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Bounding Horizon Area by Angular
Momentum, Charge, and Cosmological
Constant in 5-Dimensional Minimal
Supergravity

Aghil Alaee, Marcus Khuri and Hari Kunduri

Abstract. We establish a class of area–angular momentum–charge inequal-
ities satisfied by stable marginally outer trapped surfaces in 5-dimensional
minimal supergravity which admit a U(1)2 symmetry. A novel feature is
the fact that such surfaces can have the non-trivial topologies S1 × S2

and L(p, q). In addition to two angular momenta, they may be character-
ized by ‘dipole charge’ as well as electric charge. We show that the unique
geometries which saturate the inequalities are the horizon geometries cor-
responding to extreme black hole solutions. Analogous inequalities which
also include contributions from a positive cosmological constant are also
presented.

1. Introduction

There has been significant progress in establishing sharp geometric inequali-
ties, motivated in part by black hole thermodynamics, which relate the area
A, angular momenta J , and charge Q of axisymmetric stable marginally outer
trapped surfaces (MOTS) in spacetimes satisfying an appropriate energy con-
dition [8,9]. In spacetime dimension D = 4, a typical example of such an
inequality [16] is given by

A ≥ 4π
√

4J 2 + Q4, (1.1)

Hari Kunduri: On sabbatical leave from Memorial University of Newfoundland.
A. Alaee acknowledges the support of a NSERC Postdoctoral Fellowship 502873 and PIMS
Postdoctoral Fellowship. M. Khuri acknowledges the support of NSF Grants DMS-1308753
and DMS-1708798. H. Kunduri acknowledges the support of NSERC Grant 418537-2012.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-018-0749-4&domain=pdf


482 A. Alaee et al. Ann. Henri Poincaré

where equality is achieved if and only if the induced geometry of the MOTS
arises from a spatial cross section of the event horizon of the extreme Kerr–
Newman black hole. This class of results has been extended to include contri-
butions from a positive cosmological constant [4,17], and was studied in the
setting of Einstein–Maxwell-axion-dilaton gravity [15,36,40]. They have also
been used to find lower bounds for horizon area in terms of (ADM) mass,
angular momentum, and charge [10].

Given the significant interest in black hole solutions in spacetime dimen-
sion D > 4 [14], chiefly motivated from the physical point of view by string
theory, a natural problem is to generalize such inequalities to this setting.
As is well known, D = 5 asymptotically flat black holes arise as certain in-
tersecting configurations of D-branes, which are dynamical extended objects
in string theory. A classic achievement of string theory is the calculation of
the Bekenstein–Hawking entropy S = A/4 for a large class of extremal 5-
dimensional black holes from a quantum statistical counting of such config-
urations [38]. Inequalities relating the area, angular momenta, and charge of
dynamical black holes can be translated into corresponding relations on the
quantum numbers that characterize the string states.

This program has been initiated in the work of Hollands [21] (see also
[41]), who proved an extension of (1.1) to D > 4 for vacuum spacetimes,
possibly with a positive cosmological constant. The (D−2)-dimensional MOTS
B was assumed to admit a U(1)D−3 isometry group. This requirement implies
that B must be diffeomorphic to S3×TD−5, S1×S2×TD−5, or L(p, q)×TD−5

where Tn is the n-dimensional torus [23]. In particular the elegant inequality

A ≥ 8π
√

|J+J−| (1.2)

is shown to hold for all stable B, where J± = Jiv
i
± are certain linear combi-

nations of angular momenta Ji, associated with each U(1) generator, and vi
±

are a set of integers which determine the topology of B. As before, the unique
geometries that saturate the inequality are the extreme horizon geometries
corresponding to each of the allowed topologies. The possible vacuum horizon
geometries are completely classified and are in fact known explicitly in closed
form [22,27].

It is worthwhile to elaborate on this point. The term near-horizon geom-
etry refers to the precise notion of the spacetime geometry in a neighborhood
of a degenerate Killing horizon (for a comprehensive review, see [30]). For
example, the near-horizon geometry associated with the extreme Reissner–
Nordström horizon is a product metric on AdS2 × S2, while the near-horizon
geometry associated with the extreme Kerr horizon is a twisted S2 bundle
over AdS2. It is important to note that different extreme black holes can have
the same associated near-horizon geometry (see [33] for an explicit example
in D = 5). A spatial cross section of the event horizon (which is a MOTS) is
a (D − 2)-Riemannian manifold embedded in the D-dimensional Lorentzian
near-horizon spacetime. Therefore, when stating the rigidity results for the
area inequalities satisfied by MOTS, we must state that those saturating the
inequality are the extreme horizon geometries induced from a near-horizon
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geometry, rather than a particular extreme black hole solution; indeed, there
could be more than one extreme black hole that gives rise to the same induced
geometry on B. Of course, in D = 4, an axisymmetric extreme electrovacuum
black hole must be an extreme member of the Kerr–Newman family [7], and
so we can state the rigidity result simply in terms of the induced metric on the
horizon of an extreme black hole solution without reference to its near-horizon
geometry.

The purpose of the present work is to establish an extension of (1.2) valid
for 5-dimensional black holes which carry charges sourced by a Maxwell field
F . The simplest relevant theory for this purpose is minimal D = 5 supergrav-
ity. As explained in [1], this theory admits a harmonic map formulation for
stationary U(1)2-invariant solutions (g, F ) which plays a key role in establish-
ing the relevant geometric inequalities. Moreover, all explicitly known charged
5-dimensional black holes (e.g., the charged Myers–Perry solution, the natural
generalization of Kerr–Newman) are solutions of supergravity; these solutions
will serve as model maps in the construction of the proof. An added motiva-
tion is that it is this theory, and not standard Einstein–Maxwell theory, that
arises as a consistent reduction of the 10- or 11-dimensional supergravity theo-
ries that govern the low-energy dynamics of string theory. Therefore, minimal
supergravity is natural to consider for a number of reasons.

The key difference between the supergravity setting and the pure vacuum
case analyzed in [21] is that the space of extreme black hole horizons is signif-
icantly larger. As we will show, one can produce a lower bound for the area of
admissible MOTS with fixed angular momenta Ji and charge Q in terms of an
‘area functional’, which is in turn a certain renormalized Dirichlet energy for
singular maps taking [−1, 1] → G2(2)/SO(4); here G2(2) refers to the noncom-
pact real Lie group whose complexification is G2, and the notation 2(2) refers
respectively to the rank and character of the group. The critical points of this
functional are simply the harmonic maps corresponding to horizon geometries
of U(1)2-invariant extreme black holes with the same Ji and Q. In contrast
to the D = 5 vacuum case, however, a complete classification of all allowed
extreme horizon geometries is an open problem (see [29] for a partial classi-
fication). Indeed, for fixed horizon topology B, one can have distinct families
of extreme horizon geometries. For example, there are non-isometric families
of extreme black ring horizon geometries (B = S1 × S2). In particular, these
distinct families have different expressions for the area in terms of conserved
charges. Nevertheless, for a given topology, it is possible to identify a unique
extreme horizon geometry by specifying the angular momenta, electric charge,
and so-called dipole charge.

It is worth emphasizing how this is qualitatively different from the D = 4
Einstein–Maxwell case. For fixed angular momentum and electric charge, the
unique axisymmetric extreme horizon geometry is that of the extreme Kerr–
Newman black hole [6]. This fact underlies the single inequality (1.1). In our
case, rather than establishing a single unified inequality (1.2) valid for all B,
we will have different inequalities which depend on both the topology of B and
the range of parameters associated with conserved charges.
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2. Description of Main Results

Consider a 5-dimensional spacetime (M,g, F ) where M is a smooth oriented
manifold, g is a Lorentzian metric with signature (−,+,+,+,+), and F is a
closed 2-form representing a Maxwell field. Assuming that F = dA, the action
for D = 5 minimal supergravity is given by

S =
∫

M

(R − 12Λ) � 1 − 1
2
F ∧ �F − 1

3
√

3
F ∧ F ∧ A, (2.1)

where � is the Hodge dual operator associated with g and Λ ≥ 0 is the cosmo-
logical constant. The field equations are then expressed as

Rab =
1
2
FacF

c
b − 1

12
|F |2gab + 4Λgab,

d � F +
1√
3
F ∧ F = 0.

(2.2)

Note that in contrast to pure Einstein–Maxwell theory, d�F �= 0. If H2(M) �=
0, then A appearing in the action is not globally defined and must be con-
structed from local potentials.

Recall that a marginally outer trapped surfaces (MOTS) is a
3-dimensional spacelike submanifold B embedded in the spacetime (M, g, F )
with θn = 0. Here θn is the expansion with respect to the future pointing
outward null normal n and is defined by

θnεγ = εγdivγn = Lnεγ =
(

1
2
γabLnγab

)
εγ , (2.3)

where L denotes Lie differentiation,

γab = 2l(anb) + gab (2.4)

is the induced metric on B with volume form εγ , and l is the future pointing
inward null normal such that g(n, l) = −1. The MOTS will be referred to as
stable if Llθn ≤ 0.

The total electric charge contained within B is given by

Q =
1

16π

∫

B

(
�F +

1√
3
A ∧ F

)
. (2.5)

Inclusion of the second term in the integrand is motivated by the fact that, as
a consequence of the Maxwell equation in (2.2), the full integrand is a closed
3-form. If, in addition H2(B) is non-trivial (e.g., B = S1×S2), a ‘dipole charge’
may be defined by

D[C] =
1
2π

∫

C
F (2.6)

for each homology class [C] ∈ H2(B). From the D = 4 setting, this may seem
reminiscent of the magnetic charge, however in D = 5 it turns out that there
is no natural notion of a conserved magnetic charge [1]. Note that if B = S3

(or indeed any lens space), H2(B) is trivial.
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In order to define a suitable notion of angular momenta, let η(i), i = 1, 2
denote the Killing fields with orbits of period 2π that generate the U(1)2

isometry, so that

Lη(i)g = 0 , Lη(i)F = 0. (2.7)

The angular momentum associated with the generator η(i) is then defined by

Ji =
1

16π

∫

B
�d[g(η(i), ·)] + A(η(i))

(
�F +

2
3
√

3
A ∧ F

)
. (2.8)

The first term of the integrand comes from the standard Komar integral, and
the remaining terms are then appended in order to obtain a closed 3-form
yielding a conserved quantity. This is the spacetime version of the definition in
terms of initial data used for the proof of the mass–angular momentum–charge
inequality [1]. Moreover, when F = 0 this reduces to the definition of angular
momenta used in the proof of the vacuum inequality (1.2). Note that there
is an SL(2,Z) freedom in choosing a basis for the U(1)2 generators η(i), and
hence to define the two angular momenta.

Theorem 2.1. Let (M,g, F ) be a bi-axisymmetric solution of 5-dimensional
minimal supergravity with Λ = 0. If B is a bi-axisymmetric stable MOTS
diffeomorphic to S3, then

A ≥ 8π

√∣∣∣∣J1J2 +
4Q3

3π
√

3

∣∣∣∣, (2.9)

and equality holds if and only if (B, γ, F ) arises from the near-horizon geometry
of an extreme charged Myers–Perry black hole.

It is important to note that the rigidity statement does not imply that
the harmonic map data arising from (B, γ, F ) agree with that of the specified
near-horizon geometry. Rather, by stating that the given data ‘arise’ from
the near-horizon geometry of an extreme charged Myers–Perry black hole, we
mean that the given data are related to this near-horizon geometry through an
isometry in the target symmetric space G2(2)/SO(4). The same interpretation
applies to the remaining theorems of this section.

We remark that in the pure vacuum case Q = 0 and the above inequality
reduces to (1.2), whereas if either of the independent angular momenta Ji

vanish, then

A ≥ 16

√
π|Q|3
3
√

3
, (2.10)

which is saturated if and only if the MOTS arises from the near-horizon ge-
ometry of the extreme Reissner–Nordström black hole.

Theorem 2.2. Let (M,g, F ) be a bi-axisymmetric solution of 5-dimensional
minimal supergravity with Λ = 0. Let B be a bi-axisymmetric stable MOTS
diffeomorphic to S1 × S2 with J1, J2 representing the angular momentum
associated with S1, S2 respectively.
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(a) If Q = 0 and J2 = 0, then

A ≥ 4π

√
π|J1D3|

3
√

3
, (2.11)

and equality holds if and only if (B, γ, F ) arises from the near-horizon
geometry of an extreme singly-spinning dipole black ring.

(b) If Q = 0 and J 2
2 ≥ π

12
√

3
J1D3, then

A ≥ 8π

√
J 2

2 − π

12
√

3
J1D3, (2.12)

and equality holds if and only if (B, γ, F ) arises from the near-horizon
geometry of an extreme magnetic boosted Kerr string.

Theorem 2.3. Let (M,g, F ) be a bi-axisymmetric solution of 5-dimensional
minimal supergravity with Λ = 0. If B is a bi-axisymmetric stable MOTS
diffeomorphic to the lens space L(p, 1), with J1 = −J2 = J and 4Q3 ≥
3p

√
3πJ 2, then

A ≥ 8π

√
4pQ3

3
√

3π
− p2J 2, (2.13)

and equality holds if and only if (B, γ, F ) arises from the near-horizon geometry
of an extreme supersymmetric black lens solution [32,39].

These three theorems yield area–angular momentum–charge inequali-
ties for each of the possible topologies associated with bi-axisymmetric stable
MOTS. It should be noted that several of the results require certain restrictions
on the parameters found within the inequalities. These restrictions arise from
the particular nature of the known near-horizon geometries on which the in-
equalities are modeled. Our method of proof is sufficiently robust that should
new near-horizon geometries be found, an immediate consequence would be
new area–angular momentum–charge inequalities for stable MOTS with the
same topology. Thus modulo the classification of near-horizon geometries for
D = 5 minimal supergravity, the techniques of this paper are able to produce
all possible inequalities of this type.

The following result differs from those above in that it includes contribu-
tions from a cosmological constant Λ ≥ 0 within the inequality. We are only
able to treat the case of spherical topology in this context due to the lack
of known explicit solutions with other topologies; in fact it has been shown
that ring type de Sitter near-horizon geometries do not exist in vacuum [26].
Restrictions on the parameters are needed here only to simplify the expression
of the inequality. Indeed, our proof is valid for the full range of parameters,
however a precise statement of the inequality in this generality is too unwieldy.

