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ABSTRACT
Motivated by the cosmic censorship conjecture in mathematical relativity, we establish the precise mass lower bound for an asymptotically
flat Riemannian 3-manifold with nonnegative scalar curvature and minimal surface boundary, in terms of angular momentum and charge. In
particular, this result does not require the restrictive assumptions of simple connectivity and completeness, which are undesirable from both
a mathematical and physical perspective.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5070080

I. INTRODUCTION
Heuristic arguments of Penrose,23 which are well-known to motivate the Penrose inequality,1,18 may also be used to obtain a conjectured

lower bound for the ADM mass m of a spacetime in terms of total angular momentum J and charge Q, namely,

m2
≥

Q2 +
√

Q4 + 4J 2

2
, (1.1)

with equality occurring only for the extreme Kerr-Newman black hole. The arguments leading to (1.1) require conservation of angular
momentum and charge, and for this, it is typically assumed that the spacetime is axisymmetric and satisfies certain conditions related to
its matter fields. Inequality (1.1) acts as a necessary condition for the grand cosmological censorship conjecture24 as well as the final state
conjecture.22 Therefore, while a counterexample would be detrimental for at least one of these conjectures, confirmation under the most
general of possible settings only adds to the prevailing belief in their validity. Moreover, inequality (1.1) may be viewed as a refinement
of the positive mass theorem25,28 in which a precise contribution to the total mass is given in terms of the rotation and charge of black
holes.

The appropriate mathematical setting in which to study this inequality is that of an initial dataset (M, g, k), consisting of a Riemannian
3-manifold with metric g and a symmetric 2-tensor k representing the second fundamental form of the embedding into spacetime. An asymp-
totically flat end is required for the definition of ADM mass, and a nonnegative scalar curvature is assumed in order that the positive mass
theorem is valid. This curvature condition arises from the physical consideration of nonnegative matter energy density together with a max-
imal slice Trk = 0. Through the combined work of several authors,2–4,6,7,20,26 inequality (1.1) has been established when the manifold (M, g)
is simply connected, complete, and contains another end which is either asymptotically flat or asymptotically cylindrical. The recent survey9

details many of the developments. The proof follows a two step procedure, the first of which is to obtain an initial lower bound for the mass
in terms of renormalized harmonic map energy. The second consists of minimizing this energy, showing that the unique global minimizer is
the singular harmonic map associated with extreme Kerr-Newman data. Simple connectivity is used in the first step to introduce a specialized
coordinate system (Brill coordinates) that allows for a simple bulk integral expression of the mass. Completeness and the asymptotics of the
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other end also play an important role here in which they prevent the appearance of boundary terms in the formula for the mass. Furthermore,
simple connectivity is also used in the second step to ensure the existence of a twist potential to efficiently encode angular momentum and
construct the harmonic map energy. Thus, these hypotheses play fundamental roles in the proof and whether they can be removed has been
unclear. On the other hand, the Penrose arguments motivating the inequality require no such hypotheses, and for this reason, it has been
conjectured that these assumptions are unnecessary. They are also unnatural as the positive mass theorem itself does not require such restric-
tions. In particular, it is important to allow the initial data to have minimal surface boundary, as these may be interpreted as cross sections of
the event horizon. Furthermore, significant generalizations of the positive mass theorem, including the positive mass theorem with charge14

and the Penrose inequality (with charge),21 require a minimal surface boundary to be meaningful. Additionally, from a physical perspective,
it is not desirable to necessitate the presence of a secondary asymptotic end, as this typically represents the interior of a black hole. Indeed,
from the point of view of an outside observer, it is not possible to know the structure of spacetime contained within the event horizon. As
for simple connectivity, although topological censorship12 implies that this is an appropriate assumption for initial data within the domain
of outer communication, it says nothing about the fundamental group of the interior black hole region. In fact, it suggests that all nontrivial
topology is contained within the black hole, and therefore, the combined assumptions of simple connectivity, completeness, and the existence
of a secondary asymptotically flat end are not physically justified.

The purpose of this work is to establish (1.1) in generality without the unwanted hypotheses discussed above, for a single black hole. We
also obtain a mass lower bound in the multiblack hole case consistent with that proved under the more restrictive hypotheses in Refs. 4 and
20.

