3Þ as target. Relevant aspects of
the geometry of this symmetric space are then discussed in Section 3. In Section 4 a
detailed analysis of rod structures and the hypotheses associated with them is given.
The model map is constructed in Section 5, and existence and uniqueness for the har-
monic map problem is proven in Section 7 using energy estimates established in
Section 6. Finally in Section 8 it is shown how the desired spacetime is produced from
the harmonic map, and regularity issues are discussed. An appendix is included in order
to give a topological characterization of corners.

2. Dimensional reduction of the vacuum Einstein equations

Let M5 be the domain of outer communication for a well-behaved asymptotically flat,
stationary vacuum, bi-axisymmetric spacetime. In particular its isometry group admits
R� Uð1Þ2 as a subgroup in which the R-generator n (time translation) is time-like in
the asymptotic region, and the Uð1Þ2-generators gðiÞ, i ¼ 1, 2 yield spatial rotation.
Since the three generators for the isometry subgroup commute, they may be expressed
as coordinate vector fields n ¼ @t and gðiÞ ¼ @/i . Moreover by abusing notation so that
the same symbols denote dual covectors it holds that

? n � g 1ð Þ � g 2ð Þ � dn
� �

¼ ? n � g 1ð Þ � g 2ð Þ � dg 1ð Þ� �
¼ ? n � g 1ð Þ � g 2ð Þ � dg 2ð Þ� �

¼ 0;

(2.1)

where ? denotes the Hodge star operation. To see this, observe that the vacuum equa-
tions imply that the exterior derivative of the three quantities in (2.1) vanishes, and
since these functions vanish on the axis in the asymptotically flat end they must vanish
everywhere. Therefore, the Frobenius theorem applies to show that the 2-plane distribu-
tion orthogonal to the three Killing vectors is integrable. We may then take coordinates
on one of these resulting 2-dimensional orbit manifolds, and Lie-drag them to get a
system of coordinates such that the spacetime metric decomposes in the following way

g ¼
X3
a;b¼1

qab xð Þdyadyb þ
X5
c;d¼4

hcd xð Þdxcdxd; (2.2)

where y ¼ ð/1;/2; tÞ. The fiber metric may be expressed by

q ¼
X2
i;j¼1

fij d/
i þ vidt

� �
d/j þ vjdt
� �

�f�1q2dt2; (2.3)

for some functions vi where f ¼ detfij and q2 ¼ �detqab. It is shown in [8, 22] that the
determinant of the fiber metric is nonpositive, and the vacuum equations imply that q
is harmonic with respect to the metric fh, since

Dfhq ¼ q�1Rtt�qf�1f ijRij ¼ 0: (2.4)

From this it can be shown [8, 22] that q is a well-defined coordinate function on the
quotient M5=½R� Uð1Þ2� away from the poles, that is jrqj 6¼ 0. Since the orbit space
is simply connected [23] there is a globally defined harmonic conjugate function z,
which together with q yields an isothermal coordinate system so that
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fh ¼ e2r dq2 þ dz2
� �

; (2.5)

for some function r ¼ rðq; zÞ. We now have the canonical Weyl-Papapetrou expression
for the spacetime metric

g ¼ f�1e2r dq2 þ dz2
� �

�f�1q2dt2 þ fij d/
i þ vidt

� �
d/j þ vjdt
� �

: (2.6)

Let

g3 ¼ e2r dq2 þ dz2
� �

�q2dt2; A ið Þ ¼ vidt; (2.7)

then

g ¼ f�1g3 þ fij d/
i þ A ið Þ� �

d/j þ A jð Þ� �
: (2.8)

This represents a Kaluza-Klein reduction with 2-torus fibers. In this setting the vacuum
Einstein equations yield a 3-dimensional version of Einstein–Maxwell theory, with the
‘Maxwell equations’ given by

d ffij ?3 dA
jð Þ

� �
¼ 0; (2.9)

where ?3 is the Hodge star operation with respect to g3. It follows that there exist glo-
bally defined (due to simple connectivity) twist potentials satisfying

dxi ¼ 2ffij ?3 dA
jð Þ: (2.10)

In particular, if vi are constant then the potentials xi are constant, and vice versa. To
explain the geometric meaning of the forms appearing on the right-hand side of (2.10)
observe that gðiÞ ¼ fijðd/j þ vjdtÞ is the dual 1-form to @/i , and according to Frobenius’
theorem the forms gð1Þ � gð2Þ � dgðiÞ measure the lack of integrability of the orthogonal
complement distribution to the axisymmetric Killing fields. Moreover, it turns out that
these forms are directly related to (2.10). Indeed, let �, �3, and ?3 denote the volume
forms with respect to g and g3, and the Hodge star operator with respect to g3, respect-
ively, then since

dg ið Þ ¼ fijdA
jð Þ þ dfij � f jag að Þ� �

(2.11)

we have

? g 1ð Þ � g 2ð Þ � dg ið Þ� �
¼ fij ? g 1ð Þ � g 2ð Þ � dA jð Þ� �
¼ fij� � ; @/1 ; @/2 ; @l; @k

� �
dA jð Þð Þlk

¼ f�1fij�3 � ; @l; @kð Þ dA jð Þð Þlk

¼ ffij ?3 dA
jð Þ:

(2.12)

Note also that since the spacetime is vacuum and gðiÞ are dual to Killing fields, stand-
ard computations along with Cartan’s ‘magic’ formula show that the 1-forms

? g 1ð Þ � g 2ð Þ � dg ið Þ� �
¼ ig 1ð Þig 2ð Þ ? dg ið Þ (2.13)

are closed, where i denotes interior product. This yields an alternate proof of (2.9), and
confirms that the twist potentials xi agree with those associated with the Komar expres-
sion for angular momentum.
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Next, following Maison [10] define the following 3� 3 matrix

U ¼
f�1 �f�1x1 �f�1x2

�f�1x1 f11 þ f�1x2
1 f12 þ f�1x1x2

�f�1x2 f12 þ f�1x1x2 f22 þ f�1x2
2

0@ 1A (2.14)

which is symmetric, positive definite, and has det U ¼ 1. The inverse matrix is

U�1 ¼
f þ f 11x2

1 þ f 22x2
2 þ 2f 12x1x2 f 11x1 þ f 21x2 f 12x1 þ f 22x2

f 11x1 þ f 12x2 f 11 f 12

f 21x1 þ f 22x2 f 21 f 22

0@ 1A: (2.15)

This allows for a simplified expression of the 3-dimensional reduced Einstein–Hilbert
action

S ¼
ð
R� M5= R�U 1ð Þ2½ �ð ÞR

3ð Þ?31þ 1
4
Tr U�1dU � ?3U

�1dU
� �

: (2.16)

The Einstein-harmonic map system arising from this action is

R 3ð Þ
kl �

1
2
R 3ð Þ g3ð Þkl ¼ Tkl; div

R
3 U�1rUð Þ ¼ 0; (2.17)

where the stress-energy tensor for the harmonic map is

Tkl ¼ Tr JkJlð Þ� 1
2
gmn
3 Tr JmJnð Þ g3ð Þkl (2.18)

with the current

Jl ¼ U�1@lU: (2.19)

Note that by taking a trace the Einstein equations may be reexpressed as

R 3ð Þ
kl ¼ Tr JkJlð Þ: (2.20)

Furthermore, in the U portion of the action cancelations occur so that e2r does not
appear, and this results in the divergence of (2.17) with respect to the Euclidean metric

d ¼ dq2 þ dz2 þ q2d/2; (2.21)

where / is an auxiliary coordinate. This also implies that the stress-energy tensor is
divergence free with respect to the Euclidean metric

0 ¼ div
R

3Tð Þ @qð Þ ¼ @q qTqqð Þ þ @z qTqzð Þ; 0 ¼ div
R

3Tð Þ @zð Þ ¼ @q qTqzð Þ þ @z qTzzð Þ:
(2.22)

The divergence free property of T follows from the harmonic map equations. To see
this in a more general harmonic map setting, consider maps u : ðM; gÞ ! ðN; hÞ with
harmonic energy

E ¼ 1
2

ð
M
jduj2dxg ¼ 1

2

ð
M
gijhlk@iu

l@ju
kdxg: (2.23)
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The first variation is given by

dE
dg

¼ 1
2

ð
M
dgij hlk@iu

l@ju
k � 1

2
jduj2gij

� �
dxg; (2.24)

and the stress-energy tensor is

Tij ¼ h@iu; @juih�
1
2
jduj2gij: (2.25)

The harmonic map equations

s uð Þ ¼ bri
@iu ¼ 0 (2.26)

then imply that the stress-energy tensor is divergence free;

riTij ¼ hbri
@iu; @juih þ h@iu; bri

@juih�glmhbrj@lu; @muih ¼ 0: (2.27)

Here, br is the induced connection on the bundle T�M � u�1TN, and sðuÞ denotes the
tension field which is a section of the pullback bundle u�1TN.
The Einstein equations of (2.17) may be solved via quadrature. This may be shown

by computing each equation in terms of metric components. Recall that

R 3ð Þ
kl ¼ @mC

m
kl�@lC

m
km þ Cm

klC
n
nm�Cm

knC
n
lm; (2.28)

and

R 3ð Þ ¼ gkl3 R
3ð Þ
kl ¼ �q�2R 3ð Þ

tt þ e�2r R 3ð Þ
qq þ R 3ð Þ

zz

� �
: (2.29)

The Christoffel symbols are

Cl
tt ¼ dlqe�2rq; Cl

ti ¼ dltd
q
i q

�1; Cl
ij ¼ dlj@irþ dli@jr�dijd

lm@mr for i; j 6¼ t:

(2.30)

It follows that

R 3ð Þ
tt ¼ R 3ð Þ

ti ¼ 0; i 6¼ t; R 3ð Þ
qq ¼ �D

R
2rþ 1

q
@qr; R 3ð Þ

zz ¼ �D
R

2r� 1
q
@qr; R 3ð Þ

qz ¼ 1
q
@zr:

(2.31)

From this the quadrature equations for r are found to be

@qr ¼ q
2

R 3ð Þ
qq � R 3ð Þ

zz

� �
¼ q

2
Tr JqJqð Þ � Tr JzJzð Þ� � ¼ qTqq ¼ �qTzz; (2.32)

@zr ¼ qR 3ð Þ
qz ¼ qTqz; (2.33)

which may be rewritten more conveniently as

dr ¼ �ig � i@zT (2.34)

where � is the Hodge star operation with respect to the metric d on R
3, and g ¼ @/. To

see this let e denote the volume form for d, then

�i@zTð Þij ¼ eijlT
lz (2.35)

and hence
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ig � i@zTð Þj ¼ eijlg
iTlz ¼ e @/; @j; @q