Theorem 2.4. Let (M,g, F ) be a bi-axisymmetric solution of 5-dimensional
minimal supergravity with Λ > 0, and let B be a bi-axisymmetric stable MOTS
diffeomorphic to S3.
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(a) If J := ±Ji for i = 1, 2 and Q = 0, then

Λ3A6

210π6J 2
≤
(
A

√
A2 + 512π2J 2 − A2 − 128π2J 2

)3

(
A − √

A2 + 512π2J 2
)4 , (2.14)

and equality holds if and only if (B, γ, F ) arises from the near-horizon
geometry of an extreme Chong–Cvetic–Lu–Pope (CCLP) black hole with
positive cosmological constant.

(b) If J1 = J2 = 0, then

64π2Q2 ≤ 12
(

Aπ

2

)4/3

− 6ΛA2, (2.15)

and equality holds if and only if (B, γ, F ) arises from the near-horizon
geometry of an extreme Reissner–Nordström-de Sitter black hole.

3. Construction of Potentials and Relation to Conserved
Charges

In this section we construct scalar potentials and demonstrate how these poten-
tials encode the charges and angular momenta defined above. The procedure
follows that given in [29] specialized to the case of the theory (2.1).

Observe that since dF = 0, Cartan’s formula LX = ιXd + dιX may be
used to show that the following 1-forms are closed, yielding the existence of
scalar potentials satisfying

dψi = ιη(i)F, (3.1)

where ι denotes the operation of interior product. These may be interpreted as
magnetic potentials and are globally defined in a tubular neighborhood M̃ of
B, since the orbit space M̃/U(1)2 is simply connected [25] and the potentials
are functions on the orbit space. To see this last point, note that the quantities

Lη(i)ψ
j = ιη(i)ιη(j)F (3.2)

are constants by standard arguments, and since the η(i) vanish at the rotation
axes these constants are zero.

Now define the 1-form

Υ = −ιη(1)ιη(2) � F (3.3)

and observe that

dΥ =
1√
3
ιη(1)ιη(2)d (A ∧ F ) =

1√
3
d
(
ψ1dψ2 − ψ2dψ1

)
. (3.4)

This implies the existence of an electric potential satisfying

dχ = Υ − 1√
3

(
ψ1dψ2 − ψ2dψ1

)
. (3.5)

With the same reasoning as above, it may be shown that this potential is also
globally defined.
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In order to construct charged twist potentials for the angular momentum
consider the 1-forms

Θi = �(η(1) ∧ η(2) ∧ dη(i)), (3.6)

which satisfy

dΘi = 2 � (η(1) ∧ η(2) ∧ Ric(η(i))) (3.7)

where Ric denotes the Ricci tensor of the spacetime metric g. With the help
of the Einstein equations (2.2), an involved calculation [29] shows that

dΘi = −Υ ∧ ιη(i)F = d

[
ψi

(
dχ +

1
3
√

3
(ψ1dψ2 − ψ2dψ1)

)]
. (3.8)

It follows that there exist globally defined twist potentials such that

dζi = Θi − ψi

[
dχ +

1
3
√

3
(ψ1dψ2 − ψ2dψ1)

]
. (3.9)

It will now be shown how these potentials are related to the various
charges associated with the MOTS B. Since B is bi-axisymmetric the isometry
generators η(i) are tangent to B. We may then introduce 2π-periodic angular
coordinates φi on B adapted to the symmetries, so that η(i) = ∂/∂φi. A third
coordinate function x arises from the volume form by

dx = CVolγ(η(1), η(2), ·), (3.10)

where C is a constant. According to [25] the 1-dimensional orbit space B/U(1)2

is diffeomorphic to a closed interval, and the constant C is chosen so that the
orbit space is parameterized by x ∈ [−1, 1]. In order to compute the electric
charge in terms of the potential χ, observe that if ω is a 3-form on B, then

∫

B
ω = 4π2

∫ 1

−1

ιη(2)ιη(1)ω. (3.11)

Then using the definition (2.5), (3.3), (3.4), and (3.5) that

Q =
π

4

∫ 1

−1

dχ =
π

4
(χ(1) − χ(−1)) . (3.12)

Next suppose that B = S1×S2 and
∫

S2 F �= 0, so that the vector potential
A is not globally defined. From (3.1), it follows that F = dφi ∧dψi, and hence

D =
1
2π

∫

S2
F = vi(ψi(−1) − ψi(1)), (3.13)

where viη(i) (vi ∈ Z) is the Killing field that vanishes at the poles of the S2.
Finally we turn to the angular momenta (2.8). First note that

ιη(2)ιη(1)

[
A(η(i))

(
�F +

2
3
√

3
A ∧ F

)]

= −ψi

[
dχ +

1
3
√

3

(
ψ1dψ2 − ψ2dψ1

)]
. (3.14)
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Moreover, the formula

ιX � ς = (−1)4−k � (X ∧ ς) (3.15)

is valid for k-forms ς on 5-dimensional Lorentzian manifolds and reveals that

ιη(2)ιη(1) � d[g(η(i), ·)] = Θi. (3.16)

Altogether this yields

Ji =
π

4

∫ 1

−1

(
Θi − ψi

[
dχ +

1
3
√

3

(
ψ1dψ2 − ψ2dψ1

)])

=
π

4

∫ 1

−1

dζi =
π

4
(
ζi(1) − ζi(−1)

)
. (3.17)

4. The Area Functional

We now turn to deriving a lower bound on the area of a bi-axisymmetric
stable MOTS B in terms of a certain area functional. The critical points of
this functional will be shown to correspond to spacetimes that describe, in a
precise sense, the geometry in a neighborhood of a (stationary) extreme black
hole. These near-horizon geometries are solutions of the spacetime Einstein
equations in their own right, and will play the role of minimizers in what
follows.

In the previous section, coordinates (x, φ1, φ2) were introduced on B in
which the φi are adapted to the U(1)2 isometry and x parameterizes the orbit
space B/U(1)2 ∼= [−1, 1]. As in [21], the induced metric on B takes the following
form when expressed in these coordinates

γmndymdyn =
dx2

C2 det λ
+ λijdφidφj , (4.1)

where the constant C > 0 has length dimension −3 and is related to the area
of B by

A = 8π2C−1. (4.2)

The topology of B is characterized by the integer linear combinations of Killing
fields that vanish at the endpoints x = ±1, which represent the fixed points
of the torus action. Suppose that ai

±η(i) → 0 as x → ±1, with ai
± ∈ Z. The

matrix λij is rank 2 for x ∈ (−1, 1) and has a 1-dimensional kernel at x = ±1
spanned by ai

±, that is λija
i
± → 0 at the endpoints. Without loss of generality,

it may be assumed that a+ = (1, 0), a− = (q, p) for some p, q ∈ Z with
gcd(p, q) = 1. We have (q, p) = (0,±1) for S3 topology, (q, p) = (±1, 0) for
S1 × S2 topology, and L(p, q) otherwise [21]. Note that the absence of conical
singularities requires

lim
x→±1

(1 − x2)2

det λ · ai±aj
±λij

= C2. (4.3)

Following [21,22,34], Gaussian null coordinates (u, r, ym) may be intro-
duced in a neighborhood of the MOTS B. Here n = ∂u and l = ∂r are future
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pointing null vectors which coincide with the normal vectors of the same no-
tation in Sect. 2 on B, and satisfy g(n, l) = −1. The coordinates ym are Lie
transported off of B by n and l. This process yields a foliation of the neigh-
borhood of B, with parameters (u, r), whose leaves are denoted by B(u, r) and
for which B(0, 0) = B. It can be shown that in these coordinates the spacetime
metric takes the Gaussian null form

g = −2du
(
dr − αr2du − rβmdym

)
+ γmndymdyn, (4.4)

where α is a smooth function, β = βmdym is a 1-form, and γ is the induced
metric on B(u, r). Note that this expression may be simplified with the help
of the coframe

e+ = du, e− = dr − αr2du − r(βxdx + βidφi), ex =
dx

C√
det λ

, ei = dφi,

(4.5)

so that

g = −2e+e− + (ex)2 + λije
iej . (4.6)

Lemma 4.1. Let (M,g, F ) be a bi-axisymmetric solution of 5-dimensional min-
imal supergravity, and let B be a bi-axisymmetric stable MOTS. For any bi-
axisymmetric ϕ ∈ C∞(B) the stability inequality holds

∫

B
2|∇ϕ|2γ +

(
Rγ +

1
2
[〈β,N〉2γ − |β|2γ

]− 2T (n, l) − 12Λ
)

ϕ2 ≥ 0, (4.7)

where Rγ is the scalar curvature of B, N = C√
det λ∂x is the unit normal to

the Killing directions η(i), and T denotes the stress-energy tensor.

Proof. A computation [24] shows that

Rγ − divγβ − 1
2
|β|2γ − 2T (n, l) − 12Λ = −2θnθl − 2Llθn. (4.8)

Since B is a stable MOTS θn = 0 and Llθn ≤ 0. It follows that

Rγ − divγβ − 1
2
|β|2γ − 2T (n, l) − 12Λ ≥ 0. (4.9)

Then multiplying by ϕ2, integrating the divergence term by parts, and applying
Young’s inequality yields the desired result. Indeed observe that

−
∫

B
ϕ2divγβ =

∫

B
2ϕ〈∇ϕ, β〉γ ≤

∫

B
2|∇ϕ|2γ +

1
2
〈β,N〉γ , (4.10)

where it is used that |∇ϕ|γ = |N(ϕ)| which follows from the fact that ϕ is
bi-axisymmetric. �

We now seek to express the integrand of (4.7) in terms of the potentials
of Sect. 3 and the fiber metric λ. Let βi = β(η(i)) and βi = λijβj , then a
calculation gives

η(1) ∧ η(2) ∧ dη(i) = βi(−e+ ∧ e− − re+ ∧ β) ∧ (det λe1) ∧ e2

− rλij(∂xβj) det λe+ ∧ (C
√

det λex) ∧ e1 ∧ e2. (4.11)
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Evaluating at r = 0 yields

βi = CΘi
x, (4.12)

where

Θi
x = Θi(∂x) = ∂xζi + ψi

(
∂xχ +

1
3
√

3
(ψ1∂xψ2 − ψ2∂xψ1)

)
. (4.13)

It follows that

|β|2γ = 〈β,N〉2γ + λijβiβj = 〈β,N〉2γ + C2λijΘi
xΘj

x. (4.14)

Furthermore, a computation [21] shows that

Rγ = C2 detλ

[

−∂2
x detλ

det λ
+

1
4

(∂x det λ)2

(det λ)2
− 1

4
Tr(λ−1∂xλ)2

]

. (4.15)

We now turn to the Maxwell field in order to compute the relevant portion
of the stress-energy tensor. As shown in [29], this field may be expressed as

F =
1

det λ

[
�
(
η(2) ∧ η(1) ∧ Υ

)
+ (det λ)λijη(i) ∧ dψj

]
. (4.16)

Since χ and ψi are functions of x alone, and

Υx = Υ(∂x) = ∂xχ +
1√
3

(
ψ1∂xψ2 − ψ2∂xψ1

)
, (4.17)

it follows that

F = −CΥxdu ∧ e− − rCΥxβidu ∧ dφi + rβi∂xψidu ∧ dx − ∂xψidx ∧ dφi.

(4.18)

Next note that

Tab =
1
8
(�F )acd(�F ) cd

b +
1
4
FacF

c
b . (4.19)

Since n = ∂u and l = ∂r, a computation shows that (at r = 0)

(ιnF )c(ιlF )c = C2Υ2
x. (4.20)

In order to deal with the term involving �F , observe that

� (e+ ∧ e−) = −Volγ = −C−1dx ∧ dφ1 ∧ dφ2, �(ex ∧ ei) = εi
je

+ ∧ e− ∧ ej ,

(4.21)

where ε is the volume form associated with λ. From (4.16), we then have

� F = CΥxVol(γ) − C(∂xψi)
√

det λεije
+ ∧ e− ∧ ej , (4.22)

which implies

(ιn � F )cd(ιl � F )cd = 2C2(det λ)λij∂xψi∂xψj . (4.23)

Therefore, at r = 0

T (n, l) =
C2

4
(
Υ2

x + (det λ)λij∂xψi∂xψj
)
. (4.24)

It remains to choose ϕ and compute its Dirichlet energy density. Let
ξ ∈ C∞(B) be a particular smooth positive function (of x) associated with the
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relevant extreme stationary black hole solution of 5D minimal supergravity,
which satisfies ξ = 1 when Λ = 0. Then set

ϕ =

√

ξ
(1 − x2)

detλ
=
√

ξϕ̄. (4.25)

Note that

∇ϕ =
∇ξ

2

√
ϕ̄

ξ
+

∇ϕ̄

2

√
ξ

ϕ̄
, |∇ϕ|2 =

|∇ξ|2
4

ϕ̄

ξ
+

|∇ϕ̄|2
4

ξ

ϕ̄
+

1
2
∇ξ · ∇ϕ̄,

(4.26)

where

|∇ϕ̄|2
4ϕ̄

= −C2 +
C2

1 − x2
+ C2x

∂x det λ

det λ
+

C2(1 − x2)
4

(∂x det λ)2

(det λ)2
. (4.27)

By combining these formulae, we find that the integrand of (4.7) takes
the form

−C2(1 − x2)ξ
(

1
4

(∂x det λ)2

(det λ)2
+

Tr(λ−1∂xλ)2

4
+

1
2 det λ

λijΘi
xΘj

x

+
1

2det λ

[
Υ2

x + det λλij∂xψi∂xψj
])

+
2C2ξ

1 − x2
− 12Λ(1 − x2)ξ

det λ

−C2∂x

(
(1 − x2)∂x det λ

det λ
ξ + 2xξ

)
+ C2(1 − x2)

ξ′2

2ξ
. (4.28)

Since

det λ = c±(1 − x2) + O(1 − x2)2 as x → ±1 (4.29)

for some constants c±, it holds that

(
(1 − x2)∂x det λ

det λ
ξ + 2xξ

) ∣∣∣
∣∣

x=+1

x=−1

= 0. (4.30)

Therefore, in light of Lemma 4.1, the following area functional is nonpositive

I =
∫ +1

−1

ξ

[
(1 − x2)I − 1

1 − x2

]
dx +

∫ 1

−1

(1 − x2)
(

6Λξ

C2 det λ
− ξ′2

4ξ

)
dx ≤ 0,

(4.31)

where

I =
1
8

(∂x det λ)2

(det λ)2
+

1
8
Tr(λ−1∂xλ)2 +

1
4det λ

ΘT
x λ−1Θx +

1
4det λ

Υ2
x

+
1
4
∂xψT λ−1∂xψ (4.32)

with ΘT
x = (Θ1

x,Θ2
x) and ψT = (ψ1, ψ2).
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5. Relation to Near-Horizon Geometries of Extreme Black
Holes

In this section the relationship of the area functional I to a harmonic energy
will be described. The latter arises from the reduction of Einstein’s equations
on U(1)2-invariant spacetimes. In particular, the critical points of this func-
tional give rise to near-horizon geometries. For simplicity, the discussion here
will be restricted to the case Λ = 0 and ξ = 1.