Let vector fields E and B defined on M represent the electric and magnetic fields, respectively. It will be assumed that both are divergence
free, that is, there is no charged matter. Traces of the Gauss and Codazzi equations for the embedding of the initial data into space-
time yield formulas for the energy and momentum densities of the matter fields minus electromagnetic contributions via the constraint
equations

16πµem = R + (Trk)2
− ∣k∣2 − 2(∣E∣2 + ∣B∣2), (1.2)

8πJem = div(k − (Trk)g) + 2E × B, (1.3)

where R is scalar curvature and (E × B)i = �ijlEjBl denotes the cross product in which � is the volume form of g. We will say that the initial
data are axially symmetric if there exists a U(1) subgroup within the group of isometries of the Riemannian manifold (M, g), and all relevant
quantities are invariant under the U(1) action. In particular, the following Lie derivatives vanish:

Lηg = Lηk = LηE = LηB = 0, (1.4)

where η is the Killing field corresponding to the symmetry.
The initial data will be referred to as asymptotically flat if there exists an end Mend ⊂ M diffeomorphic to R3

/Ball such that with respect
to the asymptotic coordinates

gij = δij + o`(r−
1
2 ), ∂gij ∈ L2

(Mend), kij = O`−1(r−λ), µem, Ji
em, Jem(η) ∈ L1

(Mend), (1.5)

Ei
= O`−1(r−λ), Bi

= O`−1(r−λ), λ >
3
2

, (1.6)

for some ` ≥ 5. These fall-off conditions ensure that the ADM mass and angular momentum, as well as the total electric and magnetic charge,
are well-defined by

m =
1

16π ∫S∞
(gij,i − gii,j)ν j, (1.7)

J =
1

8π ∫S∞
(kij − (Trk)gij)νiη j, (1.8)

Qe =
1

4π ∫S∞
Eiνi , Qb =

1
4π ∫S∞

Biνi . (1.9)

Here, limits as r → ∞ for integrals taken over coordinate spheres Sr , with unit outer normal ν, are represented by S∞. The total charge is
the combination of the total electric and magnetic charges Q2

= Q2
e + Q2

b. It should also be pointed out that (1.7) is referred to as mass by
an abuse of terminology, as this expression is technically the ADM energy or time component in the ADM 4-momentum. Furthermore, an
electromagnetic contribution to the definition of angular momentum is sometimes included,10 although the two definitions agree under the
current asymptotics.

In order for the Penrose heuristic arguments to be valid, an energy condition is needed so that Hawking’s area theorem15 may be uti-
lized and hypotheses must be imposed which guarantee the conservation of angular momentum and charge. This motivates the following
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assumptions used in the proof of (1.1) from the initial data perspective. For the energy condition, nonnegative nonelectromagnetic matter
energy density µem ≥ 0 will be assumed. This is consistent with the dominant energy condition typically used in association with the positive
mass theorem (including charge), as well as previous inequalities involving angular momentum. Furthermore, axisymmetry and the elec-
trovacuum assumption µem = |Jem| = 0 have been used in the past8 with regards to conservation of angular momentum and charge. However,
here it is only necessary to require vanishing of one component of the momentum density, namely, in the Killing direction Jem(η) = 0, and the
divergence free property for the Maxwell field. Inequality (1.1) is known to be false without the assumption of axisymmetry.17

Theorem 1.1. Let (M, g, k, E, B) be an axisymmetric, maximal initial dataset for the Einstein-Maxwell equations with one asymptotically
flat end, minimal surface boundary, and satisfying µem ≥ 0 in addition to Jem(η) = divE = divB = 0. If either

(i) the outermost minimal surface has a single component or
(ii) the boundary ∂M has one component and M is simply connected,

then

m2
>

Q2 +
√

Q4 + 4J 2

2
. (1.10)

The first point to note is that there is a strict inequality in (1.10). This is to be expected since from the heuristic physical arguments
leading to (1.1), equality should only be achieved if the initial data agree with the canonical slice of an extreme Kerr-Newman spacetime.
However, the extreme Kerr-Newman data do not possess a minimal surface, but rather have a cylindrical end, and therefore do not satisfy
the hypotheses of Theorem 1.1. The minimal surface boundary, which could consist of many components, together with the asymptot-
ically flat end guarantees the existence of an outermost minimal surface,11 and the assumption that it has one component is analogous
to the case of the Penrose inequality treated by Huisken and Ilmanen.18 In order to treat (1.10) in the presence of a multicomponent
outermost minimal surface, it is most likely that new ideas will be needed, as was the case for the multiple black hole version of the
Penrose inequality established by Bray.1 It is interesting to note that unlike the Penrose inequality, (1.10) continues to hold if the bound-
ary ∂M is merely a single component minimal surface but not necessarily outer area minimizing. In fact under this assumption treated
in (ii), one can drop the hypothesis on the outermost minimal surface and replace it with simple connectivity of M to obtain the same
conclusion.

