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1. Introduction

An open problem in general relativity is the classification of stationary, asymptotically flat black hole solutions (M, g)
in spacetime dimension D > 4 [6,10,16]. In the analytic setting, the rigidity theorem asserts that a stationary, rotating
black hole is axisymmetric, that is, it admits an additional spatial isometry with closed orbits [14,17,19]. The Killing field
generating this isometry commutes with the stationary Killing field. Solutions of the Einstein-Maxwell equations in D = 4
in this setting can be recast as harmonic maps from the upper half plane to complex hyperbolic space equipped with its
canonical metric of negative sectional curvature. This can be used to show that a solution is uniquely specified by three
real parameters. Along with the fact that a D = 4 black hole must have spatial horizon topology S?, this demonstrates that
the Kerr-Newman family exhausts all possible analytic, asymptotically flat black hole solutions of the Einstein-Maxwell
equations (see [6] for a review). A non-rotating black hole must be static, and this can be shown to imply it must belong
to the Reissner-Nordstrom family, which itself is a subset of the Kerr-Newman family.

The analogous classification problem in D = 5 remains open. The rigidity theorem guarantees only the existence of a
single U(1) isometry subgroup. It proves useful to assume the existence of an additional rotational isometry. In this case a
harmonic map formulation exists for the pure vacuum Einstein equations and certain supergravity theories. The latter are
natural generalizations of standard Einstein-Maxwell theory which are of interest in high-energy physics because their
action functionals are invariant under supersymmetry transformations. The topology theorem in this restricted setting
asserts that the topology of (a connected component of) the horizon must be S3, ST x §2, or L(p, q) [12,13,18]. There is
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now a large literature on finding explicit solutions in the above class, and in particular, examples have been constructed
of several of these horizon types [26,30,31,35]. Using the vacuum harmonic map formulation, it has been proved that
specification of a certain set of invariants (interval data) uniquely characterizes a black hole solution in this class [11,18].
More precisely, this data characterizes the fixed point sets of the U(1)? action on spacetime, as well as the hypersurfaces
on which a stationary Killing field is null. This fixes the topology of the horizon and domain of outer communication, as
well as other geometric invariants such as the mass and angular momenta of the spacetime. Existence, however, remains
a challenging open problem although recent progress has been made [21].

To address the classification problem we will restrict attention to the class of extreme black holes. This subset of
stationary solutions has vanishing surface gravity, that is the event horizon is a degenerate Killing horizon. Extreme black
holes play an important role in various contexts. Physically, for fixed mass they have maximal charge and/or angular
momenta and saturate certain geometric inequalities. In particular, extreme black hole initial data is known to minimize
the mass amongst black hole initial data with fixed angular momenta and charge. This has been established in D = 4 [7]
and in D = 5 for black hole initial data having S3 [1,3] and S! x S? [2] horizons. From the standpoint of high-energy
physics, the vanishing surface gravity implies that extreme black holes do not Hawking radiate. Indeed, they are the
best understood within theories of quantum gravity such as string theory, which has supplied a statistical account of the
Bekenstein-Hawking entropy of a large class of extreme black holes [34].

The key property of extreme black holes that we will exploit is that each admits an associated near-horizon geome-
try [25]. This is a well-defined geometric limit which yields a precise description of spacetime in a neighborhood of the
degenerate event horizon. This limit preserves certain properties of the parent black hole, such as the horizon geometry,
although asymptotic information such as the mass and angular velocity is lost. Suitable definitions of charge and angular
momenta, however, do exist although there are subtleties in extrapolating these to the analogous quantities defined in
the usual way on the asymptotic sphere at spatial infinity. Classifying near-horizon geometries gives valuable data on
the possible set of all extreme black holes. In particular, the absence of a near-horizon geometry with particular horizon
topology (or geometry) implies non-existence of an extreme black hole with that horizon. The inverse problem, proving
the existence of parent extreme black holes with prescribed asymptotic behavior is a difficult open issue; progress in this
direction has only recently been made in analyzing the moduli space of transverse deformations along the outgoing null
radial direction in the axisymmetric case [28,29] or in the presence of supersymmetry [8].

As we explain below, the near-horizon limit zooms in on the region near the event horizon. This removes a radial degree
of freedom. Thus instead of solving PDEs on a (stationary) Lorentzian manifold of dimension D, the field equations reduce
to geometric equations on a D — 2-dimensional closed Riemannian manifold (a spatial cross-section of the event horizon).
This is clearly a considerable simplification, although it is still very difficult in general to perform a classification. Typically
an additional assumption must be imposed. For example, a classification of supersymmetric near-horizon geometries is
possible in D = 5 supergravity [33]. In the problem at hand, U(1)P~3-invariant near-horizon geometries of stationary,
extreme black holes are cohomogeneity one. The near-horizon geometries reduce to harmonic maps from a closed interval
to a target space with nonpositive sectional curvature. It turns out that these harmonic maps are singular in the sense
that they will blow-up at the endpoints of the orbit space interval. Given a harmonic map satisfying appropriate boundary
conditions, one can always integrate the rest of Einstein’s equations to obtain a near-horizon geometry.

For the large class of gravitational theories which admit a harmonic map formulation (e.g. pure vacuum and various
supergravity models) it is possible to integrate the resulting ODEs explicitly to obtain an analytic expression for a coset
representative matrix associated with the target space [24]. In the vacuum, it is possible to determine the harmonic
map scalars explicitly and then obtain a full classification of near-horizon geometries of D-dimensional stationary
extreme vacuum black holes admitting a U(1)°~3 isometry subgroup [15]. However, in supergravity theories with more
complicated matter content (scalar fields and multiple Maxwell fields) the problem of obtaining the harmonic map
functions from the coset matrix reduces to solving a large set of algebraic constraints which is, in practice, not possible.
This makes it impossible to reconstruct the near-horizon geometries from the harmonic map and prevents a classification,
mainly because one cannot implement global regularity conditions on the local solutions. Thus neither the problem of
existence nor uniqueness can be addressed, which is unsatisfactory.

In this work we will instead introduce an abstract approach into the study of this problem of existence and uniqueness
for near-horizon geometries in theories admitting a harmonic map formulation. Of particular interest is D = 5 minimal
supergravity, as it arises within the context of string theory compactified on the torus T°. This approach is originally due
to Weinstein [36], who exploited the fact that the stationary, axisymmetric Einstein-Maxwell equations in 4-dimensions
reduce to a harmonic map with prescribed singularities ¥ : R* \ I' — H% where I' represents the axis of symmetry.
In particular he succeeded in proving the existence and uniqueness of such harmonic maps with prescribed singularities.
This elegant technique yields solutions describing multiple rotating black hole configurations which are smooth away from
the axis. Very recently, this method was extended to the D = 5 bi-axisymmetric vacuum setting by one of the present
authors, Weinstein, and Yamada [20,21]. This work achieved existence and uniqueness results for singular harmonic maps
corresponding to black holes of lens and ring topology and having various asymptotics at infinity.

2. Statement of main results

We will consider five dimensional spacetimes (M, g, F) where M is a smooth, orientable manifold equipped with a
Lorentzian metric g having signature (—, +, +, +, +), and F is a closed 2-form describing the Maxwell field. A solution
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(M, g, F) of D = 5 minimal supergravity is a critical point of the following action functional
1 1
S= | Rx1——FA+F— ——FAFA A, (2.1)
/M 2 33

where « is the Hodge dual operator associated to g and R is scalar curvature. In addition, a local 1-form gauge potential
has been introduced so that F = d.4, although in general H,(M) # 0 so A need not be globally defined. This theory
automatically includes vacuum general relativity when F = 0. The spacetime field equations derived from this functional
are

1. . 1
Rab=5 ach _E|F| 8ab,

1

* = = V.

d«F+ ﬁF AF=0

Unlike the more familiar pure Einstein-Maxwell system, dxF # 0. As discussed above, the theory (2.1) is more natural in

a variety of contexts. Firstly, it arises in standard dimensional reduction on tori of the 10 and 11-dimensional supergravity

theories which govern the low-energy dynamics of string and M-theory. Secondly, as we discuss below, the field equations

reduced on spacetimes having a U(1) x U(1) action by isometries admit a harmonic map formulation with nonpositively
curved target space.