Observe that the functional may be reorganized as

I =
∫ +1

−1

[
(1 − x2)GAB

dXA

dx

dXB

dx
− 1

1 − x2

]
dx ≤ 0, (5.1)

where I has been expressed as the pullback to the orbit space [−1, 1] of the
nonpositively curved metric on symmetric space G2(2)/SO(4) given by

GABdXAdXB

=
(d det λ)2

8(det λ)2
+

Tr(λ−1dλ)2

8
+

λijΘiΘj

4 det λ
+

Υ2

4 det λ
+

λijdψidψj

4
, (5.2)

with target space coordinates X = (λij , ζ
i, χ, ψi); note that Υ and Θi are

given in terms of these coordinates by (3.5) and (3.9) respectively. Hence I
is related in a rather simple way to the Dirichlet energy of maps [−1, 1] →
G2(2)/SO(4). Furthermore, it turns out that the target metric (5.2) may be
given conveniently by

GABdXAdXB =
1
16

Tr(M−1dMM−1dM), (5.3)

where M is a positive definite, unimodular coset representative of
G2(2)/SO(4) constructed from the scalars XA whose specific form will not
be required here (see, e.g., [29]).

In what follows it will be shown that I vanishes on harmonic maps,
and that these harmonic maps arise from near-horizon geometries. To begin,
consider a 5-dimensional spacetime (M,g, F ) which admits a U(1)2 isometry
subgroup. The metric may be expressed in the general form

g =
hμνdxμdxν

detλ̃
+ λ̃ij(dφ̃i + ωi)(dφ̃j + ωj) (5.4)

where as before ∂φ̃i , i = 1, 2 generate the isometry group and xμ represent
coordinates on a 3-dimensional ‘base space’ M3 with Lorentzian metric h.
The ωi = ωi

μdxμ are 1-forms on M3 which measure the obstruction of the
Killing fields to being hypersurface orthogonal, and λ̃ij are functions on M3.
Thus the spacetime can be viewed as a T 2 fibration over M3. In addition, the
decomposition of the Maxwell field into scalar potentials has been discussed
in Sect. 4.

Now suppose that (M,g, F ) is a solution of the field equations of minimal
supergravity (2.2). Upon reduction it can be shown that the resulting equations
describe the critical points of a 3-dimensional theory of gravity coupled to a
wave map (nonlinear sigma model) with action
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S[h,X] =
∫

M3

(
Rh − 2hμνGAB∂μXA∂νXB

)
Volh, (5.5)

where Rh is the scalar curvature of h. The reduced field equations are then
given by

Ric(h)μν =
1
8
Tr(M−1∂μMM−1∂νM),

∇μ(M−1∂μM) = 0.
(5.6)

As is well known, a similar reduction occurs for other gravity models reduced on
tori, most notably pure vacuum gravity and D = 4 Einstein–Maxwell theory.

Let us further assume that the spacetime contains a degenerate Killing
horizon. This means that there is an embedded null hypersurface N on which
|V | = 0 and ∇V V = 0, for some Killing field V . A cross section of N is a
spatial 3-dimensional manifold H, which will be taken to be closed. The most
important examples of such spacetimes are extreme stationary black holes with
horizon cross-sections H. In a neighborhood of N , one may introduce Gaussian
null coordinates and take the near-horizon limit [30] to find the near-horizon
metric

gNH = −2du(dr − r2α̃(y)du − rβ̃m(y)dym) + γ̃mn(y)dymdyn (5.7)

where α̃ and β̃ are a smooth function and a 1-form on the 3-dimensional closed
manifold (H, γ̃). Note that V = ∂u and that N is defined by r = 0. Thus the
near-horizon geometry is characterized completely by the triple (α̃, β̃m, γ̃mn),
which are collectively referred to as the near-horizon data.

This near-horizon geometry inherits the U(1)2 isometries from its ‘parent’
spacetime. In fact it is shown in [33] that there is an ‘enhancement of symmetry’
from R × U(1)2 to SO(2, 1) × U(1)2. It follows that the near-horizon metric
and Maxwell field take the form [29,33]

gNH = Ξ(x)
[
−r2du2

�2
− 2dudr

]

+ L2

[
dx2

det λ̃(x)
+ λ̃ij(x)

(
dφi +

birdu

L2

)(
dφj +

bjrdu

L2

)]
,

FNH = d

[
ardu

L
+ Lψ̃i(x)

(
dφi +

birdu

L2

)]
.

(5.8)

The constants � and L are length scales introduced so that certain coordinates
are dimensionless, Ξ(x) > 0 and ψ̃i(x) are smooth functions on H, and a,
bi are constants. Observe that the 2-dimensional metric in the first square
bracket is that of AdS2. Hence a near-horizon geometry can be though of as (in
general a twisted) H bundle over AdS2. Note that when bi �= 0, the action of
SO(2, 1) will transform rdu by an exact function, which can be compensated
by a corresponding U(1) shift in the appropriate angular coordinate. It is
easily seen that the near-horizon geometries of extreme Reissner–Nordström
(AdS2 × S2) and the extreme Kerr (a twisted fibration of S2 over AdS2) both
fall into the above general class.
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The near-horizon data may be identified with harmonic map coordinates
in the following way; explicit details are given in [29]. Set φ̄i = Lφi and
(x1, x2, x3) = (v, r, x) then

hμνdxμdxν = L2dx2 + Ξ det λ̃(x)
[
−r2du2

�2
− 2dudr

]
,

ωi =
birdu

L
, λ̃ij = L−2λij . (5.9)

As for the potentials

ψi = −Lψ̃i, (5.10)

and

∂xχ =
L2(a + biψ̃i)

Ξ
− L2

√
3

(
ψ̃1∂xψ̃2 − ψ̃2∂xψ̃1

)
. (5.11)

Furthermore, a calculation shows that

Θi =
L3bj λ̃ij

Ξ
dx, (5.12)

which implies that the charged twist potentials are given by

∂xζi =
L3bj λ̃ij

Ξ
+ Lψ̃i

[
∂xχ +

L2

3
√

3

(
ψ̃1∂xψ̃2 − ψ̃2∂xψ̃1

)]
. (5.13)

Note also that C = L−3.
In summary, given a near-horizon geometry we can read off the corre-

sponding harmonic map data (λij , ζ
i, χ, ψi), and the process can clearly be re-

versed to solve for (λ̃ij , ψ̃i,bi,a). It is also evident that the matrix M defined
above is a function of x alone. Using this, the coupled 3D gravity-harmonic
map equations (5.6) may be simplified. The (uu) and (ur) components of the
Einstein equations yield

∂2
x(Ξ det λ̃) + 2

L2

�2
= 0 (5.14)

so that

Ξ det λ̃(x) =
L2

�2
(1 − x2), (5.15)

where we have used the fact that Ξ det λ̃ vanishes at x = ±1 (where λ̃ij has
rank 1). Note that the induced metric on a horizon cross-section H is then

�2Ξ(x)dx2

(1 − x2)
+ λijdφidφj . (5.16)

The harmonic map equations reduce to

∂x

[
(1 − x2)M−1∂xM]

= 0, (5.17)

and coincide with the Euler–Lagrange equations for the functional I. Thus,
the near-horizon geometries are critical points of I. Furthermore, the (xx)
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component of the 3D Einstein equations (5.6) place an algebraic constraint on
M. Namely, direct integration produces

(1 − x2)M−1∂xM = M0 (5.18)

for some constant matrix M0. Since

Ric(h)xx =
2

(1 − x2)2
, (5.19)

it follows that Tr(M2
0) = 16. The remaining components of the 3D Einstein

equations are automatically satisfied. This shows that determining a near-
horizon geometry is equivalent to solving (5.17) for the harmonic map scalars.

Finally, observe that for a near-horizon geometry the above calculations
show that

(1 − x2)2Tr
[M−1∂xMM−1∂xM]

= 16. (5.20)

Hence I = 0 when evaluated at near-horizon geometries.

6. Reparameterization of the Target and Area Lower Bound

Suppose that B is diffeomorphic to L(p, q) where p and q are mutually prime
integers, and let ai

+η(i) and ai
−η(i) be the linear combinations of the U(1)2

generators which vanish at x = 1 and x = −1, respectively. This is equivalent
to

ai
+λij = 0 at x = 1, ai

−λij = 0 at x = −1, (6.1)

and without loss of generality [21], these direction vectors may be chosen to
be

a+ =
(

1
0

)
, a− =

(
q
p

)
. (6.2)

In order to rewrite the area functional I in a more convenient form, first
transform the lens direction vectors to that of the sphere. Namely set

Z =

(
1 q
0 p

)
, Z−1 =

(
1 − q

p

0 1
p

)

,

(
φ1

φ2

)

=Z

(
φ̄1

φ̄2

)

,

(
φ̄1

φ̄2

)

=Z−1

(
φ1

φ2

)

, (6.3)

so that

λijdφidφj =
(
ZT λZ

)
ij︸ ︷︷ ︸

λ̄ij

dφ̄idφ̄j , (6.4)

and

āi
+λ̄ij = 0 at x = 1, āi

−λ̄ij = 0 at x = −1, (6.5)

with

ā+ =
(

1
0

)
, ā− =

(
0
1

)
. (6.6)
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Next select the following reparameterization of the λ target space vari-
ables

λ̄11 = e2U+V (1 − x) cosh W, λ̄22 = e2U−V (1 + x) cosh W,

λ̄12 = e2U
√

1 − x2 sinhW, (6.7)

or rather

λ11 = e2U+V (1 − x) cosh W,

λ12 =
e2U

p

(√
1 − x2 sinh W − qeV (1 − x) cosh W

)
, (6.8)

λ22 =
e2U

p2

(
q2eV (1 − x) cosh W

−2q
√

1 − x2 sinhW + e−V (1 + x) cosh W
)

, (6.9)

with inverse transformation

U =
1
4

log
(

det λ

p2(1 − x2)

)
,

V =
1
2

(
(1 + x)λ̄11

(1 − x)λ̄22

)
=

1
2

(
p2(1 + x)λ11

(1 − x) [q2λ11 − 2qλ12 + λ22]

)
,

W = sinh−1

(
λ̄12

e2U
√

1 − x2

)
= sinh−1

(
λ12 − qλ11

pe2U
√

1 − x2

)
.

(6.10)

Note that the regularity condition (4.3) becomes

C2 = lim
x→±1

(1 − x2)2

det λ · ai±aj
±λij

= lim
x→±1

p2(1 − x2)2

det λ̄ · āi±āj
±λ̄ij

, (6.11)

and therefore,

lim
x→±1

e−6xU−V =
C2

2p2
. (6.12)

Moreover, using (4.2) produces

ξ(V + 6xU)

∣∣∣∣∣

x=1

x=−1

= −(ξ(1) + ξ(−1)) log
( C2

2p2

)
= −2αξ log

(
32π4

p2A2

)
,

(6.13)

where

αξ =
ξ(1) + ξ(−1)

2
. (6.14)

Let us now compute each term in I. Observe that

(1 − x2)
(

1
8

(∂x det λ)2

(det λ)2
+

Tr(λ−1∂xλ)2

8

)
− 1

1 − x2

= (1 − x2)
(

1
8

(∂x det λ̄)2

(det λ̄)2
+

Tr(λ̄−1∂xλ̄)2

8

)
− 1

1 − x2
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=
1 − x2

4

{
12 (∂xU)2 + (∂xV )2 + (∂xW )2 + sinh2 W (∂xV + ∂xh2)

2
}

− 1
2
∂xV − 3x∂xU − 3

4
, (6.15)

where

h2 =
1
2

log
(

1 − x

1 + x

)
. (6.16)

Furthermore,
1

4 det λ
ΘT

x λ−1Θx +
1

4 det λ
Υ2

x +
1

4
∂xψT λ−1∂xψ

=
1

4 det λ
ΘT

x Zλ̄−1ZT Θx +
1

4 det λ
Υ2

x +
1

4
∂xψT Zλ̄−1ZT ∂xψ

= p2 e−6h1−6U−h2−V

cosh W
(Θ̄1

x)2 + p2e−6h1−6U+h2+V cosh W
(
e−h2−V tanh W Θ̄1

x − Θ̄2
x

)2

+ p2 e−2h1−2U−h2−V

cosh W
(∂xψ̄1)2

+ p2e−2h1−2U+h2+V cosh W (e−h2−V tanh W∂xψ̄1 − ∂xψ̄2)2

+ p2e−4h1−4UΥ2
x, (6.17)

where

Θ̄x = ZT Θx, ψ̄ = ZT ψ, h1 =
1
4

log(1 − x2). (6.18)

Then setting x = cos θ, integrating by parts, and using the regularity condition
(6.13) produces

I = IL(p,q) + αξ log
(

32π4

p2A2

)
− β0

ξ , (6.19)

where

β0
ξ =

∫ π

0

(
(∂θξ)2

2ξ
+

3
4
ξ

)
sin θdθ (6.20)

and

IL(p,q)(Ψ)