� �
Tqz þ e @/; @j; @z

� �
Tzz: (2.36)

We then have

ig � i@zT ¼ qTzzdq�qTqzdz; (2.37)

which confirms (2.34). Moreover, for later use observe that this form is closed in light
of the harmonic map equations

d ig � i@zTð Þ ¼ � div
R

3Tð Þ @zð Þdq� dz ¼ 0: (2.38)

Note that we also have to show that r obtained from quadrature is bi-axisymmetric.
However this follows easily from (2.37), since

ig ið Þdr ¼ ig ið Þig � i@zT ¼ 0: (2.39)

3. The Riemannian geometry of SLð3;RÞ=SOð3Þ
The harmonic map arising from the dimensional reduction of the bi-axisymmetric sta-
tionary vacuum Einstein equations has as target space SLð3;RÞ=SOð3Þ. The geometry of
this symmetric space plays an important role in the analysis of the harmonic map, and
in this section the relevant aspects will be described.
Let G ¼ SLð3;RÞ then K ¼ SOð3Þ is a maximal compact subgroup. The quotient X ¼

G=K is the space of equivalence classes ½A� in which

A 2 SL 3;Rð Þ and A	A0 () A0 ¼ AB for some B 2 SO 3ð Þ: (3.1)

In other words, X is the space of left cosets of K in G and G acts transitively on X by

A0K 7!AA0K for A 2 G; (3.2)

so that K is the isotropy subgroup at x0 ¼ ½Id�. Recall now the construction of the
canonical G-invariant Riemannian metric on the homogeneous space X, which yields a
Riemannian symmetric space structure. The Lie algebras will be denoted by

g ¼ sl 3ð Þ ¼ Y 2 gl 3ð Þ j TrY ¼ 0
� 	

; (3.3)

and

k ¼ so 3ð Þ ¼ Y 2 gl 3ð Þ j Yt ¼ �Y
� 	

: (3.4)

Note that g is semi-simple since the Killing form B : g� g ! R given by

B Y;Zð Þ ¼ Tr adY 
 adZð Þ ¼ 6Tr YZð Þ (3.5)

is nondegenerate. Let p be the orthogonal complement of k with respect to B, so that
we have the Cartan decomposition

g ¼ k� p (3.6)

with

p ¼ Y 2 gl 3ð Þ j Yt ¼ Y; TrY ¼ 0
� 	

; (3.7)

and satisfying the Cartan relations
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k; k½ � � k; p; p½ � � k; k; p½ � � p: (3.8)

The Killing form B is negative definite on k and positive definite on p, in particular X
is of noncompact type.
Consider the Cartan involution h : g ! g with hjk ¼ id; hjp ¼ �id, where in our con-

text hðYÞ ¼ �Yt . Then the quadratic form

hY;Zig ¼
� 2
3
B Y;Zð Þ if Y;Z 2 k;

� 2
3
B Y; h Zð Þ� �

if Y;Z 2 p;

0 if Y 2 k; Z 2 p;

8>>><>>>: (3.9)

is positive definite and Ad K-invariant. From this, the desired Riemannian metric at x0
is obtained by restricting the quadratic form to p which is identified with Tx0X, namely

gx0 Y;Zð Þ ¼ 4Tr YZtð Þ for Y;Z 2 p: (3.10)

This, in turn, gives rise to the metric globally on X via left translation. Let LB : X ! X
denote the left translation operator

LB xð Þ ¼ LB A½ �ð Þ ¼ BA½ �; (3.11)

where A;B 2 SLð3;RÞ and x ¼ ½A�. Since SLð3;RÞ acts transitively on X, given x 2 X
there is a B 2 SLð3;RÞ such that LBðx0Þ ¼ x, and thus the G-invariant Riemannian met-
ric at x may be defined by pulling back the quadratic form at the identity

gx ¼ L�B�1gx0 : (3.12)

With this metric SLð3;RÞ=SOð3Þ becomes a symmetric space of noncompact type hav-
ing rank 2 (see [24]). In particular, it has nonpositive curvature, with the sectional
curvature of the plane, spanned by orthonormal vectors Y;Z 2 p given by � k ½Y;Z� k2g.
In order to connect the metric (3.12) with the target space geometry associated to the

harmonic map of the previous section, the following characterization of X ¼
SLð3;RÞ=SOð3Þ will be needed. Recall the polar decomposition for matrices, namely any
A 2 SLð3;RÞ may be written uniquely as A¼ PO where O 2 SOð3Þ and P 2 ~X with

~X ¼ A 2 SL 3;Rð Þ j A is symmetric and positive definite
� 	

: (3.13)

This indicates that X may be identified with ~X, and in fact this is accomplished with
the map I : ~X ! X given by

I Að Þ ¼ A1=2½ �; I�1 B½ �ð Þ ¼ BBt: (3.14)

Observe that ~X can be interpreted as the set of all ellipsoids in R
3 centered at the ori-

gin with unit volume, and is diffeomorphic to R
5 (hence the same is true of X).

Moreover, SLð3;RÞ acts transitively on ~X by the analog of left translation
~LB ¼ I�1 
 LB 
 I , that is

~LB Að Þ ¼ BABt: (3.15)

The identification above naturally induces a pull-back metric ~g :¼ I�g on ~X. At the
identity this is
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~gId V;Vð Þ ¼ gx0
V
2
;
V
2

� �
¼ Tr VVtð Þ; (3.16)

for

V 2 TId ~X ¼ W 2 Mat3�3 Rð Þ j Wt ¼ W; TrW ¼ 0
� 	

: (3.17)

As for an arbitrary point A 2 ~X and V 2 TA ~X,

~gA V;Vð Þ ¼ gI Að Þ dIA Vð Þ; dIA Vð Þ� �
¼ L�A�1=2gx0 dIA Vð Þ; dIA Vð Þ� �
¼ gx0 d LA�1=2 
 Ið ÞA Vð Þ; d LA�1=2 
 Ið ÞA Vð Þ� �
¼ Tr d~LA�1=2

� �
A Vð Þ

h i
d~LA�1=2

� �
A Vð Þ

h it� �
:

(3.18)

Since

d~LA�1=2

� �
A Vð Þ ¼ A�1=2V A�1=2ð Þt; (3.19)

it follows that

~gA V;Vð Þ ¼ Tr A�1=2V A�1=2ð ÞtA�1=2V A�1=2ð Þt
� �

¼ Tr A�1=2VA�1V A�1=2ð Þt
� �

¼ Tr A�1VA�1Vð Þ:
(3.20)

Recall from the previous section that a given 5-dimensional bi-axisymmetric station-
ary vacuum spacetime yields a map U : R3 n C ! ~X, where R

3 is parameterized by the
Weyl–Papapetrou coordinates ðq; z;/Þ, C denotes the z-axis, and ~X is parameterized by
ðfij;xiÞ. According to (3.20) the pull-back metric is then given by

U�~g ¼ Tr U�1dU U�1dUð Þ: (3.21)

Since this agrees with the expression appearing in the reduced action (2.16), it follows
that the bi-axisymmetric stationary vacuum Einstein equations reduce to a harmonic
map problem with target space SLð3;RÞ=SOð3Þ.

4. The rod structure

A well-behaved asymptotically flat, stationary vacuum, bi-axisymmetric spacetime
admits a global system of Weyl–Papapetrou coordinates in its domain of outer commu-
nication M5, as described in Section 2, in which the metric takes the form

g ¼ f�1e2r dq2 þ dz2
� �

�f�1q2dt2 þ fij d/
i þ vidt

� �
d/j þ vjdt
� �

: (4.1)

The orbit space M5=½R� Uð1Þ2� is diffeomorphic to the right-half plane
fðq; zÞjq> 0g (see [23]), and its boundary q¼ 0 encodes nontrivial aspects of the top-
ology. Let q be the fiber metric (2.3) consisting of the last two terms in (4.1). In order
to avoid curvature singularities dimðker qð0; zÞÞ ¼ 1 except at isolated points pl, l ¼
1; :::; L where the dimension of the kernel is 2 [3, 9]. It follows that the z-axis is broken
into Lþ 1 intervals called rods
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C1 ¼ z1;1½ Þ; C2 ¼ z2; z1½ �; :::; CL ¼ zL; zL�1½ �; CLþ1 ¼ �1; zLð �; (4.2)

on which either j@t þ X1@/1 þ X2@/2 j vanishes (horizon rod) or ðfijÞ fails to be of full
rank (axis rod). Here, Xi denotes the angular velocity of the horizon and is given by
�vi restricted to the rod. This must be a constant and can be seen by solving for dvi

from (2.10) and showing that it vanishes on the rod. The condition for an axis rod
implies [3] that for each such Cl there is a pair of relatively prime integers ðml; nlÞ so
that the Killing field

ml@/1 þ nl@/2 (4.3)

vanishes on Cl. Observe that ml and nl must be integers since elements of the isotropy
subgroup at the axis are of the form ðeiml/; einl/Þ; 0 � /< 2p, and the isotropy subgroup
forms a proper closed subgroup of T2 ¼ S1 � S1. That is, the isotropy subgroup yields a
simple closed curve in the torus exactly when the slope of its winding is rational. The
pair ðml; nlÞ is referred to as the rod structure for the rod Cl, and (0, 0) serves as the
rod structure for any horizon rod. Note that the rod structure is not unique in terms of
the information that it encodes, although this type of uniqueness is valid when the rod
structure is viewed as an element of RP1.
The asymptotically flat condition is encoded by the rod structures of C1 and CLþ1 by

requiring them to be ð61; 0Þ and ð0;61Þ or vice versa. This, of course, arises from the
rod structure of Minkowski space R

4;1 which will now be described in order to motivate
the definition of a ‘corner’. The Weyl–Papapetrou form of the Minkowski metric is
derived from the polar coordinate expression with the help of Hopf coordinates
ðh;/1;/2Þ;/i 2 ½0; 2p�; h 2 ½0; p=2� on the 3-sphere and a conformal mapping

g0 ¼ �dt2 þ dr2 þ r2dx2
S3

¼ �dt2 þ dr2 þ r2 dh2 þ sin2 h d/1
� �2 þ cos2 h d/2

� �2h i
¼ q0 þ dr2 þ r2dh2

¼ q0 þ 1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ z2

p dq2 þ dz2
� �

:

(4.4)