Consider a stationary 5-dimensional spacetime containing a degenerate Killing horizon with Killing field V. This implies
that there is an embedded null hypersurface A on which |V|fv = 0 and Vy V|, = 0. A spatial cross section of N is a 3-
dimensional closed Riemannian manifold #. A spacetime containing an extreme black hole would satisfy these conditions.
In a sufficiently small neighborhood of the event horizon we may always introduce adapted Gaussian null coordinates
that describe the near-horizon geometry with spacetime metric

(2.2)

g = rla(y)dv? + 2dvdr + 2r Bo(y)dvdy® + yady®dy’, (2.3)

where y%,a = 1...3 are local coordinates on H with y, its induced Riemannian metric, «, B, are a function and 1-form
on H respectively, and V = 9,. The event horizon N corresponds to the null hypersurface r = 0. Similarly the Maxwell
field may be expressed in this coordinate system by

Fan = For(y)dv A dr + 1Fyq(y)dv A dy® +F, (2.4)
where F is a closed 2-form on . In fact the Bianchi identity dF = 0 further implies that
Fau = v/3d(c(y)rdv) + F, (2.5)
where we have set v/3¢(y) = —F,.. A lengthy computation [23] shows that the spacetime field equations (2.2) are
equivalent to the following set of equations defined on H
. 1 1~ - d 1 2 Yab =~ 2
Ric(y )ap = E,Baﬁb - V(aﬁb) + EFachdyc + 55‘ Yab — Elﬂ s
~2
1, . 1 |F| (2.6)
— _ S v L 2 _ 70
(o4 2,30,3 ) B S 12°

d*yﬁ:—*yiﬁﬁ—«/g*y(dg—gﬂ)—l—ZglE,

where V is the connection associated to (#, y). The above formulation of the field equations on near-horizon geometry
spacetimes has many advantages over a standard spacetime approach. In particular, Egs. (2.6) are defined on a closed
Riemannian manifold (#, ) as opposed to a non-compact Lorentzian one. This is a considerable simplification which
facilitates global arguments.

The electric charge associated to the near-horizon geometry is given by

1 1
= — | (+F+—=AnF). 27
°= Tor H(* A A) (2.7)

Note that the field equations imply that the integrand is a closed 3-form. If H,(#) is nontrivial, then a dipole charge may
be defined by

DIC] = i /F, (2.8)
2 C

for each homology class [C] € Ho(#). This is a ‘local’ charge in the sense that it is not associated to a conserved magnetic
charge. Furthermore, by introducing Killing fields g that generate the U(1)? isometry with associated 27 -orbits, so that

Ly, 8=0, L,,F=0, (2.9)
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we may define angular momenta

1 2
Ji= — *dni + A(ni) | *F + —=AAF 2.10
= Ton /H i) (nm)( i ) (2.10)
where the same notation is used to denote the dual 1-form to the rotational Killing fields, and £ represents Lie
differentiation. The field equations and the existence of the isometry imply once again that the integrand is a closed
3-form.

In the presence of a U(1)? isometry, solutions of the field equations for near-horizon geometries (or equivalently
solutions (y, B, ¢, F) of (2.6)) can be interpreted as singular critical points of a weighted Dirichlet energy for maps from
(=1, 1) = Gy(2)/SO(4). The latter is an 8-dimensional non-compact Riemannian manifold equipped with a metric having
non-positive sectional curvature.

Theorem 2.1. Given a cross-sectional horizon topology of S3, S' x S?, or L(p, q) and values for the electric charge O,
angular momenta 7;, and dipole charge D (in the ring case), there exists a bi-axisymmetric near-horizon geometry solution of
5-dimensional minimal supergravity realizing these characteristics. Moreover this solution is unique up to an isometry in the
target space Gy)/SO(4) and a translation in the arc length parameter for the harmonic map.

We note that this theorem includes the vacuum case [15] in which @ = D = 0, and the target space is replaced by
SL(3, R)/SO(3). Furthermore, the solutions produced by this result may have conical singularities at the poles, although a
proper balancing of angular momentum and charges should alleviate this type of irregularity.

3. Bi-axisymmetric near-horizon geometries

We are interested in proving existence and uniqueness properties of a class of solutions (g, F) of the field equations
that describe near-horizon geometries. Such geometries describe in a precise way the spacetime sufficiently close to a
degenerate Killing horizon. The chief motivation for their study is that it is generally expected that any stationary, rotating
extreme black hole must contain such a degenerate Killing horizon. In the analytic setting this has been established up to
a set of measure zero in the moduli space of solutions [ 14]. This fact is certainly true for all known examples. Furthermore,
each such ‘parent’ extreme black hole has a unique associated near-horizon geometry. Of course, the existence of a
given near-horizon geometry does not guarantee the existence of a black hole spacetime with prescribed asymptotics.
Nonetheless, knowledge of the space of near-horizon geometry solutions gives valuable information on the set of allowed
extreme black holes.

Let us briefly recall the general notion of a near-horizon geometry before specializing to the U(1)?-invariant setting
(for a detailed review, see [25]). Let A/ be a Killing horizon with normal Killing vector field V. We may always introduce
a Gaussian null coordinate chart (v, r, y*) in a neighborhood of A such that V = 9,, the horizon is located at r = 0, and
y* (a = 1, 2, 3) are coordinates on H, a spatial (constant v) section of N. It will be assumed that # is a 3-dimensional
compact manifold. In this chart

g = ra(r, y)dv? + 2dvdr + 2rB,(r, y)dvdy® + ya(r, y)dy'dy”,

1- (3.1)
F = Fyrdv A dr + Fradr A dy® + Fyedv A dy° + EFa,,atya Ady’.

Such coordinates are ‘ingoing’ because the radial null vector field —d, is future directed at r = 0. The near-horizon
geometry is obtained by substituting v — v/e, r — er and letting ¢ — 0. The resulting geometry has metric

gnu = ra(y)dv? + 2dvdr + 2r By(y)dvdy” + yap(y)dydy”, (32)

where («, 8, y) are defined on #. The Maxwell field does not automatically admit a well-defined limit; rather, upon use
of the Bianchi identity dF = 0, the identity Ric(V, V)|,-= 0, and the field equation (2.2) one finds F,, = 0 at r = 0. It
then follows (assuming smoothness) that the near-horizon limit of the Maxwell field exists and is given by

Fyn = —d(Fyr(y)rdv) + F, (3.3)

where F is a closed 2-form on #. It is convenient to define ¢ = —F,+/+/3. The full spacetime field equations (2.2) for the
spacetime fields (gny, Fnu) are equivalent to the coupled set of equations (2.6) for the near-horizon data (yg, Ba, ¢, F) [25].
In particular, the near-horizon spacetime is a solution of the same field equations as its parent extreme black hole.

Suppose now that the spacetime admits a U(1)? action by isometries, so that (2.9) holds. These isometries extend to
the cross-section (7, y ), and the generators of the symmetry are tangent to #. Introduce angular coordinates ¢, i = 1, 2
associated with these symmetries, having 27 periodic orbits. Since the interior product of the symmetry generators with
the volume form is closed, we may define a function x by

dx = cVol, (3,1, 0,2, ), (34)
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where C is a constant. As proved in [18], the function x parameterizes the orbit space 7£/U(1)?, and ¢ may be chosen so
that x € [—1, 1]. In the chart (x, ¢!, ¢?) the cohomogeneity one horizon metric y then takes the form

dx?
dy*dy® = Aidp'd 35
Yap@y~ay Czdt)\+lj¢¢l (3.5)
and the area of the horizon is
Ay = 8m?c . (3.6)

A detailed analysis of the geometry of the torus action can be found in [18]. For x € (—1, 1) the torus action is free (the
matrix A; is rank 2), and the endpoints x = +1 represent fixed points. As x — =1, the Killing fields v = aiiaq,i —- 0
where d'_ € Z. The matrix A; is rank 1 at the fixed points, so Ajal, — 0 as x — =£1. We are free to choose a; = (1,0)
and a_ = (q, p) for coprime p, q € Z without loss of generality. The topology of # is then characterized by these integers:
(g, p) = (0, £1) corresponds to S, (q, p) = (£1,0) to S! x S?, and otherwise H = L(p, q).

