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Abstract: Necessary and sufficient conditions are provided for a class ofwarpedproduct
manifolds with non-vanishing flux to be supersymmetric solutions of 11D supergravity.
Many non-compact, but complete solutions can be obtained in this manner, including the
multi-membrane solution initially found by Duff and Stelle. In a different direction, an
explicit 5-parameter moduli space of solutions to 11D supergravity is also constructed
which can be viewed as non-supersymmetric deformations of the Duff–Stelle solution.

1. Introduction

The 11D supergravity theory was first constructed by Cremmer et al. [10]. The bosonic
part of its action is given by

L(g,A) =
∫
M

1

2
R dvol − 1

4
F ∧ ∗F +

1

12
A ∧ F ∧ F. (1.1)

Here g is a Lorentzian metric on an oriented 11-dimensional manifold M with one time-
like direction, R is the scalar curvature of g, ∗ is the Hodge star operator,A is a 3-form on
M and F = dA is the 4-form field strength (flux). The 11D supergravity theory occupies
a privileged position in unification efforts including gravity, as the highest dimensional
supergravity theory with no particle of spin greater than 2, and as a low-energy limit
of M theory (see e.g. [15,26,41,43] and references therein). Its profoundly geometric
nature makes its solutions not just interesting from the theoretical physics viewpoint,
but also from the mathematics viewpoint, where they may ultimately serve as models of
canonical metrics in new settings.

It is well-known that the equations of motion of the theory, i.e., the critical point
equation of the action L, are given by
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d ∗ F = 1

2
F ∧ F, (1.2)

Rici j = 1

2
(F2)i j − 1

6
|F |2gi j . (1.3)

In (1.3), Rici j is the Ricci curvature tensor and (F2)i j is the symmetric tensor given by

(F2)i j = 1

3! Fiklm F
klm
j = (ι∂i F, ι∂ j F).

Here we follow the convention that for a p-form F one writes

F = 1

p! Fi1...i p dx
i1 ∧ · · · ∧ dxi p ,

|F |2 = 1

p! Fi1...i p F
i1...i p = 1

p! Fi1...i p Fj1... jp g
i1 j1 · · · gip jp .

The simplest solutions to 11D supergravity equation are those with trivial flux, i.e.,
F = 0, in which case the equations reduce to the vacuum Einstein equation

Rici j = 0.

Therefore, we may think of the 11D supergravity equation as a generalization of the
Einstein equation by turning on the 4-form flux F .

Particularly interesting solutions of the 11D supergravity equation are the supersym-
metric ones, i.e. solutions (M11, g, F) to the equations of motion (1.2) and (1.3) which
admit a nonzero spinor ξ satisfying

Dmξ := ∇mξ − 1

288
Fabcd(�

abcd
m + 8�abcδdm)ξ = 0, (1.4)

where ∇ is the Levi-Civita connection induced on the spinor bundle and � are Gamma-
matrices acting as endomorphism of spinors. In other words, the Levi-Civita connection
is twisted by the field strength F to produce a connection D on the spinor bundle, and
supersymmetry requires the existence of a parallel spinor under the twisted connectionD.

The literature on solutions to 11D supergravity is immense, andwe can only refer here
to a few representative papers [1,4,11,12,18,20,22,23,25,28,32,34–36,42], in which
more references can be found. A parabolic approach to 11D supergravity is proposed in
[21].

The main focus of the present paper will be rather on solutions of 11D supergravity
which are warped products. Warped products are well-known mathematical construc-
tions, but they appear to have been considered first in compactifications in string theory
by de Wit et al. [13], Hull [27], and Strominger [37]. An early application to solutions
of 11D dimensional supergravity was by Duff and Stelle [19], which will be of partic-
ular interest to us and will be discussed in greater detail in Sect. 4. More precisely, we
consider general warped products M11 = M3 × M8 as in (2.1) below, with the ansatz
(2.2) for the flux F . We give necessary and sufficient conditions for such configurations
to be a supersymmetric solution or just a solution of 11D supergravity (Theorems 2 and
3). The implementation of these conditions turns out to be surprisingly simple: in effect,
it suffices to have a Ricci-flat manifold M̄8, equipped with a strictly positive harmonic
function. While these two requirements combined exclude the possibility of a compact
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manifold M̄8 and a smooth harmonic function, they allow for a wealth of examples con-
structed from either a compact Ricci-flat manifold, or complete Ricci-flat manifolds with
faster than quadratic volume growth (Theorem 5). In both cases, by results of Cheng–Li
[5] and Li–Yau [30], the Green’s function is positive and can be used as the harmonic
function. Remarkably, the construction of complete Ricci-flat manifolds with maximum
volume growth is a topic of great current interest inmathematics, and the results obtained
recently there, for example by Conlon and Rochon [9], Li [31], and Székelyhidi [38]
can be put to good use through Theorem 5 to produce new supersymmetric solutions
of 11D supergravity. Finally, we return with this new understanding to the Duff-Stelle
solution. With the ansatz of Duff-Stelle, namely M̄8 is conformally flat and radially
symmetric, it is easy to see that the explicit expressions obtained in [19] follow at once
from Theorem 3. On the other hand, if we give up on the requirement of supersymmetry
and try only to solve the field equations, we find not just the Duff-Stelle solution, but in
fact a whole 5-parameter family of solutions. It is an interesting mathematical problem
to determine whether some analogues of Theorems 3 and 5 can hold in the absence of
supersymmetry.

