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Abstract

We provide bounds on the first Betti number and structure results for the fundamental
group of horizon cross sections for extreme stationary vacuum black holes in arbitrary
dimension, without additional symmetry hypotheses. This is achieved by exploiting a
correspondence between the associated near-horizon geometries and the mathemati-
cal notion of m-quasi-Einstein metrics, in addition to generalizations of the classical
splitting theorem from Riemannian geometry. Consequences are analyzed and refined
classifications are given for the possible topologies of these black holes.

Keywords Black holes - Horizon topology - m-Quasi-Einstein metric - Splitting
theorem
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1 Introduction

Stephen Hawking revolutionized the theory of black holes. One part of that legacy
is his horizon topology theorem [18,19] which states that, in spacetime dimension
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D = 4, cross sections of the event horizon of asymptotically flat stationary vacuum
black holes that obey the dominant energy condition must have spherical topology S2.
In higher dimensions such a simple characterization does not hold, as is illustrated by
the D = 5 ring solutions of Emparan—Reall [6] and Pomeransky—Sen’kov [43] which
have cross-sectional horizon topology S' x S2. A natural question then arises: what
are the possible horizon topologies for asymptotically flat stationary vacuum black
holes in dimensions D > 4? A primary observation that underpins much of the study
of this problem is the fact that such horizons, or more generally stable marginally
outer trapped surfaces, are of positive Yamabe type [11,13,14,37]. This means that
these manifolds admit Riemannian metrics of positive scalar curvature. In D = 5
this provides strong restrictions on the possible topologies of the three-dimensional
horizons. More precisely, by the prime decomposition theorem [21] along with a
result of Gromov—Lawson [17] and resolution of the Poincaré conjecture, a compact
orientable 3-manifold having positive Yamabe invariant is diffeomorphic to a spherical
space, S' x S2, or a finite connected sum thereof. Here a spherical space refers to a
quotient of the 3-sphere S3/ I where I' C O(4) is a discrete subgroup, an example is
the lens space L(p, g) in which I = Z,,.

Another tool used to study the topology of black holes is the topological censorship
theorem [10] which states that any curve beginning and ending in the asymptotically
flat end can be deformed continuously to lie entirely within the asymptotic region. An
example of a result relying on topological censorship is a refinement of the classifica-
tion given above when D = 5. In [22] it is assumed that in addition to stationarity a
U (1) symmetry is present, which is guaranteed for analytic solutions [23,25,40], and
it is proven that the horizon is one of several possible quotients of S3 by isometries, or
a connected sum between copies S! x S? and lens spaces. If multiple axial symmetries
are present, namely the isometry group contains U (1)?~3, then Hollands—Yazadjiev
[26] have shown that the only possible horizon topologies are S x TP, §2 x TP~4,
or L(p,q) x TP~ where TP~ denotes the (D — 5)-dimensional torus. Note that
this amount of axisymmetry is only compatible with asymptotic flatness in dimensions
D = 4, 5. Furthermore, it should be pointed out that it is not known whether all of
these possible topologies are realized by stationary vacuum solutions, even in dimen-
sion five. More precisely, while S3 and S! x $2 have been realized by the Myers—Perry
[41] and ring solutions listed above, respectively, the only explicit examples of vacuum
lenses [3] are known to have conical singularities or possess naked singularities. On
the other hand, vacuum lenses and other configurations have been produced in multi-
tude through abstract existence results for singular harmonic maps [27], although it is
not known at this time whether any of these solutions are void of conical singularities;
in addition, there has been some progress in the asymptotically Kaluza—Klein and
locally Euclidean cases [28] as well. In other theories, such as D = 5 minimal super-
gravity, geometrically regular asymptotically flat lens black holes have been produced
[1,36,44]. The latter examples are supersymmetric and hence extremal.