Here, the conformal map in the complex plane is given by

f 7! f2 : R�0 � R�0 ! qz�half plane; (4.5)

or rather

q ¼ r2 sin2 h; z ¼ r2 cos2 h: (4.6)

If xi denote cartesian coordinates then the Killing fields

@/1 ¼ �x2@x1 þ x1@x2 ; @/2 ¼ �x4@x3 þ x3@x4 ; (4.7)

vanish on the rods C1 ¼ ½0;1Þ and C2 ¼ ð�1; 0�, respectively. Therefore the rod
structures for these two rods are (1, 0) and (0, 1). Moreover, because the origin p1 in
the qz-plane corresponds to the vertex of the right-half quadrant under the inverse con-
formal map this is called a corner. For a general set of rod structures, a corner point pl
is one which separates two axis rods, and a pole point is one which separates a horizon
rod from an axis rod.
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Potential constants cl ¼ ðc1l ; c2l Þ 2 R
2 are prescribed on each axis rod Cl, and are used

as boundary conditions for the twist potentials xijCl
¼ cil . The constants may be chosen

arbitrarily modulo the condition that they do not vary between adjacent rods separated
by a corner. This is necessary for the construction of a model map in the next section,
as well as a well-defined notion of angular momentum. In particular, the potential con-
stants can only change after passing over a horizon rod, and this difference yields the
angular momenta for each horizon component. Let S denote the 3-dimensional horizon
cross section component associated with a horizon rod Ck ¼ ½zk; zk�1�, then (2.10),
(2.12), and (2.13) may be used to compute the Komar angular momenta of this compo-
nent by

J i ¼ 1
8p

ð
S
? dg ið Þ ¼ p

2

ð
Ck

ig 1ð Þig 2ð Þ ? dg ið Þ ¼ p
4

ð
Ck

dxi ¼ p
4
xi pk�1ð Þ � xi pkð Þ½ �: (4.8)

A rod data set D consists of the collection of corners and poles fplg, rod structures
fðml; nlÞg, and potential constants fclg.
Consider now the topology of spacetime in a neighborhood of a corner point pl

which separates axis rods Cl and Clþ1 with rod structure (ml, nl) and ðmlþ1; nlþ1Þ. As is
shown in the Appendix, new 2p-periodic coordinates ð�/1

; �/
2Þ may be chosen so that

the rod structures with respect to these coordinates are given by (1, 0) and (q, p),
p 6¼ 0. That is, the Killing fields @�/

1 and q@�/
1 þ p@�/

2 vanish on Cl and Clþ1, respect-
ively. Next, take any semicircle in the qz-half plane (orbit space) centered at pl that con-
nects a point on the interior of Cl to a point on the interior of Clþ1. Note that each
point on the interior of this semicircle represents a 2-torus in a constant time slice. By
analyzing which 1-cycles collapse at the end points it follows that the semicircle repre-
sents a lens space L (p, q). Recall that Lð1; qÞ ffi S3, so that when p ¼ 61 a neighbor-
hood of the corner in a time slice is foliated by spheres, or rather a neighborhood of
the corner in the spacetime is diffeomorphic to R

5. It turns out that p ¼ 61 if and only
if

det
ml nl
mlþ1 nlþ1

� �
¼ 61; (4.9)

and therefore the spacetime has trivial topology in a neighborhood of the corner if and
only if the admissibility condition (4.9) holds, otherwise it has an orbifold singularity.
The admissibility condition can be interpreted as stating that the intersection number of
the two 1-cycles that degenerate on either side of the corner is equal to ±1.
In addition to (4.9), the main results of this paper rely on what will be referred to as

the compatibility condition. This supplementary requirement is only valid when two
consecutive corners are present. As described above, let pl be a corner separating axis
rods Cl and Clþ1, and suppose that there is another corner pl�1 at the top end of Cl

connecting it to axis rod Cl�1. Assuming that the admissibility condition (4.9) holds at
the two points pl�1 and pl, it may be arranged that these two determinants are þ1 by
multiplying each component of the rod structures by �1 if necessary. Observe that this
operation on the rod structures does not change their properties, since the linear combi-
nations of Killing fields that vanish at the rods is preserved. The compatibility condition
then states that the first component of the rod structures for Cl�1 and Clþ1 have oppos-
ite sign if both are nonzero
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ml�1mlþ1 � 0: (4.10)

This technical condition is used only in the construction of the model map in the
next section. Unlike the admissibility condition, it is not known whether Theorem 1
remains true without it. As mentioned in the introduction, if the admissibility condition
is not assumed so that orbifold singularities are allowed then (4.10) should be enhanced
to the generalized compatibility condition

ml�1mlþ1 det
ml�1 nl�1

ml nl

� �
det

ml nl
mlþ1 nlþ1

� �
� 0: (4.11)

Note that the only way this quantity can vanish is if either ml�1 ¼ 0 or mlþ1 ¼ 0,
since for a corner the determinant is always nonzero.
Each connected component cross section of the event horizon has one of the follow-

ing topologies [23]: the sphere S3, the ring S1 � S2, or a lens space L(p, q). These mani-
folds have a singular foliation whose leaves are 2-dimensional tori, and whose singular
leaves are circles resulting from the degeneration of a 1-cycle in the torus. This can be
observed geometrically from the canonical metric on each manifold as follows. The
round metric on S3 in Hopf coordinates is given by

dh2 þ sin2 h d/1
� �2 þ cos2 h d/2

� �2
; (4.12)

where h 2 ½0; p=2�;/i 2 ½0; 2p�. For 0< h<p=2 the level set fh ¼ const:g is a flat 2-torus,
and when h ¼ 0; p=2 the level sets degenerates to S1. These singular leaves are character-
ized by the fact that the Killing fields @/1 and @/2 vanish at h ¼ 0; p=2, respectively. Thus
if h is viewed as parameterizing a horizon rod, then the rod structure at the two poles (end
points) is fð1; 0Þ; ð0; 1Þg. For the ring S1 � S2 the canonical product metric is

dh2 þ sin2 h d/1
� �2h i

þ d/2
� �2

; (4.13)

where h 2 ½0; p�;/i 2 ½0; 2p�. The torus fibers are once again the level sets of h, and the
singular leaves occur when h ¼ 0; p and coincide with the vanishing of the Killing field
@/1 , while the other Killing field @/2 never degenerates. The associated rod structure at
the poles is then fð1; 0Þ; ð1; 0Þg.
Consider now the lens space Lðp; qÞ ¼ S3=Zp which inherits its canonical metric

dh2 þ sin2 h d~/
1

� �2
þ cos2 h d~/

2
� �2

(4.14)

from the 3-sphere, where

~/
1 ¼ /1� q

p
/2; ~/

2 ¼ 1
p
/2; (4.15)

with h 2 ½0;p=2�;/i 2 ½0; 2p�. Since /2 has period 2p, the following identifications are
made

~/
1 	 ~/

1 þ 2pq
p

; ~/
2 	 ~/

2 þ 2p
p
: (4.16)

The singular leaves at h ¼ 0; p=2 are characterized by the vanishing of the Killing fields

@~/
1 ¼ @/1 ; @~/

2 ¼ q@/1 þ p@/2 ; (4.17)
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respectively, so that the associated rod structure at the poles is fð1; 0Þ; ðq; pÞg. Recall the
model of the lens space as a quotient space of the unit sphere S3 ¼ fðz1; z2Þ 2
C

2j jz1j2 þ jz2j2 ¼ 1g via the equivalence relation

z1; z2ð Þ ¼ r1e
~/
1
i; r2e

~/
2
i

� �
	 r1e

~/
1þ2pq=pð Þi; r2e ~/

2þ2p=pð Þi
� �

: (4.18)

Here, the pair of variables (r1, r2) correspond to ðsinh; cos hÞ in the coordinates with
which the lens space metric is written. A visualization of the lens space may be obtained by
appropriately identifying the top, bottom, and sides of a solid cylinder as in Figure 1.
Namely, first collapse the external cylinder fh ¼ p=2g by identifying each vertical segment
to a point, then identify the top and bottom discs via an orthogonal projection after per-
forming a 2pq=p rotation of the top disc. The singular torus fibers occur where the action
of the coordinate fields @~/

1 and @~/
2 degenerate, that is at h ¼ 0; p=2.

Using a similar analysis the topology of arbitrary rod structures may be understood.
In Figure 2 four different rod structures for the orbit space are given, labeled by the
topology of their horizons. Consider the first rod structure on the left in this diagram.
The two semi-infinite rods are foliated by circle fibers none of which collapse, and
hence they are 2-planes with an open disc removed. The finite rod has rod structure (0,
0) meaning that none of the rotational Killing fields vanish there. It is foliated by 2-tori
such that each of the two 1-cycles generators in the torus degenerate on opposite poles.
According to the description above, this yields an 3-sphere. Similarly, any simple curve
in the qz-plane connecting the two semi-infinite rods also produces an S3. In the second
and third rod structures of Figure 2, it is clear that, by comparing with the singular foli-
ations described above, these horizon rods represent a ring S1 � S2 and a lens Lðp; 1Þ,
respectively. In these two examples there is also a different type of rod not present in
the first example, namely a finite rod bounded by a pole on top and a corner on the
bottom. This type of rod is foliated by circles with a singular leaf at the corner, and
thus it gives a topological disc. The last example in Figure 2 has two horizon compo-
nents in which the inner one is a lens Lðp; 1Þ and the outer one is a ring S1 � S2, and
hence the name ‘Black Lens Saturn’.
Observe that the rod structures of Figure 2 satisfy the admissibility condition (4.9)

with þ1 determinants, and the compatibility condition is vacuous. A natural question
arises whether it is possible to produce a rod structure with a single horizon component
having the general lens topology L(p, q) without restricting to q¼ 1, while at the same

φ2

φ1

θ

Figure 1. Identification Space.
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time satisfying the admissibility condition (4.9) and compatibility condition (4.10). The
following proposition answers this question affirmatively.

Proposition 3. Let p and q be integers satisfying gcdðp; qÞ ¼ 1 and p> q � 1. Then there
exists a rod structure appropriate for an asymptotically flat spacetime of the form

1; 0ð Þ; 0; 0ð Þ; q; pð Þ; q1; p1ð Þ; :::; qn; pnð Þ; 0;61ð Þ� 	
; (4.19)

which has a single lens space horizon L(p, q), satisfies the admissibility condition (4.9)
with positive determinants, and satisfies the compatibility condition (4.10).