In the remainder of this work we will normalize the area of the horizon by setting ¢ = 1, i.e. so that Ay = 872. The
vector fields v. degenerate smoothly at their respective fixed points provided we impose the requirement

(1—x)
im ————
x>+ det A - A @,
which eliminates conical singularities. The overall horizon scale can be reinstated by dimensional analysis.

Remarkably, the combination of imposing U(1)> symmetry along with the field equations (2.2) (or equivalently
directly from (2.6)) on a general near-horizon geometry spacetime (gwy, Fyy) results in an enhancement of symmetry
R x U(1> — SO(2,1) x U(1)? [27]. This result holds rather generally for near-horizon geometries in D-dimensions
invariant under a U(1)?~ torus action satisfying the field equations of general relativity coupled to an arbitrary number
of Abelian gauge fields and uncharged scalar fields. The SO(2, 1) x U(1)?> symmetry constrains solutions to take the form

2

- dx . . . .
gnn =5 (x) [-r?dv? + 2dvdr] + Y + Ai(x) (dg’ + birdv) (d¢/ + Wrdv)

Fay =d [ardv — y'(x) (d¢' + b'rdv)] .

In the above expressions, the quantities a, b are constants and & (x) > 0, ¥ are smooth functions on #. The 2-dimensional
metric in the first square brackets is seen to be the 2-dimensional anti-de Sitter spacetime (AdS,), where the radius of
curvature is set to be one. The action of SO(2, 1) yields a torus fibration over AdS,, and it leaves the AdS, part of the
metric invariant. When b’ # 0 this action transforms the 1-form rdv by an exact function which can be undone by a
corresponding U(1) shift in the direction bi3¢i. Similarly, the Maxwell field Fyy is invariant.

The classification problem for all regular near-horizon geometries is to obtain all solutions (gny, Fny) to (2.6). In
the cohomogeneity one biaxisymmetric setting, using the rigidity result discussed above, one can substitute (3.8) into
the near-horizon geometry equations and solve for all possible near-horizon data (Z, Ay, ¥, a, b'). For the class of
U(1)*-invariant near-horizon solutions we can straightforwardly read off the data appearing in (2.3) and (2.5). Namely

=1, (3.7)

(3.8)

1 Abib _ A b g
o =— <—1 + U,,) s y d(ﬁl - :dxy
;‘_ b - - (3.9)
s==—Fp_ F=-dy'nd,
V3E
where = denotes differentiation with respect to x. From (2.6) it follows that
d . bibir; AE ... . 2 -
I(AE) =240 4 1// YA+ —(a—yibi) (3.10)
X =/ u
Moreover, the (xx) and (ij) components of (2.6) yield
L2 AEZ AEOAE A (a— y'b)?
-z LW — =
2t L TN T T T s s S0 652
kyk ,_, (3.11)
5 ; K54 k! 1 @YDV Ay, AE
—AAij — Adij + AAT dikhji = )\,’k)»ﬂb b’ + Ay + Aij 37’: - 5)» vy + =
Finally the near-horizon geometry Maxwell equation reduces to
d e bk 2 ...
It E}\.”{)\. i ( Ibl) [ i lElk:| , (312)
2 [EHA] = @y 2 - =

where €/ is a totally antisymmetric tensor with €'2 = 1.
Solving the coupled ODEs (3.10)—(3.12) in full generality by direct means appears to be very difficult. In the vacuum case
with vanishing Maxwell fields (¢, a = 0), the direct approach is tractable and led to a full classification [22]. However,



A. Alaee, M. Khuri and H. Kunduri / Journal of Geometry and Physics 144 (2019) 370-387 375

when F # 0 the situation becomes clearly more difficult and even in the static case (when 9, is hypersurface orthogonal)
a full classification by direct integrations remains open [23]. Following [24] we will exploit the fact that the supergravity
field equations (2.2) with U(1)?> symmetry admit a harmonic map formulation from [—1, 1] to a non-positively curved
symmetric space target. This fact will be our main tool to establish existence and uniqueness of biaxisymmetric solutions
of (2.6). In the following subsection we will recall the salient features of this formulation before applying it to spacetimes
satisfying (3.8).

3.1. Harmonic map formulation of supergravity

Five-dimensional minimal supergravity may be regarded as the natural extension of standard Einstein-Maxwell theory
in that it has a number of important mathematical properties. In particular, the field equations (2.2) are equivalent to a
harmonic map when enough toroidal isometries are present, in this case U(1)?. To see this we summarize the relevant
parts of the construction [24]. First decompose the spacetime metric as

1 )
=——h A nianoigs 3.13
oty b + A ne@angn (3.13)

where h is to be regarded as a smooth Lorentzian metric on the 3-dimensional orbit space M/ U(1)2. There are globally
defined scalar potentials ' defined by

8ab

dy' = 1, F, (3.14)
after utilizing dF = 0 and topological censorship. It is straightforward to show that
Ly ¥ =ty F =0, (3.15)
so that the v/ are functions defined on the orbit space. We may also define a 1-form
Y = =ty *F (3.16)
that as a consequence of the Maxwell equation, satisfies
1
dY = —d (y'dy? — 2dy ). (3.17)
7 (v'dy? —y2dy')
It follows that a globally defined electric potential x exists and satisfies
1
dy =7 — — (Yldy? — y2dy ). (3.18)
v )

Next, recall that in pure vacuum the twist potentials ®' are closed 1-forms. In the supergravity case they are no longer
closed, since the Ricci tensor is nonvanishing. Using the field equations, a computation [24] shows

d0' = -7 A1, F=d [W (dx + (yldy? — wzdwl)ﬂ ) (3.19)

1
33
It follows that there exist globally defined charged twist potentials ¢! which obey

d¢' =o' -y [dx + —=('dy? — dewl)] : (3:20)

1
3V3
These reduce to the vacuum twist potentials when F = 0. Finally, note that the Maxwell field can be reconstructed from
the fields (A, x, ¥', ¢') with the identity

1
= deta

A long calculation [5] now gives the following reformulation of minimal supergravity. Namely, the supergravity field
equations (2.2) for U(1)?-invariant solutions (g, F) are equivalent to the following system

[*(n2) A iy A ) + (det AT gy A dy] . (321)

1 V, det AV, det A
Ric(R)oe =—Tr (A" 'VaAh"1Ve) 4 22 282
4 4(det 1) (322)
Y.Ye A 1 '
—dyldyl + ——2Aieie)
+ 2det A + 2 Vadve + 2detar ¢
. r (dy', A7),
d =— , 3.23
Vi (detk) det A (323)
P T, Ao 2 ; ;
diva(nidy) = | h (8%(r. dy Dy — 8T dy* ) (3:24)

deth  /3detr
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and
Aol
di =0, 3.25
n (detk) ( )
where
(O, &), A (Y, T
Ankii = A (dhge, dh)y — ——2 — (dyr, du? i [ A™(dy™, dy™), — 3.26
h#ij ( ik lj)h detx (w’w)h+3u< (¢7W)h detk) ( )

and (-, -), denotes the inner product on forms with respect to the metric h. Note that the final three equations above are
second order elliptic equations for the electromagnetic potentials (¢, x, ¥').