The Proof of Theorem 1.1 is based on a doubling procedure in so called pseudospherical coordinates, where the data are reflected across
the outermost minimal surface. This requires axisymmetry of the outermost minimal surface, a fact that does not appear to exist within the
literature and is thus proven in Proposition 3.1. This result is of independent interest as it may be applied elsewhere, for example, to extensions
of the Penrose inequality that include contributions from angular momentum.

We are able to extend Theorem 1.1 to allow for certain types of multiple black holes by including a mixture of boundary components and
extra asymptotically flat ends as well as asymptotically cylindrical ends (see Ref. 20). However, as in the case of a complete, simply connected
initial dataset, the presence of multiple black holes does not immediately yield an explicit expression for the mass lower bound.4,20 Rather,
the lower bound is given in terms of the reduced harmonic energy of a Weinstein stationary solution27 to the Einstein-Maxwell equations
having the same angular momentum and charge for each black hole. This harmonic energy is denoted by F and is a function of the angular
momenta and charge. It is conjectured that the resulting inequality coincides with expression (1.10) in which J and Q are the sums of the
angular momenta and charge from the different horizon components.

Theorem 1.2. Let (M, g, k, E, B) be an axisymmetric, maximal, asymptotically flat initial dataset for the Einstein-Maxwell equations
having a minimal surface boundary and a finite number of additional ends each of which is asymptotically flat or asymptotically cylindrical.
Assume further that µem ≥ 0 in addition to Jem(η) = divE = divB = 0. If either

(i) at most one component of the outermost minimal surface encloses components of the boundary ∂M or nonsimply connected domains or
(ii) the boundary ∂M has one component and M is simply connected,

then
m ≥ F(J1, . . . ,JN , Q1

e , . . . , QN
e , Q1

b, . . . , QN
b ), (1.11)

where N is the combined number of additional ends and components of ∂M and Ji, and Qi
e, Qi

b represent the angular momentum and
charge associated with each of these ends and boundary components.

II. THE DOUBLING PROCEDURE IN PSEUDOSPHERICAL COORDINATES
Consider the setting of case (ii) in Theorem 1.1 where (M, g) is axisymmetric, asymptotically flat, and simply connected with a single

component minimal surface boundary. It follows from Ref. 5, Theorem 2.2, that M is diffeomorphic to R3
/Bm1/2(0), and there exists a global

system of cylindrical-type coordinates (ρ, z, �) on this domain such that the metric takes the form

g = e−2U+2α
(dρ2 + dz2

) + ρ2e−2U
(dφ + Aρdρ + Azdz)2, (2.1)
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where the Killing field η = ∂�. The isothermal part of (2.1) is the metric on the orbit space M/U(1), and the remaining part arises from the dual
1-form ρ2e−2U (d� + Aρdρ + Azdz) to the Killing field. This structure for g in pseudospherical coordinates is related to the Weyl-Papapetrou
form5 used in the reduction of the stationary axisymmetric vacuum Einstein equations. With the standard transformation ρ = r sin θ, z = r
cos θ producing spherical-type coordinates (r, θ, �) with ranges m1/2 ≤ r < ∞, 0 ≤ θ ≤ π, and 0 ≤ � < 2π, the fall-off of the metric coefficients
in the asymptotically flat end is given by

U = o`−3(r−
1
2 ), α = o`−4(r−

1
2 ), Aρ = ρo`−3(r−

5
2 ), Az = o`−3(r−

3
2 ). (2.2)

Furthermore, α = 0 on the axis ρ = 0, and all coefficients are independent of �. Also note that the value m1 > 0 is uniquely determined, and the
existence of pseudospherical coordinates does not require the boundary ∂M to be minimal. Since the mean curvature of a coordinate sphere
Sr is

H =
2/r + ∂r(α − 2U)

√
e−2U+2α + ρ 2e−2U A2

r
, (2.3)

where Ar = sin θAρ + cos θAz , the assumption of a minimal boundary ∂M = Sm1/2 is equivalent to

∂r(U −
1
2
α) =

2
m1

. (2.4)

A particularly advantageous feature of the metric structure (2.1) is the simple expression obtained for the scalar curvature7

2e−2U+2αR = 8∆U − 4∆ρ,zα − 4∣∇U∣2 − ρ2e−2α
(Aρ,z − Az,ρ)