As an example observe that the single lens horizon L(9, 7) is realized by the rod
structures

1; 0ð Þ; 0; 0ð Þ; 7; 9ð Þ; �4;�5ð Þ; �3;�4ð Þ; 1; 1ð Þ; 0; 1ð Þ� 	
; (4.20)

which clearly satisfy the admissibility condition with positive determinants as well as
the compatibility condition. In order to prove Proposition 3 we need a slightly modified
version of Bezout’s Lemma.

Lemma 4. Let a 6¼ 1 and b 6¼ 1 be relatively prime positive integers, then there exist inte-
gers x and y of the same sign such that

ax�by ¼ 1; (4.21)

with gcdðx; yÞ ¼ 1 and 1 � jxj< b; 1 � jyj< a. Furthermore, if a< b then jxj � jyj.
Proof. By Bezout’s Lemma there exist integers �x;�y such that a�x þ b�y ¼ 1 with j�xj � b
and j�yj � a. Moreover, one of these may be an equality only if ajb or bja. Since
gcdða; bÞ ¼ 1 it must hold that j�xj< b and j�yj< a. Furthermore, since a; b> 1 we must
have one of �x;�y negative and the other positive. Thus there are ~x> 0;~y> 0 so that
a~x�b~y ¼ 61, with ~x< b and ~y< a. If gcdð~x;~yÞ ¼ c> 1 then ~x ¼ cbx;~y ¼ cby and
cðabx�bbyÞ ¼ 61. This, however, is impossible since c> 1, and hence gcdð~x;~yÞ ¼ 1. If
a~x�b~y ¼ 1 then choose ðx; yÞ ¼ ð~x;~yÞ, and if a~x�b~y ¼ �1 then choose
ðx; yÞ ¼ ð�~x;�~yÞ. Lastly, neither x nor y may vanish as a; b> 1.
Consider now the case when a< b. It then follows from the equation ax�by ¼ 1 that

either x> y (when x; y> 0) or x � y (when x; y< 0). Hence jxj � jyj when a< b. w

S3

(1, 0)

(0, 0)

(0, 1)

S1 × S2

(1, 0)

(0, 0)

(1, 0)

(0, 1)

L(p, 1)

(1, 0)

(0, 0)

(1, p)

(0, 1)

Black Lens Saturn

(1, 0)

(1, 0)

(0, 0)

(0, 0)

(1, p)

(0, 1)

Figure 2. Rod Strucures.
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Proof of Proposition 3. If q¼ 1 then append the rod structure (0, 1) after (q, p) to solve
the problem. Assume now that p and q are relatively prime with p> q> 1. Apply
Bezout’s Lemma with ða; bÞ ¼ ðq; pÞ to find a pair (q1, p1) of relatively prime integers
satisfying

qp1�pq1 ¼ 1 (4.22)

as well as

1 � jq1j< q; 1 � jp1j< p: (4.23)

If jq1j ¼ 1, then by appending the rod structure ð0;61Þ after ðq1; p1Þ ¼ ð61; p1Þ the
desired result follows.
Consider now the case when jq1j> 1. Again apply Bezout’s Lemma to find ð�q2; �p2Þ

relatively prime and satisfying

jq1j�p2�jp1j�q2 ¼ 1 (4.24)

as well as

1 � j�q2j< jq1j; 1 � j�p2j< jp1j: (4.25)

Next define ð~q2; ~p2Þ ¼ 6ð�q2; �p2Þ where the sign is chosen so that

q1~p2�p1~q2 ¼ 1: (4.26)

The compatibility condition require q0q2 � 0, and since q0 ¼ q> 0 this can be
achieved by setting ðq2; p2Þ ¼ ð~q2; ~p2Þ if ~q2 < 0, and ðq2; p2Þ ¼ ð~q2�jq1j; ~p2�jp1jÞ if
~q2 > 0. Clearly this also satisfies the admissibility condition

q1p2�p1q2 ¼ 1 (4.27)

as well as

1 � jq2j< jq1j; 1 � jp2j< jp1j; (4.28)

and (4.27) implies that q2 and p2 are relatively prime. Note that if it were the case that
q0 < 0 then ðjq1j; jp1jÞ should be added in the last step, rather than subtracted, in order
to satisfy the compatibility condition. This iterative process may be continued until
jqnj ¼ 1. Then at that point, append the rod structure ð0;61Þ after ðqn; pnÞ ¼ ð61; pnÞ
in order to achieve the stated outcome. w

We end this section by noting an important property of the horizon rods, which cor-
responds to a well-known result in 4-dimensional spacetime [25, Proposition 9.3.1].
Recall that a horizon rod is defined as an interval on the z-axis where the matrix ðfijÞ is
invertible, so that the torus fibers are nondegenerate there. These fibers together with
the horizon rod form a codimension 2 surface in the spacetime, which will be referred
to as a horizon rod surface.

Lemma 5. A horizon rod surface is a future apparent horizon, and within the t¼ 0 slice
it is a minimal surface.

Proof. At the beginning of this section we found that associated with a horizon rod
there is a Killing field
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K ¼ @t þ X1@/1 þ X2@/2 ; Xi 2 R; (4.29)

which is null on the horizon rod surface S. Since the tangent space to S is spanned by
the vector fields @z and @/i , it easily follows from the structure of the spacetime metric
(4.1) and the values for Xi that K is normal to S. The second fundamental form of S in
the K-direction is then given by

IIab ¼ g r@aK; @bð Þ; (4.30)

where @a denotes a tangent vector to S. Since K is Killing

g r@aK; @bð Þ ¼ �g r@bK; @að Þ; (4.31)

and hence IIab is antisymmetric. Let

c ¼ f�1e2rdz2 þ fijd/
id/j (4.32)

be the induced metric on the horizon rod surface, then the future null expansion is

hþ ¼ cabIIab ¼ 0; (4.33)

since cab is symmetric. By definition, S is then a future apparent horizon.
In order to show that S is minimal within the t¼ 0 slice, let

� ¼ ratð Þ@a ¼ gtt@t þ gt/
i

@/i (4.34)

be the unnormalized normal to the slice. Then the second fundamental form of the slice
is given by

j�jkcd ¼ g r@c�; @dð Þ: (4.35)

Observe that

j�jk @/i ; @/j
� � ¼ gttg r@/i

@t; @/j

� �
þ gt/

l

g r@/i
@/l ; @/j

� �
(4.36)

is antisymmetric, and

j�jk @z; @zð Þ ¼ gttg r@z@t; @zð Þ þ gt/
l

g r@z@/l ; @z
� � ¼ 0; (4.37)

since @t; @/i are Killing. It follows that

TrSk ¼ cabkab ¼ fe�2rk @z; @zð Þ þ f ijk @/i ; @/j
� � ¼ 0: (4.38)

Let n denote the outward unit normal to S within the t¼ 0 slice, then nþ �=j�j ¼
wK for some function w on S. We then have

0 ¼ whþ ¼ HS þ TrSk ¼ HS (4.39)

where HS denotes mean curvature, and therefore S is a minimal surface within the
slice. w

5. The model map

In this section a so-called model map U0 : R
3 n C ! ~X ffi SLð3;RÞ=SOð3Þ is con-

structed, which encodes the prescribed asymptotic behavior near the axis and at infinity
for the desired harmonic map, and also has finite tension. It may be viewed as an
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approximate solution to the singular harmonic map problem near the axes and
at infinity.
The construction bears some similarity to the one in [26], but is more complex due

to the abundance of rod structures, and the fact that even the non-rotating case is
already nonlinear. We detail the construction in the case of a single component but the
same approach works for all rod structures satisfying the compatibility condition.
Where needed, we will point out differences required to make the approach work in the
more general case.
The canonical Riemannian metric on ~X was constructed in Section 3, and it was

noted that this space is parameterized by a 2� 2 symmetric positive definite matrix F ¼
ðfijÞ and a 2-vector x ¼ ðx1;x2Þt. If f ¼ det F then the metric in these coordinates [27]
is given by

~g ¼ 1
4
df 2

f 2
þ 1
4
f ijf kldfikdfjl þ 1

2

f ijdxidxj

f

¼ 1
4
Tr F�1dFð Þ½ �2 þ 1

4
Tr F�1dF F�1dFð Þ þ 1

2
dxt F�1 dx

f
:

(5.1)

A computation shows that the components of the tension (2.26) of a map U0 ¼
ðF;xÞ are

sflj ¼ Dflj�f kmrlflmrlfkj þ f�1rlxlrlxj;
sxj ¼ Dxj�f klrlfjlrlxk�f�1f lmrlflmrlxj;

(5.2)

where D is the Laplacian and r the connection associated with the flat metric (2.21) on
R

3. This yields the harmonic map equations s¼ 0 in these coordinates. Let

H ¼ F�1rF; G ¼ f�1F�1 rxð Þ2; K ¼ f�1F�1rx; (5.3)

that is

Hl
i
j ¼ f ikrlfkj; Gi

j ¼ f�1f ikrlxk rlxj; Kl
i ¼ f�1f ijrlxj; (5.4)

and observe that

div H þ Gð Þij ¼ f ilsflj ; div Kð Þi ¼ f�1f ijsxj : (5.5)

We then have

jsj2 ¼ 1
4
Tr div H þ Gð Þ½ �2 þ 1

4
Tr div H þ Gð Þ div H þ Gð Þ½ � þ 1

2
f div Kð ÞtF div Kð Þ: (5.6)

In order to state the main result of this section we will say that a map U0 ¼ ðF;xÞ
respects a rod data set D, if (ml, nl) is the rod structure and cl the potential constant
within D for an axis rod Cl then

ml; nlð Þ 2 ker FjCl
; xjCl

¼ cl: (5.7)

Theorem 6. Given a rod data set D satisfying the generalized compatibility condition
(4.11), there exists a model map U0 : R

3 n C ! ~X with uniformly bounded tension having
decay jsj ¼ Oðr�7=2Þ which respects D.
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Proof. As mentioned above, we give a detailed proof for the case of the rod configur-
ation corresponding to a single lens horizon Lðp; 1Þ, see Figure 3. However, we will
indicate below the changes required for the general case.

The only requirement of the map U0 within the white area in Figure 3 will be that it
is a smooth extension of the map which will be defined explicitly in the gray region.
This can easily be achieved since the white area remains a fixed distance away from the
singular set C, and this clearly implies that the tension is bounded within the
white area.
For convenience, we define a pair of harmonic functions needed in the construction.

