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Bounding Horizon Area by Angular
Momentum, Charge, and Cosmological
Constant in 5-Dimensional Minimal
Supergravity

Aghil Alaee, Marcus Khuri and Hari Kunduri

Abstract. We establish a class of area—angular momentum—charge inequal-
ities satisfied by stable marginally outer trapped surfaces in 5-dimensional
minimal supergravity which admit a U(1)? symmetry. A novel feature is
the fact that such surfaces can have the non-trivial topologies S* x S?
and L(p, ). In addition to two angular momenta, they may be character-
ized by ‘dipole charge’ as well as electric charge. We show that the unique
geometries which saturate the inequalities are the horizon geometries cor-
responding to extreme black hole solutions. Analogous inequalities which
also include contributions from a positive cosmological constant are also
presented.

1. Introduction

There has been significant progress in establishing sharp geometric inequali-
ties, motivated in part by black hole thermodynamics, which relate the area
A, angular momenta J, and charge @) of axisymmetric stable marginally outer
trapped surfaces (MOTS) in spacetimes satisfying an appropriate energy con-
dition [8,9]. In spacetime dimension D = 4, a typical example of such an
inequality [16] is given by

A > Ar\/4T% + Q4 (1.1)
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where equality is achieved if and only if the induced geometry of the MOTS
arises from a spatial cross section of the event horizon of the extreme Kerr—
Newman black hole. This class of results has been extended to include contri-
butions from a positive cosmological constant [4,17], and was studied in the
setting of Einstein-Maxwell-axion-dilaton gravity [15,36,40]. They have also
been used to find lower bounds for horizon area in terms of (ADM) mass,
angular momentum, and charge [10].

Given the significant interest in black hole solutions in spacetime dimen-
sion D > 4 [14], chiefly motivated from the physical point of view by string
theory, a natural problem is to generalize such inequalities to this setting.
As is well known, D = 5 asymptotically flat black holes arise as certain in-
tersecting configurations of D-branes, which are dynamical extended objects
in string theory. A classic achievement of string theory is the calculation of
the Bekenstein—Hawking entropy S = A/4 for a large class of extremal 5-
dimensional black holes from a quantum statistical counting of such config-
urations [38]. Inequalities relating the area, angular momenta, and charge of
dynamical black holes can be translated into corresponding relations on the
quantum numbers that characterize the string states.

This program has been initiated in the work of Hollands [21] (see also
[41]), who proved an extension of (1.1) to D > 4 for vacuum spacetimes,
possibly with a positive cosmological constant. The (D —2)-dimensional MOTS
B was assumed to admit a U(1)P~3 isometry group. This requirement implies
that B must be diffeomorphic to S3 x TP=5, S x §2 x TP=5 or L(p,q) x TP~5
where T™ is the n-dimensional torus [23]. In particular the elegant inequality

A > 87| T+ T (1.2)

is shown to hold for all stable B, where J4 = Jivii are certain linear combi-
nations of angular momenta J;, associated with each U(1) generator, and v,
are a set of integers which determine the topology of B. As before, the unique
geometries that saturate the inequality are the extreme horizon geometries
corresponding to each of the allowed topologies. The possible vacuum horizon
geometries are completely classified and are in fact known explicitly in closed
form [22,27].

It is worthwhile to elaborate on this point. The term near-horizon geom-
etry refers to the precise notion of the spacetime geometry in a neighborhood
of a degenerate Killing horizon (for a comprehensive review, see [30]). For
example, the near-horizon geometry associated with the extreme Reissner—
Nordstrém horizon is a product metric on AdSs x S2, while the near-horizon
geometry associated with the extreme Kerr horizon is a twisted S? bundle
over AdSs. It is important to note that different extreme black holes can have
the same associated near-horizon geometry (see [33] for an explicit example
in D = 5). A spatial cross section of the event horizon (which is a MOTS) is
a (D — 2)-Riemannian manifold embedded in the D-dimensional Lorentzian
near-horizon spacetime. Therefore, when stating the rigidity results for the
area inequalities satisfied by MOTS, we must state that those saturating the
inequality are the extreme horizon geometries induced from a near-horizon
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geometry, rather than a particular extreme black hole solution; indeed, there
could be more than one extreme black hole that gives rise to the same induced
geometry on B. Of course, in D = 4, an axisymmetric extreme electrovacuum
black hole must be an extreme member of the Kerr-Newman family [7], and
so we can state the rigidity result simply in terms of the induced metric on the
horizon of an extreme black hole solution without reference to its near-horizon
geometry.

The purpose of the present work is to establish an extension of (1.2) valid
for 5-dimensional black holes which carry charges sourced by a Maxwell field
F. The simplest relevant theory for this purpose is minimal D = 5 supergrav-
ity. As explained in [1], this theory admits a harmonic map formulation for
stationary U(1)2-invariant solutions (g, F') which plays a key role in establish-
ing the relevant geometric inequalities. Moreover, all explicitly known charged
5-dimensional black holes (e.g., the charged Myers—Perry solution, the natural
generalization of Kerr—-Newman) are solutions of supergravity; these solutions
will serve as model maps in the construction of the proof. An added motiva-
tion is that it is this theory, and not standard Einstein—-Maxwell theory, that
arises as a consistent reduction of the 10- or 11-dimensional supergravity theo-
ries that govern the low-energy dynamics of string theory. Therefore, minimal
supergravity is natural to consider for a number of reasons.

The key difference between the supergravity setting and the pure vacuum
case analyzed in [21] is that the space of extreme black hole horizons is signif-
icantly larger. As we will show, one can produce a lower bound for the area of
admissible MOTS with fixed angular momenta 7; and charge ) in terms of an
‘area functional’, which is in turn a certain renormalized Dirichlet energy for
singular maps taking [—1,1] — G2(2)/SO(4); here Gy (o) refers to the noncom-
pact real Lie group whose complexification is G, and the notation 2(2) refers
respectively to the rank and character of the group. The critical points of this
functional are simply the harmonic maps corresponding to horizon geometries
of U(1)2-invariant extreme black holes with the same J; and Q. In contrast
to the D = 5 vacuum case, however, a complete classification of all allowed
extreme horizon geometries is an open problem (see [29] for a partial classi-
fication). Indeed, for fixed horizon topology B, one can have distinct families
of extreme horizon geometries. For example, there are non-isometric families
of extreme black ring horizon geometries (B = S! x S?). In particular, these
distinct families have different expressions for the area in terms of conserved
charges. Nevertheless, for a given topology, it is possible to identify a unique
extreme horizon geometry by specifying the angular momenta, electric charge,
and so-called dipole charge.

It is worth emphasizing how this is qualitatively different from the D = 4
Einstein—-Maxwell case. For fixed angular momentum and electric charge, the
unique axisymmetric extreme horizon geometry is that of the extreme Kerr—
Newman black hole [6]. This fact underlies the single inequality (1.1). In our
case, rather than establishing a single unified inequality (1.2) valid for all B,
we will have different inequalities which depend on both the topology of B and
the range of parameters associated with conserved charges.
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2. Description of Main Results

Consider a 5-dimensional spacetime (M, g, F') where M is a smooth oriented
manifold, g is a Lorentzian metric with signature (—, +,+,+,+), and F is a
closed 2-form representing a Maxwell field. Assuming that F' = d.A, the action
for D = 5 minimal supergravity is given by

1 1

S = R—12M)*x1— —FAXxF— ——=FANFNA, 2.1
M( ) 5 373 (2.1)
where * is the Hodge dual operator associated with g and A > 0 is the cosmo-

logical constant. The field equations are then expressed as
1
2

1
dx*F+—FANF=0.
V3
Note that in contrast to pure Einstein-Maxwell theory, dx F # 0. If Ho(M) #
0, then A appearing in the action is not globally defined and must be con-
structed from local potentials.

Recall that a marginally outer trapped surfaces (MOTS) is a
3-dimensional spacelike submanifold B embedded in the spacetime (M, g, F)
with 8, = 0. Here 6, is the expansion with respect to the future pointing
outward null normal n and is defined by

1
Ray, = Fachc - E|F|2gab =+ 4Agaba

(2.2)

1
Oney = €ydivyn = Lyey = <27ab£n%b> €y, (2.3)
where £ denotes Lie differentiation,
Yab = 2l(qNp) + Bab (2.4)

is the induced metric on B with volume form €., and 1 is the future pointing
inward null normal such that g(n,1) = —1. The MOTS will be referred to as
stable if £,6, < 0.

The total electric charge contained within B is given by

1 1
= — *F 4+ —
“ 167 J ( ’ V3
Inclusion of the second term in the integrand is motivated by the fact that, as
a consequence of the Maxwell equation in (2.2), the full integrand is a closed
3-form. If, in addition Ho(B) is non-trivial (e.g., B = S x S?), a ‘dipole charge’
may be defined by

AAF). (2.5)

T o

D[C] 1AF (2.6)

for each homology class [C] € H(B). From the D = 4 setting, this may seem
reminiscent of the magnetic charge, however in D = 5 it turns out that there
is no natural notion of a conserved magnetic charge [1]. Note that if B = 93
(or indeed any lens space), Ho(B) is trivial.
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In order to define a suitable notion of angular momenta, let 7;, i = 1,2
denote the Killing fields with orbits of period 27 that generate the U/(1)?
isometry, so that

£,,8=0, Ly F'=0. (2.7)

The angular momentum associated with the generator 7;) is then defined by
1 2

Tor /. [8(n), )] + Alney) 373 (2.8)

The first term of the integrand comes from the standard Komar integral, and
the remaining terms are then appended in order to obtain a closed 3-form
yielding a conserved quantity. This is the spacetime version of the definition in
terms of initial data used for the proof of the mass—angular momentum-—charge
inequality [1]. Moreover, when F' = 0 this reduces to the definition of angular
momenta used in the proof of the vacuum inequality (1.2). Note that there
is an SL(2,Z) freedom in choosing a basis for the U(1)? generators 7(:), and
hence to define the two angular momenta.

Theorem 2.1. Let (M,g,F) be a bi-azisymmetric solution of 5-dimensional

manimal supergravity with A = 0. If B is a bi-axisymmetric stable MOTS
diffeomorphic to S®, then

40Q3

A>8my [\ 1T + ——=

‘ 12+ o 73

and equality holds if and only if (B,~, F) arises from the near-horizon geometry

of an extreme charged Myers—Perry black hole.

, (2.9)

It is important to note that the rigidity statement does not imply that
the harmonic map data arising from (B,~, F') agree with that of the specified
near-horizon geometry. Rather, by stating that the given data ‘arise’ from
the near-horizon geometry of an extreme charged Myers—Perry black hole, we
mean that the given data are related to this near-horizon geometry through an
isometry in the target symmetric space Ga(2)/SO(4). The same interpretation
applies to the remaining theorems of this section.

We remark that in the pure vacuum case @ = 0 and the above inequality
reduces to (1.2), whereas if either of the independent angular momenta J;
vanish, then

(2.10)

which is saturated if and only if the MOTS arises from the near-horizon ge-
ometry of the extreme Reissner—Nordstrom black hole.

