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Abstract: Necessary and sufficient conditions are provided for a class of warped product
manifolds with non-vanishing flux to be supersymmetric solutions of 11D supergravity.
Many non-compact, but complete solutions can be obtained in this manner, including the
multi-membrane solution initially found by Duff and Stelle. In a different direction, an
explicit 5-parameter moduli space of solutions to 11D supergravity is also constructed
which can be viewed as non-supersymmetric deformations of the Duff—Stelle solution.

1. Introduction

The 11D supergravity theory was first constructed by Cremmer et al. [10]. The bosonic
part of its action is given by

1 1 1
E(g,.A):/ ERdel_ZF/\*F+EA/\F/\F' (1.1)
M

Here g is a Lorentzian metric on an oriented 11-dimensional manifold M with one time-
like direction, R is the scalar curvature of g, * is the Hodge star operator, A is a 3-form on
M and F = d Ais the 4-form field strength (flux). The 11D supergravity theory occupies
a privileged position in unification efforts including gravity, as the highest dimensional
supergravity theory with no particle of spin greater than 2, and as a low-energy limit
of M theory (see e.g. [15,26,41,43] and references therein). Its profoundly geometric
nature makes its solutions not just interesting from the theoretical physics viewpoint,
but also from the mathematics viewpoint, where they may ultimately serve as models of
canonical metrics in new settings.

It is well-known that the equations of motion of the theory, i.e., the critical point
equation of the action L, are given by
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1
dxF = FAF, (1.2)
. 1 1
Ric;j = E(Fz)ij - 6|F|2gij~ (1.3)

In (1.3), Ric;; is the Ricci curvature tensor and (F 2); ; is the symmetric tensor given by

1
@%ﬁ=§ﬂmﬁﬁm=ﬂwﬁwm~

Here we follow the convention that for a p-form F one writes

1

F = —‘Fil_“ipdxil VANERIIVAN dxi",
p!
2 1 i1...p 1 i1Jj1 ipjp
F1 = Py B0 = By i jp 8750 8770

The simplest solutions to 11D supergravity equation are those with trivial flux, i.e.,
F =0, in which case the equations reduce to the vacuum Einstein equation

RiCij =0.

Therefore, we may think of the 11D supergravity equation as a generalization of the
Einstein equation by turning on the 4-form flux F.

Particularly interesting solutions of the 11D supergravity equation are the supersym-
metric ones, i.e. solutions (M !, g, F) to the equations of motion (1.2) and (1.3) which
admit a nonzero spinor & satisfying

Dy 1= Vyk — T;Fabcd(rab;f +8r¢s? e =0, (1.4)
where V is the Levi-Civita connection induced on the spinor bundle and I are Gamma-
matrices acting as endomorphism of spinors. In other words, the Levi-Civita connection
is twisted by the field strength F to produce a connection D on the spinor bundle, and
supersymmetry requires the existence of a parallel spinor under the twisted connection D.

The literature on solutions to 11D supergravity is immense, and we can only refer here
to a few representative papers [1,4,11,12,18,20,22,23,25,28,32,34-36,42], in which
more references can be found. A parabolic approach to 11D supergravity is proposed in
[21].

The main focus of the present paper will be rather on solutions of 11D supergravity
which are warped products. Warped products are well-known mathematical construc-
tions, but they appear to have been considered first in compactifications in string theory
by de Wit et al. [13], Hull [27], and Strominger [37]. An early application to solutions
of 11D dimensional supergravity was by Duff and Stelle [19], which will be of partic-
ular interest to us and will be discussed in greater detail in Sect. 4. More precisely, we
consider general warped products M'! = M3 x M® as in (2.1) below, with the ansatz
(2.2) for the flux F. We give necessary and sufficient conditions for such configurations
to be a supersymmetric solution or just a solution of 11D supergravity (Theorems 2 and
3). The implementation of these conditions turns out to be surprisingly simple: in effect,
it suffices to have a Ricci-flat manifold Mg, equipped with a strictly positive harmonic
function. While these two requirements combined exclude the possibility of a compact
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manifold Mg and a smooth harmonic function, they allow for a wealth of examples con-
structed from either a compact Ricci-flat manifold, or complete Ricci-flat manifolds with
faster than quadratic volume growth (Theorem 5). In both cases, by results of Cheng—Li
[5] and Li—Yau [30], the Green’s function is positive and can be used as the harmonic
function. Remarkably, the construction of complete Ricci-flat manifolds with maximum
volume growth is a topic of great current interest in mathematics, and the results obtained
recently there, for example by Conlon and Rochon [9], Li [31], and Székelyhidi [38]
can be put to good use through Theorem 5 to produce new supersymmetric solutions
of 11D supergravity. Finally, we return with this new understanding to the Duff-Stelle
solution. With the ansatz of Duff-Stelle, namely Mg is conformally flat and radially
symmetric, it is easy to see that the explicit expressions obtained in [19] follow at once
from Theorem 3. On the other hand, if we give up on the requirement of supersymmetry
and try only to solve the field equations, we find not just the Duff-Stelle solution, but in
fact a whole 5-parameter family of solutions. It is an interesting mathematical problem
to determine whether some analogues of Theorems 3 and 5 can hold in the absence of
supersymmetry.

2. Supersymmetry and Field Equations

The goal of this section is to classify all supersymmetric solutions to the 11 D supergravity
equation on M = M3 x M?® of the form

811 =€2A83 + g8, 2.1)
F = dvols A df, (2.2)

where g3 is a Lorentzian metric on M3, gg a Riemannian metric on M®, dvol3 the volume
form associated to g3, A and f are smooth functions on M3 It is convenient for us to
refer to this geometric set-up just as (g3, g8, A, f).

Throughout this paper, we say that (g3, gg, A, f) is a solution to 11D supergravity if
f is not a constant and the pair (g1, F') solves the equations of motion (1.2) and (1.3). If
f is a constant, then F = 0 and the equations of motion reduce to the vacuum Einstein
equation. Therefore we only consider the case where f is not a constant.

We say that (g3, g3, A, f) is supersymmetric if the pair (g11, ) admits a nontrivial
spinor, i.e. a section of the spin bundle Sy, called &, such that

1
'Dpi: = (VII)PE — ﬁFQRST (FQRS; + 8FQRS(37;))§ =0. (2.3)

We say that (g3, g3, A, f) is a supersymmetric solution if (g3, gg, A, f) is a solution to
11D supergravity with supersymmetry.

Throughout this section, as in (2.3), we will use capital Latin letters P, Q, R, S, T as
indices for the 11-manifold M!! = M3 x M?, Greek letters a, B, y as indices for M 3,
and lowercase Latin letters a, b, ¢, d as indices for M8. The symbol V always denotes
the Levi-Civita connection, whose subscript indicates the reference metric. For instance,
V3 is the Levi-Civita connection with respect to the metric g3.