Solutions of this system of equations arise as critical points of a 3-dimensional theory of gravity on (M/U(1)?, h)
coupled to a wave map having nonpositively curved symmetric space target G, ,/SO(4), governed by the functional
[5,32]

S[h, X] = f (Rn — 2h™Gpnd,X™8,X™) Voly. (3.27)
M/U(1)2

Here Ry is the scalar curvature of h, and X = (A, ¢l x, ') are coordinates on the target manifold with metric

(ddetA)? Tr(A~'dr)? Ai@ie 1?2 Adyridyd

GrndX™MdX" = 3.28
m 8(det 1) + 8 t Zdetr T adetn 4 (328)
The Euler-Lagrange equations of (3.27) are given by
1
Ric(h)gp ==Tr(M ™' M) = 2Gmn X" X",
lC( )ab 8 r(M e MM bM) mnOa b (329)
VM9 M) =0.
An explicit expression [24] for the 7 x 7 positive definite unimodular coset representative is
A B V2R
M=\ B c Ver|, (3.30)
V2RE V2T S

where A, C are symme‘tric 3 x 3 matrices, B is a 3 x 3 matrix, R, T are 3 x 1 matrices and S is a scalar. By setting
¥ =~3u ¥ = —+/3vi, and A = det Ajj these submatrices may be expressed as

S =1+ 2(ve* + 27 1u?),

! Ko o
. (1+ vev®)v; — ﬁﬁ‘(‘)k +tod
M ,
A
()\.ij - %e’j)vj

T= :

Aoy — 14 v* + w_ idvké:l]

YRRVN
- “13.3 I M k k 13
Ao (14 A7 + 275G + (2 4 v vy + ﬁ(w ey — eV v)  —A7G ’ (3.31)
_)\‘715]‘ )u_]
i H 1= g
v — —e; —= Ve vj
_ Vol Va
B= _vkekj //;2 B eMmutm |7
Vi A Vi
2
(1+ v T — iy '+ (% — ilme™)e® v — vt

C = 2 N

e e Y c

N



A. Alaee, M. Khuri and H. Kunduri / Journal of Geometry and Physics 144 (2019) 370-387 377

where indices have been raised and lowered with 1; and
& =G — i,

2 2 kl,, =
n = e e A R TR
v = — (1 — 7) \/XGikUk - (2 + Ukl)k)[l,l)i + )\.kll)k;l‘)i + <_)\, + \/)\1 ) ;f - ﬁéik;k, (332)
¢ =20 — 2% + A1+ vk + (2 4+ v )T i + A2 (U — vV R ™)L

The above formulation applies generally to any U(1)?-invariant solution of (2.2). In the next subsection we will restrict
attention to near-horizon geometry members of this class.

3.2. Near-horizon geometry data as a harmonic map

The near-horizon geometry (g, F) given by (3.8) admits a U(1)? action as isometries by construction. Therefore the
entire class of solutions must arise as critical points of the functional (3.27). The advantage of this latter formulation, as
opposed to the equivalent formulation (3.10)-(3.12) is that it allows for abstract theory to be applied.

To begin, we merely have to relate the near-horizon data to the harmonic map data X and orbit space metric h. Observe
that the dual 1-forms to the rotational Killing fields 7; are given by (with abuse of notation)

i = hi(dg’ + A), (3.33)

where A’ are 1-forms on the orbit space. The matrix A; appearing in (3.8) may then be identified with that defined in
(3.13). In addition, the functions ' appearing in (3.8) may be identified with those defined in (3.14). The 3-dimensional
orbit space (M/U(1)?, h) corresponding to (3.8) is a warped product of [—1, 1] and AdS, with

hapdxdx” = dx* + 5(x) det A(x) [—r*dv? + 2dvdr]. (3.34)
The remaining scalar potentials are
a—y'b
hx =0 — 7 (v'o® —v?oy),
A--biu— via—yb) 2 (335)
gl =" + 55V (Ve vy,

and it is clear that A' = birdv.
Conversely, these can be inverted to reconstruct a near-horizon geometry from a given set of harmonic map scalars
and three-dimensional orbit space metric h of the near-horizon form above. Using

i oy j i I P R 1:|)
b EA <8x§- +W|:3XX+ 3\@ (w Y 4 ax‘//) > (3.36)

the constant a can be determined from the relations (3.35), namely
)) . (3.37)

The biaxisymmetric near-horizon geometry equations (3.10)-(3.12) are equivalent to (3.29). In fact, for near-horizon
geometries the reduced Einstein equation can be immediately integrated to give an explicit expression for Z(x). To see
this note that the nonvanishing components of the Ricci tensor of the base space metric h of (3.34) are

oo | Wiyl
" i dq i inij J 1 2 _ 2 1
a—u<3xx(l+¢wk)+w>»3x§ +7§(1ﬁ oY w3XW)<1+ 3

7 2
Ric(h),, =2 (zx)r +12,
Ric(h),, = — Qz(x) _1, (3.38)
. "x) Q)
M = — 2 ,
Ric(h) QW <2Q(X)>

where Q = & det ). Since the coset representative matrix M is independent of the coordinates v and r, the right-hand
side of the reduced Einstein equation (3.29) only has a nonvanishing (x, x) component. It then follows from Ric(h),, = 0
that

Qx)=1-x% (3.39)

as Q(x1) = detA(£1) = 0 and & > 0. The requirement Ric(h), = 0 is automatically satisfied. The harmonic map
equation (3.29) for M may now be expressed as

% [(1 =X )M ToM] =0, (3.40)
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which can be immediately be integrated to yield (1 — x*)M~'9,M = M, for some constant matrix Mg. Furthermore,
using (3.39) produces

2

which in turn yields, upon applying (3.29) the requirement that Tr(M%) = 16. We emphasize that the difference between
our approach and that developed in [24] is that in the latter, the harmonic map equations (3.40) are solved for the matrix
M(x) explicitly, in terms of a large set of integration constants. The downside of this approach, however, is that given
the complicated form of M (3.30) it is not possible in practice to extract the harmonic map potentials, and hence the
near-horizon geometry, from knowledge of M(x). Thus it is not clear how to obtain a classification following this method.
In contrast, we will follow a more abstract approach focussing on properties of functional (3.27).

In summary we have shown that for a U(1)?-invariant near-horizon geometry of the form (3.8), the field equations (2.2)
reduce to solving the harmonic map equation (the second line of (3.29)) for the 8 harmonic map scalars (A, ¢, x, '),
and then reconstructing the remaining near-horizon data (a, b).

Before concluding this subsection we note that the electric charge (2.7), angular momenta (2.10), and dipole charge
(2.8) (if # = ST x S?) can be expressed in terms of the boundary values of the harmonic map scalars. We refer to [4] for
the details of the computation and simply give the results here, namely

Ric(h)y = (3.41)

T ! b4
o= [ =G0 x-m (3.42)
j—”/ld"—”( (1) - (1) (343)

[ 4 i ; - 4 ; ; ’ ‘
and in the case of a ring horizon the dipole charge is

1 oo .

D=o_| F= a(y'(=1)—y'(1)), (3.44)
T Js2

where v = a'; is the Killing field that vanishes at the poles of the S2.
3.3. Relation to harmonic map energy

In order to perform the existence and uniqueness argument in the next section, it is advantageous to replace the matrix
of scalars A;; with a more convenient set of variables. This may be seen as a reparameterization of the target space. Firstly,
note that for the near-horizon geometries discussed above the metric h is completely determined by (3.39), and hence
decouples from the harmonic map in the functional (3.27). We may therefore view it as a functional of the variables X

alone defined on the closed interval [—1, 1] parameterized by the coordinate x. Explicitly, one finds that S[h, X] = —27
where
1
dX™ dxm 1
J= 1—x)Gpp— — — —— | dx. 3.45
L[( o o 1_X2}x (3.45)

Note that J = 0 on critical points as a consequence of the 3-dimensional Einstein equation (3.29) upon using (3.41).