2, (2.5)

where ∆ is the Laplacian on R3 with respect to the flat metric δ = dρ2 + dz2 + ρ2d�2 and ∆ρ,z = ∂2
ρ +∂2

z . Moreover, the constraint equation (1.2)
and the assumptions of a maximal slice Trk = 0 and nonnegative energy density µem ≥ 0 imply that

R = 16πµem + ∣k∣2 + 2(∣E∣2 + ∣B∣2)

≥2
e6U−2α

ρ 4 ∣∇v + χ∇ψ − ψ∇χ∣2 + 2
e4U−2α

ρ 2 (∣∇χ∣2 + ∣∇ψ∣2),
(2.6)

where v, χ, and ψ are potential functions for angular momentum, electric charge, and magnetic charge, respectively. More precisely, the
divergence free property of the electric and magnetic fields combined with Cartan’s magic formula shows that the 1-forms ιη ⋆ E and ιη ⋆
B are closed, where ι and ⋆ denote the interior product and the Hodge star operation. Hence, simple connectivity yields global potentials
satisfying

dχ = ιη ⋆ E, dψ = ιη ⋆ B. (2.7)

Furthermore, as shown in Ref. 20, the 1-form ⋆ (k(η) ∧ η) − χdψ + ψdχ is closed exactly when Jem(η) = 0. Therefore, under the hypotheses of
Theorem 1.1, there exists a global twist potential satisfying

dv = ⋆(k(η) ∧ η) − χdψ + ψdχ. (2.8)

The inequality in (2.6) then follows in a straightforward way from (2.7) and (2.8). Moreover, if ω = dv + χdψ − ψdχ, then asymptotics20 for
the potentials are expressed by

∣ω∣ = ρ2O(r−λ), ∣∇χ∣ + ∣∇ψ∣ = ρO(r−λ) as r →∞, (2.9)

∣ω∣ = O(ρ2
), ∣∇χ∣ + ∣∇ψ∣ = O(ρ) as ρ→ 0 in R3

/Bm1/2(0). (2.10)

In addition, since |η| = 0 on the z-axis, all the potential functions are constant there, and the difference of these constants associated with the
two connected components I+ = {ρ = 0, z > m1/2} and I− = {ρ = 0, z < −m1/2} of the axis yields the angular momentum and charges

J =
1
4
(v∣I− − v∣I+), Qe =

1
2
(χ∣I− − χ∣I+), Qb =

1
2
(ψ∣I− − ψ∣I+). (2.11)

Typically, a mass lower bound in terms of a harmonic map energy is obtained by integrating (2.5) over M and applying a version of (2.6).
This works well when (M, g) is complete; however, here the presence of a boundary leads to boundary terms which are not desirable when
minimizing the harmonic map energy. Therefore, we seek to double the manifold across its boundary and show that the same strategy may
be carried out on the doubled manifold with two ends. The primary difficulty arises from the lack of regularity across the doubling surface.
Nevertheless, we show that the minimal surface hypothesis is sufficient for the argument to go through.
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Consider the conformal map f : Bm1/2/{0} → R3
/Bm1/2 given by spherical inversion

f (r̃, θ̃, φ̃) = ((
m1

2
)

2 1
r̃

, θ̃, φ̃), (2.12)

which is expressed in cylindrical coordinates as

ρ = (
m1

2
)

2 ρ̃
r̃2 , z = (

m1

2
)

2 z̃
r̃2 , φ = φ̃. (2.13)

Pulling back the metric to Bm1/2/{0} yields

g̃ ∶= f ∗g = e−2Ũ+2α̃
(dρ̃2 + dz̃2

) + ρ̃2e−2Ũ
(dφ̃ + Ãρdρ̃ + Ãzdz̃)2, (2.14)

where

Ũ = 2 log r̃ + 2 log(2/m1) + U ○ f , α̃ = α ○ f , (2.15)

Ãρ = r̃−4
(

2
m1
)

2
[(z̃2

− ρ̃2
)Aρ − 2ρ̃Az], Ãz = r̃−4

(
2

m1
)

2
[(ρ̃2

− z̃2
)Az − 2z̃Aρ]. (2.16)

This leads to a metric and potentials globally defined on the complement of the origin

ḡ = { g on R3
/Bm1/2,

g̃ on Bm1/2/{0}. (2.17)

Similarly, the potentials may also be extended to the ball by setting ṽ = v ○ f, χ̃ = χ ○ f , and ψ̃ = ψ ○ f in Bm1/2/{0}, and the corresponding
functions defined on R3

/{0} will be denoted v̄, χ̄, and ψ̄. These functions and the metric ḡ are C0,1 and smooth away from the reflection
sphere Sm1/2.