For any real vector space V equipped with a quadratic form ¢, we define the associated
Clifford algebra CI(V, gq) as

Cl(V,q) =T (V)/14(V),
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where T (V) is the tensor algebra of V and I, (V) is the ideal generated by v ® v — g (v).
If g is a non-degenerate pairing of signature (r, s), we will use the short hand notation
Cl(r, s) for CI(R"™*, q).

As associative algebras, it is well-known that

Cl2, ) =ZRQ2)®dR(2), CI(8,0) = R(16),
hence
CI1(10,1) = C1(2,1) ® CI(8,0) = R(32) & R(32).

Here we have denoted by R(m) the algebra of m x m real matrices. Let {yy}o=1,23 be
the standard generator of C1(2, 1) and {¥,},=1.... 8 the standard generator of CI(8, 0).
Write Y9 = XX ... Xg which satisfies

.....

$2=1, %% +%;%9=0, Vj=1,...,8.

Let {I'p}p=1,....11 be the standard generators of CI(10, 1). It is straightforward to check
that an explicit isomorphism CI(10, 1) = CI(2, 1) ® CI(8, 0) is given by

{(Cplp=t,.11 = {Va ® X0, 1 ® By}a=1,2,3: a=1,....8-

In addition, we use P to denote pinor representations, i.e., irreducible representations
of Clifford algebras, and S to denote spinor representations, i.e., irreducible represen-
tations of the even part of Clifford algebras. The same letters are used for pinor and
spinor bundles over manifolds. From the structure results stated above, we know that
CI(2, 1) has exactly two inequivalent pinor representations P;E and both of them are
2-dimensional. When restricted to the even part C1(2, 1)°, both pinor representations are
isomorphic to the spinor representation S3. As for the Clifford algebra C1(8, 0), there is
a unique pinor representation Pg of dimension 16, which decomposes as the direct sum
of two inequivalent spinor representations:

Py =S ®Sg,
where 38jE are the eigenspaces of Xg with eigenvalue +1. Moreover, we have the fol-
lowing isomorphisms
P = Py ® Py,
S11 =850 Ps.
In order to classify all supersymmetric solutions, the first step is to pin down g3.

Lemma 1. If (g3, g3, A, f) is a solution to 11D supergravity, then g3 has to be an
Einstein metric.

Proof. Plugging in the ansatz into (1.2), (1.3), the equations of motion reduce to

d(e 3 xg df) =0, (2.4)
) e_6A e—6A )
(Ricg)ap — 3(VgA)ap — 3A,Ap + Tfafb - Tlvsfl (g8)ab =0, (2.5)
e_4A

(Ric3)gp = <€2A(A8A +3|VsAl%) — T|vgf|2> (83)ap- (2.6)
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As A and f are independent of M3, (2.6) implies that there exists a constant A such that
Ric3 = Ag3

and
—4A

e
A (AgA +3|VgAl?) — T|vgf|2 = A 2.7)

Hence g3 must be Einstein.
From now on, we will always assume that g3 is Einstein with Einstein constant X.
The next step is to understand supersymmetry. 0O

Theorem 1. Suppose g3 is Einstein in the sense that Ric; = M\g3. Then the tuple
(g3, g8, A, [) is supersymmetric if and only if

(@ A=0,

(b) df = £d(e*),

(c) and the conformally changed metric gg = e_A gs admits a covariantly constant spinor
with respect to its Levi-Civita connection Vg.

Proof. To help analyze supersymmetry, we first consider the auxiliary product metric
g1 = &3 +gs. Since S;1 = S3 ® Py holds pointwise, we may identify the spinor bundle
S}, associated to g1, as the tensor product of the spinor bundle S3 of g3 with the pinor

bundle Pg of gg. In addition, there is an isometry of vector bundles (7T M 1 g1) =
(TM', gy given by

(X3, Yg) > (e* X3, Yy),

therefore we may further identify the spinor bundle S associated to g1 with S3 ® Pg
as well. Let {e, }3:] be a local orthonormal frame of g3 and {e, }2=1 alocal orthonormal
frame of gg, then

1 —A
{er}p_) ={e "en. €ata=123, a=1,..8

is a local orthonormal frame for g1;. Write ez = e “e, and let € be a local section of

S3 and 7 a local section of Pg, then the Clifford multiplication associated to g1y under
above identification is given by

Fa(e ®n) = (Yu€) @ (Zon)

and
Fa(e®n) =€ ® (Xam)-
In addition, the Levi-Civita connection V = V| can also be identified as
1
Va(e ®n) = ((V3)g€) @1 + E(Vae) ® (0“(e™)ZaTon), (2.8)
Va(€e ®@n) =€ & (Vg)an. (2.9)

These identities can be derived from the local formula

1
Vo =dg+ ngsrRrs.
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Using formulae in “Appendix”, we have
517 _ A/ uﬁ _ ﬁa a bc __ /\bc
w, =e (w)gy, w; = 8'38 w, = (o),
and all other components of connection are zero. Therefore

Vs = 0y + %(wg};FEF); +20271,7)

=0z + ;i(e—*‘(wbgyyﬁyy ® X5 —2850“Ayp ® TaZo)
= e (0 + %(w/):iymy) - %Va ® (09A X,39)
=t ((va)a ‘v ® a‘l(e/*)EaEg) .

Consequently, we get (2.8). Similarly, (2.9) holds as well. O

Moreover, we find, by calculation,

—2A
o pors(DPORS 18P PORsS ) = Tym@a I =,
—3A
e
58 pors(DPORS 4 gQPORSS ) — 7)/469(8 F(EpZa — BgZp) — 434 f) Xo,

where y4 = y1y2y3 is a central element in C1(2, 1) square to 1.

As for a pinor € on M3, we have yse = 4. Without loss of generality, one may
assume ys€ = €, since thls sign corresponds a choice of the pinor bundle 733 , which
gives isomorphic spinor bundle S3.

With all these preparation, we may compute the curvature tensor F of the twisted
connection D. It is straightforward to compute that

et 2 3412
Fap(e ®1) = (rope) ® ( 1+ = (Ve /1> = V5™
— 3@ F (5T — TeTp) ) )

Now suppose that (g3, g8, A, f) is supersymmetric, therefore there exists a spinor &
such that D& = 0. Since S1; = S3 ® Py and that S3 is 2-dimensional, we can find a
local frame €1, €5 of S3 and write

E=€1®@n +e2Qn.