As explained in detail in [4], we now introduce a convenient reparameterization of the target space. Firstly note that
any U(1)?-invariant horizon geometry must be diffeomorphic to S xS? or the lens L(p, q) [ 18] (see the discussion following
(3.5)); here p and q are coprime integers. In the case of the lens topology, introduce new variables (U, V, W) as follows

U—]lo det)
“a -

1 2(14+ %)
V= p UL+ X , (3.46)

2 \ (1 =x)[g** 11 — 2qh12 + A2z

.1 *2—Gqrn )
W =sinh™! (7 ,
pe?Vy/1 —x?
with inverse transformations
U

1=Vt (1 —x)coshW, App = 3 (\/1 — x2sinh W — ge(1 — x) cosh W) ,

- (3.47)

Aoy = e—z (qzev(l —x)coshW — 2gy/1 — x2sinh W + e7Y(1 4 x) cosh W) .
p
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Note that the regularity condition (3.7) becomes

. (1—x) 2 9 —6xU—V
lim ——————— =2p° lim e =1. (3.48)
x—>*1 det A - al;tal:t)‘ij x—=+1

For the ring S! x S? a different parameterization is needed, namely

Aip = eV coshw, Az = e V(1 — x*)cosh W, Az = e?Yy/1—x2sinh W, (3.49)
where

V =V +2h; +hy, (3.50)
with

hy = Ylog(1—x2).  hy= 1log(]_x>. (351)

4 2 1+x

The conical singularity regularity condition (3.7) is now expressed as

lim. e SUHV — % (3.52)

We may now rewrite the functional J in a unified way for all admissible topologies by associating each with integers
(p, q, s), where s = 0, 1, according to the rule

H=S3, s=0, p=1, q=0,
H=Lp,q), s=0, 1<q=<p-—-1, (3.53)
H=S'xS% s=1, p=1, gqg=0.
By setting
Vs =V + 2sh; + shy, (3.54)
an involved computation [4] reveals that
T 3+s
J=7=—log2p® — 3.55
I= g 2p 5 (3.55)
where, upon setting x = cos @ for later convenience
)
b4
:/ 12 (3pU)? + (89 V5)? + (9gW)? + sinh® W(3,V + dgh, )?
0
+ p? e (O + pe S th=8U+V cosh W (e "2 tanh W&, — @2)2
cosh W 0 0 0 (3.56)
e—2m—hy—20-v  _ _ _
+ pzi(aewl)Z + p28—2h1+h2—2U+V cosh W(e—hz—V tanh Waew_l _ aewz )2
coshW
+ pre M= 12 _ 25V sin® — 12U sin@] dyhy } sin6do.
Here ¥ = (U,V, W, ¢1,¢2, x, ¥, ¥?) and
=70, b =27, Z= ((1) Z). (3.57)

It is clear that 7 is finite, and we will now demonstrate that it may be interpreted as a reduced energy, that is a
renormalization of a singular Dirichlet energy for maps from S — G, 5/S0(4).
Consider the round metric on S3 given in Hopf coordinates (0, ¢!, ¢?), where 6 € (0, 7), by

2
g = d% + sin?(8/2)(d¢ ' + cos(0/2)(d¢?)?. (3.58)

We are interested in harmonic maps from (S3, gs3) to the symmetric space Gy(2)/S0(4) = R® equipped with the following
complete Riemannian metric of non-positive curvature

—6u—v
G =12du? + cosh? wdv? + dw? + p? (&Y + p?e ®* coshw(e ' tanh w®' — &?)?
coshw
s (359)
+ p?——(dy!)? + p?e 2 cosh w(e™ tanh wdyy ! — dyr?)? + ple~ 12,

cosh w
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Let £2 C S® be a domain that avoids I, the union of the two circles at @ = 0, , and let ¥ = (u, v, w, ¢, ¢2, x, ¥, ¥?) :
S3\I — Gy(2)/S0(4) be a singular bi-axisymmetric map. Then the Dirichlet energy on this domain is given by

~ 4 e—Gu—v _
Eo(¥) :7/ { 12(3pu)? + cosh? w(dpv)? + (Bpw)? + p*——— (O,
2

2 cosh w
_ .2 e—Zufv _
+p*e " coshw (e tanhwO, — &) + p? (B 1)? (3.60)
coshw

+ p?e™*"*" coshw (™" tanh wdpyr' — 9y 1}2)2 +p’e M1} ¢ dv,

where dV is the volume element on S>. ;
The difference between the renormalized map ¥ and the unrenormalized map ¥ only appears in the first two
variables

u=h+U, v=h+V, w=W, (3.61)

where in the new coordinate h; = %log sinf and h, = logtan % Through integration by parts and with the help of
dp (sinBdghy) = 0, the functional Z is shown to be related to the harmonic energy via the formula

2
zg(W):EQ(@)—/ ((25c052§—1) +3c0529> (Bghy)*dv
« (3.62)

0
+ / (2 <2scos2 — - 1) Vi, — 12 cos 9U> 9, hydA,
082 2

where v is the unit outer normal. From this it follows that the two functionals share the same critical points.

4. Existence and uniqueness of singular harmonic maps

In this section we prove existence and uniqueness of the relevant harmonic maps with prescribed singularities at the
north and south pole circles of S3. Our approach is based on that of Weinstein [36], who treated a similar problem for
maps from a compact manifold with nonempty boundary into rank one symmetric space targets. Here, however, the
setting is more difficult since the domain has no boundary and the target space Gy(3)/SO(4) is of rank two. On the other
hand our domain has a cohomogeneity one metric, where as in [36] it is cohomogeneity two.

4.1. The model map

Asymptotics for the singular harmonic map, as well as prescribed angular momentum and charges, are encoded in
the model map which may be thought of as an approximate solution. The renormalized version of this bi-axisymmetric
map will be denoted by ¥, = (Uo, Vo, Wo, &, xo. ¥). Let ¢ > 0 and set 2, = {0 | [sinf| > ¢} x T2 On $* \ £,
we may define ¥, to be any smooth map, which interpolates between its prescription near the poles. Near each pole
the model map will be set to an exact solution. At the north pole with rod structure (1, 0), we may use the extreme
charged Myers-Perry near-horizon geometry with potentials arbitrarily prescribed at the pole. At the south pole the rod
structure is (g, p), and we may apply an isometry in the target to transform the extreme charged Myers-Perry solution
with potentials vanishing at the pole to a solution having this rod structure and again vanishing potentials at the pole. In
this way the model map is smooth, satisfies the near-horizon geometry equations near each pole, and yields arbitrarily
prescribed angular momentum and charges from the formulae (3.42), (3.43), and (3.44). Moreover the following properties
are immediately implied by the construction.

Lemma 4.1. The reduced energy of the model map W is finite and the tension t(¥) is pointwise bounded.

Asymptotics for the model map may be derived from explicitly known near-horizon geometries arising from extreme
black holes such as the dipole charged black ring [27], and black lenses [26,35], namely

Uo, &g» &8s xo = O(1),  Wo = 0(sin®),  8,Up, dg X0, d ¥y = O(sinB), 3,Wo = 0O(1), (4.1)

0(1) s=0 0(sin ) s=0
Vo = 0 (42)

Vo = .0
0 —210g<sm§)+0(1) s=1, —coti—i-O(sinO) s=1,
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)
v = 2 Y2 = 27 0T e¢ =0(sin*h), s=1, (4.3)
j— ‘1 —

0 0
. 2 . 2 .
sin“ =0(sinf) s=0 cos” =0(sinf) s=0
5 (sin®) - 5 (sin®)
0(sin0) s=1, 0(sin ) s=1.

dey = (4.4)

4.2. A priori estimates

Let {£2;} C S\ I" be an exhaustion sequence of bi-axisymmetric domains so that £2; C £2;;1 and lim;_, o, £2; = S>. Since
the target space is nonpositively curved, standard harmonic map theory [9] states that there exists a unique solution of
the following Dirichlet problem in which the model map is used to prescribe the boundary values

E(‘j’i)fo in £, (45)
¥, =Y, on 9£;. ’

We now seek to establish appropriate estimates in order to ensure that the sequence ¥; converges on compact subsets
of §3\ I'. The first step is to achieve an almost uniform distance bound depending only on the distance at a fixed angle
490 € (0, 7'[).