=
1
4

∫ π

0

ξ

{

12(∂θU)2 + (∂θV )2 + (∂θW )2 + sinh2 W (∂θV + ∂θh2)2

+ p2 e−6h1−6U−h2−V

cosh W
(Θ̄1

θ)
2

+ p2e−6h1−6U+h2+V cosh W
(
e−h2−V tanh W Θ̄1

θ − Θ̄2
θ

)2

+ p2 e−2h1−2U−h2−V

cosh W
(∂θψ̄

1)2

+ p2e−2h1−2U+h2+V cosh W (e−h2−V tanh W∂θψ̄
1 − ∂θψ̄

2)2
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+ p2e−4h1−4UΥ2
θ + 3p2Λ

(
A

2
√

2π2

)2

e−4U

− ξ−1 [2V ∂θξ + 12U∂θ (cos θξ)] ∂θh2

}

sin θdθ, (6.21)

with Ψ = (U, V,W, ζ1, ζ2, χ, ψ1, ψ2).
Consider now the case in which B is diffeomorphic to S1 × S2, that

is when the same Killing vector η(2) vanishes at both x = ±1. Define the
reparameterization

λ11 =e2U+V̄ cosh W, λ22 =e2U−V̄ (1 − x2) cosh W, λ12 =e2U
√

1 − x2 sinh W,

(6.22)

where

V̄ = V + 2h1 + h2. (6.23)

In a similar fashion to the computations above

(1 − x2)
(

1
8

(∂x det λ)2

(det λ)2
+

Tr(λ−1∂xλ)2

8

)
− 1

1 − x2

=
1 − x2

4

{
12 (∂xU)2 +

(
∂xV̄

)2 + (∂xW )2 + sinh2 W
(
∂xV̄ − 2∂xh1

)2}

+
x

2
∂x

(
V̄ − 6U

)− 1, (6.24)

and
1

4 det λ
ΘT

x λ−1Θx +
1

4det λ
Υ2

x +
1
4
∂xψT λ−1∂xψ

=
e−4h1−6U−V̄

cosh W
(Θ1

x)2 + e−8h1−6U+V̄ cosh W
(
e2h1−V̄ tanh WΘ1

x − Θ2
x

)2

+
e−2U−V̄

cosh W
(∂xψ1)2 + e−4h1−2U+V̄ cosh W (e2h1−V̄ tanh W∂xψ1 − ∂xψ2)2

+ e−4h1−4UΥ2
x. (6.25)

Moreover, in the current setting, the lack of conical singularities yields

lim
x→±1

e−6U+V̄ =
C2

2
, (6.26)

so that

xξ(V̄ − 6U)

∣∣∣∣
∣

x=1

x=−1

= (ξ(1) + ξ(−1)) log
(C2

2

)
= 2αξ log

(C2

2

)
. (6.27)

Therefore,

I = IS1×S2 + αξ log
(

32π4

A2

)
− β1

ξ , (6.28)



500 A. Alaee et al. Ann. Henri Poincaré

where

β1
ξ =

∫ 1

−1

(
(1 − x2)

(ξ′)2

2ξ
+ ξ

)
dx (6.29)

and

IS1×S2 =
1

4

∫ π

0

ξ

{

12 (∂θU)2 +
(
∂θV̄

)2
+ (∂θW )2 + sinh2 W

(
∂θV̄ − 2∂θh1

)2

+
e−4h1−6U−V̄

cosh W
(Θ1

θ)
2 + e−8h1−6U+V̄ cosh W

(
e2h1−V̄ tanh WΘ1

θ − Θ2
θ

)2

+
e−2U−V̄

cosh W
(∂θψ1)2 + e−4h1−2U+V̄ cosh W (e2h1−V̄ tanh W∂θψ

1 − ∂θψ
2)2

+ e−4h1−4UΥ2
θ + 3Λ

(
A

2
√

2π2

)2

e−4U

− ξ−1 (−2V̄ + 12U
)
∂θ(cos θξ)∂θh2

}

sin θdθ. (6.30)

It turns out that the two classes of functionals may be expressed in a
unified fashion with the help of a parameter s, which takes the value 0 for the
lens family of topologies and the value 1 for the topology S1 ×S2. The relation
between topology and the values of (p, q, s) is given by

⎧
⎪⎨

⎪⎩

B ∼= S3, s = 0, p = 1, q = 0,

B ∼= L(p, q), s = 0, 1 ≤ q ≤ p − 1,

B ∼= S1 × S2, s = 1, p = 1, q = 0.

(6.31)

Note that, in the ring case, the values of p and q do not coincide with those
used earlier in the section. The purpose for using these values here is to unify
the expression for the functional below. Let

Vs = V + 2sh1 + sh2, βs
ξ =

∫ π

0

(
(∂θξ)2

2ξ
+

3 + s

4
ξ

)
sin θdθ, (6.32)

then

I = IB + αξ log
(

32π4

p2A2

)
− βs

ξ , (6.33)

where

IB(Ψ) =
1

4

∫ π

0

ξ

{

12 (∂θU)2 + (∂θVs)
2 + (∂θW )2 + sinh2 W (∂θV + ∂θh2)

2

+ p2 e−6h1−h2−6U−V

cosh W
(Θ̄1

θ)
2+p2e−6h1+h2−6U+V cosh W

(
e−h2−V tanh W Θ̄1

θ − Θ̄2
θ

)2

+ p2 e−2h1−h2−2U−V

cosh W
(∂θψ̄1)2

+ p2e−2h1+h2−2U+V cosh W (e−h2−V tanh W∂θψ̄
1 − ∂θψ̄

2)2
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+ p2e−4h1−4UΥ2
θ + 3p2Λ

(
A

2
√

2π2

)2

e−4U

− ξ−1

[
2Vs∂θ

([
1 − 2s cos2

θ

2

]
ξ

)
+ 12U∂θ (cos θξ)

]
∂θh2

}

sin θdθ. (6.34)

Proposition 6.1. Let (M,g, F ) be a bi-axisymmetric solution of 5-dimensional
minimal supergravity, and let B be a bi-axisymmetric stable MOTS, then

A ≥ 4
√

2π2

p
e

IB(Ψ)−βs
ξ

2αξ . (6.35)

Proof. According to (4.31) the area functional satisfies I ≤ 0. The desired
result then follows from (6.33). �

7. Convexity of the Area Functional and Minimization

Consider the 3-sphere S3 parameterized by Hopf coordinates (θ, φ1, φ2), where
θ ∈ [0, π] and φi ∈ [0, 2π], in which the round metric is expressed as

dθ2

4
+ sin2(θ/2)(dφ1)2 + cos2(θ/2)(dφ2)2, (7.1)

with volume form

dV =
sin θ

4
dθ ∧ dφ1 ∧ dφ2. (7.2)

Recall that the symmetric space G2(2)/SO(4) ∼= R
8 comes equipped with a

complete metric [1] of nonpositive curvature given by

G = 12du2 + cosh2 wdv2 + dw2 + p2 e−6u−v

cosh w
(Θ̄1)2

+ p2e−6u+v cosh w(e−v tanh wΘ̄1 − Θ̄2)2

+ p2 e−2u−v

cosh w
(dψ̄1)2 + p2e−2u+v cosh w(e−v tanh wdψ̄1 − dψ̄2)2 + p2e−4uΥ2.

(7.3)

Let Ω ⊂ S3, then the quasi-harmonic energy on this domain of maps Ψ̃ =
(u, v, w, ζ1, ζ2, χ, ψ̄1, ψ̄2) : S3\Γ → G2(2)/SO(4), where Γ is the union of the
two circles θ = 0, π, is defined by

EΩ(Ψ̃) =
1
π2

∫

Ω

ξ

{

12(∂θu)2 + cosh2 w(∂θv)2 + (∂θw)2 + p2 e−6u−v

cosh w
(Θ̄1

θ)
2

+ p2e−6u+v cosh w
(
e−v tanh wΘ̄1

θ − Θ̄2
θ

)2
+ p2 e−2u−v

cosh w
(∂θψ̄

1)2

+ p2e−2u+v cosh w
(
e−v tanh w∂θψ̄

1 − ∂θψ̄
2
)2

+ p2e−4uΥ2
θ

+ 3p2Λ
(

A

2
√

2π2

)2

e−4u sin2 θ

}

dV. (7.4)
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This differs from the pure harmonic energy by the factor ξ and the last term
involving Λ. Next set u = h1 + U and v = h2 + V , and observe that in Hopf
coordinates

h1 =
1
2

log sin θ, h2 = log tan
θ

2
. (7.5)

With the help of the identity

∂θh1 =
cos θ

2
∂θh2, (7.6)

it follows that

12ξ(∂θU)2 = 12ξ(∂θu)2 − 3ξ cos2 θ(∂θh2)2

−12∂θ (ξU cos θ) ∂θh2 + 12U∂θ(ξ cos θ)∂θh2, (7.7)

and

ξ(∂θVs)2

= ξ (∂θv + 2s∂θh1 + (s − 1)∂θh2)
2

= ξ(∂θv)2 + ξ

⎛

⎜
⎝2s∂θh1 + (s − 1)∂θh2︸ ︷︷ ︸

∂θhs

⎞

⎟
⎠

2

+ 2ξ∂θv (2s∂θh1 + (s − 1)∂θh2)

= ξ(∂θv)2 + ξ(∂θhs)2 + 2ξ∂θ(Vs − hs)∂θhs

= ξ(∂θv)2 − ξ(∂θhs)2 + 2ξ∂θVs∂θhs

= ξ(∂θv)2 − ξ

(
2s cos2

θ

2
− 1
)2

(∂θh2)2 + 2ξ

(
2s cos2

θ

2
− 1
)

∂θVs∂θh2

= ξ(∂θv)2 − ξ

(
2s cos2

θ

2
− 1
)2

(∂θh2)2 + 2∂θ

(
ξ

(
2s cos2

θ

2
− 1
)

Vs

)
∂θh2

− 2Vs∂θ

(
ξ

(
2s cos2

θ

2
− 1
))

∂θh2. (7.8)

Therefore, integration by parts and ∂θ (sin θ∂θh2) = 0 show that the area
functional and quasi-harmonic energy are related by

4IΩ(Ψ) = EΩ(Ψ̃) −
∫

Ω

ξ

((
2s cos2

θ

2
− 1
)2

+ 3 cos2 θ

)

(∂θh2)2dV

+
∫

∂Ω

ξ

(
2
(

2s cos2
θ

2
− 1
)

Vs − 12 cos θU

)
∂νh2dA (7.9)

where ν is the unit outer normal and IΩ is the area functional (6.34) restricted
to Ω.

Let Ψ0 = (U0, V0,W0, ζ
1
0 , ζ2

0 , χ0, ψ
1
0 , ψ2

0) be a renormalized quasi-
harmonic map arising from the near-horizon geometry of the relevant model
extreme black hole (mentioned in the statement of each theorem in Sect. 2).
In “Appendix” Ψ0 is given explicitly, and it can be shown that Ψ0 is a critical
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point of IB. The goal of this section is to establish Ψ0 as the global minimum
point for IB.

Theorem 7.1. Suppose that Ψ = (U, V,W, ζ1, ζ2, χ, ψ1, ψ2) is smooth and sat-
isfies the asymptotics (7.15)–(7.19) with χ|Γ = χ0|Γ, ζi|Γ = ζi

0|Γ, and ψi|Γ =
ψi

0|Γ, i = 1, 2. Then there exists a constant C > 0 such that

IB(Ψ) − IB(Ψ0) ≥ C

∫

S3

(
distG2(2)/SO(4)(Ψ̃, Ψ̃0) − D

)2

dV, (7.10)

where D denotes the average value of distG2(2)/SO(4)(Ψ̃, Ψ̃0).

The proof is based on a convexity argument. Namely, due to the fact
that the target symmetric space G2(2)/SO(4) is nonpositively curved, and
Λ ≥ 0, the quasi-harmonic energy E is convex under geodesic deformations.
The functional IB then inherits such convexity as a result of (7.9), which
leads to the desired gap bound (7.10). However, since the energy of the maps
in question is infinite, a cut-and-paste argument away from the set Ωε =
{(θ, φ1, φ2) | sin θ > ε} is needed to apply the convexity property.

We first record all relevant asymptotic behavior. As θ → 0, π the renor-
malized quasi-harmonic map satisfies

U0, ζ1
0 , ζ2

0 , χ0 = O(1), W0 = O(sin θ),

∂θU0, ∂θχ0, ∂θψi
0 = O(sin θ), ∂θW0 = O(1), (7.11)

V0 =

{
O(1) s = 0

−2 log
(
sin θ

2

)
+ O(1) s = 1

, ∂θV0 =

{
O(sin θ) s = 0

− cot θ
2

+ O(sin θ) s = 1
, (7.12)

ψ1
0 =

{
O(sin2 θ

2
) s = 0

O(1) s = 1
, ψ2

0 =

{
O(cos2 θ

2
) s = 0

O(1) s = 1
, Θ2

0 = O(sin2 θ), s = 1,

(7.13)

∂θζ1
0 =

{
sin2 θ

2
O(sin θ) s = 0

O(sin θ) s = 1
, ∂θζ2

0 =

{
cos2 θ

2
O(sin θ) s = 0

O(sin θ) s = 1
. (7.14)

Similarly the components of the given map Ψ should satisfy

U, ζ1, ζ2, χ = O(1), W = O(sin θ), ∂θW = O(1), (7.15)

V =

{
O(1) s = 0

−2 log
(
sin θ

2

)
+ O(1) s = 1

, ∂θV =

{
O(sin θ) s = 0

− cot θ
2

+ O(sin θ) s = 1
, (7.16)

ψ1 =

⎧
⎨

⎩
O(
√

sin θ
2
) s = 0

O(1) s = 1
, ψ2 =

⎧
⎨

⎩
O(
√

cos θ
2
) s = 0

O(1) s = 1
, Θ2 = O(sin2 θ), s = 1,

(7.17)

∂θU, ∂θχ = O(sin θ), ∂θψi =

{
O(

√
sin θ) s = 0

O(sin θ) s = 1
, (7.18)

∂θζ1 =

⎧
⎨

⎩

√
sin θ

2
O(sin θ) s = 0

O(sin θ) s = 1
, ∂θζ2 =

⎧
⎨

⎩

√
cos θ

2
O(sin θ) s = 0

O(sin θ) s = 1
. (7.19)
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Next, in order to carry out the cut-and-paste procedure, define a Lipschitz
cutoff function

ϕε =

⎧
⎪⎨

⎪⎩

0 if sin θ ≤ ε,
log(sin θ/ε)
log(

√
ε/ε)

if ε < sin θ <
√

ε,

1 if sin θ ≥ √
ε,

(7.20)

and let

Ψε = (U, Vε,Wε, ζ
1
ε , ζ2

ε , χε, ψ
1
ε , ψ2

ε) = (U,Φε) = (U,Φ0 + ϕε (Φ − Φ0))
(7.21)

so that Ψε = (U, V0,W0, ζ
1
0 , ζ2

0 , χ0, ψ
1
0 , ψ2

0) on S3\Ωε.