In general, n; and 7, are combinations of sections of Pg with function (may have M 3
dependence) coefficients. However at any fixed point, we can think of 71 and 7, as pinors
on Mg. Since D& = 0, we know that

—4A
e
Fap (&) = Yape1 ® (A + e (Vs = Vae?P

- a”(e”‘)aCf(Ebzc ~ c5h)) ) m
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—4A

e
*Vaper ® (k + S (Vs = V362

— 8PN f(Bp e — EZp) %) ) m2
=0

for any o, B. In particular, we may choose o and 8 properly such that y,gei and yygen
are linearly independent, therefore we conclude that

—4A
e .
(A + e (VP = (Vs = 0 )0 £ (T e - zczwzg)) n =0
forj=1,2.

Claim: 3% (¢34)9° f (2, T, — =.25) = 0, or equivalently, there exists a function 4 such
that 3 (e34) = h 8” f for any index b.

We establish the claim. As § = €1 ® n1 + €2 ® 2 # 0, we may assume that n; # 0
and decompose 171 = nj +n| as a sum of eigenvectors of 9. Without loss of generality,
we may assume that nf # 0, hence, by making use of £, X, = 24, — X X, one obtain

1
0”@ f TSy nf = (ab(e“)aCfabc =90+ S (Vs P — |V8f|2)> ni
Therefore, at any given point we may write

(Mo f eyt =t

for some number p. By our assumption f is not a constant so we may choose a point
such that Vg f # 0, hence by multiplying Vg f = 9 f X, from left on both sides, we

get

(ab(e“) YL, ) Zpnf =0

Vs f 12 b
Consequently
M b
8b(e3A) — P f
Vg f1?
for any b, the claim is proved, and
oA
b= (Vs /17 = [Vse™ ). (2.10)

We can compute other components of F as well. For example, by making use of the
relation 8% (¢34)98° (£ T, — E.%p) = 0, one obtains

(Faale @)

e—SA
= Y€ ® (Taaﬂab(e“) +9" f29) Ty

e_2A
—(V8)a (T(ab<e“>29 - a”f)) Ebn) :
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By a similar argument, we see that
e 49, (3T — 3 FEpB0)n; — 3(Vs)a
x (e—2A(a”(e3A)2b29 _ abbe)) ;=0 @2.11)

for j = 1,2 and any a. We may assume that 5] # 0 as before. As we have shown that
3P (e34) = h 8” f for some function A, the above equation can be rewritten as

(h — 1)(V8)a (3 fSp) i = H £ Syt
for some smooth function H.

Claim: 7 = 1.
If the claim is not true, then we can find an open set such that z — 1 # 0 in that open
set. Thus in this open set, we have

(V8)a(Vs f) =

v
o1

for any a. By pairing with the vector field e, we get

_ V2 _ H
fb —( gf)ab = mfa

h—1
As f is not a constant and the frame {e, }221 is arbitrary, the above equation holds only
when H = 0,ash # 1, we get (Vg)f = 0, hence | V3 f|? is a nonzero constant. Plugging
it back to (2.11), one obtain

Qh+1)(h — ), A = hda(h — 1).

Notice that (2.10) now becomes e 44 (h — 1) is a constant proportional to . As h # 1,
the only possibility is that A is a constant and 4 = 0. Plug in (2.11) we get 0 f = 0,
contradiction!

So the claim is proved and we conclude that Vg4 = Vg f. If we work with n
instead, then analogously we show that Vg f = —Vge3A. As a result, we have shown
that supersymmetry implies that

df = +d(),

which further dictates A = O from (2.10).

As L = 0, the Ricci-flatness in dimension 3 implies that g3 is flat, therefore we
may choose €] and €, covariantly constant under V3. In this way, one can show that
DE = D(eg @ n1 + €2 @ np) = 0if and only if D(e; ® n1) = D(exa ® n2) = 0.
Therefore we may assume that £ = € ® n is decomposable. Furthermore (2.13) implies
that 91 = +£n, that is, n must be a section of one of the spinor bundles SgjE instead of
a random section of the pinor bundle Py = Sg @ Sg .

Taking all these into account, we find that D(e ® 1) = 0 if and only if

1
(Vg)an + §(48aA +0" AT — TpZa))n =0 (2.12)
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for any a. Consider the conformally changed metric gg = e’ gg, we can identify its
Levi-Civita connection Vg as!

- 1
(V8)an = (Vg)a + 0" A(TaTp = TpTa)n.
So (2.12) can be rewritten as
- 1
(Vg)an + EaaA =0
or equivalently

Vs(e??n) = 0.

Thus, we have proved that a supersymmetric tuple (g3, gs, A, f) implies that g3 is flat,
df = +d(e*4), and that the conformally changed metric g3 = e gg admits covari-
antly constant spinors with respect to Levi-Civita connection. The other direction is
straightforward.

As a corollary, we have

Corollary 1. Suppose (g3, g3, A, f) is supersymmetric. Then the conformally changed
metric gg = e gg is Ricci-flat. Moreover, let N1 be the number of independent spinors
satisfying (2.3) and let Ngt be the dimension of the space of covariantly constant spinors

of the spinor bundle Sét associated to the metric gg. Then
Nip =2Ng if df =d(?)
and
Niu=2Ng if df =—-dE*).
From Theorem 1 we know that
df = +d(e*?) (2.13)
is a very natural condition, under which we have the following result:

Theorem 2. Assume (2.13). Then (g3, g3, A, [) is a solution to equations of motion
(1.2), (1.3) if and only if

(a) g3 is flat,
(b) the conformally changed metric gg = e” gg is Ricci-flat,
(¢) and A satisfies the Laplace equation AgA = 0, or equivalently,

Agee 34 =0, (2.14)

where Ag and Ag, are the Laplace operators defined respectively by the metrics gg
and gg.

Proof. Under (2.13), (2.4) is equivalent to (2.14). Under (2.13) and (2.14), (2.7) is

equivalent to that g3 is flat. Moreover, (2.5) is equivalent to that gg is Ricci-flat under

(2.13) and (2.14). Formulae in “Appendix” are used to derive these equivalences.
Summarizing Theorems 1 and 2, we have proved O

! This formula is well-known, see for example [2, pp. 16-17], where we need to change the sign of abA
as Baum et al. use the convention v - v = —¢g(v) for Clifford algebra.
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Theorem 3. The tuple (g3, g8, A, f) is a supersymmetric solution to 11D supergravity
equation if and only if

(a) g3 is flat;

(b) gg := eAgg isaRicci-flat metric admitting covariantly constant spinors (with respect
to Levi-Civita connection);

(¢) e=34 is a harmonic function on (M3, gg) with respect to the metric gg;

(d) df = £d(&4).