The form of the metric (2.14) guarantees that the scalar curvature of ḡ satisfies Eq. (2.5) on all of R3
/{0}. Moreover, it also satisfies the

lower bound in (2.6). To see this, observe that

∣∇χ∣2 ○ f = (∂ρχ)2
○ f + (∂zχ)2

○ f = (
2

m1
)

4
r̃4
[(∂ρ̃χ̃)2 + (∂z̃χ̃)2

] = (
2

m1
)

4
r̃4
∣∇̃χ̃∣2 (2.18)

and similarly

∣∇v + χ∇ψ − ψ∇χ∣2 ○ f = (
2

m1
)

4
r̃4
∣∇̃ṽ + χ̃∇̃ψ̃ − ψ̃∇̃χ̃∣2. (2.19)

Combining this with (2.6), (2.13), and (2.15) shows that in Bm1/2/{0},

R̃ = R ○ f

≥2
e6U○f−2α○f

(ρ ○ f )4 ∣∇v + χ∇ψ − ψ∇χ∣2 ○ f + 2
e4U○f−2α○f

(ρ ○ f )2 (∣∇χ∣
2
○ f + ∣∇ψ∣2 ○ f )

= 2
e6Ũ−2α̃

ρ̃ 4 ∣∇̃ṽ + χ̃∇̃ψ̃ − ψ̃∇̃χ̃∣2 + 2
e4Ũ−2α̃

ρ̃ 2 (∣∇̃χ̃∣2 + ∣∇̃ψ̃∣2).

(2.20)

Consequently, the scalar curvature of the doubled metric ḡ satisfies the desired lower bound on R3
/{0} away from the sphere Sm1/2. Although

the metric is not sufficiently regular across this sphere to have a pointwise defined scalar curvature on this surface, the fact that it is a minimal
surface with respect to both inner and outer domains guarantees that R̄ satisfies the inequality distributionally. Furthermore, the minimal
surface property allows for the fundamental mass lower bound in terms of scalar curvature, despite the lack of metric regularity.

In order to establish the mass lower bound, it is necessary to note that the doubled manifold (M̄, ḡ), where M̄ = R3
/{0}, possesses two

asymptotically flat ends. Indeed, at the additional end near the origin, the metric coefficients and potentials satisfy the asymptotics

Ū = 2 log r + C + o1(r
1
2 ), ᾱ = o1(r

1
2 ), Āρ = ρo1(r−

5
2 ), Āz = o1(r−

3
2 ), (2.21)

∣ω̄∣ = ρ2O(rλ−6
), ∣∇χ̄∣ + ∣∇ψ̄∣ = ρO(rλ−4

) as r → 0, (2.22)

for some constant C. Here and in what follows, unless stated otherwise, the tilde notation will be removed from coordinates within the domain
Bm1/2/{0}.
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Lemma 2.1. The doubled manifold (M̄, ḡ) possesses two asymptotically flat ends, and the mass is given by

m =
1

32π ∫R3
(2e−2Ū+2ᾱR̄ + 4∣∇Ū∣2 + ρ2e−2ᾱ

(Āρ,z − Āz,ρ)
2
)dx, (2.23)

where dx is the Euclidean volume element.

Proof. Although the metric ḡ is only Lipschitz across Sm1/2, the fact that this sphere is a minimal surface guarantees that a particular
combination of coefficients has improved regularity, namely, Ū − 1

2 ᾱ ∈ C1,1. Moreover, this is all that is needed to establish (2.23).
First observe that in light of (2.4),

lim
r→ m1

2
+
∂r(Ū −

1
2
ᾱ) =

2
m1

. (2.24)

It suffices then to show that the limit from inside Bm1/2 yields the same value. For emphasis, we will use the tilde notation to perform this
computation. By (2.15),

∂r̃Ũ =
2
r̃

+ ∂rU
∂r
∂ r̃

=
2
r̃
− (

m1

2
)

2 1
r̃2 ∂rU. (2.25)

Therefore, (2.4) implies

∂r̃Ũ∣r̃= m1
2
=

4
m1
− ∂rU∣r= m1

2
=

2
m1
−

1
2
∂rα∣r= m1

2
. (2.26)

On the other hand,

∂r̃α̃ = −(
m1

2
)