For a 2 R let ra be the Euclidean distance from the point z¼ a on the z-axis, and let ha
be the polar angle about this center. Then set

ua ¼ log ra� z�að Þð Þ ¼ log 2ra sin
2 ha=2ð Þ� �

; va ¼ log ra þ z�að Þð Þ ¼ log 2ra cos
2 ha=2ð Þ� �

:

(5.8)

It is easy to check that these functions are harmonic. Furthermore ua behaves like
2 log q near the z> a part of the z-axis and is locally bounded below on the z< a part
of the z-axis. Also, clearly uaðq; z�aÞ ¼ vaðq;�ðz�aÞÞ and hence va behaves like 2 log q
on the z< a part of the z-axis and is locally bounded below on the z> a part of the
z-axis.
We begin with the definition of U0 outside a large ball. The map there is based on

the Minkowski metric (4.4) and is given by

F ¼ eu0� log 2 0
0 ev0� log 2

� �
; x ¼ x hð Þ; (5.9)

where h ¼ h0. The function xðhÞ is smooth and chosen so that x is the appropriate
constant on ½0; �� [ ½p��; p�, with 0<�<p=2 fixed so that x is constant on the regions

N

S

C

rod structure (1, 0)

rod structure (0, 1)

rod structure (0, 0)

rod structure (1, p)

northern
transition
region

southern
transition
region

N1

N0

S1

S0

Figure 3. Model map construction.
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N 0 and S0. Observe that this map is harmonic wherever x is constant, since G¼ 0 and
div F�1rF ¼ 0. It will now be shown that the tension jsj decays like Oðr�7=2Þ, which as
will be seen later is sufficient for the main existence and uniqueness arguments. Since
the tension vanishes for h 2 ½0; �� [ ½p��; p�, we need only estimate jsj on the interval
½�; p���. An explicit calculation gives

f div Kð ÞtF divKð Þ ¼ 4csc2h sin2 h=2ð Þ
r7

½csc4 h=2ð Þ x00
1� cschþ 2cothð Þx0

1

� �2
þ 4csc2h x00

2 þ csch�2cothð Þx0
2

� �2�
¼ O r�7ð Þ;

(5.10)

and

G ¼ csc2 h=2ð Þ sec 2 h=2ð Þ
r5

x02
1 csc

2 h=2ð Þ x0
1x2csc2 h=2ð Þ

x0
1x2 sec 2 h=2ð Þ x02

2 sec 2 h=2ð Þ
� �

¼ O r�5ð Þ: (5.11)

Since divH ¼ 0, it follows that jsj ¼ Oðr�7=2Þ.
It remains to define the map inside the two tubular neighborhoods capped with

hemispheres. Consider first the northern tubular neighborhood. Let z¼ b indicate the
location of the point N. Then in this region define

F ¼ eu 0
0 ev

� �
; x ¼ c1; (5.12)

where

u ¼ k u0� log 2ð Þ þ 1�kð Þub; v ¼ k v0� log 2ð Þ; (5.13)

and k ¼ kðzÞ is a smooth cutoff function with k¼ 1 in N 0 and k¼ 0 in N 1. This leads
to the correct rod structure, and the definitions outside the large ball and in N 0 agree.
Moreover

divH ¼ D k u0�ubð Þ� �
0

0 D kv0½ �
� �

; (5.14)

which is bounded. Indeed

D k u0�ubð Þ� � ¼ u0�ubð ÞDkþ 2 @zkð Þ@z u0�ubð Þ; (5.15)

and @zua ¼ 1=ra (on the z-axis) for a ¼ 0; b is clearly bounded in the transition region.
Similarly D½kv0� is bounded since @zv0 ¼ �1=r0 ¼ �1=r (on the z-axis) is bounded. It
follows that jsj is bounded in the northern region, as G¼ 0 and K¼ 0 due to the con-
stancy of x.
Consider now the southern tubular neighborhood. The map in S0 is defined exactly

as in N 0, that is with the same F but with x ¼ c2. In fact x is set to be the constant c2
in the entire southern tubular neighborhood. Next, let the south pole S and corner
point C be located at z¼ c and z¼ 0, respectively. Then in S1 the remainder of the map
is defined by

F ¼ hF0h
t ¼ h

eu 0
0 ev

� �
ht; (5.16)
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where

h ¼ 1 �p
0 1

� �
(5.17)

and v ¼ v0� log 2; u ¼ u0�uc. As before div ðF�1
0 rF0Þ ¼ 0 and hence

div F�1rFð Þ ¼ h�tdiv F�1
0 rF0

� �
ht ¼ 0; (5.18)

where for notational convenience h�t :¼ ðhtÞ�1. It follows that U0 is a harmonic map in
S1. In order to verify that the rod structure is correct, observe that

F
1
0

� �
¼ eu þ p2ev

�pev

� �
; F

0
1

� �
¼ �pev

ev

� �
; F

1
p

� �
¼ eu

0

� �
: (5.19)

From this, it is clear that the only direction which degenerates on the disk rod
(between S and C) is ð1; pÞ, and the only direction that degenerates on the south rod
(below C) is (0, 1). Furthermore, since F0 is nonsingular on the horizon rod the same is
true of F.
Lastly, the map will be defined on the southern transition region. Recall that x is con-

stant. Moreover, if F defined in S1 can be transitioned to a diagonal F satisfying
div ðF�1rFÞ ¼ 0, then we can complete the transition in the same manner as in the north-
ern transition region. Thus, it remains to demonstrate the transition to a diagonal F. Set

F ¼ h zð ÞF0h zð Þt; h zð Þ ¼ 1 �pk zð Þ
0 1

� �
; (5.20)

where F0 is as above, and kðzÞ is a smooth cutoff function which is equal to 1 near S1

and equal to 0 near S0. To verify that div ðF�1rFÞ is bounded in the transition region
compute

F�1rF ¼ F0h
tð Þ�1

h�1rhð ÞF0ht þ h�t F�1
0 rF0

� �
ht þ h�trh; (5.21)

and

div F�1rFð Þ ¼ r F0h
tð Þ�1

� �
� h�1rhð ÞF0ht þ F0h

tð Þ�1
div h�1rhð ÞF0ht

þ F0h
tð Þ�1

h�1rhð Þ � r F0h
tð Þ þ rh�tð Þ � F�1

0 rF0
� �

ht

þ h�tdiv F�1
0 rF0

� �
ht þ h�t F�1

0 rF0
� � � rht þ div h�trhð Þ:

(5.22)

Each term may now be estimated individually. First note that the fifth term vanishes
and the seventh term is clearly bounded. Furthermore

F�1
0 rF0 ¼ ru 0

0 rv

� �
; (5.23)

and since h depends only on z we may replace ru and rv in (5.22) by @zu and @zv,
respectively. As explained above these z-derivatives are bounded, and since ht, h�t; @zht

and @zh�t are bounded it follows that the fourth and sixth terms are bounded. Next
observe that the second term becomes

F0h
tð Þ�1

div h�1rhð ÞF0ht ¼ pev�uk00 pk �1
p2k2 �pk

� �
; (5.24)
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which is bounded. Furthermore the sum of the first and third terms is

r F0h
tð Þ�1

� �
� h�1rhð ÞF0ht þ F0h

tð Þ�1
h�1rhð Þ � r F0h

tð Þ

¼ pev�uk0
p k @zv�@zuð Þ þ k0
� �

@zu�@zv

p2k k @zv�@zuð Þ þ 2k0
� � �p k @zv�@zuð Þ þ k0

� � !
;

(5.25)

which again is bounded. It follows that jsj is bounded in the southern region, and this
completes the proof for the rod data set associated with a single component lens hori-
zon Lðp; 1Þ.
Remark 1. We note that in the argument above showing that div ðF�1rFÞ is bounded no
use was made of the fact that p is an integer. This is will be important in what follows.

Consider now the case of a general rod data set, in which consecutive corners may be
present. In this situation, the map will be defined inductively one corner at a time, with a
transition region between any two consecutive corners, as well as a transition region on
each of the two semi-infinite rods. The only feature which remains to be treated is the case
of two consecutive corners. Suppose then that consecutive corners occur at points CN and
CS along the z-axis, with z ¼ a and z ¼ b at CN and CS, respectively. Let there be rod struc-
tures (m, n) above CN, (p, q) between CN and CS, and (r, s) below CS. It will be assumed
that m 6¼ 0; p 6¼ 0; r 6¼ 0, and that the generalized compatibility condition is satisfied

mr ps�rqð Þ mq�npð Þ � 0: (5.26)

Note that this quantity is nonzero (and hence negative) since ps�rq 6¼ 0 and mq�np 6¼ 0
due to the fact that CN and CS are genuine corners.
Let v ¼ ub�ua and u ¼ 2 log q�v and set

F0 ¼ eu 0
0 ev

� �
; (5.27)

so that F0 gives rod structure (1, 0) above CN and below CS, and (0, 1) between CN and
CS. Next define FN ¼ hNF0htN near CN and FS ¼ hSF0htS near CS, where

hN ¼ �q=p �n=m
1 1

� �
; hS ¼ �q=p �s=r

1 1

� �
: (5.28)

It is straightforward to check that the maps FN and FS yield the desired rod structures
on each of the three rods in neighborhoods of CN and CS respectively, and that ðFN ;xÞ
and ðFS;xÞ are harmonic whenever x is constant. This latter property arises from the
fact that although F 7! hFht;x 7! hx is an isometry of ~X if and only if det h ¼ 61, this
determinant condition is not required here for the harmonic map equations to be satis-
fied since x is constant. It remains to define F in a transition region between CN and
CS. In order to do this first let �FN ¼ kF0k

t and �FS ¼ F0, where

k ¼ h�1
S hN ¼

1
p ms�nrð Þ
m ps� qrð Þ

0 � r mq�npð Þ
m ps� qrð Þ

0BBB@
1CCCA: (5.29)
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If there is a smooth transition k ¼ kðzÞ from h�1
S hN to

1
p ms�nrð Þ
m ps� qrð Þ

0 1

0@ 1A; (5.30)

then by Remark 1 it is clear that we can further transition k to the identity as in the
arguments above the remark, since the only difference between (5.30) and h in (5.17) is
the fact that the off-diagonal element is an integer in the latter matrix. It follows that �F
would then be defined in the whole region encompassing both corners, having the
property that it is equal to �FN near CN and equal to �FS near CS. Finally, taking F ¼
hS�FhtS produces a map with finite tension which coincides with FN near CN and FS
near CS.
It remains to define the transition from (5.29) to (5.30). Set

k zð Þ ¼ 1 1
0 k zð Þ

� �
; 1 ¼ p ms�nrð Þ

m ps� qrð Þ ; (5.31)

where kðzÞ is a smooth cutoff function satisfying kðzÞ ¼ � rðmq�npÞ
mðps�qrÞ near CN and kðzÞ ¼