Theorem 2.2. Let (M,g,F) be a bi-azisymmetric solution of 5-dimensional
minimal supergravity with A = 0. Let B be a bi-axisymmetric stable MOTS
diffeomorphic to S' x S% with Jy, Jo representing the angular momentum
associated with S, S? respectively.
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(a) If @ =0 and J> =0, then

3
A 247”/”'?‘)71\/2;', (2.11)

and equality holds if and only if (B,~,F) arises from the near-horizon
geometry of an extreme singly-spinning dipole black ring.

(b) IfQ =0 and J2 > 12%j1D3, then

P
A>8r, | T2 - D3, 2.12
>[92 - e (212)
and equality holds if and only if (B,~,F) arises from the near-horizon
geometry of an extreme magnetic boosted Kerr string.

Theorem 2.3. Let (M,g, F) be a bi-axisymmetric solution of 5-dimensional
minimal supergravity with A = 0. If B is a bi-axisymmetric stable MOTS
diffeomorphic to the lens space L(p,1), with J; = —Jo = J and 4Q> >
3pV3n T2, then

4pQ3

A> 87 p2J2, (2.13)

o 3v/3m

and equality holds if and only if (B,~, F) arises from the near-horizon geometry
of an extreme supersymmetric black lens solution [32,39].

These three theorems yield area—angular momentum—charge inequali-
ties for each of the possible topologies associated with bi-axisymmetric stable
MOTS. It should be noted that several of the results require certain restrictions
on the parameters found within the inequalities. These restrictions arise from
the particular nature of the known near-horizon geometries on which the in-
equalities are modeled. Our method of proof is sufficiently robust that should
new near-horizon geometries be found, an immediate consequence would be
new area—angular momentum-—charge inequalities for stable MOTS with the
same topology. Thus modulo the classification of near-horizon geometries for
D = 5 minimal supergravity, the techniques of this paper are able to produce
all possible inequalities of this type.

The following result differs from those above in that it includes contribu-
tions from a cosmological constant A > 0 within the inequality. We are only
able to treat the case of spherical topology in this context due to the lack
of known explicit solutions with other topologies; in fact it has been shown
that ring type de Sitter near-horizon geometries do not exist in vacuum [26].
Restrictions on the parameters are needed here only to simplify the expression
of the inequality. Indeed, our proof is valid for the full range of parameters,
however a precise statement of the inequality in this generality is too unwieldy.

Theorem 2.4. Let (M,g, F) be a bi-azisymmetric solution of 5-dimensional
manimal supergravity with A > 0, and let B be a bi-axisymmetric stable MOTS
diffeomorphic to S3.
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(a) If T :=xT; fori=1,2 and Q =0, then
A3AS  (AVAZ + 51272072 — A2 — 12872 72)°
210m072 (A— VAT +5122272)"

, (2.14)

and equality holds if and only if (B,~,F) arises from the near-horizon
geometry of an extreme Chong—Cuvetic—Lu—Pope (CCLP) black hole with
positive cosmological constant.

(b) Ifj1 = jg = 0, then
4/3
6472Q% < 12 (A;T> — 6AA%, (2.15)

and equality holds if and only if (B,~,F) arises from the near-horizon
geometry of an extreme Reissner—Nordstrém-de Sitter black hole.

3. Construction of Potentials and Relation to Conserved
Charges

In this section we construct scalar potentials and demonstrate how these poten-
tials encode the charges and angular momenta defined above. The procedure
follows that given in [29] specialized to the case of the theory (2.1).

Observe that since dF = 0, Cartan’s formula £x = txd + dix may be
used to show that the following 1-forms are closed, yielding the existence of
scalar potentials satisfying

A" = 1y, F, (3.1)
where ¢ denotes the operation of interior product. These may be interpreted as
magnetic potentials and are globally defined in a tubular neighborhood M of

B, since the orbit space M /U(1)? is simply connected [25] and the potentials
are functions on the orbit space. To see this last point, note that the quantities

En(i)w] = Ln(i)Ln(]‘)F (3'2)
are constants by standard arguments, and since the 7;) vanish at the rotation

axes these constants are zero.
Now define the 1-form

T =~y by * F' (3.3)
and observe that

1 1
dY = %Lml)bn@)d(A AF) = %

This implies the existence of an electric potential satisfying

(& dy? — P2dyt). (3.5)

d (Yrdy® — 2yt . (3.4)

1
dy="—-—
X /3
With the same reasoning as above, it may be shown that this potential is also
globally defined.
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In order to construct charged twist potentials for the angular momentum
consider the 1-forms

9i = *(77(1) A 1(2) A dn(i)), (3.6)
which satisfy
d@i = 2% (77(1) A\ 1(2) A Ric(n(i))) (3.7)

where Ric denotes the Ricci tensor of the spacetime metric g. With the help
of the Einstein equations (2.2), an involved calculation [29] shows that

do' = =Y Ay, F=d [wz <dx+ \[wldw —2dy ))] (3.8)

It follows that there exist globally defined twist potentials such that

S - v 59)

It will now be shown how these potentials are related to the various
charges associated with the MOTS B. Since B is bi-axisymmetric the isometry
generators 7);) are tangent to B. We may then introduce 2m-periodic angular
coordinates ¢* on B adapted to the symmetries, so that @y = d/0¢". A third
coordinate function z arises from the volume form by

dx = CVol,(ne1y,N(2), ") (3.10)

At =" — i [der

where C is a constant. According to [25] the 1-dimensional orbit space B/U(1)?
is diffeomorphic to a closed interval, and the constant C is chosen so that the
orbit space is parameterized by x € [—1,1]. In order to compute the electric
charge in terms of the potential y, observe that if w is a 3-form on B, then

1
/w=4ﬂ'2/ Lay by ay W- (3.11)
B -1

Then using the definition (2.5), (3.3), (3.4), and (3.5) that

1
7r T
Q=7 [ dx=Ta-x-n). (312)
-1
Next suppose that B = S x 5% and f52 F # 0, so that the vector potential
A is not globally defined. From (3.1), it follows that F' = d¢® A dy?, and hence
1 o .
D=— S2F=U2(¢Z(—1)—W(1))a (3.13)

where vy (v € Z) is the Killing field that vanishes at the poles of the 52.
Finally we turn to the angular momenta (2.8). First note that

2
bneaybney |:~A(77(i)) <*F + VA N F>:|

=~y {dx+ (v'dy® — wzdzbl)} : (3.14)

3V3
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Moreover, the formula

ix xs = (=1 (X Ag) (3.15)
is valid for k-forms ¢ on 5-dimensional Lorentzian manifolds and reveals that
tnezy bng) *d[g(ney, )] = o' (3.16)

Altogether this yields
x [t . . 1
== O! — ' |d 1d 2 2d1:|>
Ji 4/_1( w[wwg(ww prdyr)

™

7] e =Fem-cen), (317)

4. The Area Functional

We now turn to deriving a lower bound on the area of a bi-axisymmetric
stable MOTS B in terms of a certain area functional. The critical points of
this functional will be shown to correspond to spacetimes that describe, in a
precise sense, the geometry in a neighborhood of a (stationary) extreme black
hole. These near-horizon geometries are solutions of the spacetime Einstein
equations in their own right, and will play the role of minimizers in what
follows.

In the previous section, coordinates (x, ', $?) were introduced on B in
which the ¢’ are adapted to the U(1)? isometry and x parameterizes the orbit
space B/U(1)? = [~1,1]. As in [21], the induced metric on B takes the following
form when expressed in these coordinates

2

dzx oo
ey dy" = ————— + Ajdd'dd 4.1
Ymndy" dy" = oo+ Aigddtd (4.1)

where the constant C > 0 has length dimension —3 and is related to the area
of B by

A=8r*ch (4.2)

The topology of B is characterized by the integer linear combinations of Killing
fields that vanish at the endpoints * = 41, which represent the fixed points
of the torus action. Suppose that aﬁtn(i) — 0 as # — +1, with a’, € Z. The
matrix A;; is rank 2 for € (—1,1) and has a 1-dimensional kernel at z = %1
spanned by a’;, that is A;ja%, — 0 at the endpoints. Without loss of generality,
it may be assumed that ar = (1,0), a— = (q,p) for some p,q € Z with
ged(p, q) = 1. We have (q,p) = (0,+1) for S* topology, (¢,p) = (&1,0) for
St x S§% topology, and L(p, q) otherwise [21]. Note that the absence of conical
singularities requires
(1—=a%)? 2

im ————~——— =C~. (4.3)
e—£1 det X - a’Lal A

Following [21,22,34], Gaussian null coordinates (u,r,y™) may be intro-
duced in a neighborhood of the MOTS B. Here n = 9,, and 1 = 0, are future



490 A. Alaee et al. Ann. Henri Poincaré

pointing null vectors which coincide with the normal vectors of the same no-
tation in Sect. 2 on B, and satisfy g(n,1) = —1. The coordinates y"* are Lie
transported off of B by n and 1. This process yields a foliation of the neigh-
borhood of B, with parameters (u, r), whose leaves are denoted by B(u,r) and
for which B(0,0) = B. It can be shown that in these coordinates the spacetime
metric takes the Gaussian null form

g = —2du (dr — ar?du — Bmdy™) + Ymndy™ dy", (4.4)
where « is a smooth function, f = (,,dy™ is a 1-form, and ~ is the induced
metric on B(u,r). Note that this expression may be simplified with the help

of the coframe
dzx

et =du, e =dr—ar’du—r(fydr + Bidd?), e = ———e, €' =d¢’,
(3 Bide*) NGB ¢
(4.5)
so that
g=—2eTe + (") + \jjelel. (4.6)

Lemma 4.1. Let (M, g, F') be a bi-axisymmetric solution of 5-dimensional min-
imal supergravity, and let B be a bi-axisymmetric stable MOTS. For any bi-
azisymmetric @ € C*°(B) the stability inequality holds

/B2|V<p|3 - (R7 - % (B, N)2 = |B2] — 2T'(n,1) — 12A) ©? >0, (4.7)
where R, is the scalar curvature of B, N = C\V/det \d, is the unit normal to
the Killing directions 1;y, and T' denotes the stress-energy tensor.

Proof. A computation [24] shows that
R, — div, - %\mi COT(n,1) — 127 = —20,6, — 2816n.  (4.8)
Since B is a stable MOTS 6, = 0 and £,60, < 0. It follows that
R, —div, 3 — %m@ —2T(n,1) — 12A > 0. (4.9)

Then multiplying by (2, integrating the divergence term by parts, and applying
Young’s inequality yields the desired result. Indeed observe that

. 1
- [ ava= [ 200, < [AVeE+5EN @)
where it is used that |V|, = |N(¢)| which follows from the fact that ¢ is
bi-axisymmetric. O

We now seek to express the integrand of (4.7) in terms of the potentials
of Sect. 3 and the fiber metric A. Let 8; = B(n(;)) and 3° = A3}, then a

calculation gives
Ny Ay A dngy = Bi(—eT Aem —ret AB) A (det Xe') Ae?
—1Xij(0:37) det Aet A (CVdet Ae®) Ae! A (4.11)
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Evaluating at r = 0 yields
B; = COL, (4.12)
where
‘ , . . 1
0l = 0'(0,) = 0.C" + " | Oux + —= (1 0pth? — 2811>. 4.13
@) = 0.6+ 0! (Ot Lo~ ot . a1y
It follows that
B2 = (B,N)2 + \938; = (B,N)2 + C2\VOLO1. (4.14)
Furthermore, a computation [21] shows that
_PdetA | 1(9pdet))’
det A 4 (det A)2

R, =C%det A [ - iﬁ(xlaxA)Q] . (4.15)

We now turn to the Maxwell field in order to compute the relevant portion
of the stress-energy tensor. As shown in [29], this field may be expressed as

= det N [* (17(2) A (1) A T) + (det )\)/\ijn(i) A dwj] . (4.16)
Since x and ¢! are functions of x alone, and
1
T, = T(am) = 3zX + % (wlaz,l/}2 - 1/}2811/}1) , (417)

it follows that
F=—CY,duhe —7rCYBidude’ + 30, du A dx — dpidx A de'.