2 1
r̃2 ∂rα, (2.27)

and therefore, the desired conclusion follows

lim
r→ m1

2
− ∂r(Ū −

1
2
ᾱ) =

2
m1

. (2.28)

We will now show that (2.23) holds. According to Ref. 2,

m = lim
r→∞

1
4π
(∫

Sr

∂r(Ū −
1
2
ᾱ) +

1
2 ∫Wr

ᾱ
ρ
), (2.29)

where Wr = {ρ = r, −r < z < r} is the wall of the cylinder or radius r. Next observe that (2.24) and (2.28) yield

∫
Sr

∂r(Ū −
1
2
ᾱ) = ∫

Br/Bm1/2

∆(Ū −
1
2
ᾱ)dx + lim

r→ m1
2

+ ∫Sr

∂r(Ū −
1
2
ᾱ)

= ∫
Br/Bm1/2

∆(Ū −
1
2
ᾱ)dx + lim

r→ m1
2
− ∫Sr

∂r(Ū −
1
2
ᾱ)

= ∫
Br/Bm1/2

∆(Ū −
1
2
ᾱ)dx + ∫

Bm1/2

∆(Ū −
1
2
ᾱ)dx,

(2.30)

since the asymptotics (2.21) show that

lim
r→0∫Sr

∂r(Ū −
1
2
ᾱ) = 0. (2.31)

Moreover, since ᾱ is continuous across Sm1/2, vanishes away from the origin on the z-axis, and satisfies (2.21),

lim
r→∞∫Wr

ᾱ
ρ
= ∫

R3

1
ρ
∂ρᾱdx. (2.32)

Finally, since (2.5) holds globally on M̄, we have

∆(Ū −
1
2
ᾱ) +

1
2ρ
∂ρᾱ = ∆Ū −

1
2
∆ρ,zᾱ =

1
4

e−2Ū+2ᾱR̄ +
1
2
∣∇Ū∣2 +

1
8
ρ2e−2ᾱ

(Āρ,z − Āz,ρ)
2. (2.33)

The desired mass formula (2.23) now follows by combining (2.29), (2.30), (2.32), and (2.33). ◽
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Lemma 2.1 relates the mass to an energy functional with the help of (2.6) and (2.20). Namely, together they imply

m ≥ I(Ψ), (2.34)

where Ψ = (Ū, v̄, χ̄, ψ̄) and

I(Ψ) = 1
8π ∫R3

⎛

⎝
∣∇Ū∣2 +

e4Ū

ρ4 ∣∇v̄ + χ̄∇ψ̄ − ψ̄∇χ̄∣2 +
e2Ū

ρ2 (∣∇χ̄∣
2 + ∣∇ψ̄∣2)

⎞

⎠
dx. (2.35)

The functional I may be interpreted as the reduced harmonic energy20 for maps Ψ : R3
/{0} → H2

C into the complex hyperbolic plane. Note
that the asymptotics (2.2), (2.9), (2.21), and (2.22) guarantee that I(Ψ) is finite precisely when λ > 3

2 .

Proof of Theorem 1.1 (ii). Since the map Ψ is smooth away from the sphere Sm1/2, Lipschitz across this surface, and satisfies the
asymptotics (2.2), (2.9), (2.10), (2.21), and (2.22), the gap bound of Schoen and Zhou26 applies to yield

I(Ψ) − I(Ψ0) ≥ C(∫
R3

dist6
H2

C
(Ψ,Ψ0)dx)

1
3
, (2.36)

where Ψ0 is the renormalized harmonic map associated with the extreme Kerr-Newman black hole possessing the same angular momentum
and charge as Ψ, and distHC denotes distance in the complex hyperbolic plane. In particular, together with (2.34), we obtain

m ≥ I(Ψ0). (2.37)

The desired inequality (1.10) now follows since

I(Ψ0)
2
=

Q2 +
√

Q4 + 4J2

2
. (2.38)

Consider now the case in which equality holds in (1.10). This implies, with the help of (2.34), (2.36), and (2.38), that Ψ = Ψ0 and,
in particular, U = U0. However, this is a contradiction since the asymptotics (2.21) show that U = 2 log r + O(1) as r → 0, whereas the
corresponding asymptotics for the extreme Kerr-Newman map are given by U0 = log r + O(1). This difference arises from the fact that Ψ
arises from an asymptotically flat geometry near the origin, while the extreme Kerr-Newman initial data possess instead an asymptotically
cylindrical end in this location. ◽