Lemma 7.2. limε→0 IB(Ψε) = IB(Ψ).

Proof. Observe that

IB(Ψε) = IB(Ψε)|sin θ≤ε + IB(Ψε)|ε<sin θ<
√

ε + IB(Ψε)|sin θ≥√
ε, (7.22)

and by dominated convergence theorem IB(Ψε)|sin θ≥√
ε → IB(Ψ). Further-

more, the first term on the right-hand side converges to zero since

IB(Ψε)|sin θ≤ε

=
1

4π2

∫

sin θ≤ε

ξ

{

12(∂θU)
2

︸ ︷︷ ︸
O(sin2 θ)

+ (∂θV0 + 2s∂θh1 + s∂θh2)
2

︸ ︷︷ ︸
O(sin2 θ)

+ (∂θW0)
2

︸ ︷︷ ︸
O(sin2 θ)

+ sinh
2

W0︸ ︷︷ ︸
O(sin2 θ)

(∂θV0 + ∂θh2)
2

︸ ︷︷ ︸
O(csc2 θ)

+p
2

e
−2U−V0

︸ ︷︷ ︸
⎧
⎪⎨

⎪⎩

O(1) s = 0

O(sin2 θ
2 ) s = 1

cot θ
2

sin θ cosh W0
|∂θψ̄

1
0|2

︸ ︷︷ ︸
O(sin2 θ)

+ p
2

e
−6U−V0

︸ ︷︷ ︸
⎧
⎪⎨

⎪⎩

O(1) s = 0

O(sin2 θ
2 ) s = 1

cot θ
2

sin3 θ cosh W0
(Θ̄

1
0)

2

︸ ︷︷ ︸
⎧
⎪⎨

⎪⎩

O(sin2 θ tan θ
2 ) s = 0

O(sin2 θ) s = 1

+ p
2

e
−6U+V0

︸ ︷︷ ︸
⎧
⎪⎨

⎪⎩

O(1) s = 0

O(csc2 θ
2 ) s = 1

tan θ
2 cosh W0

sin3 θ

(
Θ̄

2
0 − e

−V0 cot
θ

2
tanh W0Θ̄

1
0

)2

︸ ︷︷ ︸
O(sin2 θ)

}

dV

+
1

4π2

∫

sin θ≤ε

ξ

{

p
2

e
−2U+V0

︸ ︷︷ ︸
⎧
⎪⎨

⎪⎩

O(1) s = 0

O(sin−2 θ
2 ) s = 1

tan θ
2 cosh W0

sin θ

×
(

∂θψ̄
2
0 − e

−V0 cot
θ

2
tanh W0∂θψ̄

1
0

)2

︸ ︷︷ ︸
O(sin2 θ)

+
p2

sin2 θ
e

−4U

︸ ︷︷ ︸
O(1)

|Υ0|2
︸ ︷︷ ︸

O(sin2 θ)

+3p
2
Λ

(
A

2
√

2π2

)2

e
−4U

︸ ︷︷ ︸
O(1)

}

dV
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− 1

4π2

∫

sin θ≤ε

{
12

sin θ
U∂θ (cos θξ)
︸ ︷︷ ︸

O(1)

+
2

sin θ
(V0 + 2sh1 + sh2) ∂θ

([
1 − 2s cos

2 θ

2

]
ξ

)

︸ ︷︷ ︸
O(1)

}

dV. (7.23)

Now consider the region Wε = {θ ∈ [0, π] | ε < sin θ <
√

ε}. Let Ii,
i = 1, . . . , 12 denote integrals over Wε of the terms in (7.23) with Φ0 replaced
by Φε. Then each such integral vanishes in the limit as ε → 0. To see this
observe that

I1 ≤ c

∫

Wε

(∂θU)
2

︸ ︷︷ ︸
O(sin2 θ)

dV = O (ε) , (7.24)

I2 ≤ c

∫

Wε

⎛

⎜⎜
⎝(∂θV0 + 2s∂θh1 + s∂θh2)

2

︸ ︷︷ ︸
O(sin2 θ)

+ (∂θV0 − ∂θV )
2

︸ ︷︷ ︸
O(sin2 θ)

+ (V − V0)
2

︸ ︷︷ ︸
O(1)

(∂θϕε)
2

︸ ︷︷ ︸
O(cot2 θ(log ε)−2)

⎞

⎟⎟
⎠ dV

= O

(
1

| log ε|
)

, (7.25)

I3 ≤ c

∫

Wε

⎛

⎜
⎜
⎝(∂θW )

2

︸ ︷︷ ︸
O(1)

+ (∂θW0)
2

︸ ︷︷ ︸
O(1)

+ (W − W0)
2

︸ ︷︷ ︸
O(1)

(∂θϕε)
2

︸ ︷︷ ︸
O(cot2 θ(log ε)−2)

⎞

⎟
⎟
⎠ dV = O

(
1

| log ε|
)

.

(7.26)

Moreover, using sinhWε = O(sin θ) yields

I4 ≤ c

∫

Wε

sin2 θ

⎛

⎜
⎝(∂θV − ∂θV0)2︸ ︷︷ ︸

O(sin2 θ)

+ (∂θh2)2︸ ︷︷ ︸
O(csc2 θ)

+ (V − V0)2︸ ︷︷ ︸
O(1)

(∂θϕε)2︸ ︷︷ ︸
O(cot2 θ(log ε)−2)

⎞

⎟
⎠ dV

= O(ε).
(7.27)

Next observe that since the values of the potentials of the two maps agree at
the poles, it holds that

|ζi − ζi
0| + |χ − χ0| + |ψ̄i − ψ̄i

0| = O(sin2 θ). (7.28)

From this we find

|∂θψ
i
ε| ≤ |∂θψ

i|
︸ ︷︷ ︸

⎧
⎪⎨

⎪⎩

O(
√

sin θ) s = 0

O(sin θ) s = 1

+ |∂θψ
i
0|

︸ ︷︷ ︸
O(sin θ)

+ |ψi − ψ
i
0||∂θϕε|

︸ ︷︷ ︸
| log ε|−1O(sin θ)

=

{
O(

√
sin θ) s = 0

O(sin θ) s = 1
, (7.29)

and similar considerations produce

|Υε| ≤
{

| log ε|−1O(
√

sin θ) s = 0
O(sin θ) s = 1

, |Θ̄i
ε| ≤

{
O(
√

sin θ
2 sin θ) s = 0

| log ε|1−iO(sin θ) s = 1
.

(7.30)
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It follows that

I5 ≤ c

∫

Wε

cot θ
2

sin θ

e−Vε−2U

cosh Wε︸ ︷︷ ︸
⎧
⎪⎨

⎪⎩

O(1) s = 0
O(sin2 θ

2 ) s = 1

(∂θψ̄
1
ε)2

︸ ︷︷ ︸
⎧
⎪⎨

⎪⎩

O(sin θ) s = 0
O(sin2 θ) s = 1

dV, (7.31)

I6 ≤ c

∫

Wε

cot θ
2

sin3 θ

e−Vε−6U

cosh Wε︸ ︷︷ ︸
⎧
⎪⎨

⎪⎩

O(1) s = 0
O(sin2 θ

2 ) s = 1

(Θ̄1
ε)

2

︸ ︷︷ ︸
⎧
⎪⎨

⎪⎩

O(sin θ
2 sin2 θ) s = 0

O(sin2 θ) s = 1

dV, (7.32)

I7 ≤ c

∫

Wε

tan θ
2

sin3 θ
e−Vε−6U cosh Wε︸ ︷︷ ︸
⎧
⎪⎨

⎪⎩

O(1) s = 0
O(csc2 θ

2 ) s = 1

(Θ̄2
ε − e−Vε cot

θ

2
tanh WεΘ̄1

ε)
2

︸ ︷︷ ︸
⎧
⎪⎨

⎪⎩

O(sin θ
2 sin2 θ) s = 0

| log ε|−2O(sin2 θ) s = 1

dV,

(7.33)

I9 ≤ c

∫

Wε

(sin θ)−2 e−4U
︸ ︷︷ ︸
O(1)

|Υε|2︸ ︷︷ ︸
⎧
⎪⎨

⎪⎩

| log ε|−2O(sin θ), s = 0
O(sin2 θ), s = 1

dV. (7.34)

Analogous estimates hold for the remaining integrals I8, I10, I11, and I12. �

A basic property of the harmonic energy, for maps into nonpositively
curved target spaces, is convexity along geodesic deformations. When the cos-
mological constant is nonnegative, this property carries over to the quasi-
harmonic energy (7.4).

Proposition 7.3. Let Ω ⊂ S3 be a domain which does not contain either of
the poles θ = 0, π, and let Ψ̃t : Ω → G2(2)/SO(4) be a family of smooth maps
which are geodesics in t ∈ [0, 1]. Then

d2

dt2
EΩ(Ψ̃t) ≥ 1

2π2

∫

Ω

|∇distG2(2)/SO(4)(Ψ̃1, Ψ̃0)|2dV. (7.35)

Proof. The quasi-harmonic energy of the map Ψ̃t = (ut, vt, wt, ζ
1
t , ζ2

t , χt,
ψ1

t , ψ2
t ) is the sum of the pure harmonic energy scaled by ξ and a term in-

volving the cosmological constant, namely

EΩ(Ψ̃t) =
1

4π2

∫

Ω

ξ|dΨ̃t|2dV + 3p2Λ
(

A

2
√

2π3

)2 ∫

Ω

ξe−4ut sin2 θdV (7.36)

where the energy density is

|dΨ̃t|2 = 4GBC∂θ(Ψ̃t)B∂θ(Ψ̃t)C . (7.37)
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Since G2(2)/SO(4) is nonpositively curved, the pure harmonic energy is convex
along geodesics [37], and the same is true for the scaling by ξ. In particular,
using that ξ ≥ 1 it holds that

d2

dt2

∫

Ω

ξ|dΨ̃t|2dV ≥ 2
∫

Ω

|∇distG2(2)/SO(4)(Ψ̃1, Ψ̃0)|2dV. (7.38)

Thus, it remains to show that

∂2
t e−4ut = 4(−üt + 4u̇2

t )e
−4ut = 4

[
Γu

BC∂t(Ψ̃t)B∂t(Ψ̃t)C + 4u̇2
t

]
e−4ut ≥ 0,

(7.39)

where u̇t = ∂tut and the geodesic equation

üt + Γu
BC∂t(Ψ̃t)B∂t(Ψ̃t)C = 0 (7.40)

was used.
The Christoffel symbols may be computed as follows:

Γ
u
uu = Γ

u
uv = Γ

u
vv = Γ

u
uw = Γ

u
uζi = Γ

u
uψi = Γ

u
uχ = 0, (7.41)

Γ
u
vw = Γ

u
vζi = Γ

u
vψi = Γ

u
vχ = Γ

u
ww = Γ

u
wζi = Γ

u
wψi = Γ

u
wχ = 0, (7.42)

Γ
u
ζiζj =

1

4
Gζiζj , Γ

u
ζiψ̄j =

1

4
Gζiψ̄j , Γ

u
ζiχ =

1

4
Gζiχ, Γ

u
χχ =

1

4
Gχχ − p2

12
e

−4u
, (7.43)

Γ
u
ψ̄1ψ̄1 =

1

4
Gψ̄1ψ̄1 − p2

6 cosh w
e

−2u−v − p2

6
e

−2u−v
sinh w tanh w − p2

18
e

−4u
(ψ̄

2
)
2
,

(7.44)

Γ
u
ψ̄1ψ̄2 =

1

4
Gψ̄1ψ̄2 +

p2

3
e

−2u
sinh w +

p2

18
e

−4u
ψ̄

1
ψ̄

2
, Γ

u
ψ̄1χ =

1

4
Gψ̄1χ +

p2

6
√

3
e

−4u
ψ̄

2
,

(7.45)

Γ
u
ψ2χ =

1

4
Gψ̄2χ − p2

6
√

3
e

−4u
ψ̄

1
, Γ

u
ψ̄2ψ̄2 =

1

4
Gψ̄2ψ̄2 − p2

36
e

−4u
(ψ̄

1
)
2 − p2

6
e

−2u+v
cosh w.

(7.46)

Let

˙̄Θi
t = ζ̇i

t + ψi
t

(
χ̇t +

1
3
√

3
(ψ̄1

t
˙̄ψ2
t − ψ̄2

t
˙̄ψ1)
)

, Υ̇t = χ̇t +
1√
3
(ψ̄1

t
˙̄ψ2
t − ψ̄2

t
˙̄ψ1
t ),

(7.47)

and observe that

|∂tΨ̃t|2G = 12u̇2
t + cosh2 wtv̇

2
t + ẇ2

t +
p2e−6ut−vt

cosh wt
( ˙̄Θ1

t )
2

+ p2e−6ut+vt cosh wt(e−vt tanh wt
˙̄Θ1

t − ˙̄Θ2
t )

2 +
p2e−2ut−vt

cosh wt
( ˙̄ψ1

t )2

+ p2e−2ut+vt cosh wt(e−vt tanh wt
˙̄ψ1
t − ˙̄ψ2

t )2 + p2e−4utΥ̇2
t . (7.48)

Therefore,

Γu
BC∂t(Ψ̃t)B∂t(Ψ̃t)C

=
p2e−6ut−vt

4 cosh wt
( ˙̄Θ1

t )
2 +

p2

4
e−6ut+vt cosh wt(e−vt tanh wt

˙̄Θ1
t − ˙̄Θ2

t )
2
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+
p2e−2ut−vt

12 cosh wt
( ˙̄ψ1

t )2 +
p2

12
e−2ut+vt cosh wt(e−vt tanh wt

˙̄ψ1
t − ˙̄ψ2

t )2

+
p2

6
e−4utΥ̇2

t , (7.49)

confirming that (7.39) is nonnegative. �

It is now possible to prove the main result of this section.