Lemma 4.2. There exists a constant C depending only on 6y such that

sup disty (%, W) < C [1 + disty(¥, Po)lo—g, | - (4.6)
2

Proof. Let d; = disty(%;, ¥). The nonpositive curvature of the target manifold ensures ([36, Lemma 2]) that on £2;

AT+ = = (Ile(@)l + N2 (P)ll) = —llz(Fo)ll. (4.7)

Solve the boundary value problem
Az = |[t()ll on  Sg 4 z=0 on S}, (4.8)

where 5[30'90] is the region of S* corresponding to the interval [0, 6] in the orbit space S3/U(1)%. Note that this unique
solution is smooth since 7(¥p) is identically zero in a neighborhood of the poles (and is hence smooth there). It follows
thatz+,/1+ dl-2 is subharmonic on S[aef,eo] where 2;/U(1) = (O 91.+) C [0, ], and so its maximum is achieved on the
boundary. Therefore

sup (z +,/1+ d?) < C(1 4 di(60)), (4.9)

3
16, 0]

and this leads to the desired bound on 5[39, ool Analogous arguments yield the bound on SE; . O
i Y0 0.

The next goal is to achieve uniform energy and distance bounds, which are based on convexity of the energy resulting
from the nonpositive curv~ature~of the target space. Let Fi : 2; x [0, 1] — N = Gy2)/SO(4) be a family of geodesic
deformations connecting ¥; to ¥, so that F;(6, 0) = ¥;(0) and Fi(0, 1) = ¥,(0), see Fig. 1. The components of F; will be
denoted by

Fi(6,t) = (6, t), vi(6, 1), wi(0, £), 5(6, £), Z2(6, 1), xi(0, 1), ¥ (6, 1), Y (0, 1)). (4.10)
Since t — F(0, t) is a geodesic we have ||3;F;|| = disty(¥;, %) = d;. The second variation of energy yields
d? 8
qbaf) =— / (V5 £, cFill> — NRm(8y Fy, 8,Fi, 3¢ Fi, 05F;)] dv
t g Q:
g 1 (4.11)
3 / [|VdiStN(‘Z’i, Bo)|* — "Rm(3yF;, F;. &F:, 39Fi)] dv,
T 2

where in the second line the Kato inequality

IVA r0cFill = [VII3:Fill | = |Vdisty(%, ¥o)| (4.12)
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F(6,1) = (6)

Ty = E(907 1)

Fig. 1. Geodesic deformation in the target space N.

has been employed. Since ¥ is harmonic the first variation vanishes at t = 0, and thus integrating twice produces

EQI'(J/O)
~ gi+ 1 ~ o~ 2
>Eq () + 2/ / / [|VdistN(l1/,», Fo)* — NRm(d,F;, 0,F:, &.F:, aeﬁ)] dedt sin6do )
o '
—Ea(0)+ [ (9 + 4 sinods,
where f; > 0 is given by
1 t
0¢F; 0:F;
fi= —2/ / NRm (891:,‘, B 891-",-) . (4.14)
o Jo 0cFill -~ 119 Fill
Lemma 4.3. There exist a small interval (61, 62) 2 6y and a uniform constant § > 0 such that
o 6y
/ (IVdi* + fid?) sinodo > 5/ (IVd;|* + d?)do. (4.15)
i o1

Proof. Let y; denote the unit speed geodesic connecting x; = Fi(6p, 1) to Fi(6y, 0), and let | denote the Jacobi field dyF;
along this geodesic. In what follows we will suppress the index i. According to the symmetries of the Riemann tensor,
the matrix (R(-, )y, -) is symmetric and hence admits an orthonormal set of eigenvectors {e;} with eigenvalues A; < 0.
Since the target manifold is a symmetric space, the Riemann tensor is covariantly constant and therefore e; are parallel
and A; are constant along the geodesic. We then have

1 t 1 t
re==2 [ [weimn==3u[ [v.er (4.16)

The Jacobi equation implies that

3. )= (.e) = —RU.7)V. ¢) = —1{]. €), (4.17)
and therefore
U )(t) = ceV I 4 cpe VIl (4.18)

Integrating and completmg the square produces

1 _
f(60) = 2Zx[4m(ez Ml —1 = 2/I5Deh + g + ijl( |x)_1+z,/|xj|)cj?2}

2
221
— Al q J .
22( 1 2,/|,\j)[cﬂ+ N M-I)Cjz} (4.19)
il

5 (e VW — 1+ 2/5EevH — 1 -2/ — 42
+ Ca-
202Vl — 1 — 2,/|,\,-|)
Note that the coefficient of cjz2 in the last line is positive unless A; = 0.
A subsequence of the unit vectors y(1) converges, and it may be assumed without loss of generality that this limit is a
regular direction by perturbing the point x; if necessary. Recall that a regular vector is one which lies in a single maximal
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flat, and that the set of such vectors is dense in the unit sphere. Thus, since the target space N is rank 2 there exists a vector
perpendicular to y(1), say ey, for which the curvature of the resulting 2-plane is bounded away from zero independent
of i, that is A; < —c < 0. Furthermore, since the constants ¢;; and cj, are determined by (J, e;)(1) and (J, ¢;)(1), and we
may choose the model map at x; to guarantee that |(], e;)(1)| stays bounded away from zero independent of i, it follows
that f(6p) > 26 > 0 independent of i. This lower bound persists for a small interval around 6y, and thus yields the desired
inequality (4.15). O

Proposition 4.4. The harmonic energy of the map ¥; is uniformly bounded on fixed domains 2 C S>\ I, that is, there exists
a constant C independent of i such that

Eq(¥) < C. (4.20)
Moreover the distance function is uniformly bounded

disty (&, %) < C. (4.21)
Proof. By Eqs. (3.62), (4.13), and lj’i|8:2,-: l170|39i we have

o

To(W) > To (%) + /7' (IVd;* + fid?) sin6do. (4.22)
Observe that
o
I, (W) — Za(¥) = Io,(Wo) — o, (¥) + f [12(Uo — U;) — 2s(Vo — V;)] sin0df, (4.23)

0;

where i-gi(lllo), fgi(lpi) are sums of squares and we have used sin6dyh, = 1. By construction of the model map Zp,(¥)
is uniformly bounded, and the integral on the right-hand side of (4.23) is controlled by the distance between the model
and harmonic maps. It follows that

o
C (1 + sup d,») > To (W) + / (IVd;* + fid?) sin 6do. (4.24)
2 6
By Lemma 4.3
o 6y
/ (IVdi|* + fid?) sin6do > 3/ (IVdi)* + d?)de. (4.25)
d o1
Moreover according to the Sobolev embedding W12 — C° in dimension one, combined with Lemma 4.2, we have
02
/ (IVdi|* +d?)do > C™! sup d? > C"'supd? > C; ' supd? — . (4.26)
0, 5[361,921 6=0o 2

It follows that
C > Zo(¥)+C 'supd?. (4.27)
2

This immediately gives (4.21).
In order to obtain (4.20), use

C > Io(¥) (4.28)
from (4.27). The pure harmonic energy may take the place of the renormalized energy on the right-hand side. To see this
make the replacements u; = U; + hq, v; = V; + hy, and w; = W; and compute

ot

Zo(¥) :EQ(@H/ [12(85h1)* — 2405010 u;] sin6do

ot (4.29)
+ / [206 506 Vis — (86hs)*] sin6do,
where 2/U(1)> = (60—, 607) and hy; = 2sh; + (s — 1)h,. Observe that
ot ot ot 1
f 2495h10pu; sinOdO| < 3 (3pu;)? sinOdo + 48 (3ph;)? sinfdo < ZEQ(J/,») +C, (4.30)
_ o— 0~
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and in a similar way
ot

/ 289h589V,-$ sin0d6

1 -
< ZEQ(W]’)""C. (4.31)

Hence
To(¥) > ;EQ(J/) C, (4.32)
and the desired result now follows. O
Energy bounds lead to pointwise density bounds with the help of Bochner’s formula and the nonpositive curvature of
the target manifold.
Lemma 4.5. The energy density of the harmonic map ¥; is uniformly bounded on compact subsets £2 C S* \ I', that is

sup |d¥;| < C. (4.33)
2

Proof. This is a standard argument [36]. We include the outline for convenience of the reader. Bochner’s formula yields
A (|d@i|2> — |VdF|” + SRic(dF;, dF;) — NRm(d¥;, dFi, dF;, d;) > 0. (4.34)

The squared density is then subharmonic, and the De Giorgi-Nash-Moser inequality combined with Proposition 4.4
produces

sup [d%|* < C'Eq/(#) < C, (4.35)
2

where C is independent of i and 2 C £2. O

4.3. Existence and uniqueness

We say that a map ¥ : S3 \ I" — N is asymptotic to the model map ¥ if they remain within a bounded distance
from one another even on approach to the poles, that is disty(¥, ¥,) < C. A map which is asymptotic to the model map
possesses the same singular behavior as the model map near the poles.