In [44] McKenzie Wang showed that a simply-connected irreducible Riemannian
manifold admits covariantly constant spinors if and only if it has Ricci-flat holonomy,
which in dimension 8 must be one of the groups SU(4), Sp(2) and Spin(7). Combin-
ing Wang’s theorem with Theorem 3, we have the following holonomy classification
result. For simplicity, we only state the irreducible and simply-connected case. For more
complicated cases, one can consult [33] and other references in literature.

Theorem 4. Let (g3, g3, A, ) be a supersymmetric solution to 11D supergravity on
M = M3 x M3 with M8 simply-connected and gg = e” gg irreducible. Then one of
the following cases must occur:

(a) Ni1 = 2: the metric gg has holonomy group Spin(7) and df = d(e3%);
(b) N1y = 4: the metric gg has holonomy group SU(4) and df = d(e4);
(c) N1 = 6: the metric g has holonomy group Sp(2) and df = d(e’h).

We remark that the relation df = —d(e>*) may hold in the case gg is reducible. For
example, when the solution has maximal number of supersymmetries, i.e., N1; = 16,
the Ricci-flat metric gg has to be flat and both cases of df = +d(e3*) can occur, as in
the Duff-Stelle case [19].

3. Examples from Ricci-flat Manifolds and Green’s Functions

Theorem 2 shows that solutions of 11D supergravity can be constructed from a Ricci-
flat manifold M® equipped with a positive harmonic function ¢34, Because the case
of constant A would just lead back to the vacuum Einstein equation, we look for gg
being defined on a non-compact manifold, in which case we can just choose e ™34 to be
a Green’s function on a complete manifold. Recall that for a Riemannian manifold M,
taken to be eight-dimensional for our purposes, a Green’s function G (x, y) is a smooth
function on M x M away from the diagonal x = y, which is symmetric, harmonic in
each variable, positive, and with the following asymptotic

G(x,y) =d(x,y) (1 +0o(1) 3.1
for d(x, y) small, where d (x, y) is the distance from x to y. Green’s functions have been
shown to exist by Cheng—Li [S] on compact manifolds, and by Li—Yau [30] on com-

plete Riemannian manifolds with non-negative Ricci curvature and faster than quadratic
volume growth, in the sense that

Vol(B(p, r)) > 6r**¢ (3.2)

for some & > 0 and ¢ > 0. Here, B(p, r) the ball of radius r centered at p € M.
Combining these results with Theorem 2, we obtain the following:
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Theorem 5. Let (M3, gg) be a Ricci-flat Riemannian manifold which is either compact

or complete with faster than quadratic volume growth. Let py, ..., p, be any finite set
of points in M®, and my, . .., m, a finite set of positive numbers. Set
n
Gx)=) m;G(x,p)). (3.3)
Jj=1

Then the manifold M® = M8\{p1, ..., p,}, together with the function A defined by
e 34 = G, gives a solution to the 11D supergravity equations. Furthermore, the metric
g8 = e_Agg is complete on Ms.

Proof. If (M8, gg) is complete with faster than quadratic volume growth, we have
the following estimates for the volume of B(p, r),

6 r>* < Vol(B(p,r)) < wg r® (3.4)

where the upper bound is a consequence of the Bishop—Gromov volume comparison
theorem. By a result of Li and Yau [30], there exists a Green’s function G(x, y) on
(Mg, gg) satisfying

> 1 *© 1
c! / ——dt <Gx,y) < C/ ——dt (35
d(x,y)? Vol(B(x, ND)) *,3) d(x,y)? Vol(B(x, V1) (3-5)

for some uniform constant C > 1. It follows that

1 1 -
Cild(x—y)é SG(X, y) Sceilm, for any )C,yEMg. (36)

Recall that e=4 = G'/3 and gg = G'/3gg. The metric gg is a well-defined Rieman-
nian metric on M3, the complement of the singular points pp, ..., p,in M 8. Near each
singular point p;

1

B A (i 02t

Therefore, dg(x, p;) = +o0o for any x € M 8 and (M3, gg) is complete near each
singular point p;. Moreover, the metric gg is asymptotically to the standard product
metric on R x S7 as dg (pi, x) — 0.

Similarly, the completeness of (M 8 gg) near infinity is a consequence of the estimates
(3.6) for the Green’s function. So (M8, gg) is a complete Riemannian manifold.

If M3 is compact, we may take e 34 = G. By similar estimates as above, we see
that gg = e~ gg is complete near each singular point p;, and in this case, (M3, gg) is
also complete.

We survey some known examples of compact or noncompact Ricci-flat 8-dimensional
manifolds. By Theorems 2 and 3, we have complete solutions to the field equations (2.4),
(2.5) and (2.6) for such examples. They are all supersymmetric, except possibly for some
examples constructed from Riemann surfaces in Sect. 3.3. 0O
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3.1. Compact examples. The following examples are included in Joyce’s book [29].

1. Compact real 8-manifolds with holonomy Spin(7). Let 78 be a torus equipped with a
flat Spin(7)-structure (20, go), and a finite group I" of automorphisms of 7°® preserving
(0, go). Then T8/ T is an orbifold with flat Spin(7)-structure (o, go). Let M® be a
suitable resolution of 7’8 / T" such that M8 is simply connected. Then M*® admits a torsion
free Spin(7)-structure (2, g) with Hol(g) = Spin(7). Thus, Ric(g) = 0. More examples
of compact Spin(7) manifolds can be found in [6,39]

2. Compact real 8-manifolds with holonomy Sp(2). Here we briefly present two ex-
amples of Beauville [3]. We start with a compact complex surface X. Let X ™ be the
m"-symmetric product of X which is a complex orbifold with complex dimension 2.
Take X" to be the Hilbert scheme of 0-dimensional subspaces (Z, O7) of X of length
dimcOz = m. Then X" is a compact complex manifold with dimc X" = 2m, and
the natural projection 77 : X"l — X is a crepant resolution. (1) If X is a K 3-surface,
then X!2! admits a 61-dimensional family of metrics g with holonomy Sp(2). (2) If X
is a compact complex torus 7# which can be regarded as an abelian Lie group. So there
is a natural map o : X® — X given by the summing the 3 points. Let K?(X) be the
kernel of the map o o : X131 — X then K?(X) is a a complex 4-dimensional manifold
admitting a 13-dimensional family of metrics g with holonomy Sp(2).

3. Compact real 8-manifolds with holonomy SU(4). These are complex 4-dimensional
Calabi—Yau manifolds with trivial first Chern class. By Yau’s theorem [45] there is
a unique Ricci-flat Kéhler metric in each Kihler class. Examples of Calabi—Yau 4-
manifolds include smooth hypersurfaces in CP> with degree 6. Our construction is
closely related to the work of Becker—Becker [4] and Prins—Tsimpis [36].