Cobordism theory has also aided in classifying the topologies of black holes. Recall
that two compact manifolds of the same dimension are called cobordant if their disjoint
union is the boundary of a compact manifold of one higher dimension. The idea is
that, in the asymptotically flat case, horizon cross sections will be cobordant through
a simply connected spacelike hypersurface to a sphere S”~2 sitting in the asymptotic
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end, and this should yield conditions on the possible topologies of the horizon. The
lowest dimension for which this line of investigation can yield topological restrictions
is D = 6. Helfgott et al. [20] combined the methods of cobordism theory with Freed-
man’s classification of 4-manifolds [9] and results of Donaldson [5] to show that if the
horizon cross section is simply connected then it must be homeomorphic to $*, to a

finite connected sum of S? x $2’s or (CIP’Z#@Z’S—the 1-point blow-up of CPP? where

CP" denotes the complex projective plane with opposite orientation. If in addition the
horizon is a spin manifold, then the connected sum of complex projective planes may
be removed from this list. In [34] explicit examples of vacuum near-horizon geome-

tries having horizon cross sections realizing the topologies S? x 2 and CPZ#@Z
have been constructed. Surveys concerning the various mathematical techniques used
to study black hole topology may be found in [12,24].

Although much progress has been made in understanding black hole topology,
the methods utilized so far have substantial limitations. Indeed, while the primary
observation that horizon cross sections are of positive Yamabe type provides strong
constraints in dimensions D = 4, 5, this condition is considerably more flexible in
higher dimensions. For instance any manifold of the form $" x M, where n > 2
and M is compact, admits a metric of positive scalar curvature by scaling the round
metric of §” properly. The purpose of this article is to introduce a new technique into
the study of horizon topology in the context of extreme black holes, and to analyze
its consequences. The approach here is based on a relation between the associated
near-horizon geometries of these black holes and the mathematical notion of m-quasi-
Einstein metrics (see, e.g., [45]) first exploited in [29,30], as well as results emanating
from the classical splitting theorem of Riemannian geometry [42].

Theorem 1 Let H be a degenerate horizon (cross section) component of a stationary
vacuum spacetime with nonnegative cosmological constant A > 0.

(1) The fundamental group 1 (H) contains an Abelian subgroup of finite index which
is isomorphic to 7* withk < D — 4.

(ii) The first Betti number satisfies b1 (H) < D — 4.
(iii) If A > O then w1 (H) is finite.

Item (iii) has previously been established in [29] by different methods. As an
illustration of the additional topological restrictions Theorem 1 places on H, in Sect. 3
we use topological arguments stemming from (i) to refine classification results when
D = 5 to show that { must be diffeomorphic to a spherical space, S' x §2, or
RP3#RP?, see Corollary 7. The connected sum of projective spaces can be removed
from this list if an additional U (1) symmetry is present. Furthermore it is also shown
that in all dimensions, horizon topologies arising from a ‘nontrivial’ connected sum
can be ruled out.

It should be pointed out that the topological restrictions of this theorem also hold for
near-horizon geometries which may be studied separately from extreme black holes,
and are thus of independent interest. In addition, Theorem 1 is valid when matter is
present as long as an appropriate energy condition is satisfied. The appropriate energy
condition is described in [29, Inequality (8)], and in the case of perfect fluids it reduces
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to the dominant energy condition. Also, the inequality holds for pure electric fields
normal to a static degenerate horizon.

2 Main results
2.1 Preliminaries

Consider a stationary black hole spacetime of dimension D satisfying the vacuum
Einstein equations
R,uv = Ag - (1)

Our normalization is such that A is ( % times the usual cosmological constant. Sta-
tionarity gives an asymptotically timelike Killing field, and generically the rigidity
theorem [23,25,40] yields one or more additional rotational symmetries which alto-
gether produces a Killing field V that is normal to the event horizon. The event horizon
is then a Killing horizon and on this surface

Vvv =KV, (2)

where the constant « denotes the surface gravity. Near each horizon component Gaus-
sian null coordinates (r, v, xi) may be imposed such that V = 9,, r = 0 represents
the horizon, and x’ are coordinates on the D — 2-dimensional compact horizon cross
section H. In the degenerate case when «k = 0, the spacetime metric then has the form
[35]