(4.18)
Next note that
Top = %(*F)acd(*F)de + iFachc. (4.19)
Since n = 9,, and 1 = 9, a computation shows that (at r = 0)
(nF)o(uF)* = C3Y2, (4.20)

In order to deal with the term involving xF', observe that
x(eT NeT)=—Vol, = —C tdx Ado' Adp?, x(e" Ae') = €§€+ ANe  Nél,

(4.21)
where € is the volume form associated with A. From (4.16), we then have
* F = CY,Vol(y) — C(8,9")Vdet Aegje™ Ne™ Al (4.22)
which implies
(tn % F)ea(tn % F) = 202 (det \)ANT 9,0p 0t (4.23)
Therefore, at r =0
T(n,1) = ¢ (T2 + (det A)AY 0,00 9ptp?) . (4.24)

4
It remains to choose ¢ and compute its Dirichlet energy density. Let
& € C*°(B) be a particular smooth positive function (of x) associated with the
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relevant extreme stationary black hole solution of 5D minimal supergravity,
which satisfies £ =1 when A = 0. Then set

(173n2
= V&5 4.2
det A (4.25)
Note that
V¢ ¢ Vo [& o VEPP IVelPE 1 _
V@—Q\/g 2\/;, IVel™ = —, et S5+2V€ Vo,
(4.26)
where
Vel? 2, C , Opdet A C2(1—a?) (9, det \)?
= - 4.27
o - Ot Tt T e T 1 ez W0

By combining these formulae, we find that the integrand of (4.7) takes
the form

o (1(@adetN)? | Te(A19,0)?
c x)§(4 (detn2 4 +2d £\

PRACICT)

202 12A(1 — 22)¢

2 ij i J _
+2det)\['rw+det/\>\ O 8961#})4-1_%2 det A\
9 (1 —22)0, det 9 N
—COp | ——— 2 1—a%)>—. 4.2
ca< Tty ST mE) -t (4.28)
Since
det A\ =ci(1—2%)+0(1 —2%)? as z— +1 (4.29)
for some constants c, it holds that
rx=+1
(1 — 22)0, det A
- 2 =0. 4.
( dot &+ 22¢€ . 0 (4.30)

Therefore, in light of Lemma 4.1, the following area functional is nonpositive

—+1 1 1 6A§ 6/2
~N 2 - 2
J_/lg[(l x)I 1_332] dx—|—/71(1 I)<C2det)\ 4€>d <0,

(4.31)
where
C1(0pdetN)? 1 Ty -1 LI
T8 (det \)? R wre S R U s R
1
+fam¢Txlamw (4.32)

with ©F = (01,02) and ¢ = (', ¢?).
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5. Relation to Near-Horizon Geometries of Extreme Black
Holes

In this section the relationship of the area functional Z to a harmonic energy
will be described. The latter arises from the reduction of Einstein’s equations
on U(1)2-invariant spacetimes. In particular, the critical points of this func-
tional give rise to near-horizon geometries. For simplicity, the discussion here
will be restricted to the case A =0 and £ = 1.

Observe that the functional may be reorganized as

+1 A v B
dX“ dX 1
J= 1—a? — dr < 1
J /_1 [( v)Gan dz dx 1— a2 z<0, (5-1)

where I has been expressed as the pullback to the orbit space [—1,1] of the
nonpositively curved metric on symmetric space Ga(2)/SO(4) given by

GapdX*dXP
(ddet N TrO=ldN? ANTOIOI T Nidgid
p— .2
SN T 8 T ddeta T ddent a1 O

with target space coordinates X = ()\ij,Ci,X,wi); note that Y and ©' are
given in terms of these coordinates by (3.5) and (3.9) respectively. Hence J
is related in a rather simple way to the Dirichlet energy of maps [—1,1] —
G(2)/SO(4). Furthermore, it turns out that the target metric (5.2) may be
given conveniently by

%Tr(MfldMMfldM), (5.3)
where M is a positive definite, unimodular coset representative of
Ga(2)/SO(4) constructed from the scalars X# whose specific form will not
be required here (see, e.g., [29]).

In what follows it will be shown that J vanishes on harmonic maps,
and that these harmonic maps arise from near-horizon geometries. To begin,
consider a 5-dimensional spacetime (M, g, F)) which admits a U(1)? isometry
subgroup. The metric may be expressed in the general form

_ hydztdz”
detA
where as before 8&“ i = 1,2 generate the isometry group and x* represent

coordinates on a 3-dimensional ‘base space’ M3 with Lorentzian metric h.
The w' = wjdz! are l-forms on Mz which measure the obstruction of the

GapdXAdXE =

+ Xij (d + w')(dg? + w?) (5.4)

Killing fields to being hypersurface orthogonal, and S\ij are functions on Msj.
Thus the spacetime can be viewed as a T? fibration over Ms. In addition, the
decomposition of the Maxwell field into scalar potentials has been discussed
in Sect. 4.

Now suppose that (M, g, F') is a solution of the field equations of minimal
supergravity (2.2). Upon reduction it can be shown that the resulting equations
describe the critical points of a 3-dimensional theory of gravity coupled to a
wave map (nonlinear sigma model) with action
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S[h, X] = / (Ry — 20" G 450, X0, XP) Voly,, (5.5)
M3

where Ry, is the scalar curvature of h. The reduced field equations are then
given by

Ric(h),, = éTr(M’lc’)uMM’layM),
VEM ro,M) = 0.

As is well known, a similar reduction occurs for other gravity models reduced on
tori, most notably pure vacuum gravity and D = 4 Einstein—-Maxwell theory.

Let us further assume that the spacetime contains a degenerate Killing
horizon. This means that there is an embedded null hypersurface N on which
[V| = 0 and VyV = 0, for some Killing field V. A cross section of N is a
spatial 3-dimensional manifold H, which will be taken to be closed. The most
important examples of such spacetimes are extreme stationary black holes with
horizon cross-sections H. In a neighborhood of A/, one may introduce Gaussian
null coordinates and take the near-horizon limit [30] to find the near-horizon
metric

(5.6)

gnr = —2du(dr — r*a(y)du — 1B (y)dy™) + Fmn (y)dy™dy™  (5.7)

where & and f3 are a smooth function and a 1-form on the 3-dimensional closed
manifold (H,%). Note that V' = §,, and that A is defined by r = 0. Thus the
near-horizon geometry is characterized completely by the triple (&, Bm, Ymn),
which are collectively referred to as the near-horizon data.

This near-horizon geometry inherits the U(1)? isometries from its ‘parent’
spacetime. In fact it is shown in [33] that there is an ‘enhancement of symmetry’
from R x U(1)? to SO(2,1) x U(1). It follows that the near-horizon metric
and Maxwell field take the form [29,33]

Qd 2
gny = Z(x) {rﬁu - Qdudr]
dxz? ~ . birdu . birdu
L —— + )\ <d1+ )(d“r )} 5.8
{det Moy TN T 1 T (5:8)
ardu ~ ;. birdu

The constants £ and L are length scales introduced so that certain coordinates
are dimensionless, Z(x) > 0 and ;(x) are smooth functions on H, and a,
b’ are constants. Observe that the 2-dimensional metric in the first square
bracket is that of AdSs. Hence a near-horizon geometry can be though of as (in
general a twisted) H bundle over AdSs. Note that when b’ # 0, the action of
SO(2,1) will transform rdu by an exact function, which can be compensated
by a corresponding U(1) shift in the appropriate angular coordinate. It is
easily seen that the near-horizon geometries of extreme Reissner—Nordstrom
(AdS;y x S?) and the extreme Kerr (a twisted fibration of S? over AdSy) both
fall into the above general class.
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The near-horizon data may be identified with harmonic map coordinates
in the following way; explicit details are given in [29]. Set ¢' = L¢' and
(2t 22, 2%) = (v,7,x) then

pow 9,9 - ~ r2du?
hypdetde” = Lodz® + Edet A(x) - — 2dudr| ,
. bird -
w' = Z u, /\ij = L72)\i]‘. (59)
As for the potentials
Yl = — Ly, (5.10)

and

2 B, 2 - - - ~
oy = LD % (10252 — il ). (5.11)

Furthermore, a calculation shows that
. LPbi);
o' = —dx, (5.12)

i

which implies that the charged twist potentials are given by
L?bJ /\w

=

Note also that C = L~3.

In summary, given a near-horizon geometry we can read off the corre-
sponding harmonic map data (\;;, ¢, x, "), and the process can clearly be re-
versed to solve for (S\ij, Ui, b, a). It is also evident that the matrix M defined
above is a function of x alone. Using this, the coupled 3D gravity-harmonic
map equations (5.6) may be simplified. The (uu) and (ur) components of the
Einstein equations yield

8141 + sz |: X + — \/~ (¢18z'(/)2 1;28;{([]1)] - (513)

82 2
so that
L2
Zdet \(z) = 7 (1—2?), (5.15)

where we have used the fact that Zdet A vanishes at = = +1 (where S\ij has
rank 1). Note that the induced metric on a horizon cross-section H is then

EQH( ) 2
(1—2?)
The harmonic map equations reduce to
dx [(1 = 2*)M ™19, M] =0, (5.17)

and coincide with the Euler-Lagrange equations for the functional J. Thus,
the near-horizon geometries are critical points of J. Furthermore, the (zz)

+ Aijdeide . (5.16)
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component of the 3D Einstein equations (5.6) place an algebraic constraint on
M. Namely, direct integration produces

(1— 2> )M Lo, M = My (5.18)
for some constant matrix M. Since
. 2

it follows that Tr(M32) = 16. The remaining components of the 3D Einstein
equations are automatically satisfied. This shows that determining a near-
horizon geometry is equivalent to solving (5.17) for the harmonic map scalars.
Finally, observe that for a near-horizon geometry the above calculations

show that
(1—2%)>*Tr M9, MM~ '9, M] = 16. (5.20)

Hence J = 0 when evaluated at near-horizon geometries.