3.2. Non-compact examples, complete with maximum volume growth. In this section we
will present some examples of complete Ricci-flat metrics on noncompact 8-manifolds
with maximal volume growth.

1. Complete Kihler—Ricci-flat metrics on C*. Recently, Székelyhidi [38], Conlon-
Rochon [9] and Li [31] constructed nontrivial Ricci-flat Kihler metrics on C* with
maximal volume growth. The desired Ricci-flat metrics g are perturbations of (sin-
gular) Ricci-flat metrics on some metric cone to which (C*, g) is asymptotic. More
precisely, let f be a polynomial on C* and M; C C> be the graph of — f defined by
z+ f(x1,...,x4) = 0. So M is biholomorphic to C*. Assume the cone f‘l(O) cct
has isolated singularity and the cone My = C x f ~1(0) admits (singular) Ricci-flat
cone metric go, then go can be perturbed to a complete Kihler—Ricci-flat metric g
on M, with tangent cone at infinity isometric to (M, go), in particular, (M1, g1) has
maximal volume growth and is non-trivial for generic choice of f. For example, if
f(x) = x} +x3 +x3 +x3, ie f71(0) is the A;-singularity, Mo admits a Ricci-flat
cone metric given gs; by the product of Stenzel metric and standard metric on C. So C*
admits a nontrivial complete Ricci-flat Kihler metric which is asymptotic to (Mp, gst).

2. Complete Kihler—Ricci-flat metrics on quasi-projective manifolds. This class of Ricci-
flat metrics was first constructed by Tian—Yau [40] and later refined by Conlon—Hein
[8]. If M is a compact Kdhler orbifold with dimc (M) = 4 and codimc (Sing(M)) > 2.
Let D be a neat and almost ample sub-orbifold divisor in M such that Sing(M) C D
and D € | — BK ;| for some B € (0, 1). If D admits a KE metric with positive scalar
curvature, then M = M \ D admits a complete Ricci-flat metric with maximal volume
growth.
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3. Asymptotical conic Ricci-flat manifolds. Let M be a complex noncompact manifold
with a nontrivial holomorphic 4-form €2 and (M, €2) is asymptotic to a Calabi—Yau cone
(C, go, R20) with some positive rate. Then it is shown by Conlon—Hein [7] that there
exists a unique Ricci-flat metric g in each Kéhler class on M with suitable asymptotic
condition, such that g is asymptotic to the cone metric gp with some positive rate.
Therefore (M, g) has maximal volume growth. Examples of this type include the ALE
Kihler complex dimension 4-manifolds studied by Joyce [29].

3.3. The case of Riemann surfaces. In this section, we look for solutions on M3 =
M® x M? with Riemannian metrics of the form

gs=eBgo+ g, BeC®(M?).

We also assume the 1-form df and the function A depend only on M?2. We rewrite the
equations (2.5) and (2.7) with . = 0 as (we use i, j, ... to denote the indices on M 2
and 4, v, ... those on M®)

Ric(g2)ij — 6(Vg,B)ij — 6BiBj — 3(V,, A)ij — 3AiA;

676A eféA 5
o fifi = = IV 1 (82)i =0,
Ric(g6) v — (Ag, B +6|VB[*)e*B g6 1 — 382(VA, VB)e*B gg 10
e 04 2 2B
75 IV flg,e™ 86,0 =0, (3.7
and
, ™ 2
ApA+682(VA, VB) +3IVAl, — —— |V fIg, =0.

Since A, B and f depend only on M, equation (3.7) implies g¢ is an Einstein metric,
Ric(ge) = Age for some A € R, and (3.7) becomes

—6
2 e 4 2 _ % —2B
Ag, B +6|VB| +3g2(VA,VB)+—6 V" = e 7.

With the supersymmetry assumption (2.13), df = +d(e34), the equations above are
reduced to

3 3
Ric(g2)ij — 6V3B — 6B;B; —3V4A + SAIA) 5|VA|282,ij =0, (3.8
3 .
Ag, B+6|VB[;, +3g:(VA, VB) + 5|VA|§2 = he 2B, (3.9)
and
Ag, A+6g2(VA, VB) = 0. (3.10)

If furthermore we assume (M 6 g6) is Ricci-flat, i.e. A= 0, then one can check equations
(3.9) and (3.10) are equivalent to

A, K +6|VK[,, =0, or Age®® =0, (3.11)
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and
Age 4 +6g2(VK, Ve 34) =0, (3.12)

where we denote K = B + %. And equation (3.8) becomes
. 3
Rlc(gz),-j — 6(V§2K)ij — 6K,‘Kj + 3KiAj + 3Kin - §|VA|§282,1']‘ =0. (3.13)

With Egs. (3.11), (3.12) and (3.13) at hand, we discuss some explicit solutions. Recall
that we fix a Ricci-flat manifold (M°, g).

1. When K = const, we take ¢ >4 to be a positive (possibly singular) harmonic
function on M? (note that the choice of harmonic functions on M? is independent of the
metric g2). The Eq. (3.13) implies that

. 3 ) 1
Ric(82)ij — SIVAlg, 245 = Ric(82)ij = 5 Mg Ag2,ij =0,

If we define g = e g, the equation above says that Ric(g») = O on the set of M2
where ¢34 is smooth. As remarked above, A & e~>A = 0. This implies the product metric
gs = e’ gg = e?K g6 + e g2 is Ricci-flat, which is just a special case of Theorem 2. This
solution can be made supersymmetric by taking M° to be Calabi—Yau.

By the uniformization theorem, complete flat manifolds (M 3 g2) are either the Eu-
clidean plane C, cylinder S! x R or the compact torus 7. Since such manifolds cannot
admit non-constant smooth positive harmonic functions, we cannot expect e 34 to be
smooth. Since C is parabolic, i.e. it admits no positive Green function, for such examples,
we can take ¢34 to be constant, which gives rise to trivial solutions.

To get nontrivial solutions, we choose M? to be an open Riemann surface with
boundary dM? # (. For example we may take M? to be the unit disk D C C or the
punctured unit disk D* C C\{0}. We pick go = gc, the Euclidean metric on C, and
e 34 = Re(¢) — plog|z|? for any holomorphic function ¢ € O(D) with positive real
partRe(¢) > Oand any i > 0. Then g = e‘Agc defines a solution to (3.13). However,
the metric g; is incomplete on D or D*. In sum, the tuple (g11, F, A) given by

2K

g1 = Mgy + 2K Agg+e7Age, F = +dvols A d(e*?)