Theorem 4.6. There exists a harmonic map ¥ : S3 \ I" = Gy(2)/S0(4) which is asymptotic to the model map .

Proof. The harmonic map equations satisfied by the sequence ¥;, combined with the pointwise gradient bound
(Lemma 4.5) and L*° bound (4.21), imply uniform a priori estimates for all derivatives on fixed domains 2 C S*\ I'.
In the usual way, by choosing a sequence of exhausting domains and taking a diagonal subsequence, we find a sequence
of maps ¥; which converges on compact subsets to a smooth harmonic map . The limit also satisfies the L® bound and
is thus asymptotlc to the model map. O

In order to establish uniqueness for harmonic maps asymptotic to the same model map, we will need the following
preliminary result.

Lemma 4.7. Suppose that ¥, and ¥, are two harmonic maps from S3\ I" — N such that diStN(lZﬁ, 1172) is a nonzero constant.
Let S C N be the 2-dimensional submanifold generated by the geodesic deformation F(6, t) connecting ¥, to Ws,. If the sectional
curvature of the coordinate 2-planes KC(0.F, dyF) vanishes, then S is totally geodesic and flat.
Proof. We first show that S is flat. Consider the Gauss equations

NRm(dF, 8F, 8:F, 3F) ="Rm(dF, F, F, 3sF) (4.36)
— (A(3F, 0(F), A(BoF, 94F)) + IIA(B.F, 39F)||*, '

where "Rm and *Rm are the Riemann curvature tensors of N and S, respectively, and A is the second fundamental form.
According to the assumption on the sectional curvature of the coordinate 2-planes, it suffices to show that the terms
involving A vanish. Let n be a unit normal vector on S, then the definition of the second fundamental form together with
the fact that t — F(0, t) is a geodesic produces

An(atF, 3tF) . (V[n, atF> — —(11, Vta[F) — O. (4.37)

Moreover by assumption ||3;F|| = disty(¥;, ¥) = const, and thus

1
= 539 ||atF||2 = (VydF, 0F) = 0;(9pF, 0, F) — (0gF, V;0;F) = 0, (0gF, 9(F). (4-38)
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It follows that

(0pF, 8cF)(0, 1) = (9pF, 9:F)(8, 0). (4.39)
Next, since K(0.F, 99F) = 0 we have
0 = "NRm(8;F, 9F, 8;F, 3pF) = (V;Vd:F — VoV, F, 3F) = 8:(Vod:F, 3F) — | Vo:F||>. (4.40)

Integrating over t and using (4.39) yields

1
/ Vo dcF[12dt =(Vgd:F, 35F)(0, 1) — (Vg dcF, 3F)(6, 0)
0

=0p ({3;F, 9gF)(0, 1) — (3;F, dgF)(0, 0))
— (0¢F, Voo F)(0, 1)+ (0:F, Voo F)(6, 1)
=cotf ((9:F, dgF)(6, 1) — (3F, 39F)(6, 0))
=0.
In the above computation we have employed the fact that as a result of the harmonic map equations 6 — F(6, 1)

and & — F(0,0) are pre-geodesics, that is they fail to be geodesics only due to their parameterization and satisfy
VpdgF = — cotHdyF. We now have

An(3F, 8pF) = (Vim, 8pF) = —(n, V;9oF) =0, (4.42)

(4.41)

and therefore S is flat.
To show that S is totally geodesic it remains to demonstrate that

0 = An(0pF, 0pF) = (Vgm, 0pF) = —(n, VydyF). (4.43)
By differentiating V,d,F = 0 with respect to 6 we find

0 = VyV06F = V;Vp0sF + "R(3pF, 9;F)dsF. (4.44)
Since the curvature tensor is covariantly constant in a symmetric space, it follows that

VVVedgF = 0. (4.45)

Let now e(t) be a parallel transported vector field along the geodesic t — F(6, t) which is normal to S, then
32 (VydyF, ) = 0. (4.46)
Furthermore the harmonic map equations show that
(VoOgF, e)(0,1) = (VydyF,e)(0,0)=0, (4.47)
and hence (Vy0yF, e)(6, t) = 0 for all t. As e was arbitrarily chosen normal to S, it follows that (4.43) holds. O
We are now in a position to state the basic uniqueness result for the singular harmonic maps having the same

asymptotics.

Theorem 4.8. Suppose that}fﬁ and g, are two harmonic maps from S3\ I — N which are asymptotic to each other, that is
their mutual distance disty(¥1, ¥,) remains bounded. Then there exists an isometry of the target space ¢ : N — N such that
W, (s) = ¢ o Wy(s + c) where s denotes arc-length parameter and c is a constant.

Proof. As before let F(6, t) denote a geodesic deformation connecting ¥, to ¥,. Then the Poincaré inequality, Eq. (4.22),
and [4, Theorem 7.1] produce
(W) >I(¥) + Cf (disty (¥, ¥5) — D)* sin6do
7 ? t (4.48)
+ 2/ / / IK(3cF, 9F)| (I19:FII*1196F 1> — (cF, 95F)) sin Odtdtdo,
o Jo Jo
where D is a constant that represents the average value of disty (¥, ¥ ). Since both ¥, and ¥, are harmonic, their roles
may be reversed in the above inequality. It follows that
(¥) = (W), (4.49)
disty(¥y, ¥,) = D, (4.50)
and

IK(3cF, 3F)] (I19:FI1*1135F 1> — (cF, 95F)) = 0. (451)
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e Case I: K(0,F, 9F) # 0 at some point. If IC(0;F, d9F) # 0 at (6g, to), then by continuity this persists for all nearby
(0, t). Thus by (4.51), there exists a neighborhood of (6, ty) on which
0cFII*[106F |* = (3:F, 96F). (4.52)

The Cauchy-Schwarz inequality then implies that these two vectors are multiples of each other, that is

adF = 9yF. (4.53)
Since J := 9yF is a Jacobi field, it is determined by J(ty) and d;J(to). But for (6, t) close to (6g, to)

J(t) = 0gF (0, t) = a(0, t)dF(6, t), (4.54)
and so

J(to) = a(0, to)aF(6, to), aJ(to) = 0:a(6, to)0F(6, to). (4.55)

The Jacobi equation then yields
dpF = J(t) = [a1(0)(t — to) + a2(0)] &, F. (4.56)

In particular, the pre-geodesics 6 — F(6,1) and & — F(6,0) coincide with the geodesic t — F(6p,t) up to
reparameterization. We then have ¥(s) = ¥;(s + c) for some constant c, where s denotes arc-length parameter.

e Case II: K(9;F, 9,F) = 0 for all points. If D = 0 then we are done, so assume that D # 0. The subset S C N
generated by F(6, t) is then a 2-dimensional submanifold. According to the assumptions of this case, Lemma 4.7 implies
that S is totally geodesic and flat. Let p € S and O C T,N be the 2-plane spanned by dyF and o;F. The surface S may be
extended to be a complete maximal flat by setting S = exp,(0). The pre-geodesics ¥1(0) = F(0, 1) and ¥,(0) = F(6, 0)
are parallel straight lines in S in light of (4.50). Furthermore, the Iwasawa decomposition of the isometry group Gz may
be used to show that there is a subgroup which operates transitively on the maximal flat S, see [21, Section 6] for details
in the SL(3, R)/SO(3) setting which carries over without change to the present situation as both target spaces are rank 2.
Thus, there exists an isometry of the target space ¢ : N — N which maps J; onto ¥ up to translation in the arclength
parameter. O

4.4. Proof of the main theorem

In Section 3 it was demonstrated that bi-axisymmetric near-horizon geometry solutions of 5-dimensional minimal
supergravity correspond to singular harmonic maps from S\ I — Gy(2)/SO(4). These harmonic maps were shown to exist
in Section 4 asymptotic to a given model map. The choice of model map gives rise to corresponding minimal supergravity
near-horizon geometries having the prescribed horizon topology S3, S x S?, or L(p, q), and with prescribed electric charge
Q, angular momenta 7;, and dipole charge D (in the ring case). The uniqueness statement of Theorem 2.1 follows directly
from Theorem 4.8.