6. Reparameterization of the Target and Area Lower Bound

Suppose that B is diffeomorphic to L(p,q) where p and ¢ are mutually prime
integers, and let ain(i) and ain(i) be the linear combinations of the U(1)?
generators which vanish at z = 1 and x = —1, respectively. This is equivalent
to

alXNij=0 atx=1, atXij =0 at v = —1, (6.1)

and without loss of generality [21], these direction vectors may be chosen to

be
ay = (é) . a_= <Z> . (6.2)

In order to rewrite the area functional J in a more convenient form, first
transform the lens direction vectors to that of the sphere. Namely set

_(r 9y, (P N _, (¢ N _ (9
<)o) () () () e

so that
Nijdo'de = (ZT)\Z)ij de'de’ (6.4)
N—_———
Xij
and
atNij=0 atx=1, a'N\i; =0 at z=—1, (6.5)
with
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Next select the following reparameterization of the A target space vari-
ables

A1 = e2U+V(1 —z)coshW, Ay = eQU*V(l + ) cosh W,
Mo = €2U/1 — 22sinh W, (6.7)
or rather

A = €2U+V(1 —x) cosh W,
2U

Mo = S (VI a2 sinh W — gV (1= ) cosh W) (6.8)
p

U,
Aoz = —5 (¢°€" (1 — x) cosh W
p

—2¢\/1 — 22sinh W + e~V (1 + x) cosh W) , (6.9)

with inverse transformation

1 det A
0= (1)
\ 2
v-1 <(1 +x)5“> -1 ( P+ 7)h ) . (6.10)
2\ (1—2z)\a2 2 \ (1 —2)[g? i1 — 2g 12 + Aa2)

- A12 ) o ( A2 — gA1n )
W = sinh™* ( = sinh — .
e2Uy/1 — z? pe?Uy/1 — 22
Note that the regularity condition (4.3) becomes

1 — 22)2 2(1 _ 22)2
€2 = lim %: lim p_(_—aij)_ (6.11)
z—=+1 det \ - aitai)\ij z—+1 det \ - a;ai/\ij

and therefore,

C2
hrilefawfv = 0 (6.12)
r— 14

Moreover, using (4.2) produces

&V + 620) = —(&(1) +£(=1)) log (;pg) = ~2aglog <;)22;T12> ’
o (6.13)
where
oo — W (6.14)

Let us now compute each term in J. Observe that
(1 g2 (L@edet V2 TN 1
8 (det \)? 8 1_ 22
oy (1 (9 det N)? Tr(A~10,\)? 1
=(1-2%)= _ _
8 (det \)? 8 1 — g2
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2
_ 1 K {120,007 + (0:V) + (0W)? + sinh® W (8,1 + ,)*}

1 3
where
1 1—=x
h2—2log<1+x>. (6.16)
Furthermore,

1

1 1
orx"le, + T2 4+ Zazszxlazw

4det X * 4det A\
1 - 1 1 _
= eTzx"1z70, Y2+ —0,9TZ23"127 5,
4det X * +4det)\ z+4 v ¥
g MUY ehi—6U+hatV —ho—V 51 52)2
=p"———(0,;)° +p°e coshW{e tanh WO, — 03
cosh W
—2h1—2U—ho—V
2¢ 712
c "
tr cosh W (0:97)
+ p2e 2 =2UthatV oosh W(e "2~V tanh WO, o' — 9,9%)?
+ ple~dhi—4Uy2 (6.17)
where
~ - 1
0,=2%e,, =272y, hy = = log(1 — x?). (6.18)

4

Then setting © = cos @, integrating by parts, and using the regularity condition
(6.13) produces

T =Tppg) + aclog (;’22;) - B, (6.19)
where
5 /0 " (“’;?2 + ig) sin 06 (6.20)
and
Tip.a)(V)
- 111/07r 5{12(89U)2 +(0gV)? + (9gW)* + sinh® W (9pV + Dphs)”
e—6h1—6U—h2—V _
+p? ChHk

cosh W
+ pe O —OUThatV ok 17 (e‘hrv tanh WO, — @5)2
) —2h1—2U—hs—V 110

0,
tp cosh W S

+ pPe 2T 2UFh VY cosh W (e 27V tanh Wph' — 0p1p?)?

e
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A 2
+ p2674h174UT§ + 3p2A <2\/§ﬂ.2) 674U

— & 2V 09 + 12U 04 (cos 0€)] 89/12} sin 6do, (6.21)

with W = (U, V, W, ¢%, ¢%, x, o1, 42).

Consider now the case in which B is diffeomorphic to S' x S2, that
is when the same Killing vector ;) vanishes at both x = +1. Define the
reparameterization
A1 =2V cosh w, )\22:62[]7‘7(1 — xQ) coshW, X2 :eQU\/ 1 — x2sinh W,

(6.22)

where
V =V +2hy + ha. (6.23)
In a similar fashion to the computations above

(1 g2 (L@edet V2 | TN 1
8 (det \)2 g —

1—a? 2 — 2 2 .12 = 2
_ {12 (0:0)2 + (0,V)? + (0.W)2 + sinh® W (8,V — 20,51 ) }
+ gaw (V—6U) -1, (6.24)
and
L oo, + L y2i 1y YIAT O
ddet N ° To4det AT 407 *
ei U=V 8hy—6U+V 20,V 1 2)?
= W(@x) + e MmUY cosh W (e 7 tanh WO, — @x)
+ et (00" + e~ 42UV ogh W(thl_V tanh W' — 0,¢%)?
coshW *7° * ’
+ e 4 —AUy2 (6.25)
Moreover, in the current setting, the lack of conical singularities yields
; —6U+V c?
lli)lgl e =< (6.26)
so that
_ o=l CQ CZ
x&(V —6U) = (£(1) +&(—1)) log <2> = 2a¢ log (2> . (6.27)
r=—1
Therefore,

3274
3 =Tgiyge + aelog <AZ> - 8L, (6.28)
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where
1 1\2
B¢ :/ ((1 —x2)(€> +§) dx (6.29)
1 2
and
Ts1yg2 = i / 5{12 (89U)2 + (39‘7)2 + (89W)2 + sinh®> W (39‘7 — 239/11)2
0
+ ﬂ(@lf + e SM=OUHY osh W (e%l_v tanh WOy — @2)2
cosh W o 0 o
e UV 12 —4hy—2U4V 2h1—V 1 2,2
+ W(agw ) +e cosh W (e tanh Wdgth™ — 9pb”)
L thAUy2 gy ( A )2 oAU
¢ 2v/2m2
— &1 (—2V + 12U) p(cos 95)89h2} sin 0df. (6.30)

It turns out that the two classes of functionals may be expressed in a
unified fashion with the help of a parameter s, which takes the value 0 for the
lens family of topologies and the value 1 for the topology S! x S2. The relation
between topology and the values of (p,q, s) is given by

8253, 3:0, pzl’ q:()a
B=L(p,q), s=0, 1<qg<p-1, (6.31)
B~S'x82 s=1, p=1, q¢q=0.

Note that, in the ring case, the values of p and ¢ do not coincide with those

used earlier in the section. The purpose for using these values here is to unify
the expression for the functional below. Let

us 2
Vs =V + 2shy + sho, B¢ = / <(69£) + 3+S§> sin 6df, (6.32)
0 28 4
then
- 3274 s
where

(V) = = /Oﬂ 5{12 (B6U)? + (89V:)? + (0eW)? + sinh® W (8 V + 9gha)”

e 0h—ha—6U-V

_ N2
p— (9(1,)2 +p2ef6h1+h276U+v cosh W (eihzfvtanh WwWo, — @Z)

o—2h1—ha—2U—V B
i cosh W (89w1)2

+ple 22U cosh W(e ™27V tanh Wopy' — 0p1p?)?

+p

+p
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A 2
2,~4h—4Uy2 | g QA( ) —4U

+pe o+ 3p 72\/57@ e

— ,5*1 {21/589 ({1 — 2scos? g] 5) + 12U 0y (cos 95)] Oghg} sin 6d6. (6.34)

Proposition 6.1. Let (M, g, F) be a bi-axisymmetric solution of 5-dimensional
minimal supergravity, and let B be a bi-axisymmetric stable MOTS, then

4v/2r? Tm 0k

A> e ? (6.35)

p
Proof. According to (4.31) the area functional satisfies 3 < 0. The desired
result then follows from (6.33). O

7. Convexity of the Area Functional and Minimization

Consider the 3-sphere S3 parameterized by Hopf coordinates (0, ¢*, ¢?), where
6 € [0, 7] and ¢ € [0,27], in which the round metric is expressed as

2
% + sin2(8/2)(do1)? + cos(6/2) (de?)2, (7.1)
with volume form
dy = Slzeda Adet A d?. (7.2)

Recall that the symmetric space Gy)/SO(4) = R® comes equipped with a
complete metric [1] of nonpositive curvature given by
—6u—v
G = 12du® + cosh® wdv® + dw® +p267(é1)2
cosh w

+ p’e % coshw(e™ " tanhw®' — 6%)?

5 e—2u—v

(dp")? +p°e " coshw(e ” tanh wdp" — dp*)? + p*e” T
(7.3)

e cosh w

Let Q C S3, then the quasi-harmonic energy on this domain of maps U =
(u,v,w,CY, C2 X, 0t %)+ S3\TD — G(2)/SO(4), where I is the union of the
two circles 8 = 0, 7, is defined by

~ 1 67611,7'0 _
Eo(¥) = — /Q 5{12(agu)2 + cosh® w(9yv)? + (Bpw)? + p? S (64)?
—2u—wv
2,—6utv o) v tanh wO®! — 62 2 2€ 91 )2
+ ple coshw (e~ tanh wOy 5) +p coshw( 1))

+ pPe 2%t coshw (e_“ tanh wopp! — 691/;2)2 R A &

2
> e~ 4 sin? Q}dV. (7.4)

A
+ 3p*A
P <2ﬁ7r2
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This differs from the pure harmonic energy by the factor £ and the last term
involving A. Next set u = hy + U and v = hy + V, and observe that in Hopf
coordinates

1 9
hy = B logsin 6, he = log tan 7 (7.5)

With the help of the identity

cos
2

Ophy = Opha, (7.6)

it follows that
126(0pU)? = 12€(0gu)? — 3¢ cos? 0(Dphs)?
—120p (EU cos0) Ogha + 12U 0y (& cos 0)Ogha, (7.7)
and
£(0pV5)?
— £ (Dgv + 2509hy + (s — 1)Dghs)?

= £(Opv)? + & | 250ph1 + (5 — 1)0gha |+ 2£0pv (250ph1 + (5 — 1)Dphsz)
Bohs

£(09v)? + £(Dghs)® + 2605 (Vi — hy)Oghs

£(0pv)? — £(Dohs) + 2609 ViOphs

2
= £(Opv)? — & (28 cos? g — 1) (Ophs)? + 2¢ (28 cos® g — 1) OpVsOpho

2
= g(agv)z —¢£ <2s cos? g — 1> (89h2)2 + 20y (§ <2s cos? g — 1) Vs> Ogha

—2V,0p (5 (23 cos? g - 1)) Dghs. (7.8)

Therefore, integration by parts and 0y (sinf9phs) = 0 show that the area
functional and quasi-harmonic energy are related by

4T (V) = Eq (V) — / ¢ ((25 cos? g - 1)2 + 3 cos? 9) (Dpha)?dV

Q
+/ ¢ <2 (25 cos? g - 1) Vs — 12cos 0U) 0, hadA (7.9)
o0

where v is the unit outer normal and Zq, is the area functional (6.34) restricted
to Q.