1 for z< ðaþ bÞ=2. According to the generalized compatibility condition (5.26), kðzÞ
may be chosen strictly positive. The arguments following (5.22) may now be repeated to
show that the tension remains bounded. In particular, the terms four through seven of
(5.22) are bounded in the current setting. By denoting Fk ¼ F0k

t the second term
becomes

F�1
k div k�1rkð ÞFk ¼ 1ev�uk0

� 1
k

�1

12 þ eu�v

k2
12eu�v

1k

0BB@
1CCA; (5.32)

and the sum of the first and third terms is

rF�1
k � k�1rkð ÞFk þ F�1

k k�1rkð Þ � rFk

¼ 1ev�uk0

1 uz�vzð Þ
k

uz�vz� k0

k
12k uz�vzð Þ þ 12 þ eu�vk0

� �
k3

1 vz�uzð Þ
k

0BBB@
1CCCA; (5.33)

both of which are bounded. Similar arguments may be used to treat the cases when one
of m, p, r is zero. w

6. Energy estimates

In the rank 1 case treated in [26], a priori estimates for the singular harmonic map
problem relied heavily on the uniformly strict negative curvature of the target spaces. In
the current setting the target symmetric space X ¼ SLð3;RÞ=SOð3Þ is of rank 2, that is
the dimension of a maximal flat subspace is 2. It follows that X is of nonpositive curva-
ture and the methods of [26] breaks down. In order to overcome this difficulty, we will
employ a generalization of horospherical coordinates from hyperbolic space so that the
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flat directions as well as the coordinate planes of strict negative curvature are explicitly
identified, and are thus more easily exploited. Coordinate systems of the symmetric
space X ¼ SLð3;RÞ=SOð3Þ have been investigated previously, as in [28], yet what we
need requires a different set of properties.
Consider the Iwasawa decomposition [24] of G ¼ SLð3;RÞ given by G¼KAN where

the three subgroups are K ¼ SOð3Þ,
A ¼ diag k1; k2; k3ð Þ j ki > 0; for i ¼ 1; 2; 3; k1k2k3 ¼ 1

� 	
; (6.1)

and

N ¼ upper triangular matrices with 1’s on the diagonalf g: (6.2)

For each g 2 G there exist unique elements k 2 K; a 2 A, and n 2 N such that g¼ kan.
Moreover by taking inverses we have G¼NAK, and hence X ¼ G=K may be identified
with the subgroup NA. Let x0 ¼ ½Id� 2 X then the orbit A � x0 represents a maximal flat
so that it is a totally geodesic submanifold with vanishing curvature. The last property
follows from the curvature formula in Section 3, and the fact that the Lie algebra

a ¼ diag k1; k2; k3ð Þ j
X

ki ¼ 0
n o

(6.3)

associated with A is abelian ie. ½a1; a2� ¼ 0 for all a1; a2 2 a. On the other hand, the
orbit N � x0 is a horocycle determined by the Weyl chamber

aþ ¼ diag k1; k2; k3ð Þ j k1 > k2 > k3;
X

ki ¼ 0
n o

� a: (6.4)

It is a closed submanifold with the property that every flat which is asymptotic to the
Weyl chamber at infinity

wþ :¼ Aþ � x0ð Þ 1ð Þ ¼ c 1ð Þjc sð Þ ¼ exp saþð Þ � x0; aþ 2 aþ
n o

; (6.5)

intersects the horocycle orthogonally in exactly one point; recall that a flat F is asymp-
totic to a Weyl chamber w at infinity if w � Fð1Þ. In particular, the horocycle N � x0
and flat F x0 :¼ A � x0 intersect orthogonally at x0, as can be seen from the orthogonality
between the respective Lie algebras n (all upper triangular matrices with zeros on the
diagonal) and a with respect to the Riemannian metric at x0 given in Section 3.
A foliation by flats may be constructed [24] from the action of N. More precisely

X ¼ [
n2N

n � F x0 ; (6.6)

where n � F x0 \ n0 � F x0 ¼ ; for n 6¼ n0 and each n � F x0 is asymptotic to the Weyl
chamber wþ. Since each point x 2 X can be uniquely written as na � x0, and a � F x0 ¼
F x0 as sets, the assignment x 7!F x ¼ na � F x0 defines a smooth foliation of X whose
leaves are the set of totally geodesic submanifolds fn � Fx0gn2N , each of which is isomet-
ric to R

2. By homogeneity of X ¼ G=K, the 3-dimensional horocycle N � x and the
2-dimensional flat F x intersect orthogonally at (and only at) x. In this sense, the pair
(a, n) gives a horocyclic orthogonal coordinate system for X.
Let cx0ðsÞ be an arc-length parameterized geodesic satisfying cx0ð0Þ ¼ x0, and

cx0ð1Þ 2 wþ. Equivalently cx0
0ð0Þ 2 Tx0X is an element of a Weyl chamber aþ, so that

cx0 is regular in the sense that it is contained in a unique 2-dimensional flat, namely
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F x0 . Since the action by na on X is isometric and preserves the combinatorial structure
of the Weyl chambers projected to Xð1Þ, it follows that cxðsÞ :¼ na � cx0ðsÞ is a regular
geodesic contained in the flat n � F x0 , and is asymptotic to wþ. In fact, the distance
dXðn � cx0ðsÞ; cx0ðsÞÞ decays exponentially and dXðna � cx0ðsÞ; cx0ðsÞÞ ! dXða � x0; x0Þ.
On the flat F x0 there is a natural Euclidean coordinate system r ¼ ðr1; r2Þ, where the

origin is identified with x0, the r1-axis coincides with the regular geodesic cx0ðsÞ, and
the r2-axis is the orthogonal line to cx0ðsÞ. The r1 axis is chosen to have the opposite
orientation from that of cx0 , so that r1 ! 1 corresponds to s ! �1, and similarly for
r2. The (r1, r2) coordinate system may then be pushed forward to the flat n � F x0 where
the origin is identified with n � x0, the r1-axis is the geodesic cn�x0ðsÞ, and the r2-axis is
again the orthogonal line to cnx0ðsÞ in the flat. Hence, the horocyclic coordinates (a, n)
may be represented by (r, n). Moreover, for each n0 2 N there is an isometry which pre-
serves the r-coordinates and for each r0 there is a diffeomorphism which preserves the
n-coordinates

Nn0 : r1; r2; nð Þ 7! r1; r2; n
0nð Þ; Nr0 : r1; r2; nð Þ 7! r1 þ r01; r2 þ r02; n

� �
: (6.7)

The r-translations map horocycles to horocylces, and thus if h ¼ ðh1; h2; h3Þ is a sys-
tem of global coordinates on N � x0 ffi R

3, they may be pushed forward to all horocycles
by the action of Nr0 . It follows that ðr; hÞ form a system of global coordinates on X with
the property that the coordinate fields @ri and @hj are orthogonal. By combining the
observations above, the G-invariant Riemannian metric on X can be expressed in these
coordinates by

g ¼ dr2 þ Q dh; dhð Þ ¼ dr21 þ dr22 þ Qijdh
idhj; (6.8)

where the coefficients Qij ¼ Qijðr; hÞ are smooth functions.
As a demonstration of this framework in the simpler setting of rank 1, consider the

hyperbolic plane H
2. The half plane coordinates (U, V), U> 0 may be transformed to

orthogonal horocyclic coordinates ðr; hÞ by r ¼ logU and h ¼ V to find

g�1 ¼
dU2 þ dV2

U2
¼ dr2 þ e�2rdh2: (6.9)

Here the flat F x0 in the upper half plane model with x0 ¼ ð0; 1Þ is the positive U-axis
fV ¼ 0g, and the horocycle N � x0 is the horizontal line fU ¼ 1g.
For any unit tangent vector Z 2 TxX perpendicular to F x, the sectional curvature

K Z; c0x 0ð Þ� � ¼ hR Z; c0x 0ð Þ� �
c0x 0ð Þ;Zi (6.10)

is negative, since F x is a flat of maximal dimension. Moreover, such curvatures are uni-
formly negative (bounded away from zero) by compactness of the set of unit normal
vectors to F x and the homogeneity of X. The uniform (in x as well as choice of
2-plane) upper and the lower bounds of these curvatures will be denoted by

�c2 � K � �b2 < 0: (6.11)

Lemma 7. Let J be a Jacobi field perpendicular to the flat F x along an arc-length para-
meterized geodesic cðsÞ 2 F x. Assume further that the Jacobi field is stable in that it is
bounded as s ! �1, then
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ebsjJ 0ð Þj � jJ sð Þj � ecsjJ 0ð Þj: (6.12)

Proof. This follows with slight modification from the proof of Theorem 2.4 in [29],
which relies on Proposition 4.1 in [30]. The key observation is that the proof of
Proposition 4.1 in [30] does not use the bounds on all sectional curvatures, but rather
only those appearing in (6.11). w

Lemma 8. For any vector n 2 R
3 and i¼ 1, 2

2bQ n; nð Þ � @riQ n; nð Þ � 2cQ n; nð Þ: (6.13)

Proof. Let w : R5 ! X denote the global coordinate patch constructed above, so that
w�1ðxÞ ¼ ðrðxÞ; hðxÞÞ. Consider the geodesics cn0þen : s 7!wðs; 0; n0 þ enÞ where e is a
variation parameter and n0 2 R

3 is fixed. If v ¼ ð0; nÞ 2 R
5 then Jn ¼ dwðvÞ is a Jacobi

field along the geodesic cn0 . Moreover this Jacobi field is stable since dXðcn0þenðsÞ; cn0ðsÞÞ
is bounded as s ! �1. Observe that

Qx n; nð Þ ¼ g dww�1 xð Þ vð Þ; dww�1 xð Þ vð Þ
� �

¼ jJn xð Þj2; (6.14)

so the inequalities (6.13) measure the logarithmic growth rate of stable Jacobi fields.
If s � t then Lemma 7 implies that

e2b t�sð ÞjJn cn0 sð Þ� �j2 � jJn cn0 tð Þ� �j2 � e2c t�sð ÞjJn cn0 sð Þ� �j2: (6.15)

The desired result now follows for i¼ 1 by taking logarithms, dividing by t – s, and
letting t ! s. Similar arguments hold for i¼ 2. w