Proof of Theorem 7.1. Let Ψ̃t
ε, t ∈ [0, 1] be the minimizing geodesic

in G2(2)/SO(4) connecting Ψ̃0 to Ψ̃ε. Then U t
ε = U0 + t(U − U0) and V t

ε = V0

on S3\Ωε. Observe that

d2

dt2
IB(Ψt

ε) =
d2

dt2
IΩε

(Ψt
ε)

︸ ︷︷ ︸
I1

+
d2

dt2
IS3\Ωε

(Ψt
ε)

︸ ︷︷ ︸
I2

. (7.50)

According to Proposition 7.3 and (7.9), we have

I1 =
d2

dt2
1

4
EΩε(Ψ̃t

ε) − d2

dt2
1

4

∫

Ωε

ξ

((
2s cos2

θ

2
− 1

)2

+ 3 cos2 θ

)

(∂θh2)
2dV

+
d2

dt2
1

4

∫

∂Ωε

ξ

(
2

(
2s cos2

θ

2
− 1

)
(Vs)0 − 12 cos θ (U0 + t(U − U0))

)
∂νh2dA

≥ 1

8π2

∫

Ωε

|∇ distG2(2)/SO(4)(Ψ̃ε, Ψ̃0)|2dV. (7.51)

Furthermore, using that distG2(2)/SO(4)(Ψ̃ε, Ψ̃0) =
√

12|u−u0| on S3\Ωε yields

I2 =
1

4π2

∫

S3\Ωε

p2ξ

{
24

p2
(∂θU − ∂θU0)

2 + 36(U − U0)
2 e−6h1−h2−6Ut−V0

cosh W0
(Θ̄1

0)
2

+ 36(U − U0)
2e−6h1+h2−6Ut+V0 cosh W0(e

−h2−V0 tanh W0Θ̄
1
0 − Θ̄2

0)
2

+ 4(U − U0)
2 e−2h1−h2−2Ut−V0

cosh W0
(∂θψ̄

1
0)2

+ 4(U − U0)
2e−2h1+h2−2Ut+V0 cosh W0(e

−h2−V0 tanh W0∂θψ̄1
0 − ∂θψ̄2

0)2

+ 16(U − U0)
2e−4h1−4Ut

(Υ0)
2 + 48Λ

(
A

2
√

2π2

)2

(U − U0)
2e−4Ut

}

dV

≥ 1

2π2

∫

S3\Ωε

|∇ distG2(2)/SO(4)(Ψ̃ε, Ψ̃0)|2dV. (7.52)

Note that passing d2

dt2 inside the integral is justified here since all terms on the
right-hand side of (7.52) are uniformly integrable.

Next using the fact that Ψ0 is a critical point of the functional IB, as
well as the fact that in a neighborhood of the poles

d

dt
V t

ε =
d

dt
W t

ε =
d

dt
ζi,t
ε =

d

dt
χt

ε =
d

dt
ψi,t

ε = 0, i = 1, 2, (7.53)
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shows

d

dt
IB(Ψt

ε)
∣
∣∣∣
t=0

= 6ξ(U − U0)∂θU0 sin θ

∣
∣∣∣

π

0

= 0. (7.54)

Now combine (7.50)–(7.52) and (7.54) to find

IB(Ψε) − IB(Ψ0) ≥ 1
8π2

∫

S3
|∇distG2(2)/SO(4)(Ψ̃ε, Ψ̃0)|2dV

≥ C

∫

S3

(
distG2(2)/SO(4)(Ψ̃ε, Ψ̃0) − Dε

)2

dV, (7.55)

where the second line arises from the Poincaré inequality and Dε is the average
value of the distance between Ψ̃ε and Ψ̃0. By Lemma 7.2 limε→0 IB(Ψε) =
IB(Ψ), so the proof will be complete if it can be shown that this limit may
be passed inside the integral. To accomplish this, observe that by the triangle
inequality it is enough to verify

lim
ε→0

∫

S3
dist2G2(2)/SO(4)(Ψ̃ε, Ψ̃)dV = 0. (7.56)

The triangle inequality implies

distG2(2)/SO(4)(Ψ̃ε, Ψ̃)

≤ distG2(2)/SO(4)((u, vε, wε, ζ
1
ε , ζ2

ε , χε, ψ
1
ε , ψ2

ε), (u, v, wε, ζ
1
ε , ζ2

ε , χε, ψ
1
ε , ψ2

ε))

+ distG2(2)/SO(4)((u, v, wε, ζ
1
ε , ζ2

ε , χε, ψ
1
ε , ψ2

ε), (u, v, w, ζ1
ε , ζ2

ε , χε, ψ
1
ε , ψ2

ε))

+ · · · + distG2(2)/SO(4)((u, v, w, ζ1, ζ2, χ, ψ1, ψ2
ε), (u, v, w, ζ1, ζ2, χ, ψ1, ψ2))

(7.57)

≤ C

{

|v − vε| + |w − wε| + e−3u

(
e− 1

2 v|ζ1 − ζ1
ε | + e

1
2 v|ζ2 − ζ2

ε |
)

+ e−3u

(
e− 1

2 v(|ψ1| + |ψ1
0 |) + e

1
2 v(|ψ2| + |ψ2

0 |)
)

|χ − χε|

+ e−3u

(
(|ψ1| + |ψ1

0 |)(|ψ2| + |ψ2
0 |)e− 1

2 v + (|ψ2| + |ψ2
0 |)2e1

2 v

)
|ψ1 − ψ1

ε |
(7.58)

+ e−3u

(
(|ψ1| + |ψ1

0 |)2e− 1
2 v + (|ψ1| + |ψ1

0 |)(|ψ2| + |ψ2
0 |)e1

2 v

)
|ψ2 − ψ2

ε |

+ e−2u
(|χ − χε| + (|ψ2| + |ψ2

0 |)|ψ1 − ψ1
ε | + (|ψ1| + |ψ1

0 |)|ψ2 − ψ2
ε |)

+ e−u

(
e− 1

2 v|ψ1 − ψ1
ε | + e

1
2 v|ψ2 − ψ2

ε |
)}

, (7.59)

where it was used that distances between points of G2(2)/SO(4) are dominated
by the length of connecting coordinate lines. Since all terms on the right-hand
side are uniformly bounded independent of ε, (7.56) follows from the dominated
convergence theorem. �
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8. Proof of the Main Results

Proof of Theorems 2.1, 2.2, 2.3. From the spacetime (M,g, F ) and stable
MOTS, we obtain the map Ψ as explained in Sects. 5 and 6. Since Λ = 0
it holds that αξ = 1, so that by Proposition 6.1

A ≥ 4
√

2π2

p
e

IB(Ψ)−βs
1

2 . (8.1)

Let Ψ0 be the renormalized harmonic map arising from the near-horizon ge-
ometry of the relevant model extreme black hole (mentioned in the statement
of each theorem) having angular momentum and charges that agree with those
of the given MOTS. Then according Theorem 7.1

4
√

2π2

p
e

IB(Ψ)−βs
1

2 ≥ 4
√

2π2

p
e

IB(Ψ0)−βs
1

2 = A0, (8.2)

where A0 is the area of the horizon for the relevant model extreme black hole.
Note that the equality in (8.2) follows from the fact that the function M
vanishes at Ψ0, as is shown in Sect. 5. In the appendices the value of A0 is
computed in terms of angular momentum and charges. This, together with
(8.1) and (8.2) yields the desired area–angular momentum–charge inequal-
ity for each theorem. In the case this inequality is saturated, we must have
IB(Ψ) = IB(Ψ0) which implies by the gap bound that distG2(2)/SO(4)(Ψ̃, Ψ̃0) is
constant. Since Ψ realizes the infimum of the functional IB, it is a critical point
and hence a harmonic map. According to [2] the two maps Ψ and Ψ0 must
then be related by an isometry in the target symmetric space. The Maxwell
field F may then be reconstructed from Ψ via (4.16), and thus (B, γ, F ) must
arise from the relevant near-horizon geometry. �

Before proceeding to the proof of Theorem 2.4, we need a preliminary
result.

Lemma 8.1. (a) Given (A,J1,J2) ∈ R
2
+ × R− with J = J1 = ±J2, there

exists a unique (Â, Ĵ1, Ĵ2) ∈ R
2
+ × R− with Ĵ = Ĵ1 = ±Ĵ2 which saturates

Λ3A6

210π6J 2
≤
(
A

√
A2 + 512π2J 2 − A2 − 128π2J 2

)3

(
A − √

A2 + 512π2J 2
)4 , (8.3)

and satisfies

Ĵ =
J
A2

Â2, Â ≤ π2

√
2Λ3

. (8.4)

Moreover, the inequality (8.3) is equivalent to Â ≥ A.

(b) Given (A,Q) ∈ R
2
+, there exists a unique (Â, Q̂) ∈ R

2
+ which saturates

Q2 ≤ 12
64π2

(
Aπ

2

)4/3

− 3ΛA2

32π2
, (8.5)



Vol. 20 (2019) Area–Angular Momentum–Charge Inequalities 511

and satisfies

Q̂ =
Q

A
Â, Â ≤ π2

√
2Λ3

. (8.6)

Moreover, the inequality (8.5) is equivalent to Â ≥ A.

Proof. Consider part (a) when J1 = −J2; similar arguments hold when J1 =
J2. We may assume without loss of generality that J1 > 0. Define the curve

f(τ) = (A(τ),J1(τ),J2(τ)) =
(

τ,
J1

A2
τ2,

J2

A2
τ2

)
=
(

τ,
J
A2

τ2,− J
A2

τ2

)

(8.7)

in R
2
+ × R−. Then for small τ each side of the inequality satisfies

Λ3A6(τ)

210π6J 2(τ)
∼ τ2,

(
A(τ)

√
A2(τ) + 512π2J 2(τ) − A2(τ) − 128π2J 2(τ)

)3

(
A(τ) −√A2(τ) + 512π2J 2(τ)

)4 ∼ 1,

(8.8)

so that the inequality holds on the curve f . For large τ it is clear that the
inequality is reversed. It follows that there exists a time τ = Â for which
the inequality is saturated. Further analysis of the roots of the associated
polynomial show that this time is unique for τ ≤ π2√

2Λ3 .
In order to establish the last statement in part (a), we interpret R

2
+ as

having a vertical J -axis and horizontal A-axis. Observe that inequality (8.3)
corresponds to all points lying below the surface defined by equality in (8.3);
this is similar to Fig. 1 in “Appendix A”. According to the description of Â
above, it follows that A ≤ Â if and only if the inequality (8.3) is satisfied.

Similar arguments may be used to establish part (b) with the curve

f(τ) = (A(τ), Q(τ)) =
(

τ,
Q

A
τ

)
(8.9)

in R
2
+. �

Proof of Theorem 2.4. We will provide details only for part (a), as similar
arguments may be used for part (b). Let Ψ be the map obtained from the
spacetime (M,g, F ) as explained in Sects. 5 and 6, and let (A,J1,J2) be the
area and angular momenta of the stable MOTS. Lemma 8.1 states that there
exist corresponding values (Â, Ĵ1, Ĵ2) which arise from an extreme CCLP black
hole, and are such that the desired inequality (2.14) is equivalent to showing
Â ≥ A. Let â and b̂ be the angular momentum parameters for this extreme
CCLP solution (these quantities are given implicitly in terms of Ĵ1 and Ĵ2 by
the Eq. (A.17)), and set

Ψ̂ = (Û , V̂ , Ŵ , ζ̂1, ζ̂2, χ̂, ψ̂1, ψ̂2)

=

⎛

⎝U +
1

2
log

Â

A
, V, W,

(
Â

A

)3/2

ζ1,

(
Â

A

)3/2

ζ2,
Â

A
χ,

(
Â

A

)1/2

ψ1,

(
Â

A

)1/2

ψ2

⎞

⎠ .