Let Ug = (Uo, Vo, Wo, (3, C8,x0,%8,v3) be a renormalized quasi-
harmonic map arising from the near-horizon geometry of the relevant model
extreme black hole (mentioned in the statement of each theorem in Sect. 2).
In “Appendix” ¥ is given explicitly, and it can be shown that ¥ is a critical



Vol. 20 (2019) Area—Angular Momentum—Charge Inequalities 503

point of Zg. The goal of this section is to establish ¥y as the global minimum
point for Zz.

Theorem 7.1. Suppose that ¥ = (U, V, W, (1, (%, x, ¥, ¥?) is smooth and sat-
isfies the asymptotics (7.15)—(7.19) with x|r = xolr, ¢'|r = |, and ¥i|r =
¥i|r, i = 1,2. Then there exists a constant C' > 0 such that

2
Ts(W) — T (Wy) zc/ (distG2(2)/SO(4)(\I/,\IIO)7D> dv,  (7.10)
S3

where D denotes the average value of dist02(2)/so(4)(\il, ).

The proof is based on a convexity argument. Namely, due to the fact
that the target symmetric space Gg)/SO(4) is nonpositively curved, and
A > 0, the quasi-harmonic energy E is convex under geodesic deformations.
The functional Zg then inherits such convexity as a result of (7.9), which
leads to the desired gap bound (7.10). However, since the energy of the maps
in question is infinite, a cut-and-paste argument away from the set Q. =
{(0, ¢, ¢?) | sin® > e} is needed to apply the convexity property.

We first record all relevant asymptotic behavior. As # — 0,7 the renor-
malized quasi-harmonic map satisfies

U, &3, ¢2,x0 = O(1), Wo = O(sin®),

99Uo, dgx0, Doy = O(sinf),  ByWo = O(1), (7.11)
o(1 =0 i =
Vo = 1) L s  OeVo = O(st) . s=0 , (7.12)
—2log (sm 5) +0(1) s=1 —cot 5 +O(sind) s=1

20 s — 20y o _
wé:{O(sm 5) s 07 wg:{O(cos 5) s [)7 02 = O(sin26), s=1,

0o(1) s=1 o(1) s=1
(7.13)
Bpch — sin? %O(sine) s=0 2 = cos? gO(siHQ) s=0 (7.14)
050 = O(sin6) s=1" 050 = O(sin6) s=1" '
Similarly the components of the given map W should satisfy
ULt x=0(1), W=0(sin0), 9W =0(1), (7.15)
_ O(1) s=0 ] O(sin®) s=0
V= {—210g (sin g) +0(1) s=1" %V = {cot g +O(sinf) s=1" (7.16)
W= {O(‘/sing) s:07 W2 = {O( cosg) s:O7 0% = O(sin?0), s =1,
O(1) s=1 O(1) s=1
(7.17)
BoU, dgx = O(sin0), gt = {O( Y sinf) s=0 (7.18)
O(sin ) s=1

Bpct = { sin%O(sinG) s=0 9 = { cos gO(sinQ) s=0 . (7.19)
O(sin ) s=1 O(sin0) s=1
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Next, in order to carry out the cut-and-paste procedure, define a Lipschitz
cutoff function

0 if sinf < ¢,
0. = % if e <sinf < /e, (7.20)
1 if sinf > /e,
and let
e = (U, Ve, We, 4, B oxe, 0, 42) = (U, @2) = (U, @0 + 2 (D — Bp)

(7.21)
so that W, = (U, Vo, Wo, (¢, 3, x0, Vb, ¥3) on S3\Qe.
Lemma 7.2. lim._0Zp(¥.) = Zg(¥).
Proof. Observe that
IB(‘DE) = IB(‘DE)lsin p<e T IB(‘IIE)‘€<sin 0<\/e + IB(\IIE)|sin 0>/e» (7-22)

and by dominated convergence theorem Zp(V.)|sn 9>,z — Zp(¥). Further-
more, the first term on the right-hand side converges to zero since

IB(‘I’E)lsin 0<e

1
= €4 12(09U)? + (09 Vi + 2509h1 + s0ph2)? + (8 Wy)?
4n? Jgin 0<e ——— —
O (sin? 0) O (sin? 0) O (sin? 0)
+Sinh2 Wo (89‘/0 +60h2)2 +p2 6_2U_VO & ‘89'&”2
—_— —— sin # cosh Wy 0
O(sin? 6) O(csc? 0) o(1) s=0 O(sin? )
O(sin® §) s=1
0
4 p? e —SU—Vo . cot 5 (@(1))2
—— sin® # cosh Wy ~——
{O(l) s=0 O(sin®@tan §) s =
O(sin®§) s=1 O(sin® @) s=1
tan € cosh Wy [ - 0 ~1\2
2 —6U+V, 0 2 _v 1
+p e 0 2111730 (@O — e 7% cot 5 tanh Wo@()) }dV
o(1) s=0 O(sin? 0)
O(csc? % s=1
1 ¢ 2 —2U+V, tan % cosh Wy
e hbil Tt
4n? Jsino<e P ~— sin 6
O(1) s=0
O(Sin72 %) s=1

T2 —V, 4 —1\?
X 69#}0 — e cot 5 tanh Woae’l,bo

O(sin? 0)

P2 —4U T |2 +3 27 A 2 —4U gy
e e
sin2 6 ~—~—~— \?_/ P 2V2m2 ) =~

O(1) O(sin? 0) O(1)
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1 12
— —/ —— UQp (cos 0E)
472 Jiino<e | SN0 e— — —2
o(1)

+ i (Vo + 2sh1 + sha) 0s ({1 — 2scos® g] &) }dv. (7.23)
sin 6 2

o(1)

Now consider the region W. = {6 € [0,7]|e < sinf < y/e}. Let I,
i =1,...,12 denote integrals over W. of the terms in (7.23) with ® replaced
by ®.. Then each such integral vanishes in the limit as ¢ — 0. To see this
observe that

I < c/ (912 dV = O (e) (7.24)
JW, —_——r
O(sin? 0)
Iy < c/ (89 Vo + 2589hy + 599h2)> + (09Vo — V)2 + (V — Vo) (dowe)? dy
W, —_———— ———
O(sin? 6) O(sin? 6) O(1)  O(cot? 6(log )~2)
1
o0 ( ) 7 (7.25)
[loge|
: 1
Is < c/ (0eW)? + (BeWo)2 + (W — Wo)2  (dppe)?  |av =0 <7> .
w, | ~—— —— ———— —— |10g E‘
o(1) o(1) o(1) O(cot? 0(log £)~2)
(7.26)

Moreover, using sinh W, = O(sin §) yields

I, < c/ sin?@ | (0pV — 09Vi)? + (Dph2)? + (V — V)2 (Opepe)? ay
: —_— — ~— N——
O(sin? 0) O(csc? 0) O(1) O(cot? 0(loge)—2)
= 0O(e).
(7.27)

Next observe that since the values of the potentials of the two maps agree at
the poles, it holds that

I¢" = ¢l + Ix — xol + [¢" — ¥§| = O(sin® 6). (7.28)
From this we find

O(Vsinf) s=0 (729)

ERTARS 199" | + 190vg] + 19" — ¥5 100 e | = : B
N—_—— N—— N———— O(Sll’l@) s=1

O(v/sinf) s=0 OGN  [loge["1O0(in0)
O(sin 0) s=1

and similar considerations produce
-1 - o 6 _
T.| < |10g.5| O(V'sin6) 5—07 61| < O(,/sm_251n9) s 0.
O(sin®) s=1 |loge|'~*O(sinf) s=1
(7.30)
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It follows that

I < / coty et @02 dv (7.31)
5=¢ _ sinf cosh W, N ’ ’
O(sin0) =0
o() s:O{ sfn20 5=
O(sin® %) s=1 O(sin™f) s=1
cot ¢ e~ Ve—6U ~
Is < 2 H? .32
6= C/WE sin® 6 cosh W, (EEL v, (7.32)
O(sin ¢sin?f) s=0
o() s=0 ot
O(sin*4) s=1 (sin”6) s=1

tang _V.—6U =2 _v, ¢ 31\2
I <c¢ — e c coshW, (©Z —e™ ¥s cot = tanh W.0;)" dV,
w, sin®f ~—m—————— 2

o(1) s=0 sin £ sin? 5=
{ o {0( 0) 0

20 2
Ofose 3 |loge|20(sin? ) s=1
(7.33)
I <c / (sin6) 2 ¢4V 1.2 av. (7.34)
e o) g
|loge|20(sinf), s=0
O(sin? ), s=1

Analogous estimates hold for the remaining integrals Ig, I1g, I11, and I;5. O

A basic property of the harmonic energy, for maps into nonpositively
curved target spaces, is convexity along geodesic deformations. When the cos-
mological constant is nonnegative, this property carries over to the quasi-
harmonic energy (7.4).

Proposition 7.3. Let ) C §3 be a domain which does not contain either of
the poles 0 = 0,7, and let W' : Q — G(5)/SO(4) be a family of smooth maps
which are geodesics in t € [0,1]. Then

d? - 1 ) -
ﬁEQ(\I/t) > ﬁ/ﬂ|lest(;2(2)/50(4)(\1'1,\IJO)|2dV. (7.35)
Proof. The quasi-harmonic energy of the map Ut = (ug, v, we, Gy Cu X

},1?) is the sum of the pure harmonic energy scaled by ¢ and a term in-
volving the cosmological constant, namely

A
2273

- 1 . 2
Eq(0') = o /Q §|d\11t|2dV+3p2A< ) /Q Ee M sin? 0dY  (7.36)

where the energy density is

AT |2 = 4G pedy (1) P 0y (1)°. (7.37)
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Since Ga(2)/S0(4) is nonpositively curved, the pure harmonic energy is convex
along geodesics [37], and the same is true for the scaling by &. In particular,
using that 5 > 1 it holds that

dt2 / €|d\1/t‘2dv> 2/ |VdIStG2(2)/SO(4)(\IJ \I/O)| dy. (738)
Thus, it remains to show that

Ofe e = A(—iiy + 4uf)e * =4 [F%C&(\iﬁ)’g&(\f!t)c +4aF | et >0,

(7.39)
where 4, = Jyu; and the geodesic equation
iy + T% 00, (T Bo, (W)Y =0 (7.40)
was used.
The Christoffel symbols may be computed as follows:
u u u u
ry, =T, =T8, =Th, =Tl =T, =Tt =0, (7.41)
ry, =Tt =0Ts,. =0Tt =Tt =Tt = F;w =Ts =0, (7.42)
1 p2 4
Tee = ZGCCJ, Tiigs = ch,, Té GC v T = 4G = 5¢ " (743)
2 2 2
u P C2u—v P ou—w . P 4w,z
Lpign = ZG,J)I,,I)I ~ Goohwt 2 e 2 sinh w tanh w — =€ B
(7.44)
1 P2 2 p2 4u 71 72 2 4u 72
Coige = ZGWLZ + ?e_ “sinhw + 1—89,‘ YT, Ty Gw X \/ge_ “ah?,
(7.45)
1 P2 —4u 71 1 p2 —4u 7152 P2 —2
Fzzx = ZG,‘ZQX - 6\/56 Y, F%g@z = ZGWJ}Q — %e YpT)T — Ee v cosh w.
(7.46)
Let

—c‘f+wi<xt+3 (P2 — &?le)), T, xﬁf(wt G2,

7

(7.47)
and observe that
“y o 9 p2676ut vt .
10,02 = 12u? + cosh® wo? + w? + eoshw, ;)
2 —6ust 21 Ao PReTReTV .
+ TPWTY cosh Yt tanhw;©, — © _
pe wy(e Nnh w9y t) cosh w, (wt)

+ p?e”2u TV coshw, (e~ " tanh wtz/jtl - 1/73)2 +pPe Y2, (7.48)

Therefore,
B0 (Wh)P0,(8")¢
p e —6us—vy 219 p2 6,4 N - .
_W(Gt) + e coshwy(e™" tanh w, O — O7F)
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er—Q’LLf,—'Ut T p2 duy o ., - sgug
Tocomm, (V1) + Tge T coshwy(e” tanhwi — o)
P ~
i (7.49)
confirming that (7.39) is nonnegative. 0

It is now possible to prove the main result of this section.