Consider a smooth map u : R3 n C ! X with Dirichlet energy density

jduj2 ¼ jr r1 
 uð Þj2 þ jr r2 
 uð Þj2 þ Q r h 
 uð Þ;r h 
 uð Þð Þ; (6.16)

where the norms are computed with respect to the Euclidean metric d in (2.21) and

Q r h 
 uð Þ;r h 
 uð Þð Þ ¼ Qij @qh
i@qh

j þ @zh
i@zh

j
� �

: (6.17)

Let �X � R
3 n C be the closure of a bounded domain situated away from the axis, and

define the local Dirichlet energy

EX uð Þ ¼ 1
2

ð
X
jduj2: (6.18)

Two of the harmonic map equations associated with the Dirichlet energy are

Ddri ¼ @riQ rh;rhð Þ; i ¼ 1; 2: (6.19)

It then follows from Lemma 8 that each ri is subharmonic. Therefore if �X � X0 with
X0 � R

3 n C and v 2 C1
c ðX0Þ is a cutoff function with v¼ 1 on X, then multiplying by

v2ri and integrating by parts producesð
X0
v2jrrij2 � 4 sup

X0
r2i

� �ð
X0
jrvj2: (6.20)
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Next combine (6.13) with (6.19) to obtain

Ddri � 2bQ rh;rhð Þ: (6.21)

Then multiplying by v2, integrating by parts, and applying (6.20) yieldsð
X0
v2Q rh;rhð Þ � 1

b

ð
X0
vrv � rr � 2

b

�
sup
X0

ri

�ð
X0
jrvj2: (6.22)

Together (6.20) and (6.22) give the desired local energy estimate

EX uð Þ � 4 sup
X0

r21 þ sup
X0

r22
� �

þ 2
b

�
sup
X0

r1 þ sup
X0

r2

�" #ð
X0
jrvj2: (6.23)

Theorem 9. Let u : R3 n C ! X be a harmonic map and X � R
3 n C be a bounded

domain. If u : X ! BRðx0Þ then
EX uð Þ � C; (6.24)

where the constant C depends only on the radius R of the geodesic ball and X.

7. Existence and uniqueness

In this section, we complete the proof of Theorem 1 and prove the existence and
uniqueness of a harmonic map u : R3 n C ! X asymptotic to the model map u0 con-
structed in Section 5. Now that all the ingredients are in place, the proof is the same as
in [26]. Nevertheless, we include it here for the sake of completeness. Let e> 0 and
define Xe ¼ fy 2 R

3 : d
R

3ðy;CÞ> e; y 2 B1=eð0Þg. Since the target X is nonpositively
curved, there is a smooth harmonic map ue : Xe ! X such that ue ¼ u0 on @Xe. We
quote the following lemma from [26], which essentially shows that the obstruction to a
subharmonic distance function is given by the tension.

Lemma 10. Let u1;u2 : X ! X be smooth maps into a nonpositively curved target. Then

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dX u1;u2ð Þ2

q� �
� � js u1ð Þj þ js u2ð Þj

� �
: (7.1)

Set u1 ¼ ue and u2 ¼ u0, and note that sðueÞ ¼ 0. The remaining tension may be
estimated by Dw � �jsðu0Þj, where w> 0 and w ! 0 at infinity in R

3. This is possible
due to the boundedness and decay of jsðu0Þj as given in Theorem 6. In particular we
may take w ¼ cð1þ r2Þ�1=4 so that

Dw � � c
4

1þ r2ð Þ�5=4 � �js u0ð Þj; (7.2)

if the constant c> 0 is chosen sufficiently large. It follows that

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dX ue;u0ð Þ2

q
� w

� �
� 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dX ue;u0ð Þ2

q
�w � 1 on @Xe: (7.3)
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The maximum principle then yields a uniform L1 boundffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ distX ue;u0ð Þ2

q
� 1þ w on Xe: (7.4)

Fix a domain X such that �X � R
3 n C and take e> 0 small enough to have �X � Xe.

The L1 estimate combined with Theorem 9 produces an energy bound on X independ-
ent of e. Furthermore, consider the Bochner identity

Djduej2 ¼ jbrduej2�XRiem due; due; due; dueð Þ: (7.5)

Nonpositivity of the curvature shows that jduej2 is subharmonic. Thus a Moser iter-
ation may be applied to find a uniform pointwise bound from the the energy estimate,
namely

sup
X0

jduej2 � C
ð
X
jduej2 � C0 (7.6)

where �X
0 � X. Finally, using the harmonic map equations combined with the pointwise

gradient and L1 bounds, we may now bootstrap to obtain uniform a priori estimates
for all derivatives of ue on X0. By letting e ! 0, it follows that there exists a subse-
quence which converges together with any number of derivatives on X0. In the usual
way, by choosing a sequence of exhausting domains and taking a diagonal subsequence,
a sequence uei is produced which converges uniformly on compact subsets as ei ! 0.
The limit u is smooth and harmonic, and satisfies the L1 bound so that it is also
asymptotic to u0.
The proof of uniqueness is straightforward. If u1 and u2 are two harmonic maps

asymptotic to u0, then they are asymptotic to each other so that dXðu1;u2Þ � C.
Moreover

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dX u1;u2ð Þ2

q� �
� 0; (7.7)

and since the set C on which dXðu1;u2Þ may not be fully regular is of codimension 2,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dXðu1;u2Þ2

q
is weakly subharmonic and the maximum principle applies

[31]�Lemma 8. As
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dXðu1;u2Þ2

q
! 1 at infinity, it follows thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ dXðu1;u2Þ2
q

� 1. Consequently u1 ¼ u2.

7.1. Rod data for the harmonic map

Having constructed a harmonic map asymptotic to a prescribed model map, it remains
to show that the rod data set arising from the harmonic map agrees with that of the
model map. Let U ¼ ðF;xÞ : R3 n C ! ~X ffi SLð3;RÞ=SOð3Þ denote the characterization
of the harmonic map in the space of symmetric positive definite matrices, and let U0 ¼
ðF0;x0Þ denote the model map asymptotic to U. Recall that F ¼ ðfijÞ is a 2� 2 symmet-
ric positive definite matrix on R

3 n C representing the fiber metric (associated with the
rotational Killing directions) in a bi-axisymmetric stationary spacetime, and x ¼
ðx1;x2Þt are the twist potentials. The rod data associated with U consists of the kernel
of F and the value of x on the axis.
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Theorem 11. If U is asymptotic to U0 then ker F ¼ ker F0 at each point of C, and x ¼
x0 on each axis rod. In particular, the two maps respect the same rod data set.
Furthermore, if U is harmonic then d~XðU0;UÞ ! 0 at infinity in R

3.

Before proving this result we record several observations. Since the metric on ~X is
G-invariant, the distance function is preserved under the action of left translation

d~X U0;Uð Þ ¼ d~X Id; ~LB�1U
� �

; (7.8)

where B 2 SLð3;RÞ satisfies BBt ¼ U0. Note that

~LB�1U ¼ B�1U B�1ð Þt ¼ eW (7.9)

for some symmetric W with Tr W ¼ 0. Since the Riemannian exponential map and the
matrix exponential coincide for ~X, Hadamard’s theorem applies (using the fact that ~X
is complete, simply connected, with nonpositive curvature) to show that the exponential
map is a diffeomorphism, and the geodesic cðtÞ ¼ etW is minimizing. Therefore (3.16)
yields

d~X Id; ~LB�1U
� �

¼ jc0 0ð Þj ¼ jWj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr WWtð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr W2ð Þ

p
: (7.10)

Now consider the function from the Mazur identity [27], namely

Tr U�1
0 U

� � ¼ Tr B�1ð ÞtB�1U B�1ð ÞtBt
� �

¼ Tr B�1U B�1ð Þt
� �

¼ Tr eW :

(7.11)

Since eW is symmetric and positive definite it may be diagonalized with positive
eigenvalues ki, i¼ 1, 2, 3. We then have

Tr eW ¼ k1 þ k2 þ k3; Tr W2ð Þ ¼ log k1ð Þ2 þ log k2ð Þ2 þ log k3ð Þ2; (7.12)

and since W has zero trace

log k1 þ log k2 þ log k3 ¼ 0: (7.13)

If Tr eW � c then it is not difficult to see that (7.13) implies TrðW2Þ � c1.
Conversely if TrðW2Þ � c2 then each j log kij � c, and it holds that Tr eW � 3ec. We
have thus proved the following.

Lemma 12. d~XðU0;UÞ is uniformly bounded if and only if the Mazur quantity TrðU�1
0 UÞ

is uniformly bounded.

Proof of Theorem 11. If U is asymptotic to U0 then d~XðU0;UÞ � c0, that is the distance
is uniformly bounded, in particular near C. By Lemma 12 this implies that the Mazur
function is also uniformly bounded

Tr U�1
0 U

� � � c: (7.14)

Moreover this quantity may be computed in terms of F, F0, x, and x0 as

Tr U�1
0 U

� � ¼ f0
f
þ Tr FF�1

0

� �þ 1
f

x�x0ð ÞtF�1
0 x�x0ð Þ; (7.15)
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where f ¼ det F and f0 ¼ det F0. Since each of the terms on the right-hand side is non-
negative and the roles of U and U0 maybe reversed, we have

f0
f
� c;

f
f0
� c; Tr FF�1

0

� � � c;
1
f

x�x0ð ÞtF�1
0 x�x0ð Þ � c: (7.16)

It follows that

c�1f0 � f � cf0: (7.17)

Next, since F0 is symmetric it may be diagonalized with an orthogonal matrix O so
that F0 ¼ ODOt where D ¼ diagðl1; l2Þ. Working now at a point on an axis rod, the
kernel of F0 is 1-dimensional and so it may be assumed without loss of generality that
c�1f0 � l1 � cf0 and 0< c�1 � l2 � c. Let ~F ¼ OtFO then

Tr FF�1
0

� � ¼ Tr FOD�1Otð Þ ¼ Tr OOtFOD�1Otð Þ ¼ Tr ~FD�1ð Þ ¼ ~f 11l
�1
1 þ ~f 22l

�1
2 :

(7.18)

Therefore

~f 11l2 þ ~f 22l1 � cl1l2 ¼ cf0; (7.19)

so that

~f 11 � cf0; ~f 22 �
cf0
l1

� c1: (7.20)

Furthermore

f ¼ ~f 11
~f 22�~f

2
12 � ~f 11

~f 22 � cf0~f 22; (7.21)

which produces the lower bound

~f 22 �
c�1f
f0

� c�1
1 : (7.22)