(8.10)
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According to Theorem 7.1

ÎS3(Ψ̂) ≥ ÎS3(Ψ̂0), (8.11)

where Ψ̂0 denotes the extreme CCLP map with the same angular momenta Ĵ1,
Ĵ2, and ÎS3 represents the functional IS3 defined with respect to the quantities
â, b̂, and Â. Next observe that

ÎS3(Ψ) = ÎS3(Ψ̂) − 3αξ̂ log
Â

A
, (8.12)

and therefore with the help of Proposition 6.1

A ≥ 4
√

2π2e

Î
S3 (Ψ)−β̂0

ξ̂
2α

ξ̂ =
4
√

2π2A3/2

Â3/2
e

Î
S3 (Ψ̂)−β̂0

ξ̂
2α

ξ̂ . (8.13)

By combining (8.11) and (8.13), we obtain at Â ≥ A, since

4
√

2π2e

I
S3 (Ψ̂0)−β̂0

ξ̂
2α

ξ̂ = Â. (8.14)

Consider now the case of equality in (2.14). By the proof of Lemma 8.1,
this implies that (Â, Ĵ1, Ĵ2) = (A,J1,J2), and hence Ψ̂ = Ψ, Ψ̂0 = Ψ0.
Furthermore, IS3(Ψ) = IS3(Ψ0), which as in the above proof of Theorems 2.1,
2.2, and 2.3 yields Ψ = Ψ0 up to isometry in the target symmetric space.
From here the same arguments apply to show that (B, γ, F ) must arise from
the near-horizon geometry of the extreme CCLP black hole. �

Appendix A. The CCLP Charged Rotating de Sitter Black Hole

A.1. The Solution

Consider 5-dimensional minimal supergravity with a positive cosmological con-
stant with action (2.1). The Chong–Cvetic–Lu–Pope (CCLP) solution [5] may
be interpreted as the natural generalization of the Kerr–Newman de Sitter
black hole to 5 dimensions. In Boyer–Lindquist coordinates the solution takes
the form

g = −ξ
[(

1 − Λr2
)
Σdt + 2qν

]
dt

ΞaΞbΣ
+

2qνω

Σ
+

f

Σ2

(
ξdt

ΞaΞb
− ω

)2

+
Σdr2

Δ
+

Σdθ̃2

ξ
+

r2 + a2

Ξa
sin2 θ̃(dφ1)2 +

r2 + b2

Ξb
cos2 θ̃(dφ2)2 (A.1)

where

ν = b sin2 θ̃dφ1 + a cos2 θ̃dφ2, ω = a sin2 θ̃
dφ1

Ξa
+ b cos2 θ̃

dφ2

Ξb
, (A.2)

ξ = 1 + Λ(a2 cos2 θ̃ + b2 sin2 θ̃),

Δ =
(r2 + a2)(r2 + b2)(1 − Λr2) + q2 + 2abq

r2
− 2m, (A.3)
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Σ = r2 + b2 sin2 θ̃ + a2 cos2 θ̃, Ξa = 1 + a2Λ, Ξb = 1 + b2Λ,

f = (2m − 2abqΛ)Σ − q2. (A.4)

The Maxwell field F = dA has the potential

A =
√

3q

Σ

(
ξdt

ΞaΞb
− ω

)
. (A.5)

The above solution is characterized by the parameters (m, a, b, q) and for a
suitable range of parameters they describe regular black holes on and outside
an event horizon up to a cosmological horizon whose scale is set by the length
scale �2 = Λ−1. If Λ = 0 the solution is considerably simpler as we discuss
below. Here t ∈ R, θ̃ ∈ (0, π/2), and φi ∼ φi + 2π. Apart from coordinate
singularities at θ̃ = 0, π/2 where the rotational Killing fields ∂/∂φi degenerate,
there are singularities at the roots of Δ(r). These correspond to an inner
horizon, an outer horizon, and a cosmological horizon for suitable choice of
parameters. In particular, for the subfamily of extreme black holes, we require
the cubic function Δ(R) with R ≡ r2 to have three real positive roots, two of
which coincide. This condition is equivalent to requiring the discriminant of the
cubic Δ(R) vanishes, which reduces to an equation of the form f(a, b, q,m) = 0
for a smooth function f . The implicit function theorem will guarantee that,
generically in some open set in parameter space, a solution m = m(a, b, q)
exists.

If we set R+ to be a root, we can eliminate m by

m =
(R+ + a2)(R+ + b2)(1 − R+Λ) + q2 + 2abq

2R+
, (A.6)

and R+ is a double root provided

ΛR2
+(2R+ + a2 + b2) = R2

+ − (ab + q)2, (A.7)

which implies R+ ≥ |ab + q| with equality if and only if Λ = 0. We will take
q ≥ 0 (below we will see this is equivalent to choosing electric charge Q ≥ 0)
and assume ab + q > 0. Finally we require that the cosmological horizon
Rc ≥ R+, that is

(a2 + b2)(ab + q)2 + 3(ab + q)2R+ − R3
+ ≥ 0. (A.8)

In summary, the extreme family is parameterized by (R+, a, b, q) which satisfy
the extremality constraint (A.7).

Defining r+ =
√

R+, we can derive the quasi-harmonic map data corre-
sponding to the near-horizon geometry associated with the extreme subfamily
of black holes. The horizon metric is

γmndymdyn =
Σr+

ξ
dθ̃2 + λijdφidφj , (A.9)

where Σr+ = r2
+ + b2 sin2 θ̃ + a2 cos2 θ̃ and

λ11 =
(r2

+ + a2) sin2 θ̃

Ξa
+

a
[
a
(
2mΣr+ − q2

)
+ 2bqΣr+

]
sin4 θ̃

Σ2
r+

Ξ2
a

, (A.10)
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λ22 =
(r2

+ + b2) cos2 θ̃

Ξb
+

b
[
b
(
2mΣr+ − q2

)
+ 2aqΣr+

]
cos4 θ̃

Σ2
r+

Ξ2
b

, (A.11)

λ12 =

[
ab
(
2mΣr+ − q2

)
+ (a2 + b2)qΣr+

]
sin2 θ̃ cos2 θ̃

Σ2
r+

ΞbΞa
, (A.12)

and the horizon area is A = 8π2C−1 where

C−1 =
r4
+ + r2

+(a2 + b2) + ab(ab + q)
4r+ΞaΞb

. (A.13)

It is straightforward to read off the magnetic potentials

ψ1
0 =

√
3aq sin2 θ̃

ΞaΣr+

, ψ2
0 =

√
3bq cos2 θ̃

ΞbΣr+

. (A.14)

A somewhat longer calculation gives Υ, and hence the potential

χ0 = −
√

3q(b2 + r2
+)(a2 + r2

+)
ΞaΞb(a2 − b2)Σr+

. (A.15)

The computation of the charged twist potentials ζi
0 is involved and yields

cumbersome expressions which we will omit here, although we will record the
asymptotic behavior relevant for the convexity argument below. Using the
quasi-harmonic map potentials one can calculate the electric charge

Q =
√

3πq

4ΞaΞb
, (A.16)

and angular momenta associated with the black hole horizon

J1 =
π [2am + qb (2 − Ξa)]

4Ξ2
aΞb

, J2 =
π [2bm + qa (2 − Ξb)]

4ΞaΞ2
b

. (A.17)

The estimates of the quasi-harmonic map as θ̃ → 0, π/2 will now be
collected. Recall that in terms of our parametrization for spherical topology,
we have

U0 =
1

4
log

(
ξ(r4

+ + (a2 + b2)r2
+ + a2b2 + abq)2

4Σr+r2
+Ξ2

aΞ2
b

)
, V0 =

1

2
log

(
λ11 cos2 θ̃

2

λ22 sin2 θ̃
2

)

.

(A.18)

The required asymptotic behavior of the scalars is

V0 =
1

2
log

(
4π2(a2 + r2

+)3

A2Ξ3
a

)

+ O(sin
2
2θ̃), ∂θ̃V0 = O(sin 2θ̃), (A.19)

U0 =
1

4
log

(
ΞaA2

16π4(a2 + r2
+)

)

+ O(sin
2
2θ̃), ∂θ̃U0 = O(sin 2θ̃), (A.20)

W0 = O(sin 2θ̃), ∂θ̃W0 = O(1), (A.21)
ψ

1
0 = O(sin

2
θ̃), ∂θ̃ψ

1
0 = O(sin θ̃), ψ

2
0 = O(cos

2
θ̃), ∂θ̃ψ

2
0 = O(sin θ̃), (A.22)

ζ
1
0 = −2J1

π
+ O(sin

4
θ̃) as θ̃ → 0, ζ

1
0 =

2J1

π
+ O(cos

2
θ̃) as θ̃ → π/2,

(A.23)
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ζ
2
0 = −2J2

π
+ O(sin

2
θ̃) as θ̃ → 0, ζ

2
0 =

2J2

π
+ O(cos

4
θ̃) as θ̃ → π/2,

(A.24)

χ0 =
2Q

π
+ O(sin

2
θ̃) as θ̃ → 0, χ0 = −2Q

π
+ O(cos

2
θ̃) as θ̃ → π/2,

(A.25)
∂θ̃χ0 = O(sin 2θ̃), ∂θ̃ζ

1
0 = sin 2θ̃O(sin

2
θ̃), ∂θ̃ζ

2
0 = sin 2θ̃O(cos

2
θ̃). (A.26)

A.2. Geometric Equalities Satisfied by the CCLP Black Hole Horizon

In this section we consider some special subfamilies of the three-parameter
family of extreme horizons.

A.2.1. Vanishing Cosmological Constant Λ = 0. In this case the geometry
simplifies significantly as we can express R+ explicitly in terms of the param-
eters as r2

+ = R+ = ab + q > 0, or equivalently

m = q +
(a + b)2

2
. (A.27)

The extreme horizon area satisfies

Ae = 8

√

π2J1J2 +
4π

3
√

3
Q3, (A.28)

and positivity is guaranteed by ab + q > 0. Note that if set Q = 0, we recover
the vacuum result obtained by Holland [21]. Moreover, if either Ji is set to
zero, then we obtain

Ae = 8

√
4π

3
√

3
Q3. (A.29)

This holds in particular for an extreme Reissner–Nordström horizon.

A.2.2. Vanishing Angular Momenta Ji = 0. It is sufficient (although not
necessary) to set a = b = 0. In this case the extremality condition (A.7) reads

2ΛR3
+ = R2

+ − q2, (A.30)

and the mass parameter is fixed by

m =
R2

+ + 3q2

4R+
. (A.31)

The geometry of the horizon is that of a round S3, with area A = 2π2R
3/2
+

and using (A.30) gives the geometric relation

6
(

πAe

2

)4/3

− 3ΛA2
e = 32π2Q2, (A.32)

or equivalently

E(Ae, Q) = A2
e

(
4π2 − 2Λ (4πAe)

2/3
)3/2

− 211π4Q3

3
√

3
= 0. (A.33)
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E(A,Q) = 0

π2√
2Λ3

A

Q

Amax

Qmax

A- A+

Figure 1. The shaded region represents the region
E(A,Q) ≥ 0

It can be seen that

0 ≤ Ae ≤ Amax =
π2

√
2Λ3

, 0 ≤ Q ≤ Qmax =
π

12Λ
. (A.34)

Amax is achieved when Q = 0 and the cosmological and event horizon coincide.

A.2.3. Equal Angular Momenta J = J1 = ±J2 and Vanishing Electric
Charge Q = 0. Consider the one-parameter subset defined by a = b > 0 and
q = 0. Then from (A.7) we find

a2 = R+(1 − 2R+Λ) , m = 2R+(1 − R+Λ)3, (A.35)

so that R+ < (2Λ)−1. The area of the extreme horizon is given by

Ae =
8π2R

3/2
+

(1 + 2R+Λ)2
. (A.36)

This implies the following complicated relation between A and J

Λ3A6
e

210π6J 2
=

(
Ae

√
A2

e + 512J 2π2 − A2
e − 128π2J 2

)3

(
Ae −√A2

e + 512J 2π2
)4 . (A.37)

From the above bound on R+ it follows that

0 ≤ Ae ≤ π2

√
2Λ3

, 0 ≤ J ≤ Jmax ≡
√

2π

54Λ3/2
. (A.38)

In the case J = 0 the maximal area occurs when the event horizon and cosmo-
logical horizon coincide, while the maximum angular momentum is achieved
when Ae = 4π2

9Λ3/2 .
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Appendix B. Dipole Charged Black Rings

An explicit 3-parameter family of asymptotically flat stationary
bi-axisymmetric black ring solutions, characterized by a mass m, vanishing
electric charge Q = 0, a single angular momenta J1 along the S1-direction of
the black ring, and a ‘dipole charge’ D which corresponds to the flux of the
Maxwell field out of the S2 portion of the ring, was constructed in [12]. In the
physics literature this class of solutions is referred to as the ‘singly-spinning
dipole ring’ for this reason. If D = 0, then the solution reduces to the vacuum
black ring with one angular momentum [13]. A remarkable feature of this so-
lution is that it demonstrates ‘continuous non-uniqueness’—that is, for fixed
m,J1, there are an infinite number of distinct dipole rings. When D �= 0, the
dipole ring admits a two-parameter extreme limit. The associated near-horizon
geometry, given in [33], corresponds to an extreme horizon with S1 ×S2 topol-
ogy. Note that from the point of view of the near-horizon alone, the radius of
the S1 is a free parameter although for the parent asymptotically flat black
hole the radius is fixed. Accordingly, we will leave it here as a free parameter
R1. The harmonic map scalars can be read off from the horizon metric

dx2

C2 detλ
+ λijdφidφj

=
dx2

C2 det λ
+

R2
1σ(1 + σ)H(x)
μ(1 − σ)F (x)

(dφ1)2 +
R2

2μ
2ω2

0(1 − x2)
H(x)2

(dφ2)2, (B.1)

where

F (x) = 1 + σx, H(x) = 1 − μx, (B.2)

and σ, μ ∈ (0, 1). The local metric extends smoothly to a metric on S1 × S2

provided conical singularities are removed, which requires

ω0 =
√

F (1)H(1)3 =
√

F (−1)H(−1)3. (B.3)

This imposes a constraint on the parameters σ, μ, given by

(1 + σ)(1 − μ)3 = (1 − σ)(1 + μ)3, (B.4)

which can actually be solved explicitly

σ =
μ(3 + μ2)
1 + 3μ2

(B.5)

so that

ω2
0 =

(1 − μ2)3

1 + 3μ2
. (B.6)

The solution is parameterized by (R1, R2, σ, μ) subject to (B.5). We have also
made the identification

C−1 = L3 ≡ ω0R1R
2
2

√
σ(1 + σ)μ3

1 − σ
. (B.7)
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The remaining scalars are

χ0 ≡ 0, ζ1
0 =

L3R1(1 + σ)

R2

√
σμ3

(
1 − 1

F (x)

)
, ψ2

0 = −
√

3

√
1 − μ

1 + μ
· ω0μR2(1 + x)

H(x)
,

(B.8)

and ζ2
0 = ψ1

0 = 0.
By the definition of electric charge and χ0 = 0, we have Q = 0. The

dipole charge is

D = −vi(ψi
0(+1) − ψi

0(−1)) = −ψ2
0(+1) =

2
√

3μR2(1 − μ2)
√

1 + 3μ2
, (B.9)

where vi = (0, 1) corresponds to the fact that η2 is the Killing vector field which
vanishes at the poles of the S2 of the ring horizon. The angular momenta can
be derived from the twist charged potentials, giving

J1 =
π

2
L3R1

(1 − σ)R2

√
σ

μ3
, J2 = 0 . (B.10)

The area of the extreme horizon is

Ae = 8π2L3 = 4π

√
πJ1D3

3
√

3
. (B.11)