Proof of Theorem 7.1. Let ﬁlg, t € [0,1] be the minimizing geodesic
in Go(2)/SO(4) connecting Vg to W.. Then U! = Uy + (U — Up) and V! =V
on S3\Q.. Observe that

d? . d? . d? p
@IB(‘I’E) = EIQE(‘I’E) + @ISB'\QE(‘I’EW (7.50)

Il 12

According to Proposition 7.3 and (7.9), we have

I *d—QlE (\i!t)fail/ 13 23(:052971 2+300520 (Dgh2)*dV
P a e T aer g g, 2 o

2
+ ‘LQE/ ¢ (2 (25 cos? ! 1) (Va)o — 12cos 8 (U + t(U — UO))> Oy hadA
dt? 4 Jpe_ 2
1 , o
o ; \Y dlStG2(2)/So(4)(\I/5, \I/0)|2dV. (7.51)

Furthermore, using that disth(Q)/So(4)(\i/E, Ug) = V12|u—1ug| on S3\Q. yields

1 ) e—Ghlfhg—GUtfvo

_ 2 % o 2 o c ~1\2
L /Sg\ngpf{pz(&gU O0Th)? + 36(U — Uo)*— e (B))

T 4n?

+36(U — Ug)26_6h1+h2_6Ut+V° cosh Wo(e_hz_v0 tanh W05 — @(2))2
—2h1—hy—2Ut—V,

1,2
cosh Wy (Botbo)

AU — Up)2e 2 +m2=2U0" Vo o W (e 72~V tanh Wodpdhy — Do)

+ AU - Up)*E

2
T 16(U — Up)?e " —4U" (1) + 48A <Tng) (U — Up)2e™ V" }dV
1

Z onz . IV diste, o, /s0() (Le, Yo) | dV. (7.52)

Note that passing (%22 inside the integral is justified here since all terms on the
right-hand side of (7.52) are uniformly integrable.
Next using the fact that ¥, is a critical point of the functional Zp, as
well as the fact that in a neighborhood of the poles
d_, d d

d d .
Ve = %Wg - %Cs,t — @XZ - ﬁ%,t =0, i=1,2, (7.53)
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shows
=0. (7.54)
0

d
SIp(Uh)| = 6£(U — Uy)dyUy sin 6
dt t=0

Now combine (7.50)—(7.52) and (7.54) to find

1 . ~ =
IB(\I/E) —IB(\IJO) > 8? ‘/53 |V dlStG2(2)/So(4)(\I/5, \Ifo)|2dV

- 2
= (distgz(z)/so(4)(\116,\llo)—DE) dv,  (7.55)

where the second line arises from the Poincaré inequality and D, is the average
value of the distance between W, and ¥,. By Lemma 7.2 lim._.q Ip(¥.) =
Zr(¥), so the proof will be complete if it can be shown that this limit may
be passed inside the integral. To accomplish this, observe that by the triangle
inequality it is enough to verify

lim y disté, ,, /soa)(We, ¥)dV = 0. (7.56)
The triangle inequality implies
diste, 4, /so() (Ve ¥)
SdiStGZ(z)/So(4)((UaUe,wsaCg:-l»Cgvaaw;»w?)a(U»vaws»Csla 2 Xe, VL, 02))
+dista, ., /so@) (w0, we, ¢ G xe, Y2, 02), (u,v,w, ¢, G xe, 92, 92))
4ot distG2(2)/So(4)((u,v,w, ¢t EGox, vt 2, (u,v,w, ¢ G x vt 9?)

(7.57)
SC{|vvs|+|wws+e3u <6_%”|C1€§|+6§”|<2<3|>
1 1
( 50+ ) + 2”<|w2|+|w3|>) = xel
( ]+ RN (] + 2D 3 + (2] + [92)%e3® ) ot — ol
(7.58)
+( )+ e 2+ (ju* |+|wo|><w2|+w3|>e5”) w2 — 2
U (Ix = xe| + (2] + [WEDIY — | + (11 + [ )]w? — %2])
Lo (e%’w ST wﬂ) } (7.59)

where it was used that distances between points of G'3(2)/S0O(4) are dominated
by the length of connecting coordinate lines. Since all terms on the right-hand
side are uniformly bounded independent of ¢, (7.56) follows from the dominated
convergence theorem. O
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8. Proof of the Main Results

Proof of Theorems 2.1, 2.2, 2.3. From the spacetime (M,g, F) and stable
MOTS, we obtain the map ¥ as explained in Sects. 5 and 6. Since A = 0
it holds that o = 1, so that by Proposition 6.1

4272 (-5
(& 2 .
p

Let ¥y be the renormalized harmonic map arising from the near-horizon ge-
ometry of the relevant model extreme black hole (mentioned in the statement
of each theorem) having angular momentum and charges that agree with those
of the given MOTS. Then according Theorem 7.1

s B —P1 iy BY0)—P1
4272 zew-p;  AN272 Te(ve)-5f
e 2 > e 2

p p

where Ay is the area of the horizon for the relevant model extreme black hole.
Note that the equality in (8.2) follows from the fact that the function M
vanishes at Wq, as is shown in Sect. 5. In the appendices the value of Ag is
computed in terms of angular momentum and charges. This, together with
(8.1) and (8.2) yields the desired area—angular momentum-—charge inequal-
ity for each theorem. In the case this inequality is saturated, we must have
Ip(¥) = Zp(¥y) which implies by the gap bound that diste, ., /s0(4) (@, W) is
constant. Since VU realizes the infimum of the functional Zj, it is a critical point
and hence a harmonic map. According to [2] the two maps ¥ and ¥y must
then be related by an isometry in the target symmetric space. The Maxwell
field F' may then be reconstructed from ¥ via (4.16), and thus (B,~, F') must
arise from the relevant near-horizon geometry. O

A> (8.1)

= Ay, (8.2)

Before proceeding to the proof of Theorem 2.4, we need a preliminary
result.

Lemma 8.1. (a) Given (A, J1,72) € RL x R_ with J = Ji = +£J, there
exists a unique (121, jl,jz) IS Ri x R_ with j = jl = :I:jg which saturates

ABAS  (AVAZ + 5127202 — A? — 12872 72)°

< : 8.3
210672 (A— VAT +5122272)" 53
and satisfies
N J o R 2
= A A< . 4
j A2 ? — 2A3 (8 )

Moreover, the inequality (8.3) is equivalent to A> A.

(b) Given (A, Q) € R2, there exists a unique (/1, Q) € R2 which saturates

2
<
Q= 6472

12 /An\Y?  3A42
( W) 3 (8.5)

2 o 32r2”



Vol. 20 (2019) Area—Angular Momentum—Charge Inequalities 511

and satisfies

2

V2A3

Moreover, the inequality (8.5) is equivalent to A> A.

Q=—"4, A<

(8.6)

=0

Proof. Consider part (a) when J; = —Jo; similar arguments hold when J; =
Jo. We may assume without loss of generality that [J; > 0. Define the curve

f(T)—(A(T),jl(T),Jz(T»—( 2,0 2) —< Tt = 2)

(8.7)
in Ri x R_. Then for small 7 each side of the inequality satisfies
ABAS(r) . ( (r)\/A2Z(7) + 5122 T2 (1) — A2(7) — 1287r2j2(7)>3
20re 73 " (4 - VA () + 5120272 (7 ))4 o
(8.8)

so that the inequality holds on the curve f. For large 7 it is clear that the
inequality is reversed. It follows that there exists a time 7 = A for which
the inequality is saturated. Further analysis of the roots of the associated

2
polynomial show that this time is unique for 7 < m

In order to establish the last statement in part (a), we interpret Ri as
having a vertical J-axis and horizontal A-axis. Observe that inequality (8.3)
corresponds to all points lying below the surface defined by equality in (8.3);
this is similar to Fig. 1 in “Appendix A”. According to the description of A
above, it follows that A < A if and only if the inequality (8.3) is satisfied.

Similar arguments may be used to establish part (b) with the curve

1) = (4. Q) = (n %) (59
in RZ . O

Proof of Theorem 2.4. We will provide details only for part (a), as similar
arguments may be used for part (b). Let ¥ be the map obtained from the
spacetime (M, g, F') as explained in Sects. 5 and 6, and let (A, 71, J2) be the
area and angular momenta of the stable MOTS. Lemma 8.1 states that there

exist corresponding values (fl, T, jg) which arise from an extreme CCLP black
hole, and are such that the desired inequality (2.14) is equivalent to showing

A > A. Let a and b be the angular momentum parameters for this extreme

CCLP solution (these quantities are given implicitly in terms of J1 and J» by
the Eq (A.17)), and set

=0, V, W, 3 x9N 97)

ot (e (e 0 )"

(8.10)
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According to Theorem 7.1
Zes (W) > Zgs (W), (8.11)

where U, denotes the extreme CCLP map with the same angular momenta T,
Jo2, and Zgs represents the functional Zgs defined with respect to the quantities
a, b, and A. Next observe that

N A s A
Iss(\I/) :Iss(\lf) —3aélog Z, (8.12)
and therefore with the help of Proposition 6.1

Zg3 (V-5 422 A3/ ng B2
A>4V2r% e =1 ¢ . (8.13)
A3/2
By combining (8.11) and (8.13), we obtain at A > A, since

Iss(‘i’o)*ﬁg

4W2rle e = A (8.14)

Consider now the case of equality in (2.14). By the proof of Lemma 8.1,

this implies that (A, T, jg) = (A, N, J2), and hence U =0, U, = U,
Furthermore, Zgs (V) = Zg3(¥(), which as in the above proof of Theorems 2.1,
2.2, and 2.3 yields ¥ = ¥, up to isometry in the target symmetric space.
From here the same arguments apply to show that (B,v, F') must arise from
the near-horizon geometry of the extreme CCLP black hole. 0