In order to control the cross terms, observe that from the above

~f
2
12 ¼ ~f 11

~f 22 þ f � cf0: (7.23)

In conclusion we obtain

~f 11 � cf0; j~f 12j � c
ffiffiffiffi
f0

p
; c�1 � ~f 22 � c: (7.24)

Therefore, on an axis rod both D ¼ OtF0O and ~F ¼ OtFO have the same kernel, and
thus F0 and F have the same kernel. Similar arguments hold for a horizon rod.
Let us now show that the potentials agree on an axis rod. From (7.16) it holds that

~x�~x0ð ÞtD�1 ~x�~x0ð Þ ¼ x�x0ð ÞtF�1
0 x�x0ð Þ � cf � c1f0; (7.25)

where

~x�~x0ð Þ ¼ Ot x�x0ð Þ: (7.26)

It follows that

l�1
1 ~x1�~x1

0

� �2 þ l�1
2 ~x2�~x2

0

� �2 � cf0; (7.27)
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which implies

f�1
0 ~x1�~x1

0

� �2 þ ~x2�~x2
0

� �2 � c1f0: (7.28)

We then have

j~x�~x0j2 � cf0 ) jx�x0j2 � cf0; (7.29)

showing that x ¼ x0 on an axis rod.
Lastly if U is harmonic then according to the L1 bound (7.4), which holds globally

for u in place of ue, it must hold that d~XðU0;UÞ ! 0 at infinity in R
3 since w ! 0 in

this limit. w

8. Reconstruction of the spacetime metric

Let U ¼ ðF;xÞ : R3 n C ! ~X ffi SLð3;RÞ=SOð3Þ be the harmonic map constructed in
the previous section, represented in the space of symmetric positive definite matrices.
Here, we show how to build an asymptotically flat bi-axisymmetric stationary vacuum
spacetime, which inherits the prescribed rod data set associated with the harmonic map.
Note that the functions F ¼ ðfijÞ and x ¼ ðx1;x2Þt comprising the harmonic map are
defined and smooth on the right-half plane fðq; zÞjq> 0g, which will serve as the orbit
space for the spacetime. The spacetime metric is given by (2.6), and it suffices to show
how each coefficient in (2.6) arises from U. The resulting spacetime will be asymptotic-
ally flat in light of the decay of the model map U0 and the fact that, by Theorem 11,
d~XðU0;UÞ ! 0 at infinity in R

3.
First observe that r is immediately obtained from (2.34), since the orbit space is sim-

ply connected and the form on the right-hand side is closed as a result of the harmonic
map equations. It remains to find AðiÞ ¼ vidt, which will be derived from the harmonic
map components xi. By solving for dAðiÞ in (2.10) we get

dA ið Þ ¼ � 1
2
f�1f ij ?3 dxj: (8.1)

Observe that from Cartan’s magic formula and the fact that @t is a Killing field

i@t dA
ið Þ ¼ �di@tA

ið Þ ¼ �dvi: (8.2)

It follows that if

i@t f�1f ij ?3 dxj

� �
(8.3)

is closed, then we may find vi by quadrature from the equation

dvi ¼ 1
2
i@t f�1f ij ?3 dxj

� �
: (8.4)

It turns out that showing (8.3) is closed is equivalent to parts of the harmonic map
equations. To see this, let �3 denote the volume form of g3. Then

?3dxj
� �ab ¼ �abc3 @cxj; (8.5)

and
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i@t ?3 dxj ¼ �3 @t; @q; @cð Þ@cxjdqþ �3 @t; @z; @cð Þ@cxjdz

¼ qe2r@zxjdq�qe2r@qxjdz

¼ q@zxjdq�q@qxjdz:

(8.6)

Therefore

d f�1f iji@t ?3 dxj

� �
¼ d qf�1f ij@zxjdq� qf�1f ij@qxjdz

� �
¼ @z qf�1f ij@zxj

� �
þ @q qf�1f ij@qxj

� �h i
dz � dq

¼ div
R

3 f�1f ijrxj

� �
dz � dq

¼ 0;

(8.7)

where the last equality arises from the second set of harmonic maps equations in (5.2).
Another way to obtain this calculation is to observe that

f�1f iji@t ?3 dxj ¼ � f�1f ijdxj

� �
(8.8)

and div
R

3 ¼ �d�, where � is the Hodge star operator with respect to d on R
3. Lastly, it

is clear from the equations involved that r and vi are bi-axisymmetric.

8.1. Regularity

The metric reconstructed above from a solution of the harmonic map problem is
defined on R� ðR3 n CÞ � Uð1Þ. In order to extend this metric across C, two steps
must be completed as described below.

8.1.1. Analytic regularity
The metric coefficients in (2.6) must be shown to be smooth and even in q up to C.
This was achieved in the 4D case in [32], and then extended to the non-axially symmet-
ric case in [33]. We believe that these methods are applicable to the 5D setting as well.

8.1.2. Conical singularities
In addition to the analytic regularity mentioned above, conical singularities on axis rods
must be ruled out. A conical singularity at a point on an axis rod Cl is measured by the
angle deficiency h 2 ð�1; 2pÞ given by

2p
2p� h

¼ lim
q!0

2p � Radius
Circumference

¼ lim
q!0

Ð q
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f�1e2r

pffiffiffiffiffiffiffiffiffiffiffi
fijuiuj

p ¼ lim
q!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2f�1e2r

fijuiuj

s
; (8.9)

where u ¼ ðu1; u2Þ ¼ ðml; nlÞ is the associated rod structure so that u is in the kernel of
F at q¼ 0. Absence of a conical singularity is characterized by a zero angle deficiency
that is when the right-hand side is 1; this is referred to as the balancing condition in
Section 1. By a standard change of coordinates from polar to Cartesian, it is straightfor-
ward to check that once analytic regularity has been established this condition is neces-
sary and sufficient for the metric to be extendable across the axis.
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Let us denote by bl the value of log ð 2p
2p�hÞ on the axis rod Cl. Then, similarly to the

4D case, it can be shown from (2.34) that bl is constant on Cl. Moreover asymptotic
flatness implies that bl¼ 0 on the two semi-infinite axis rods, l ¼ 1; Lþ 1. Thus it it
remains to investigate the value of bl on the bounded axis rods. In the example from
Figure 3, to show regularity would only require showing that b3 ¼ 0 so that the angle
deficit vanishes on the disk rod, between points S and C.
In 4D very few cases have been worked out, see [34,35]. In the current 5D setting, it

is known that some configurations without any conical singularity do exist as men-
tioned in the introduction. We conjecture that many more such regular solutions can
be found. These questions will be investigated in a future paper.
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Appendix A. Topology of corners

Proposition 13. In a stationary bi-axisymmetric spacetime, consider a corner defined by a top
rod of structure (m, n) and a bottom rod of structure (r, s), with gcdðm; nÞ ¼ gcdðr; sÞ ¼ 1. If

det
m n
r s

� �
¼ 61; (A.1)

then the spacetime is locally diffeomorphic to R
5 near the corner.

Proof. Let

V ¼ m@/1 þ n@/2 ; W ¼ r@/1 þ s@/2 ; (A.2)

be the Killing fields which vanish at the top rod and bottom rod, respectively. The first goal is to
show that there exists a change of variables ð�/1

; �/
2Þ, which are also 2p-periodic, such that the

Killing fields take the form

V ¼ @�/
1 þ �@�/

2 ; W ¼ @�/
2 ; (A.3)

for some integer �. The coordinate transformation may be realized by a 2� 2 matrix having inte-
ger entries

A ¼ a b
c d

� �
; (A.4)

with det A ¼ �1. Namely

�/
1 ¼ a/1 þ b/2; /1 ¼ �d�/

1 þ b�/
2
;

�/
2 ¼ c/1 þ d/2; /2 ¼ c�/

1�a�/
2
:

(A.5)

To see that the new variables are 2p-periodic consider the translation �/
1 7! �/

1 þ 2p, which
corresponds to

/1 7!/1�2pd and /2 7!/2 þ 2pc: (A.6)

Since c; d 2 Z and /i are 2p-periodic, it follows that �/
1
has a period less than or equal to 2p.

If the period is 2ap for 0< a< 1, then the translation �/
1 7! �/

1 þ 2pa would map to the same
points, and as a consequence the shifts

/1 7!/1�2pad and /2 7!/2 þ 2pac (A.7)

would give the identity map. This implies that ad and ac are integers, which is impossible since

1> a ¼ ajdet Aj ¼ ja adð Þ�b acð Þj 6¼ 0: (A.8)

Similar arguments show that �/
2
has period 2p.

To find the matrix A observe that

V ¼ maþ nbð Þ@�/
1 þ mcþ ndð Þ@�/

2 ; W ¼ raþ sbð Þ@�/
1 þ rcþ sdð Þ@�/

2 : (A.9)

Thus we aim to solve

1
�

� �
¼ A

m
n

� �
¼ maþ nb

mcþ nd

� �
(A.10)

(A.10) and

0
1

� �
¼ A

r
s

� �
¼ raþ sb

rcþ sd

� �
: (A.11)
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Consider the second pair of equations

raþ sb ¼ 0;
rcþ sd ¼ 1:

(A.12)

Choose a ¼ �s and b¼ r to solve the first equation. The integers c and d may be found using
Bezout’s Lemma (Lemma 4), which gives a solution satisfying jcj � jsj and jdj � jrj, resulting in

A ¼ �s r
c d

� �
(A.13)

with det A ¼ �sd�cr ¼ �1.
We now have integers l and � defined by

A
m
n

� �
¼ l

�

� �
: (A.14)

It turns out that l¼ 1. To see this note that

A
m r
n s

� �
¼ l 0

� 1

� �
; (A.15)

so det A ¼ �1 together with the hypothesis of this proposition produces

l ¼ detAdet
m r
n s

� �
¼ 71: (A.16)

If l ¼ �1, simply choose

A ¼ s �r
c d

� �
(A.17)

to achieve l¼ 1 if necessary.
In the new coordinate system, the corner is defined by the rod structures ð1; �Þ and (0, 1).

Then as described in Section 4, any simple curve in the 2-dimensional orbit space which encircles
the corner and connects the top rod to the bottom rod represents a lens space Lð1; �Þ ffi S3.
Therefore by foliating a neighborhood of the corner in the orbit space by such curves, we find
that a punctured neighborhood of the corner in a time slice has topology R� S3 ffi R

4 n f0g. It
follows that there is a spacetime neighborhood of the corner which is diffeomorphic to R

5. w
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