1 ) S
g =2dv (dr + §r2F(r, x)dv + rh;(r, x)dx') + i (r, x)dx'dx’. 3)
This allows for a near-horizon limit ¢}¢ — gy as € — 0, where the diffeomor-

phisms ¢ are defined by v — %, r — er. The resulting near-horizon geometry may
then be expressed as

1 . .
gnm = 2dv (dr + ErzF(x)dv —+ rh,(x)dx’) + i (x)dx'dx/, )

where y;; is the induced metric on . As a consequence of the Einstein equations, the
near-horizon data (F, h;, y;;) satisfy the near-horizon geometry equations on H

1 1 :
Rij = 5 Lhihj = Ve + Ay, F=Ihf* = SVih' + A. )

Near-horizon geometries are closely related to the notion of m-quasi-Einstein met-
rics studied in the mathematical literature. These are solutions to the equation

Ric” = iy, ©)
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where the generalized m-Bakry—Emery—Ricci tensor on H is given by
. o1 1
Ricly = RIC+§£X)/ - —X®X, @)
m

in which X is a 1-form/vector field and £x is Lie differentiation along X. It should
be noted that some authors reserve this terminology for the special case when the
vector field is a gradient X = V f. Clearly a vacuum near-horizon geometry defines
an m-quasi-Einstein metric form =2, A = A, and X = h.

2.2 Splitting theorem

A classical result of Riemannian geometry known as the splitting theorem [2] asserts
that a complete Riemannian manifold with nonnegative Ricci curvature and contain-
ing a line (an inextendible curve which minimizes the distance between any two of its
points), must isometrically split off a Euclidean factor. From this several topological
consequences follow. In order to take advantage of this, however, a version of the
splitting theorem under the hypothesis of nonnegative m-Bakry—Emery—Ricci curva-
ture is needed. Indeed, a suitable splitting theorem is known to hold in the case that
X is a gradient vector field [8, Theorem 1.3]. Here we show that the arguments of [8,
Theorem 1.3] extend to the non-gradient case.

Theorem 2 Let (M, g) be a complete connected Riemannian manifold of dimension
n admitting a complete C' vector field X. If Ric’y > 0 for some m > 0, then M splits
isometrically as R x N where N is a complete Riemannian manifold without a line.
Moreover; the projection of X onto the R¥-factor vanishes, and N has nonnegative
m-Bakry—Emery—Ricci curvature.

One can prove this by repeating the arguments of [8] with df replaced by X, once
two underlying lemmata are suitably modified. The first lemma is a modification of an
inequality on the Laplacian [2, Lemma 2] to our setting, and is derived from the second
variation formula for arclength of curves. The second lemma is a straightforward
identity. Using these results, we follow a standard approach. In the presence of a line
we construct Busemann functions and show that they are linear. Level sets of these
functions then manifest the desired splitting. To set notation let

Lu = Au — Vxu, (8)

where Au = tr Hess u is the Laplace—Beltrami operator acting on functions. Moreover,
let p € M be fixed and set p(q) = dist(p, q).

Lemma3 Let Ricly > Ag for some A > 0 andm > 0. If x € M is not in the cut locus

of p then
n+m—1
Lp(x) = ————. )
p(x)
Proof Let y : [0, p] — M be a unit speed minimal geodesic connecting p = y (0) to
x = y(p). Following [8, derivation of equation (2.1)], we recall [2, Lemma 2] that the
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second variation of arclength along a geodesic y away from the cut locus of p = y(0)
yields

B 2
s = [T = Lorier | ar (10)