III. THE OUTERMOST MINIMAL SURFACE IN AXISYMMETRY
Let (M, g) be as in case (i) in Theorem 1.1. Since this manifold is asymptotically flat and possesses a minimal surface boundary, there

exists a unique outermost minimal surface11,18 which is a compact embedded smooth hypersurface Σ. The term outermost refers to the fact
that there are no other minimal surfaces homologous to Σ which lie outside it with respect to the asymptotic end. The set M/Σ consists of one
unbounded component, and perhaps several bounded components the union of which will be denoted by Ω so that ∂Ω = Σ. Each component
of the outermost minimal surface must be a topological 2-sphere,13 since Σ is outer area minimizing in which it has the least area among all
surfaces which enclose it. Furthermore, according to Ref. 18, Lemma 4.1, M/Σ is diffeomorphic to the complement of a finite number of open
3-balls in R3 with disjoint closure. Here, we show that the property of axisymmetry for the ambient manifold descends to Σ.

Proposition 3.1. If (M, g) is axisymmetric, then the outermost minimal surface is also axisymmetric.

Proof. Suppose that the outermost minimal surface Σ is not axisymmetric. Let 't denote the flow of the axisymmetric Killing field η
so that ∂t't = η ○ 't . A lack of axisymmetry implies that η is not tangential to Σ at all points. Therefore, there exists a nonzero t0 ∼ 0 such
that a domain within φt0(Σ) lies outside of Σ. Note that 't is a flow by isometries so φt0(Σ) is a minimal surface, and it is still an embedded
2-sphere.

Let S denote the compact set which is the union of all compact immersed minimal surfaces within M, and define the trapped region
T to be the union of S with all the bounded components of M/S. The trapped region is compact and its topological boundary is composed
of embedded smooth minimal 2-spheres (Ref. 18, Lemma 4.1). In fact, the outermost minimal surface arises as the boundary ∂T. In light
of this and the fact that a portion of φt0(Σ) lies outside Σ, it follows that Σ ≠ ∂T, contradicting the uniqueness of the outermost minimal
surface. ◽

Proof of Theorem 1.1 (i). Assume that the outermost minimal surface Σ has a single component. From the discussion above, we then
have that M0 = M/Ω is diffeomorphic to the complement of a 3-ball in R3. Proposition 3.1 guarantees that ∂M0 is axisymmetric and hence
M0 is axisymmetric. It follows that (M0, g, k, E, B) satisfies the hypotheses of Theorem 1.1 (ii) and has the same mass, angular momentum,
and charge as the original data. Part (ii) may now be applied to obtain (1.10). ◽
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IV. MULTIPLE BLACK HOLES
Consider the setting of case (ii) in Theorem 1.2 where (M, g) is axisymmetric, asymptotically flat, simply connected, with a single com-

ponent minimal surface boundary, and a finite number n of additional ends each of which is asymptotically flat or asymptotically cylindrical
(see Ref. 20 for a definition of asymptotically cylindrical ends). The additional ends may be interpreted physically as individual black holes.
A version of pseudospherical coordinates exists for this situation, where each additional end is represented by a puncture on the z-axis and
again the boundary component is identified with a coordinate sphere.

Proposition 4.1. Under the hypotheses of Theorem 1.2 (ii), M is diffeomorphic to (R3
/Bm1/2(0))/∪n

i=1 {pi} and there exists a global system
of cylindrical-type coordinates (ρ, z, �) such that g takes the form (2.1) with α = 0 whenever ρ = 0. Each puncture pi represents an additional end
in which the metric coefficients have the asymptotics (2.21) in the asymptotically flat case, or

U = log ri + O1(1),α = o1(r
1
2
i ), Aρ = ρo1(r

−
5
2

i ), Az = o1(r
−

3
2

i ), (4.1)

in the asymptotically cylindrical case. Here, ri denotes the Euclidean distance to the puncture pi.