1
A =—>log (Re(9) — pulog|zf?), V¢ €OD), u=0,

on M1 = M3 x M® x M? with (M3, g3) and (M®, ge) being Ricci-flat and M?=D
or D*, satisfy the equations of motion (2.4), (2.5) and (2.6). Replacing g¢ by ¢*K g¢, we
can also express g1 as

g1 = (Re(¢) — ploglz?) 3 g3 + (Re(@) — ploglz?) (g6 +g0).  (3.14)

2. When K # const, from (3.11), we know K isa positive harmonic function. Again
we take M2 = D or D*. Let 7 = x1 +ixp € C be the standard coordinate on D or
D*. Observe from (3.12) that if e 34 is proportional to K, (3.12) is also satisfied. By
adding a positive constant to K if necessary we may assume K > O and e 34 = K, i.e.
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A= —% log K. With this choice of (K, A), it suffices to find metrics g» to the Eq. (3.13),
which can be rewritten as
2
KiK; _ l |VK|g2
K 6 K?

Ric(g2)ij — 6(V4,K)ij — 6K, K; —2 i =0. (3.15)
This is a system of second order partial differential equations in g», and we do not expect
to find general solutions to this equation for general choice of ¢®X. So we now focus on
some special cases depending on the positive harmonic function %X .

o If €K is linear in x; and x,, e.g. ¢®8 = x| + 10. We look for the metrics conformal
to the Euclidean one, i.e. go = e2?g¢ for some ¢ € C*®(M?), Eq. (3.15) becomes

—Dge8ij — 60K +6 (0K +¢Ki) —6(VK, V)i

K;K; 1IVK[
’Kf—g Kzgca,»,:o. (3.16)

—6K;K; —2
By straightforward calculations, we can check that

5 1
Q= _EK + glogK + C, foranyconstantC € R,

satisfies Eq. (3.16). Hence g, = e KKl1/3

tuple (g11, F, K) given by

gc defines a solution to (3.15). Therefore the

g1 =K Pg3+ K'Be?Kge + K13 K g, F = +dvols AdK

satsifies the equations of motion (2.4), (2.5) and (2.6) on M = M3 x M® x M? with
M? = D or D*. For example, we may take K = % log (10 + x1), then

62/3 ((10+x1)1og (10+x)"  (log (10+x1))""
= g+ 86 + &c
(log (10+x1)* 61/3 61/3(10 +x1)7/0
and
+1
F=———dvols Adx;
6(10 +x1)

define an explicit solution, where we recall that x| is one of the coordinates on D or D*.
o If %X is radial symmetric, i.e. it depends only on r = |z|. For example, we can
take eX = —clogr?+1forany ¢ > 0. Again A = —% log K and we try to find metrics

g2 of the form g, = ¢*?gc for some ¢ € C>°(D*). One can check that

1 5
p= glogK — logr — 5K+C, for any constant C € R

satisfies the Eq. (3.16). Therefore gy = r=2e=5K+3 log K o satisfies the Eq. (3.13) and
correspondingly, the tuple (g11, F) given by

gl = K 2Pg3+ K132 K gg +r 2K V3K ge, F = +dvols AdK
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defines a solution to the equation of motion (2.4), (2.5) and (2.6) on M = M3 x M6 x

D*. In particular, if we choose ¢®® = —logr? + 1 on D*, then (g1, F) are given by
62/3 log (1 — logrz) 13
g = 5383+ ( 73 ) (1 — logr®)' /g6
(log (1 — logr?)) 6
log (1 — logr?))"/?
+r_2( g 2r”) (1 — logr?)™/%gc

61/3
and

+1

F=———dvols Ndr.
3r(1 —2logr)

4. The Duff-Stelle Ansatz

In their seminal paper [19], Duff and Stelle discovered the (multi-)membrane solution
to 11D supergravity by making following assumptions on the tuple (g3, gg, 4, f):

(a) g3isflat;

(b) The Killing spinor £ is a pure tensor product of a covariantly constant spinor € on
M?3 and a pinor n on M8;

(c) M8 is a radially symmetric open domain in RS, the metric (gg); = e’ is
conformally flat, where B is a smooth function on M 8 and all the functions A, B
and f depend only on the radial variable r.

2B

From the analysis in Sect. 2 we know that assumptions (a) and (b) above are necessary
for supersymmetric solutions. In this section, we first re-derive the Duff-Stelle solution
using the framework of Sect. 3. Then we show that, by keeping assumption (c) above only,
we can construct a 5-parameter family of solutions to equations of motion, extending
Duff-Stelle’s work. Due to the classification result (Theorem 3 in Sect. 2), the only
supersymmetric solution in this family is the Duff-Stelle solution.

4.1. Derivation of the Duff-Stelle membrane solution. Take (M8, gg) to be R® equipped
with Euclidean metric in Theorem 5 and let M3 be the punctured Euclidean space R®\{0}.
It is well-known that a Green’s function on R® with source at origin is given by

1
G(x)=—,
() =
where r is the Euclidean distance to origin. By taking
eA=Gx)+M
for any nonnegative constant M, we get Duff-Stelle’s membrane solution described in

[19]. If we take e 34 tobe a positive linear combination of Green’s functions at different
points and a positive constant, then we recover the multi-membrane solution.
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4.2. The 5-parameter family of radially symmetric solutions. In this subsection, we
solve for all solutions (g3, g8, A, f) to equations of motion under Assumption (c). As
A, B and f depend only r, (1.2) and (1.3) are reduced to an ODE system:

[+ f (; +6B' — 3A’> =0, (4.1)

7
3e%4 <A” + A (- + 63/) + 3(A/)2> — e ()2 =31e%8, 4.2)
r

/

ZB/ A —6A
—2B"+— +2(B)> — A"+ = +24'B — (A)’ = —eT(f’)z, (4.3)
r r

13B’ 3A/ —64
+6(B)? + == +34'B' = —eT(f/)2. (4.4)

B +

The goal is to solve this complicated nonlinear ODE system.
First notice that (4.1) can be integrated to

F = My~ A8

for some constant M. Plug it into other equations, we get

M2 12 7 2 2B-2

—e PP = A"+ A - +6B") +3(A)? —re?P,

3pl4 r

M? 4B’ 2A'

—e 2B 4B’ _4(B)?+2A" — Z— —4A'B' +2(A"),
3pl4 r r

M? 26B’ 6A’

—e PP =—2B" - —12(B")> — — —6A'B'.