Using Ric’y > Ag(y, ¥) = X and performing some trivial integrals, we obtain

n—1 Ap P21 o 1 .2
Ap(x) = ——+/ | 5exem ) — —g(x, )7 | dr
P 3 0o P L2 m

—1 A 1 [ 2
_ )——p+g(X,J>)—_z/ [zrg(X,;?)th—g(X,;?)z}dt

P 3 = Jo m

(n—1) p . 1/0[ rg(x,mr m/f’
= —— 4+ X,y)— — + | dt+— | dt

o 3 (X, ¥) 0% Jo vm m 0% Jo
Cmtm—1)  ap N 12X, 17
_T ?—i-g(X,)/) ?/‘0 [ﬂ*‘T] dr

1

<ot DL xy,

(1)
when A > 0. Then clearly

(n+m—1) .
Lp(x) =Ap(x) = Vxp(x) < ———— +g(X, y)(x) = Vxp(x)

p(x) (12)

n+m-—1

<

p(x)
since along the minimizing curve y we have g(X, y) = Vxp. O
When a line y is present, we apply this result to the Busemann function
bY(q) := lim [t — dist(q, y(t))] . (13)
—>00

Some care needs to be taken, as b” is a priori a non-smooth 1-Lipschitz function
so Lb?” must be interpreted in the appropriate weak sense. The standard technique
in analyzing Busemann functions is to construct barrier (or support) functions, see
[7, Section 2]. Applying Lemma 3 to the standard Busemann support functions and
applying the same reasoning as in [8, Lemma 2.1] then shows that Lb? > 0 in the
barrier sense when Ric% > () for some m > 0. Furthermore, Lemmata 2.4 and 2.5 of
[8] can then be invoked to yield Lb* = 0 for b* (x) = lim; oo [t — dist(x, y (£1))],
t > 0. The next identity is the second component required to modify the proof of [8].

Lemma 4 For any function u € C>(M) it holds that

2
L (|W|2) = 2| Hess ul? + 2V, (Lu) + 2Ric™ (Vu, Vu) + — [X@)]* . (14)
m
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Proof By straightforward manipulations, we have

L <|Vu|2) N (|Vu|2) ~ Vy (|W|2)
= 2|Hessu|® + 2g (Vu, AVu — VxVu)
= 2|Hessu|> 4 2g (Vu, AVu 4 Ric(Vu, -) — VVxu 4+ Vy, X) (15)
= 2| Hessu|2 + 2Vvyy, (Lu) + 2Ric(Vu, Vu) + £xg(Vu, Vu)

2
= 2|Hessu|* + 2Vy, (Lu) + 2Ric} (Vu, Vu) + = [X(w)]* .
m

We now have all the tools necessary to establish the splitting theorem.

Proof of Theorem 2 1f (M, g) contains no line, we are done, so assume otherwise. Then
we may use the line to construct the associated Busemann functions as above. We may
apply equation (14) with u = b*, together with the earlier result that Lb* = 0 and the
condition Ric’y > 0, to obtain L (|Vbi|2) > 2| Hess b*|> > 0. But then the strong
maximum principle forces |VH*|?
length and moreover now we have

= const, so we may normalize Vb¥ to have unit

0=1L (|Vbi|2) > 2| Hess b*|? > 0. (16)

Thus, Vb* are parallel and the functions b* are linear, as desired. Level sets of b~
are totally geodesic and, by the completeness of (M, g) are complete in the induced
metric.

Let N be the zero level surface of b (x) for some x (we could work equally with
b~ ; in fact the level sets coincide). It now follows that

F:NxR:(p,t)— elvw(p) =: ¢:(p) 7)

is an isometry; see [8] or [7]. We may now identify (N x R, gy ® dtz) with (M, g)
where gy is the induced metric, and we have that the Ricci curvature splits as Ric(g) =
0-dr?> @ Ric(gn).

Applying (14) to u = b and using that Vb™ is parallel as well as Lb™ = 0
produces

0=L (|Vb+|2) = Ric(Vb*, Vo) + L [xoH] . (18)
m

Since Ric’y > 0 and m > 0, we have Ric} (Vb*, Vb') = 0 = X(b™). Then X is
tangent to N and

1
§£X(Vb+, Vbh) = Vyp+ (g(X, Vb)) = 0. (19)
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Furthermore, for any ¥ L Vb* we have £x(Y, VbT) = g(¥, Vyp=X) = 0 by
an easy calculation using the splitting. So the condition Ric’y(g) > 0 descends to
Ricy(gn) = 0.