References

[1] A. Alaee, M. Khuri, H. Kunduri, Proof of the mass-angular momentum inequality for bi-axisymmetric black holes with spherical topology, Adv.
Theor. Math. Phys. 20 (6) (2016) 1397-1441.
[2] A. Alaee, M. Khuri, H. Kunduri, Mass-angular momentum inequality for black ring spacetimes, Phys. Rev. Lett. 119 (7) (2017) 071101.
[3] A. Alaee, M. Khuri, H. Kunduri, Relating mass to angular momentum and charge in 5-dimensional minimal supergravity, Ann. Henri Poincare
18 (5) (2017) 1703-1753.
[4] A. Alaee, M. Khuri, H. Kunduri, Bounding horizon area by angular momentum, charge, and cosmological constant in 5-dimensional minimal
supergravity, Ann. Henri Poincare 20 (2) (2019) 481-525.
[5] A. Bouchareb, G. Clement, C.-M. Chen, D. Gal'tsov, N. Scherbluk, T. Wolf, G2 generating technique for minimal d=5 supergravity and black rings,
Phys. Rev. D 76 (2007) 104032;  Erratum:, Phys. Rev. D 78 (2008) 029901.
[6] P. Chrusciel, J. Costa, M. Heusler, Stationary black holes: uniqueness and beyond, Living Rev. Relativ. 15 (7) (2012).
[7] S. Dain, Geometric inequalities for axially symmetric black holes, Classical Quantum Gravity 29 (7) (2012) 073001.
[8] M. Dunajski, J. Gutowski, W. Sabra, Einsteinweyl spaces and near-horizon geometry, Classical Quantum Gravity 34 (4) (2017) 045009.
[9] J. Eells, ]. Sampson, Harmonic mappings of Riemannian manifolds, Amer. ]J. Math. 86 (1) (1964) 109-160.
[10] R. Emparan, H. Reall, Black holes in higher dimensions, Living Rev. Relativ. 11 (6) (2008) 0801-3471.
[11] P. Figueras, J. Lucietti, On the uniqueness of extremal vacuum black holes, Classical Quantum Gravity 27 (9) (2010) 095001.
[12] G.J. Galloway, Rigidity of marginally trapped surfaces and the topology of black holes, Comm. Anal. Geom. 16 (1) (2008) 217-229.
[13] GJ. Galloway, R. Schoen, A generalization of hawkings black hole topology theorem to higher dimensions, Comm. Math. Phys. 266 (2) (2006)
571-576.
[14] S. Hollands, A. Ishibashi, On the ‘stationary implies axisymmetric’ theorem for extremal black holes in higher dimensions, Comm. Math. Phys.
291 (2) (2009) 443-471.
[15] S. Hollands, A. Ishibashi, All vacuum near horizon geometries in d-dimensions with (d — 3) commuting rotational symmetries, Ann. Henri
Poincare 10 (8) (2010) 1537-1557.
[16] S. Hollands, A. Ishibashi, Black hole uniqueness theorems in higher dimensional spacetimes, Classical Quantum Gravity 29 (16) (2012) 163001.
[17] S. Hollands, A. Ishibashi, R. Wald, A higher dimensional stationary rotating black hole must be axisymmetric, Comm. Math. Phys. 271 (3) (2007)
699-722.


http://refhub.elsevier.com/S0393-0440(19)30134-2/sb1
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb1
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb1
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb2
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb3
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb3
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb3
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb4
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb4
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb4
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb5
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb5
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb5
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb5
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb6
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb7
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb8
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb9
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb10
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb11
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb12
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb13
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb13
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb13
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb14
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb14
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb14
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb15
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb15
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb15
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb16
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb17
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb17
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb17

[18]

A. Alaee, M. Khuri and H. Kunduri / Journal of Geometry and Physics 144 (2019) 370-387 387

S. Hollands, S. Yazadjiev, Uniqueness theorem for 5-dimensional black holes with two axial killing fields, Comm. Math. Phys. 283 (3) (2008)
749-768.

[19] ]. Isenberg, V. Moncrief, Symmetries of higher dimensional black holes, Classical Quantum Gravity 25 (19) (2008) 195015.

[20]

[21]
[22]
[23]
[24]

[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]

M. Khuri, G. Weinstein, S. Yamada, Asymptotically locally Euclidean/Kaluza-Klein stationary vacuum black holes in 5 dimensions, PTEP. Prog.
Theor. Exp. Phys. (5) (2018) 053E01.

M. Khuri, G. Weinstein, S. Yamada, Stationary vacuum black holes in 5 dimensions, Comm. Partial Differential Equations 43 (8) (2018) 1205-1241.
H. Kunduri, ]. Lucietti, A classification of near-horizon geometries of extremal vacuum black holes, ]J. Math. Phys. 50 (8) (2009) 082502.

H. Kunduri, J. Lucietti, Static near-horizon geometries in five dimensions, Classical Quantum Gravity 26 (24) (2009) 245010.

H. Kunduri, J. Lucietti, Constructing near-horizon geometries in supergravities with hidden symmetry, J. High Energy Phys. 2011 (7) (2011)
1-31.

H. Kunduri, ]. Lucietti, Classification of near-horizon geometries of extremal black holes, Living Rev. Relativ. 16 (2013) 8.

H. Kunduri, J. Lucietti, Supersymmetric black holes with lens space topology, Phys. Rev. Lett. 113 (21) (2014) 211101.

H. Kunduri, . Lucietti, H. Reall, Near-horizon symmetries of extremal black holes, Classical Quantum Gravity 24 (2007) 4169-4190.

C. Li, J. Lucietti, Transverse deformations of extreme horizons, Classical Quantum Gravity 33 (7) (2016) 075015.

C. Li, J. Lucietti, Electrovacuum Spacetime near an Extreme Horizon, 2018.

R.C. Myers, M. Perry, Black holes in higher dimensional space-times, Ann. Physics 172 (2) (1986) 304-347.

A. Pomeransky, R. Sen’kov, Black ring with two angular momenta, arXiv preprint hep-th/0612005, 2006.

M. Possel, S. Silva, Hidden symmetries in minimal five-dimensional supergravity, Phys. Lett. B 580 (3-4) (2004) 273-279.

H.S. Reall, Higher dimensional black holes and supersymmetry, Phys. Rev. D68 (2003) 024024;  Erratum:, Phys. Rev.D 70 (2004) 089902.

A. Strominger, C. Vafa, Microscopic origin of the bekenstein-hawking entropy, Phys. Lett. B 379 (1) (1996) 99-104.

S. Tomizawa, M. Nozawa, Supersymmetric black lenses in five dimensions, Phys. Rev. D 94 (4) (2016) 044037.

G. Weinstein, Harmonic maps with prescribed singularities into hadamard manifolds, Math. Res. Lett. 3 (6) (1996) 835-844.


http://refhub.elsevier.com/S0393-0440(19)30134-2/sb18
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb18
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb18
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb19
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb20
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb20
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb20
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb21
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb22
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb23
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb24
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb24
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb24
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb25
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb26
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb27
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb28
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb29
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb30
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb32
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb33
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb33
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb34
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb35
http://refhub.elsevier.com/S0393-0440(19)30134-2/sb36

	Existence and uniqueness of near-horizon geometries for 5-dimensional black holes
	Introduction
	Statement of main results
	Bi-axisymmetric near-horizon geometries
	Harmonic map formulation of supergravity
	Near-horizon geometry data as a harmonic map
	Relation to harmonic map energy

	Existence and uniqueness of singular harmonic maps
	The model map
	A priori estimates
	Existence and uniqueness
	Proof of the main theorem

	References