3r r r

Let L = L(r) be a function such that

e =e"r 7,
hence
1
B +-=1L".
r

The original system can be rewritten as

M2 1 A

T2 h=AT A (— + 6L’> +3(A)? = St (4-5)
r r r

M2 4., 2 4

3 se P = AL 424"+ —L'+ SA —4(L)? —4A'L' +2(A) + =, (4.6)
r r r r

M2 2 12

> 2L — _opr ;L’ —12(L)? —6A'L + = 4.7)

The above ODE system (4.5)—(4.7) has only two unknown functions A and L. There-
fore this system is overdetermined and a priori it may be inconsistent itself. Surprisingly,
we have the following theorem.
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Theorem 6. The ODE system (4.5)—(4.7) is consistent. In fact, it is equivalent to a single
3rd order nonlinear ODE
dv d*v dv\> _dv
T v+ 14— ) +2—(17v* - 60) + 120* —H)(* —6) =0. (4.8
ST (m) (170 — 60) + 120 —4H)(* ~ 6) (4.8)

As a consequence, we get a 5-parameter family of solutions to the equations of motion
(1.2) and (1.3) of 11D supergravity.

Proof. Writtu = A’ +2L and T = L — A, we get

12 2
W et - S = ST (4.9)
r r r
4 1 12
4+ T+ —u+ =T + 2 +uT’ +2T)* = = (4.10)
r r r

by eliminating the left hand side of (4.5)—(4.7). Notice that the second equation can be
rearranged as

1 2 6
(eZT)” + <— + u) (eZT)/ +4 <2u/ +Su+u’ — —2) 2T =o.
r r r
Introduce v = ur and eliminate e?” , we get

V' 02 (Tv +3) + 14002 + v'r (3407 + Tv — 119) + 12(v> — 4)(v> — 6) = 0.

Letr = ¢, then we get the desired 3rd order ODE (4.8). O

Assume we have a solution v of (4.8), then we know u and we can solve for 2T

from (4.9), hence also A" and L'. Therefore A and L are determined up to an additive
constant.
To check the consistency of the ODE system, one only needs to verify that the
functions A and L we get above satisfy any of the equations in the original ODE system.
We introduce

2

dv ) 2/ dv ) 1 (d®v _dv 3
X=|—+3v"—-12 2— —v'+4 )+ - | —+5—v—-3v+12v ) .
dt dt 3 \ dr? dt

By a lengthy calculation, we find that the consistency condition is that X satisfies

ax
T +4vX =0,
which turns out to be a consequence of (4.8).

Therefore, solving the equations of motion (1.2) and (1.3) under our ansatz is equiv-
alent to solving the 3rd order ODE (4.8). As there are 3 parameters for v, one additive
parameter to determine A and L, and an extra parameter A, we get a S-parameter family
of solutions to the 11D supergravity.

In general we do not know how to write down all the solutions to (4.8), however,
there are some explicit special solutions we can find.

1. For v satisfying
dv

2
—_— = = —4
dt © ),
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(4.8) is automatically satisfied. This corresponds to the case L’ = 0, or equivalently
B’ = —1/r. So L is a constant and (4.7) implies that M = +6¢5L . Furthermore, 4.5)
and (4.6) become

2 — A"+ i/ +3(A/)2 _ ieZL—ZA,
r2 r r2

4 A

— =A"+—+(A)

r r

The general solution is given by
A _ re*t (1—crty?
32C ré ’

where C is a constant with the convention that

A =cir
for C = 0, in which case A = 0, and

62A = C]r4
for C = oo, in which case A = 0. We can also write down the explicit expressions of B

and f’. It turns out that these solutions are isometric to either Freund-Rubin solutions
or Ricci-flat solutions.

2. For v satisfying
dv
dt

(4.8) is automatically satisfied. The corresponding solutions are given by

= -0’ -0),

21 2Cs (},2\/5)—1/3(1 _ Cr2«/€)2
€ - T B
6 (1+6Cr2v6 4+ C2p4v/6)2/3

1/3
s Ca [1+6Cr2Y64 26\ Y
e’ = —= ,
2 1’2\/6

.
B i(32C2A3C§)1/2r‘/6_1(1 — Cr2Vo)3
3(1 + 6Cr2vV6 4+ C274v6)2

f/
Here we should use the convention that

24— )‘TCZ,—NE/{ 2B — Czr_2_2‘/6/3, =0,

when C = 0 and

TS N S 6%;\@/3—27 7 =0

when C = o0. Here Cy, Cy, C are constants (with relation C; = AC2C2/3/6). So we
get a 3-parameter family of explicit solutions to 11D supergravity with A not necessarily
zero. The corresponding metrics gg on M? are incomplete.
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3. For v satisfying

dv
— =-30*—4),
7 (v )

(4.8) is also automatically satisfied. This corresponds to the case A = 0 considered in
Duff-Stelle [19]. As we are working with field equations only, we get more general
solutions compared to Duff—Stelle’s result.

What is more interesting is that for the A = 0 case, the ODE system (4.1)—(4.4) can
be solved explicitly and completely as follows.

We eliminate ( /)2 from (4.2) and (4.4) to get

13
(A" +2B"y+ —(A'+2B') +3(A’ +2B')* = 0.
r
Write u = A’ + 2B’ (this u is slightly different from the previous u), so we have

13
W+ 2 i3 =0, 4.11)
r

(a). If we take u = 0 as in Duff-Stelle [19], then (4.3) reduces to
[T = ()
o)
df = +d(e*),
therefore (4.1), (4.2) and (4.4) all reduce to
B" + 773/ +6(B)? =0, (4.12)
which implies that the scalar curvature of the metric gg is nonnegative.

If B = 0, we get the trivial solution with F=0 and M!! Ricci-flat. Another solution
is given by

hence

c
HM=cpt, PP==2 =460
r

We see that gg is a complete conformally flat metric on R®\{0} which is isometric to
Cr(R x S7). The eleven dimensional manifold M1!! is isometric to

(M? x R) x §7(/Ca),

where the metric on M3 x R is given by

gs = C1e*/VCpgs 4 (dx)?,
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where x is the coordinate on R and g3 is a flat Lorentzian metric on M3. The metric g4
is Einstein satisfying

. 12
(Ricy);; = _C_2(84)ij~
In this case one can also check that

6
F =+——dvoly,

VG

therefore this solution is a special case of the Freund-Rubin solution.
In general, we can take

_ M
T rrS+ M)

/

for some constant M to solve (4.12). We further get

6 \2/3 6 ~\—1/3 3/2 5
eZA:CI r e2B:C2 r f/::F6MC1 r .
ro+ M ’ ro+ M ’ r® + M)?

For M > 0, the corresponding gg is a complete metric on R¥\{0}, which is exactly
the solution found in Duff-Stelle [19]. And for M < 0, the corresponding gg is an
incomplete metric on R8\B(Y—M).