If (N, gn) does not contain a line, then we have obtained the desired splitting.
If (N, gn) does contain a line then we can apply the splitting to N and split off a
Euclidean factor of N. Applying the splitting iteratively, after finitely many steps we
obtain the isometric splitting of M as R x N where N does not contain any lines. O

Now that Theorem 2 has been proven we make some remarks about Bakry—Emery
Ricci curvature and m-quasi-Einstein metrics. First note that without further assump-
tions Theorem 2 is not true, even in the gradient case, when the parameter m is negative
or infinite, where we interpret Ric§’ = Ric+ %£ x 8- A splitting theorem can be proven
in cases when m = oo or m < 0 if an additional energy condition is placed on the
vector field X, see [47, Theorem 6.3].

We also point out that while the splitting theorem holds for non-gradient vector
fields, there are a number of results for m-quasi-Einstein metrics that require X = V f.
One that is relevant for the considerations in this paper is a result of [31] and of [4]
which implies that if a compact manifold admits Ric’y = 0, for some m > 0 and

= Vf,then X = 0 and (M, g) is Ricci flat. Vacuum near-horizon geometries
with zero cosmological constant on spherical spaces of dimensions 2 and 3 (arising
from the extreme Kerr and Myers—Perry solutions) show that the assumption that X
is gradient is necessary in this result, since 2 and S* do not admit Ricci flat metrics.
This may be interpreted as illustrating how the non-gradient case is more flexible, as
expected. The fact that the splitting theorem still holds in this setting is then somewhat
surprising. In addition, to our knowledge it is not known if there is a compact manifold
which admits Ric’y > 0 but does not support a metric of nonnegative Ricci curvature.
This indicates that it could be true that vacuum near-horizon geometries always admit
metrics of nonnegative Ricci curvature.

2.3 Proofs of main results

Proof of Theorem 1 (i)When the cosmological constant A > 0, Theorem 2 may be
applied to the universal cover H of the horizon cross section to show that H = R¥ x N,
where N is compact [42, Theorem 69]. As a consequence, the subgroup G < m;(H)
of isometries of N is finite. Hence the kernel of the homomorphism 71 (H) — Gisa
subgroup of finite index, and acts discretely as well as cocompactly on R so that it
is a crystallographic group. By a well-known theorem of Bieberbach [46], any such
group must contain an Abelian subgroup isomorphic to Z of finite index.

A priori k < dim’H_= D — 2, however this may be refined further. Suppose
that k = D — 2, then H = RP~2 and H = H/m(H) is flat. Standard arguments
[42] then show that the inclusion ZP~2 < () is an isomorphism, and thus
is a torus. However, tori do not admit metrics of positive scalar curvature [17], and
therefore cannot be of positive Yamabe type, yielding a contradiction. Now suppose
that k = D — 3. In this case N is a one-dimensiongl compact manifold, and hence
must be S'. This, however, contradicts the fact that  is simply connected. It follows
thatk < D — 4. O
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Proof of Theorem 1 (ii) By part (i) there is a subgroup Z* < m{(H) of finite index,
with k < D — 4. Since the first homology group H;(H, Z) is isomorphic to the
abelianization of the fundamental group, this subgroup is also of finite index H; (H, Z).
Therefore, the rank of the torsion free part (first Betti number) satisfies b1 (H) = k <
D —4. O

Proof of Theorem 1 (iii) If A > 0, then the 2-Bakry—Emery—Ricci curvature is strictly
positive Rici > 0. It is then impossible for the universal cover to split as H = R¥ x N
with £ > 1. Thus the universal cover is compact, which again implies that 771 (H) is
finite. O

2.4 A remark on curvature-dimension conditions

Itis not central to our applications, but for completeness we now show that our ‘energy
condition’ form of the curvature-dimension condition is equivalent to a more usual
form of the curvature-dimension condition.