Appendix A. The CCLP Charged Rotating de Sitter Black Hole
A.1. The Solution

Consider 5-dimensional minimal supergravity with a positive cosmological con-
stant with action (2.1). The Chong—Cvetic-Lu—Pope (CCLP) solution [5] may
be interpreted as the natural generalization of the Kerr—Newman de Sitter
black hole to 5 dimensions. In Boyer—Lindquist coordinates the solution takes
the form

¢[(1 — Ar?) Bdt + 2qv] dt L2 f ( gt w>2

&=~ 2,55 Yy 22\ 5.5,
Sdr? EdéZ 2 2 B r2 4 p?
P T n20de)? + T cos?0(de?)? (A1)
A 5 Za Ep
where
. . 1 2
v = bsin? 0d¢' + a cos® 0dp?, w = asin®— ¢ + bcos? 6‘ ¢ (A.2)
£=1+A(a®cos® 0+ b? sin2 0),
2 L a2 4 B2V (1 — Ar2 2 1 9ab
N R T Ve R SN

r
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Y =r2+b%sin? 04 a®cos?l, =, =1+a’A, =, =1+b%A,
f=(2m — 2abgA)¥ — ¢*. (A.4)
The Maxwell field ' = dA has the potential

A (E ) )

The above solution is characterized by the parameters (m,a,b,q) and for a
suitable range of parameters they describe regular black holes on and outside
an event horizon up to a cosmological horizon whose scale is set by the length
scale (2 = A~L If A = 0 the solution is considerably simpler as we discuss
below. Here t € R, § € (0,7/2), and ¢* ~ ¢' + 27. Apart from coordinate
singularities at § = 0, 7 /2 where the rotational Killing fields 9/0¢" degenerate,
there are singularities at the roots of A(r). These correspond to an inner
horizon, an outer horizon, and a cosmological horizon for suitable choice of
parameters. In particular, for the subfamily of extreme black holes, we require
the cubic function A(R) with R = r? to have three real positive roots, two of
which coincide. This condition is equivalent to requiring the discriminant of the
cubic A(R) vanishes, which reduces to an equation of the form f(a,b,q,m) =0
for a smooth function f. The implicit function theorem will guarantee that,
generically in some open set in parameter space, a solution m = m(a,b,q)
exists.
If we set R, to be a root, we can eliminate m by

(Ry +a®)(Ry +0*)(1 — Ry A) + ¢* + 2abq
2R, ’

Sa=b

(A.6)

m =

and R, is a double root provided

ARZ (2R: +a* +b*) = R3 — (ab + q)?, (A7)
which implies Ry > |ab + ¢| with equality if and only if A = 0. We will take
g > 0 (below we will see this is equivalent to choosing electric charge @ > 0)

and assume ab 4+ ¢ > 0. Finally we require that the cosmological horizon
R. > R, that is

(a® +b*)(ab+ q)* + 3(ab + q)* Ry — R3 > 0. (A.8)

In summary, the extreme family is parameterized by (R4, a, b, q) which satisfy
the extremality constraint (A.7).

Defining r, = \/E , we can derive the quasi-harmonic map data corre-
sponding to the near-horizon geometry associated with the extreme subfamily
of black holes. The horizon metric is

S~ o
Vmndy™ dy™ = Twe? + Nijdotde? (A.9)

where X, = ri +b2sin%0 + a2 cos? 0 and
(r2 +a?)sin® @ L [a (2mX,, — ¢?) + 2bg%,, | sin* 0

= 2 =2 ’

—
—a

>\11 =

(A.10)

Ty —a
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(r2 +b?) cos? 0 N b[b(2mE,, —¢?) + 2a¢%,, | cos?d

Aag = — — , (A1
22 = 22, =2 ( )
ab (2mY,.. — ¢?) + (a2 + b2)¢%,. | sin? O cos? §
[ (mE,, )2(2::) ] , (A.12)
e Sba
and the horizon area is A = 872C~! where
o1 ri+ri(a2—|—bj)j— ab(ab—l—q)' (A13)
Ar 2,5
It is straightforward to read off the magnetic potentials
faq sin? 0 \[bq cos? 0
Yo = o SR Py = —=— = (A.14)
—'a T+ —b T
A somewhat longer calculation gives T, and hence the potential
30(b% 4 12 ) (a2 - 12
V3q(b? +13)(a® +13) (A.15)

O RS (e — )Y,

The computation of the charged twist potentials ¢} is involved and yields
cumbersome expressions which we will omit here, although we will record the
asymptotic behavior relevant for the convexity argument below. Using the
quasi-harmonic map potentials one can calculate the electric charge

f?rq

+

Q= (A.16)
45,5
and angular momenta associated with the black hole horizon
m[2am+¢b(2 — E,)] 7 [20m + qa (2 — Zp)]
= = . A.17
S =2%, S 42,22 (A.17)

The estimates of the quasi-harmonic map as 6 — 0,7/2 will now be
collected. Recall that in terms of our parametrization for spherical topology,
we have

4 2 2y,.2 272 2 A 26
Uy — llog <§(r++(a +b )r_‘_j—a b° + abq) ) V= llog 1cos g )
4Zr+7"+~—4a~—q, 2 )\22 sin2 g
(A.18)
The required asymptotic behavior of the scalars is
2 2 24\3

Vo = %log (%) +O(sin® 20),  95Vp = O(sin 26), (A.19)
-5 2o 47 in228), 93U = O(sin20 A.20
Uy = 7 log m + O(sin” 20), 5Uo = O(sin 20), ( . )
Wo = O(sin 26), 95Wo = O(1), (A.21)
Vs = O(sin® ), 995 = O(sin ), e = O(cos 0), 9302 = O(sin0), (A.22)

Cé :—E—FO(sm 6) asf—0, Qéfg—i-O(cos 6) as 0 — 7/2,

(A.23)
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¢ = —27T£+O(sin2§) as 0 — 0, @ = %JFO(CO#@) as 0 — m/2,
(A.24)

Xo = §+0(sin2é) as 0 — 0, X0=7¥+O(cos2é) as 0 — /2,
(A.25)
d5x0 = O(sin 20), 95Co = sin 2600 (sin” 6), 95¢8 = sin260(cos” 6). (A.26)

A.2. Geometric Equalities Satisfied by the CCLP Black Hole Horizon

In this section we consider some special subfamilies of the three-parameter
family of extreme horizons.

A.2.1. Vanishing Cosmological Constant A = 0. In this case the geometry
simplifies significantly as we can express R, explicitly in terms of the param-
eters as 7’3_ = R, =ab+ g > 0, or equivalently

(a+0b)?

The extreme horizon area satisfies

47
A, =8 2 —@Q3, A28
\/7T T T2 + 3\/§Q ( )

and positivity is guaranteed by ab+ ¢ > 0. Note that if set Q) = 0, we recover
the vacuum result obtained by Holland [21]. Moreover, if either J; is set to
zero, then we obtain

;‘—\%QS. (A.29)

This holds in particular for an extreme Reissner-Nordstrom horizon.

Ao =38

A.2.2. Vanishing Angular Momenta J; = 0. It is sufficient (although not
necessary) to set a = b = 0. In this case the extremality condition (A.7) reads

2ARY = R% — ¢, (A.30)
and the mass parameter is fixed by
R2 +3¢?
=——. A.31

The geometry of the horizon is that of a round S3, with area A = 27r2Ri/ 2
and using (A.30) gives the geometric relation

1A 4/3
6 <2> —3AA2 = 327%Q?, (A.32)

or equivalently
3/2 21 1 7T4 Q3

o =0 (A3

£(Ae, Q) = A2 (47r2 —2A (47TA6)2/3)
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Q
Qmax ””””” |
CN\EMALQ) =
A Amax AL _x? A
V2A3

FiGure 1. The shaded region represents the region
£(A4,Q) =0

It can be seen that

71'2 s

<< .
Tk 0= Q= Qmax =151

Amax 1s achieved when @@ = 0 and the cosmological and event horizon coincide.

0 < Ae < Amax =

(A.34)

A.2.3. Equal Angular Momenta J = J; = +J> and Vanishing Electric
Charge @ = 0. Consider the one-parameter subset defined by a = b > 0 and
g = 0. Then from (A.7) we find

a>=R,(1-2R;A), m=2R (1-R N> (A.35)

so that Ry < (2A)~!. The area of the extreme horizon is given by

] 2R3/2

o= (A.36)
(1+2RA)?
This implies the following complicated relation between A and J
3
atas (A/ATFBI2T7 - A2 - 1287272
< = . (A.37)
210,76 72 1
(Ae — VAT T 512j27r2)
From the above bound on R, it follows that
2
2

0< A < — 0<T < Juu = 2 (A.38)

~ VoA3’ 54A3/2°

In the case J = 0 the maximal area occurs when the event horizon and cosmo-
logical horizon coincide, while the maximum angular momentum is achieved

2
when A, = 9%/2.
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Appendix B. Dipole Charged Black Rings

An explicit 3-parameter family of asymptotically flat stationary
bi-axisymmetric black ring solutions, characterized by a mass m, vanishing
electric charge Q = 0, a single angular momenta 7; along the S'-direction of
the black ring, and a ‘dipole charge’ D which corresponds to the flux of the
Maxwell field out of the S? portion of the ring, was constructed in [12]. In the
physics literature this class of solutions is referred to as the ‘singly-spinning
dipole ring’ for this reason. If D = 0, then the solution reduces to the vacuum
black ring with one angular momentum [13]. A remarkable feature of this so-
lution is that it demonstrates ‘continuous non-uniqueness’—that is, for fixed
m, J1, there are an infinite number of distinct dipole rings. When D # 0, the
dipole ring admits a two-parameter extreme limit. The associated near-horizon
geometry, given in [33], corresponds to an extreme horizon with S! x S? topol-
ogy. Note that from the point of view of the near-horizon alone, the radius of
the S! is a free parameter although for the parent asymptotically flat black
hole the radius is fixed. Accordingly, we will leave it here as a free parameter
R;y. The harmonic map scalars can be read off from the horizon metric
dz? 570
Crdetn T d0de
dz? Rioc(1+o)H(x)

2023 (1 — 22)
T C2det A w(l —o)F(x)

(d¢1)2 + R3p”wy

232
@) (B

where
F(z) =1+ oz, H(z) =1— pz, (B.2)

and o, € (0,1). The local metric extends smoothly to a metric on S x §2
provided conical singularities are removed, which requires

wo = VFH() = /F(—DH(-1)°. (B.3)
This imposes a constraint on the parameters o, i, given by
1+o)1—p)’=1-0)(1+p)? (B.4)
which can actually be solved explicitly
p(3+p?)
= B.
o 1+ 3u2? (B.5)
so that
o (1—p?)?
=— B.6
“0 1+ 3u? (B.6)

The solution is parameterized by (Ry, Rz, 0, i) subject to (B.5). We have also
made the identification

o(l+0)p

cl=13 EWORle T

(B.7)
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The remaining scalars are

1 L’Ri(1+0) 1 > 1 —p wopRs(l+x)
Go = RoJor? (1 F(:v))’ Yo =—V3 T+ u Hx) )
(B.8)

X()EO,

and (¢ =¥} = 0.
By the definition of electric charge and xo = 0, we have @ = 0. The
dipole charge is

_ 2VBuRy(1 — 4

V1432

where v’ = (0, 1) corresponds to the fact that 1y is the Killing vector field which
vanishes at the poles of the S? of the ring horizon. The angular momenta can
be derived from the twist charged potentials, giving

. L3R, o B
I =i om0 (B.10)

The area of the extreme horizon is

D = —v (Wi (+1) — i (—1)) = =3 (+1)

(B.9)

WJ1D3
3v3
Note that there is no limit as D — 0 or J; — 0; that is, the extreme dipole

ring requires both a non-vanishing angular momenta along the S! direction of
the ring, and a non-vanishing dipole charge. Therefore, the area inequality is

A, =8mL3 =4rn (B.11)

3
A>d4r T hD .
3v3

Lastly, we set = cos 8 and list the asymptotics of the harmonic map as
0 — 0,m:

(B.12)

Vo = —log (sin g) +0(1), 9gVo = —cot g + O(sin 0), (B.13)
1 uR§(1+u)3(3+u2)R?) g .