(b). We may also take u = —4/r to solve (4.11), in which case (4.3) reduces to

., 24B" 48 4
6(B) + —+— = —(f)",
r r 6

which implies that
2
[ =F6e (B’ + —> = £,
r

Combining it with (4.4), we get

198" 12
B" +6(B")* + +— =0. (4.13)
r
Two special solutions of (4.13) are B = — 1/r and B’ = —2/r, which correspond to
A’ = —2/r and A’ = 0 respectively.
In the first case, one can solve
6C"?

HA=cir ™, B=cr? ==

77

to get a Freund—Rubin solution.
In the second case one can similarly solve

eh=cy, L=chrt =0

and again we get the Ricci-flat solution.
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The general solution to (4.13) is

S
Tre+ M)
So we get
T v N .=
7 ’ (r6+ M)2

which is isomorphic to the Duff—Stelle solution. It is easy to verify that case (b) is related

to case (a) by the inversion r < L

(¢). The general solution to (4.11) is
—4
U—= ———=—
r(l —Crl2)
for some constant C, in which case B satisfies

19-7Cr2 , 4G -11Cr?)
r(1—Cr'?) r2(1—cCri22

B" +6(B)* +

To solve this Riccati equation, we first write p = r!2 and denote by B the expression

_dB B
T dp 12010

Therefore, the above equation can be rewritten as

. 5-3Cp .  3—1IC
B+6(B)*+ Loy B C—
2p(1 —Cp) 36p=(1 — Cp)
Let
. 5-3C
W=6B+—> 2P
4p(1 —Cp)

then W satisfies the Riccati equation

. —11 252
W+W2+9 8Cp +9C~p _0
48p2(1 — Cp)?

It is convenient to introduce the constant « = /7/3 = 1.5275.... By observation, one
of the solution to this equation (when C is positive) is given by

Wo — —%Cp +oz«/C,o+}1
O_

)

p(1—Cp)
and
1 1+./Cp
Wodp = ~ (log p +2log (1 — Cp)) +alog [ —Y=L )
[ o = oz 4 21021~ o o (VL)
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Therefore, by general theory of Riccati equation, we know a general solution of above
equation is of the form

1 <1_@>20t
1-C
W= W+ J/p(1=Cp) 1+££@
1 1-/Cp _
2a+/C ((1+@> 1) +2M
i 1-/Cp \ >
_ZiCp+ayCoy  J50-Cp (=)
p(1—Cp) 1 1-JCp \ 2 '
s () —1) vam
It follows that
1 -/ \
b= 1 |ayCp—1 N /p(1=Cp) <1+m)
6| p(1—Cp) | 1-/Cp \
s (/) —1)+2m
Therefore we get
Jla+) 1/3
6)3 2
s O <1+~/5’) 1 1 —VCro\ ™
c T Ten \ M save W1 vars :

(l—ﬁrﬁ)‘

‘We can also solve that
2a/3 2 =273
24 _ ¢ 1—+/Cr® “! M 1 1—VCro\ ™ 1
e’ = — - - )
"\ 1+VCro 4a/C \\ 1+ /Cro

2a—1
/ 6C,*V/1+4Ma/Cr’ (1 - ﬁrﬁ)
f + 1 LTS 2a 2 | \/6 6 20+1 °
(e ()" ) ()

When C < 0, one can similarly solve that

! (am cot (0 + 2o arctan (m» - 1) ,

B=—
6p(1 —Cp)

where 0 is related to other constants by 6 = 2aM+/—C.
It follows that

13

2 _ 1 — Cr'? sin (0 + 2« arctan (v/—Cr°)) /

2B —
2\ 2ay/—C
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and

24/ —C
B F56CC;%r0
(1 = Cr'2)sin? (6 + 2 arctan (v/—Cr®))

% _ o (sin (0 + 2c arctan (v—Cr?)) ) -2
e =y ,

f/

By Theorem 3 we know that the only supersymmetric solutions in this 5-parameter
family are 3(a) and 3(b), all isomorphic to the Duff-Stelle solution. Moreover, for any
solution other than Duff-Stelle, the metric (gg);; = e*Bs; j 18 incomplete.

Duff-Stelle’s work was further generalized in [16,17]. Following lines in [17], for
any solution we find in this section, we may replace S” in gg = e>8(dr? + r’g7) by
any Einstein 7-manifold with the same Einstein constant as S7 to get other solutions to
11D supergravity.
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A (Multi-)Warped Product Metric

Let (M;, gi) be pseudo-Riemannian manifolds of dimension n; fori =0, 1,2, ..., k.
A multi-warped product metric g on the product manifold My x M; x --- x M is of
the form

g=go+ellgi+ - +elg,

where fi, ..., fx are smooth functions on My. In this “Appendix”, we will compute the
curvature tensors of (multi-)warped product metrics in terms of the curvature tensors R;
of (M;, g;). For simplicity of notation, we will use X; and Y; to denote vector fields
tangential to M ;. These formulae can be found in literature (for instance [14]), we include
them for the convenience of readers.

Using the Koszul identity, one can find that

VxoYo = (Vo) x, Yo,
Vx, Yj = Vy, Xo = %Xo(fj)Y',
Vx,Y; = (V)x,Yj — %(X,-, Yi)g, Vo(e!),
Uy, Y =0, j#L
It follows that
R(Xo, Yo, Zo, Wo) = Ro(Xo, Yo, Zo, Wo),

(1 1
R(Xo., Y}, Zo, W)) = —eli <§(V§fj)(Xo, Zo) + ZXo(fj)Zo(fj)> (Yj, W),
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2f;

. e
ROXj, Yo Zj Wi) = eV Rj(Xj, Yy, Zj, W) + == IV fi12 (Vo Z))g; (X W),

e
R(X;, Y, Z;, W) = —

—(Xj. Zj)g; (Y. Wj)g;) -
fi+fi

4

(X Zj)g; (Yi, Wg (Vo fj, VoS, J#1.

It follows that the Ricci curvature of the warped metric g is given by

k
1 1
Ric(Xp, Yo) = Rico(Xo, Yo) — an <§(V§fj)(X0, Yo) + ZXO(fj)YO(fj)> ,
Jj=1
eli(Xj, Yy,

Ric(X, ¥;) = Ric;(X;, ¥;) — 2

k
1
Bo(f)+5 D mVofj Vof) ).

=1

and all other components are zero.

Similarly, the scalar curvature can be computed as
2

k k 1
s 1 1
S=So+Y e is;—Y "n; (Ao(fj)+z|v0fj|2) - > njVofj
j=1 j=1

j=1
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