Proof. The proof is nearly identical to that of Ref. 5, Theorem 2.2, and thus we only give an outline. Since M is simply connected, the
single boundary component ∂M must topologically be a 2-sphere by Ref. 16, Lemma 4.9. The boundary may then be filled in with a 3-ball, and
the metric extended to this domain to obtain a complete, axisymmetric, simply connected Riemannian manifold (M̂, ĝ)with n + 1 asymptotic
ends. According to Refs. 2 and 19, M is diffeomorphic to R3

/∪
n
i=1{pi}with the punctures pi lying on the ẑ-axis of a global system of cylindrical

(Brill) coordinates (ρ̂, ẑ,φ) in which ĝ has the structure (2.1). The orbit space M/U(1) is identified with the ρ̂ẑ-half plane and may be doubled
across the axis so that (ρ̂, ẑ) parameterize R2 minus the axis punctures. Within this plane, the projection of ∂M is given by a smooth closed
curve γ which intersects the ẑ-axis at two points and bounds a disk. Using the Riemann mapping theorem, a conformal transformation of the
plane may now be applied which maps γ to a circle centered at the origin of radius m1/2. The new coordinates obtained from this map are the
desired pseudospherical coordinates (ρ, z, �). Although the punctures may move under this transformation, they will remain on the axis since
the mapping is axisymmetric. Finally, the conformal property of the map preserves the metric structure (2.1). ◽

Simple connectivity of M yields potentials v, χ, and ψ satisfying (2.7) and (2.8), as well as the asymptotics (2.9) and (2.22) in the
asymptotically flat ends. In asymptotically cylindrical ends,20

∣ω∣ = ρ2O(rλ−5
i ), ∣∇χ∣ + ∣∇ψ∣ = ρO(rλ−3

i ) as ri → 0. (4.2)

The punctures {pi}
n
i=1 and ball Bm1/2 break up the z-axis into a sequence of connected component intervals {Ij}

n+2
j=1 on which each of the

potentials is constant; this is sometimes referred to as a “rod structure.” As in (2.11), the difference of two such constants associated with the
intervals surrounding a puncture yields the angular momentum or charge associated with the black hole represented by the puncture.

Following Sec. II, we may double the manifold and potentials across the sphere Sm1/2 to obtain a manifold (M̄, ḡ) and functions v̄, χ̄,
and ψ̄. The only difference that occurs concerns the number of asymptotic ends. Previously, the new manifold had two asymptotically flat
ends; however, now M̄ has 2n + 2 asymptotic ends. In Fig. 1, a diagram of the doubling rod structure in the orbit space is shown, where
a single additional end occurs below the circle of radius m1/2 at point p1. After doubling, this end is reflected inside the circle to point p̄1
which represents another end of the same asymptotic type. As before, the origin also becomes an asymptotically flat end, associated with the
designated asymptotically flat end at infinity. Notice, as is shown in the diagram, that the potential constants on the axis also reflect inside in
such a way that they are smooth across the sphere Sm1/2 and so that the angular momentum and charge of each end inside the Bm1/2 has the
same value with opposite sign as that associated with the corresponding puncture outside the ball. Therefore, the total angular momentum
and total charge of M̄, computed by adding all the individual contributions of each end, agrees with the total angular momentum and total
charge of M.

The presence of additional asymptotically flat and cylindrical ends does not affect the Proof of Lemma 2.1, as well as scalar curvature
lower bounds (2.6) and (2.20). Consequently, as before

m ≥ I(Ψ). (4.3)

Proof of Theorem 1.2. Consider case (ii). It remains to show that the renormalized energy may be minimized by a harmonic map

I(Ψ) ≥ I(Ψ1). (4.4)

Here, Ψ1 is the unique renormalized harmonic map from R3
/{z − axis} → H2

C, having the same potential constants as Ψ. Such solutions have
been constructed in Ref. 20, and the corresponding gap bound (2.36) was established there as well. Thus, by setting I(Ψ1) = F, we obtain the
desired result.

Consider now case (i). As in the Proof of Theorem 1.1 (i), let M0 denote the region exterior to the outermost minimal surface Σ, with
respect to the designated asymptotically flat end. Then, M0 is diffeomorphic to the complement of a finite number of open 3-balls and a
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FIG. 1. Doubling with additional ends.

finite number of points in R3, where the point punctures represent asymptotically cylindrical ends and the boundary of the 3-balls are the
components of Σ. By assumption, at most one component Σ1 of the outermost minimal surface encloses components of the boundary ∂M
or nonsimply connected domains. If Σ1 = ∅, then M is simply connected and has no boundary, and therefore, this theorem follows from
Ref. 20. If Σ1 ≠ ∅, let M1 denote the region of M outside of Σ1. The hypotheses then imply that M1 has a single component minimal surface
boundary, is simply connected, and has a finite number of additional asymptotically flat and cylindrical ends. By Proposition 3.1, ∂M1 = Σ1
is axisymmetric so that M1 itself is axisymmetric. The initial data (M1, g, k, E, B) now satisfy the hypotheses of Theorem 1.2 (ii) and (1.11)
follows. ◽
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