Up = -1 O 0 0pUp = O 0 Wo =0

0= 0g< G+ D= p) +O(sin” 0), 9pUo (sind), Wy =0,
(B.14)

2

P2 = ‘/w cos? g +O0(sin?0), 9oy = O(sin0),  (B.15)

G = —2—jl +O(sin?0) ash—0, (= 25 +O0(sin?6) ash —m, ¢&=0,

T T

(B.16)
X0 = 0, 993 = O(sinh). (B.17)
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Appendix C. A Magnetically Charged Kerr String

Consider the class of extreme horizons with topology S' x 52 obtained as
follows. Start with a general vacuum Kerr black hole solution. Add a flat
direction to obtain the product metric

g = 8Kerr T dZQa (Cl)

which is obviously Ricci flat in D = 5, and hence one has a vacuum solu-
tion with horizon topology S!' x S? where z is periodically identified with
period 2w R. The resulting 3-parameter vacuum solution is referred to as a
‘Kerr black string’. Note that the solution obtained is not asymptotically flat
but rather is asymptotically R*! x S'. Solution generating techniques, based
on the underlying harmonic map structure of the theory, can be used to gen-
erate solutions to minimal supergravity with electric and magnetic charge (as
measured from the D = 4 point of view) as well as linear momentum along
the string direction z. Taking an extreme limit of this charged Kerr string and
performing the near-horizon limit, we obtain extreme horizons with horizon
topology S' x S2. Remarkably, the near-horizon geometry of the asymptotically
flat vacuum black ring is globally isometric to a subfamily of the near-horizon
geometries of the vacuum Kerr black string [33]. This strongly suggests there
could be some (yet to be explicitly constructed) family of extreme charged
black rings with horizon geometry globally isometric to that of a charged Kerr
black string.

In the following we will consider an extreme horizon parameterized by
(a, 8, R), and we use the shorthand c¢g = cosh 3, s3 = sinh 3. The Killing part
of the metric is given by

i at(l—a?) 4 4y,7.42\2
Aijdo*de’ =T @) (2(c5 + 55)de”)
2a3cpsp(cd + s2)(1 — a2 :
+ |Rdgt + =2 il ﬁ:(x)[’)( )d¢2 : (C.2)
where
E(z) = a®*(1 + 22 + 40%5%). (C.3)
The horizon scale is set by
C' =L =2a"R(c} + s3). (C4)

It is easily seen that 9/0¢? has fixed points at x = +1, and the above metric
extends smoothly to a cohomogeneity-one metric on S' x S2. The remaining
scalars are

4V3aPsgep(ch + sh)x 2\/§aL3c[35B(c% +5%)
- - s X0 = — .
E(x) (@)
(C.5)

Yo =0, Yi=
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A computation gives

B 2L%Racpsp(1l — 2 + 4chs3)

o — AL (14 253) (1 + Tsp2 + 195 + 2455125} + cha® + spa”) (-2 d
0 — (1 + 46282 + .1'2)3 x X,
BB
(C.7)

with twist potentials expressed concisely as

 2L°Racgspa = _4L3a2(c% +53)(1+ sjcp)a B Xﬁ)g.

G = (C.8)

Owing to the functional form of xo, ¥ it can be verified that @ = 0, so the
solution has vanishing electric charge. There is a dipole charge

D = 4V/3acgss (C.9)
as well as two angular momenta given by
Ji = —maR%cgss Jo = 727ra2R(c% + s%) . (C.10)

One can verify that the following equality holds for the extreme solution

Then the area inequality is

Lastly, we set x = cos and list the asymptotics of the harmonic map as
0 — 0,m:

Vo = —log (sin g) 4+ O0(1), 89V = —cot g + O(sin0), Wy = O(sin@),
(C.13)
1
Up = n log (2R%a®) + O(sin?0), 9pUo = O(sin0), 9yWo = O(1), (C.14)

D D
Py =0, w§:—§+0(sin2«9) as 0 — 0, w§:E+O(sin29) as 0 — m,

(C.15)

X0 = 2\/§aRsﬂcﬂ(2c% —1) + O(sin?0), dpxo = O(sinh) as — 0,m, (C.16)

¢ = 2N +0O(sin?0) as@—0, (&= 25 +O(sin?0)  as 6 — =, (C.17)
™ ™

@ = . +O(sin®0) ash —0, (2= 27 +O(sin?6) as  — m, (C.18)
™ ™

6611)37 6@((1)7 894(2) = O(Sin 0)7 (Clg)

O! = O(sinf)dh, ©% =O(sin?6)dd as b — 0,. (C.20)
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Appendix D. Lens Space L(n, 1) Horizons

The supergravity theory discussed here admits special classes of supersym-
metric (BPS) solutions. These are solutions which admit Killing spinors with
respect to an appropriate connection. Within the class of BPS solutions, there
are asymptotically flat black hole solutions that must saturate the bound
M = /3Q [20]. A BPS black hole is necessarily extreme (see, e.g., [28]),
so they immediately give rise to near-horizon geometries that will be critical
points of our harmonic map equations.

There is a classification (without any isometry assumptions) of possible
BPS near-horizon geometry solutions (g, F') [35]. The only possibilities are:
(i) St x S? with a product metric and the S? metric is round; (ii) S® with a
homogeneously squashed SU(2) x U (1) metric or a lens space quotient thereof.
There is also a T2 possibility with the flat metric, but this is ignored because
such a horizon could not correspond to an asymptotically flat black hole [18,
19]. Case (i) is realized by the family of BPS black ring solutions [11]. The S3
possibility is realized by the asymptotically flat black hole solutions [3,31], and
more recently asymptotically flat black holes with lens horizon L(n,1) have
been constructed in [32,39).

The near-horizon geometries of case (ii) above are all locally isometric,
with

r?dv?  dadvdr 46 1on 9 9
i =~ v vy (46! + 5 cosdd?) +dsd, (D)
2
FNH = ﬁd |:7'd’l} — —ﬂ (d¢1 —|— E COS 9d¢2):| 5 (D2)
o n 2

where j = 1/2a3 — 2. The orientation is such that €,,94142 > 0. The solution
has two continuous parameters «, 3 satisfying the regularity conditions o > 0,
20 — 32 > 0. The angles ¢ both have period 27 and 6 € (0, 7). The positive
integer n labels the horizon metric

452
n2a?

2
Vi dy™dyt = (d¢1 + gcos 9d¢2> + 2a(df? + sin? (dp?)?). (D.3)

It is important to note that many references work with the angle g{) = 2¢" with
period 47. A computation yields the harmonic map

2\/§ﬁ \/gﬂ cosf 4/3a
o= ——, Py = ———, Xo = — cos f, (D.4)
no o n
163 cos 8 43sin% 0
Cé = ﬂng ) Cg = */BT- (D.5)

Thus the angular momenta and charge, as defined in terms of potentials given
above, are

_ 4 Jo=0, Q= 2\/%0[. (D.6)

n?2’ n

Ji =

Observe that the angular momentum associated with J,> vanishes. However,
the angular momenta defined on the horizon need not equal the ones computed
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at spatial infinity because the gauge fields carry angular momenta in the black
hole exterior. This is related to the fact the Maxwell equation has a ‘source’
term so that there are additional volume contributions when comparing inte-
grals over the horizon and the boundary S® at infinity. Indeed, the black lens
spacetimes must have two non-vanishing angular momenta as measured with
respect to observers at infinity.

The area formula is

3272 4nQ3
Ao=""\/20% — 3 = 8m, | —n2J2. D.7
n “ b " 3\/§7T " Jl ( )

For n =1 this is the well-known formula for the area of the BMPV black hole
[3].

Now we compute the asymptotics of the harmonic data. Observe that the
Killing vectors () = 5041 — 9g2 and 1) = 5041 + 0y vanish at § = 0 and
0 = 7, respectively. Clearly the direction vectors are not same as in Sect. 6.
However, according to [21], there exists a matrix A € SL(2,Z) such that

and 7j;a%, and fja’ with ap = (1,0) and a— = (1,n) vanish at 0 = 0 and
0 = M, respectively. In other words, if we select the functions (;ASI such that
Ly, @' =1, we have
n ~ A% n Y
nay = §8¢1 - (9¢2 = 8¢31 =1niay, N2 = 58(151 — 8¢2 = 8(2)1 +n8¢;2 =1a_.
(D.9)
The transformation from (¢!, ¢?) to (¢!, $?) is

(Z;) =C (ﬁ) , U= (31 g) : (D.10)

Then there exists a matrix B = ((1) 711> such that (qf)l,qu)T = B(¢', oH)T.

Therefore, we obtain

(5) (&) 2=er=

and A = ZT\Z. The metric functions are then

2
1 A1 — A
o= Stog (2) = s () . (D12)

IRSE
— 3

L ) , (D.11)

4 n2sin® 6 e2Uo sin @
P G 2 (% A0 = iz + dao) (D.13)
0= - 10g A ) .
4 sin? % (%2/\11 +nAi2 + /\22)

1;1 ¢1 Q,(pl _ w?
(w?%) =77 (1/}2) _ (lel +w2> . (D.14)
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The asymptotics of the harmonic map as § — 0,7 are as follows:
203 .
Vo = = log ( ) + O(sin?6), 9pVp = O(sin 0), (D.15)
J2
1 852 .
Uy = 1 log | — ], 0pUo=0, Wp=0(sin0), Wy =0O(1), (D.16)

_ 0 -~ - 0 ~
=0 (sim2 5) . Opbh = O(sinh), ¥2=0 (cos2 5) . g2 = O(sinb),

(D.17)
!l f72il+o( Z) as 0 — 0, 537%+0( Z) as 0 — ,
(D.18)
Xof@juo(sm g) as @ — 0, xo= —£+O(cos g) as 0 — m,
(D.19)
doxo = O(sin ), ¢2 = 0(sin?0), 8¢l = O(sin6). (D.20)
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