Lemma5 Let m > 0 and assume that Ric'y > Ag for some X € R, then

(Lu)* + A|Vul? . (20)

2
2
L (1Vul) = 2Ve, (Lu) + T

Conversely, if (20) holds for all u € C3(M), then Ric’y > Ag.

Proof A direct computation yields

(Lw? _ (Aw®  [X@P 2
(ntm) — (ntm)  (n+m)  (n+m)

2 2 ?
_ (A n X@w]~ 1 |: ™ Au+ /ZX(M)] ,
so that

1 s Lw? (Aw)? 1 \/% \/7 :
E[X(M)] S oxm  n +(n+m)[ ;Au—i— ZX(M)] . (22)

Substituting this into (14) produces

X(u)Au
2D

2

1
L (qu|2) =2 ‘Hessu — —(Au)g| + 2V, (Lu) +2Ric”(Vu, Vi)
n

2
ST
(n +m) (n 4+ m) _— m ’

(23)

+ (Lu)* +

Equation (20) now follows from the assumption on Ric'y.
To prove the converse, simply follow the argument of [45, pp 387-388], noting that
no use whatsoever is made in that argument of the assumption X = VV. O
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3 Applications

In this section, we will use Theorem 1 to refine the topological classification of hori-
zons described in Introduction. This will be accomplished with the aid of results from
geometric group theory. Recall that in a finitely generated group, the smallest number
of generators needed to express an element is referred to as the length of the element.
Furthermore, such a group is said to have polynomial growth if the number of elements
of length at most « is bounded above by a polynomial function p(«), and the minimum
degree of any polynomial having this property is the order of growth. An important
characterization for groups of polynomial growth was given by Gromov [16,32]. It
asserts that a finitely generated group has polynomial growth if and only if it has a
nilpotent subgroup of finite index. In particular, a finitely generated group of expo-
nential growth cannot have an Abelian (more generally nilpotent) subgroup of finite
index. Therefore, in light of Theorem 1 (i), horizon cross-sectional topology cannot
take the form of a manifold whose fundamental group is of exponential growth. We
note that in the case of a horizon with nonnegative Ricci curvature, a result of Milnor
[39] implies directly that the fundamental group is of polynomial growth of order no
larger than D — 2.

The above arguments state that, heuristically, horizons must have limited topol-
ogy. More precisely, we can rule out some basic constructions that appear in many
classifications. Consider the connected sum M#N of two manifolds M and N. The
fundamental group of the connected sum is the free product of the individual funda-
mental groups w1 (M#N) = w1 (M) * 1 (N), when the dimension of M, N is greater
than 2. In general the free product of two nontrivial groups is quite large, and thus
should not be able to serve as the fundamental group of a horizon. Indeed, it can
be shown [38, Theorem 4] that the free product of two nontrivial groups is always
of exponential growth or better, whenever at least one of the two groups making up
the free product has order greater than 2. This may be established by showing that
such groups contain a non-Abelian free subgroup on two generators. Altogether this
establishes the following result.

Theorem 6 Let H be a degenerate horizon (cross section) component of a stationary
vacuum spacetime with nonnegative cosmological constant A > 0. Then H cannot be
expressed as a connected sum M#N for any compact manifolds M and N both having
nontrivial fundamental group, except possibly in the case that ;1 (M) = w1 (N) = Zo».

In dimension D = 5, this theorem gives a strong refinement of previous horizon
topology classifications. Namely, it rules out all possible connected sums of prime
3-manifolds.

Corollary7 Let 'H be a degenerate horizon (cross section) component of a 5-
dimensional stationary vacuum spacetime with nonnegative cosmological constant
A > 0. Then H is diffeomorphic to either a spherical space, S' x 2, or RP*#RP>.