Note that there is no limit as D → 0 or J1 → 0; that is, the extreme dipole
ring requires both a non-vanishing angular momenta along the S1 direction of
the ring, and a non-vanishing dipole charge. Therefore, the area inequality is

A ≥ 4π

√
πJ1D3

3
√

3
. (B.12)

Lastly, we set x = cos θ and list the asymptotics of the harmonic map as
θ → 0, π:

V0 = − log

(
sin

θ

2

)
+ O(1), ∂θV0 = − cot

θ

2
+ O(sin θ), (B.13)

U0 =
1

4
log

(
μR2

2(1 + μ)3(3 + μ2)R2
1

(3μ2 + 1)(1 − μ)

)
+ O(sin2 θ), ∂θU0 = O(sin θ), W0 = 0,

(B.14)

ψ2
0 =

√
12(1 − μ2)μR2√

3μ2 + 1
cos2

θ

2
+ O(sin2 θ), ∂θψ2

0 = O(sin θ), (B.15)

ζ1
0 = −2J1

π
+ O(sin2 θ) as θ → 0, ζ1

0 =
2J1

π
+ O(sin2 θ) as θ → π, ζ2

0 = 0,

(B.16)
χ0 = 0, ∂θζ1

0 = O(sin θ). (B.17)
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Appendix C. A Magnetically Charged Kerr String

Consider the class of extreme horizons with topology S1 × S2 obtained as
follows. Start with a general vacuum Kerr black hole solution. Add a flat
direction to obtain the product metric

g = gKerr + dz2, (C.1)

which is obviously Ricci flat in D = 5, and hence one has a vacuum solu-
tion with horizon topology S1 × S2 where z is periodically identified with
period 2πR. The resulting 3-parameter vacuum solution is referred to as a
‘Kerr black string’. Note that the solution obtained is not asymptotically flat
but rather is asymptotically R

3,1 × S1. Solution generating techniques, based
on the underlying harmonic map structure of the theory, can be used to gen-
erate solutions to minimal supergravity with electric and magnetic charge (as
measured from the D = 4 point of view) as well as linear momentum along
the string direction z. Taking an extreme limit of this charged Kerr string and
performing the near-horizon limit, we obtain extreme horizons with horizon
topology S1×S2. Remarkably, the near-horizon geometry of the asymptotically
flat vacuum black ring is globally isometric to a subfamily of the near-horizon
geometries of the vacuum Kerr black string [33]. This strongly suggests there
could be some (yet to be explicitly constructed) family of extreme charged
black rings with horizon geometry globally isometric to that of a charged Kerr
black string.

In the following we will consider an extreme horizon parameterized by
(a, β,R), and we use the shorthand cβ = cosh β, sβ = sinh β. The Killing part
of the metric is given by

λijdφidφj =
a4(1 − x2)

Ξ(x)
(
2(c4

β + s4
β)dφ2

)2

+

[

Rdφ1 +
2a3cβsβ(c2

β + s2
β)(1 − x2)

Ξ(x)
dφ2

]2

, (C.2)

where

Ξ(x) = a2(1 + x2 + 4c2
βs2

β). (C.3)

The horizon scale is set by

C−1 = L3 = 2a2R(c4
β + s4

β). (C.4)

It is easily seen that ∂/∂φ2 has fixed points at x = ±1, and the above metric
extends smoothly to a cohomogeneity-one metric on S1 × S2. The remaining
scalars are

ψ1
0 = 0, ψ2

0 = −4
√

3a3sβcβ(c4
β + s4

β)x
Ξ(x)

, χ0 =
2
√

3aL3cβsβ(c2
β + s2

β)
Ξ(x)

.

(C.5)
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A computation gives

Θ1
0 = −2L3Racβsβ(1 − x2 + 4c2

βs2
β)

Ξ(x)2
dx, (C.6)

Θ2
0 = −4L3(1 + 2s2

β)(1 + 7sβ2 + 19s4
β + 24s6

β12s8
β + c2

βx2 + s4
βx2)

(1 + 4c2
βs2

β + x2)3
(1 − x2) dx,

(C.7)

with twist potentials expressed concisely as

ζ1
0 = −2L3Racβsβx

Ξ(x)
, ζ2

0 = −4L3a2(c2
β + s2

β)(1 + s2
βc2

β)x
Ξ(x)

− χψ2
0

3
. (C.8)

Owing to the functional form of χ0, ψi
0 it can be verified that Q = 0, so the

solution has vanishing electric charge. There is a dipole charge

D = 4
√

3acβsβ (C.9)

as well as two angular momenta given by

J1 = −πaR2cβsβ , J2 = −2πa2R(c2
β + s2

β) . (C.10)

One can verify that the following equality holds for the extreme solution

Ae = 8π2C−1 = 8π

√
J 2

2 − π

12
√

3
J1D3. (C.11)

Then the area inequality is

A ≥ 8π

√
J 2

2 − π

12
√

3
J1D3. (C.12)

Lastly, we set x = cos θ and list the asymptotics of the harmonic map as
θ → 0, π:

V0 = − log

(
sin

θ

2

)
+ O(1), ∂θV0 = − cot

θ

2
+ O(sin θ), W0 = O(sin θ),

(C.13)

U0 =
1

4
log
(
2R2a2

)
+ O(sin2 θ), ∂θU0 = O(sin θ), ∂θW0 = O(1), (C.14)

ψ1
0 = 0, ψ2

0 = −D
2

+ O(sin2 θ) as θ → 0, ψ2
0 =

D
2

+ O(sin2 θ) as θ → π,

(C.15)
χ0 = 2

√
3aRsβcβ(2c2

β − 1) + O(sin2 θ), ∂θχ0 = O(sin θ) as θ → 0, π, (C.16)

ζ1
0 = −2J1

π
+ O(sin2 θ) as θ → 0, ζ1

0 =
2J1

π
+ O(sin2 θ) as θ → π, (C.17)

ζ2
0 = −2J2

π
+ O(sin2 θ) as θ → 0, ζ2

0 =
2J2

π
+ O(sin2 θ) as θ → π, (C.18)

∂θψ2
0 , ∂θζ1

0 , ∂θζ2
0 = O(sin θ), (C.19)

Θ1 = O(sin θ)dθ, Θ2 = O(sin2 θ)dθ as θ → 0, π. (C.20)
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Appendix D. Lens Space L(n, 1) Horizons

The supergravity theory discussed here admits special classes of supersym-
metric (BPS) solutions. These are solutions which admit Killing spinors with
respect to an appropriate connection. Within the class of BPS solutions, there
are asymptotically flat black hole solutions that must saturate the bound
M =

√
3Q [20]. A BPS black hole is necessarily extreme (see, e.g., [28]),

so they immediately give rise to near-horizon geometries that will be critical
points of our harmonic map equations.

There is a classification (without any isometry assumptions) of possible
BPS near-horizon geometry solutions (g, F ) [35]. The only possibilities are:
(i) S1 × S2 with a product metric and the S2 metric is round; (ii) S3 with a
homogeneously squashed SU(2)×U(1) metric or a lens space quotient thereof.
There is also a T 3 possibility with the flat metric, but this is ignored because
such a horizon could not correspond to an asymptotically flat black hole [18,
19]. Case (i) is realized by the family of BPS black ring solutions [11]. The S3

possibility is realized by the asymptotically flat black hole solutions [3,31], and
more recently asymptotically flat black holes with lens horizon L(n, 1) have
been constructed in [32,39].

The near-horizon geometries of case (ii) above are all locally isometric,
with

gNH = −r2dv2

α2
+

4αdvdr

j
dvdr +

4β

nα2
rdv
(
dφ1 +

n

2
cos θdφ2

)
+ ds2

3, (D.1)

FNH =
√

3
α

d

[
rdv − 2β

n

(
dφ1 +

n

2
cos θdφ2

)]
, (D.2)

where j =
√

2α3 − β2. The orientation is such that εvrθφ1φ2 > 0. The solution
has two continuous parameters α, β satisfying the regularity conditions α > 0,
2α3 − β2 > 0. The angles φi both have period 2π and θ ∈ (0, π). The positive
integer n labels the horizon metric

γmldymdyl =
4j2

n2α2

(
dφ1 +

n

2
cos θdφ2

)2

+ 2α(dθ2 + sin2 θ(dφ2)2). (D.3)

It is important to note that many references work with the angle φ̂ = 2φ1 with
period 4π. A computation yields the harmonic map

ψ1
0 =

2
√

3β

nα
, ψ2

0 =
√

3β cos θ

α
, χ0 = −4

√
3α

n
cos θ, (D.4)

ζ1
0 =

16β cos θ

n2
, ζ2

0 = −4β sin2 θ

n
. (D.5)

Thus the angular momenta and charge, as defined in terms of potentials given
above, are

J1 = −4πβ

n2
, J2 = 0, Q =

2
√

3πα

n
. (D.6)

Observe that the angular momentum associated with ∂φ2 vanishes. However,
the angular momenta defined on the horizon need not equal the ones computed
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at spatial infinity because the gauge fields carry angular momenta in the black
hole exterior. This is related to the fact the Maxwell equation has a ‘source’
term so that there are additional volume contributions when comparing inte-
grals over the horizon and the boundary S3 at infinity. Indeed, the black lens
spacetimes must have two non-vanishing angular momenta as measured with
respect to observers at infinity.

The area formula is

Ae =
32π2

n

√
2α3 − β2 = 8π

√
4nQ3

3
√

3π
− n2J 2

1 . (D.7)

For n = 1 this is the well-known formula for the area of the BMPV black hole
[3].

Now we compute the asymptotics of the harmonic data. Observe that the
Killing vectors η(1) = n

2 ∂φ1 − ∂φ2 and η(2) = n
2 ∂φ1 + ∂φ2 vanish at θ = 0 and

θ = π, respectively. Clearly the direction vectors are not same as in Sect. 6.
However, according to [21], there exists a matrix A ∈ SL(2,Z) such that

η̂i = Aj
iη(j), i, j = 1, 2, (D.8)

and η̂(i)â
i
+ and η̂(i)â

i
− with â+ = (1, 0) and â− = (1, n) vanish at θ = 0 and

θ = π, respectively. In other words, if we select the functions φ̂i such that
Lη̂(i) φ̂

i = 1, we have

η(1) =
n

2
∂φ1 − ∂φ2 = ∂φ̂1 = η̂iâ

i
+, η(2) =

n

2
∂φ1 − ∂φ2 = ∂φ̂1 + n∂φ̂2 = η̂iâ

i
−.

(D.9)

The transformation from (φ1, φ2) to (φ̂1, φ̂2) is
(

φ1

φ2

)
= C

(
φ̂1

φ̂2

)
, C =

(
n
2 0

−1 2
n

)
. (D.10)

Then there exists a matrix B =
(

1 1
0 n

)
such that (φ̂1, φ̂2)T = B(φ̄1, φ̄2)T .

Therefore, we obtain
(

φ1

φ2

)

= Z

(
φ̄1

φ̄2

)

, Z = CB =
(

n
2

n
2−1 1

)
, (D.11)

and λ̄ = ZT λZ. The metric functions are then

U0 =
1
4

log
(

det λ

n2 sin2 θ

)
, W0 = sinh−1

(
n2

4 λ11 − λ22

e2U0 sin θ

)

, (D.12)

V0 =
1
4

log

⎛

⎝
cos2 θ

2

(
n2

4 λ11 − nλ12 + λ22

)

sin2 θ
2

(
n2

4 λ11 + nλ12 + λ22

)

⎞

⎠ , (D.13)

(
ψ̄1

0

ψ̄2
0

)

= ZT

(
ψ1

ψ2

)

=

(
n
2 ψ1 − ψ2

n
2 ψ1 + ψ2

)

. (D.14)
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The asymptotics of the harmonic map as θ → 0, π are as follows:

V0 =
1

2
log

(
2α3

j2

)
+ O(sin2 θ), ∂θV0 = O(sin θ), (D.15)

U0 =
1

4
log

(
8j2

αn4

)
, ∂θU0 = 0, W0 = O(sin θ), ∂θW0 = O(1), (D.16)

ψ̄1
0 = O

(
sin2 θ

2

)
, ∂θψ̄1

0 = O(sin θ), ψ̄2
0 = O

(
cos2

θ

2

)
, ∂θψ̄2

0 = O(sin θ),

(D.17)

ζ1
0 = −2J1

π
+ O(sin2 θ

2
) as θ → 0, ζ1

0 =
2J1

π
+ O(cos2

θ

2
) as θ → π,

(D.18)

χ0 =
2Q

π
+ O

(
sin2 θ

2

)
as θ → 0, χ0 = −2Q

π
+ O

(
cos2

θ

2

)
as θ → π,

(D.19)
∂θχ0 = O(sin θ), ζ2

0 = O(sin2 θ), ∂θζi
0 = O(sin θ). (D.20)
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[38] Strominger, A., Vafa, C.: Microscopic origin of the Bekenstein–Hawking entropy.
Phys. Lett. B 379(1), 99–104 (1996)

[39] Tomizawa, S., Nozawa, M.: Supersymmetric black lenses in five dimensions.
Phys. Rev. D 94(4), 044037 (2016)

[40] Yazadjiev, S.: Area-angular momentum–charge inequality for stable marginally
outer trapped surfaces in 4D Einstein–Maxwell-dilaton theory. Phys. Rev. D
87(2), 024016 (2013)

[41] Yazadjiev, S.: Horizon area-angular momentum–charge–magnetic flux inequali-
ties in the 5D Einstein–Maxwell-dilaton gravity. Class. Quantum Gravity 30(11),
115010 (2013)

Aghil Alaee
Department of Mathematics
University of Toronto
Toronto
ON M5S 2E4
Canada
e-mail: a.alaeekhangha@utoronto.ca

Marcus Khuri
Department of Mathematics
Stony Brook University
Stony Brook
NY 11794
USA
e-mail: khuri@math.sunysb.edu

Hari Kunduri
Department of Mathematics and Statistics
McMaster University
Hamilton
ON L8S 4K1
Canada
e-mail: hkkunduri@mun.ca

Communicated by Krzysztof Gawȩdzki.
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