Proof According to Theorem 6 and the previous classification, the only possible topol-
ogy which is notimmediately ruled outis H = RP3*#RIP3. In this case 71 (H) = Zo*Z»
is the infinite dihedral group, which has an index 2 infinite cyclic subgroup, and thus
the statement of Theorem 1 (i) cannot be used to exclude this possibility. O
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Remark 8 In the asymptotically flat or asymptotically Kaluza—Klein case, if there is a
U (1) symmetry then RP*#RP? may be removed from the statement of Corollary 7.!
This follows from [22, Result 1], which implies that in such a situation the connected
sum of two projective spaces can only appear through a connected sum with at least
one S' x S2. The presence of a U (1) symmetry is generic in the sense that it is assured
by the rigidity theorem when the solution is analytic [23,25,40]. Moreover, in the
spherical space case this symmetry further restricts the possible topologies [22, Result

1].

The results above suggest that if a degenerate horizon cross section is decomposed
as a nontrivial connected sum, then at least one member of the sum should be simply
connected. Manifolds which cannot be written as a nontrivial connected sum are
referred to as prime. Therefore, to a certain extent perhaps horizons of stationary
black holes (of any dimension) may be described as almost prime.

Conjecture 9 Each connected component of a degenerate horizon cross section in an
asymptotically flat stationary vacuum spacetime is ‘almost prime’,* in the sense that
if it is expressed as a connected sum of two manifolds then at least one member of the
sum must be simply connected.

This may be delicate. For instance, we claim that there exists a solution of the
vacuum near-horizon geometry equations with A = 0 on H = RP*#RP?, although it
is not clear whether this solution arises from the near-horizon limit of an asymptotically
flat stationary vacuum spacetime. To verify this claim, observe that the universal cover
of the connected sum of two projective spaces is an infinite connected sum of $3’s,
which is diffeomorphic to R x S2. The group Z, % Z acts naturally on this space
as follows. The generator for the first Z consists of a reflection in the R component
across 1 together with an application of the antipodal map in the S> component. The
generator for the second Z, in the free product is defined similarly, but with a reflection
across —1. We then have H = R x S2 /Zo * Zy. Consider now the product metric
y = dx? 4+ Vkerr ON R X $2 in which Ykerr 18 the horizon metric from the near-
horizon geometry of the extreme Kerr black hole. Let 4 denote the natural extension
to R x §? of the 1-form near-horizon data associated with extreme Kerr. By defining
F according to (5), a solution (F, h, y) of the near-horizon geometry equations is
produced on the universal cover. Since this set of near-horizon data is invariant under
the Z * Z» action described above, by passing to the quotient a solution is obtained
on RP3#RP3. It should be pointed out that this construction could be achieved by
performing a similar quotient of an extreme Kerr string black hole, and taking the
near-horizon limit. Thus, while it is not known whether this solution arises from an
asymptotically flat parent black hole, it does arise from a quotient of an asymptotically
Kaluza—Klein black hole.

What of nondegenerate horizons? Should Conjecture 9 also extend to them? In
fact, it may be more interesting if the question were answered in the negative, so that
degenerate horizons had a topological rigidity not seen in nondegenerate ones. One

L' This observation is due independently to Stefan Hollands and James Lucietti.

2 The related concept of stably prime manifold appears in [33].
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can then contemplate a quasi-stationary system having a horizon consisting of a non-
trivial connected sum, being ‘spun up’ adiabatically so that the mass is fixed and the
system is always stationary to a good approximation. On approach to extremality, i.e.,
as the horizon nears a degenerate state, the horizon would have to undergo a dynamical
instability, perhaps forming neckpinches to break apart the connected sum. The adia-
batic approximation would likely fail at some point but, much worse, so could cosmic
censorship. This picture is consistent with the third law of black hole thermodynamics,
which asserts that it is not possible to produce a black hole with vanishing surface
gravity (temperature) through a physical process. Any neckpinch region might well
resemble a black string undergoing the Gregory—Laflamme instability [15]. Of course,
one possible resolution is that this scenario will not occur because such instabilities
prevent (stationary vacuum) connected sum horizons from forming in the first place.
This view might be seen as supporting the extension of Conjecture 9, except perhaps
for unstable horizons. It’s a question worth pursuing.
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