2. Supersymmetry and Field Equations

Thegoal of this section is to classify all supersymmetric solutions to the 11D supergravity
equation on M11 = M3 × M8 of the form

g11 = e2Ag3 + g8, (2.1)

F = dvol3 ∧ d f, (2.2)

where g3 is a Lorentzianmetric onM3, g8 a Riemannianmetric onM8, dvol3 the volume
form associated to g3, A and f are smooth functions on M8. It is convenient for us to
refer to this geometric set-up just as (g3, g8, A, f ).

Throughout this paper, we say that (g3, g8, A, f ) is a solution to 11D supergravity if
f is not a constant and the pair (g11, F) solves the equations of motion (1.2) and (1.3). If
f is a constant, then F = 0 and the equations of motion reduce to the vacuum Einstein
equation. Therefore we only consider the case where f is not a constant.

We say that (g3, g8, A, f ) is supersymmetric if the pair (g11, F) admits a nontrivial
spinor, i.e. a section of the spin bundle S11, called ξ , such that

DPξ := (∇11)Pξ − 1

288
FQRST

(
�
QRST

P + 8�QRSδTP

)
ξ = 0. (2.3)

We say that (g3, g8, A, f ) is a supersymmetric solution if (g3, g8, A, f ) is a solution to
11D supergravity with supersymmetry.

Throughout this section, as in (2.3), we will use capital Latin letters P, Q, R, S, T as
indices for the 11-manifold M11 = M3 × M8, Greek letters α, β, γ as indices for M3,
and lowercase Latin letters a, b, c, d as indices for M8. The symbol ∇ always denotes
the Levi-Civita connection, whose subscript indicates the reference metric. For instance,
∇3 is the Levi-Civita connection with respect to the metric g3.

For any real vector spaceV equippedwith a quadratic formq, we define the associated
Clifford algebra Cl(V, q) as

Cl(V, q) = T (V )/Iq(V ),
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where T (V ) is the tensor algebra of V and Iq(V ) is the ideal generated by v ⊗v −q(v).
If q is a non-degenerate pairing of signature (r, s), we will use the short hand notation
Cl(r, s) for Cl(Rr+s, q).

As associative algebras, it is well-known that

Cl(2, 1) ∼= R(2) ⊕ R(2), Cl(8, 0) ∼= R(16),

hence

Cl(10, 1) ∼= Cl(2, 1) ⊗ Cl(8, 0) ∼= R(32) ⊕ R(32).

Here we have denoted by R(m) the algebra of m × m real matrices. Let {γα}α=1,2,3 be
the standard generator of Cl(2, 1) and {
a}a=1,...,8 the standard generator of Cl(8, 0).
Write 
9 = 
1
2 . . . 
8 which satisfies


2
9 = 1, 
9
 j + 
 j
9 = 0, ∀ j = 1, . . . , 8.

Let {�P }P=1,...,11 be the standard generators of Cl(10, 1). It is straightforward to check
that an explicit isomorphism Cl(10, 1) ∼= Cl(2, 1) ⊗ Cl(8, 0) is given by

{�P }P=1,...,11 = {γα ⊗ 
9, 1 ⊗ 
a}α=1,2,3; a=1,...,8.

In addition, we useP to denote pinor representations, i.e., irreducible representations
of Clifford algebras, and S to denote spinor representations, i.e., irreducible represen-
tations of the even part of Clifford algebras. The same letters are used for pinor and
spinor bundles over manifolds. From the structure results stated above, we know that
Cl(2, 1) has exactly two inequivalent pinor representations P±

3 and both of them are
2-dimensional. When restricted to the even part Cl(2, 1)0, both pinor representations are
isomorphic to the spinor representation S3. As for the Clifford algebra Cl(8, 0), there is
a unique pinor representation P8 of dimension 16, which decomposes as the direct sum
of two inequivalent spinor representations:

P8 = S+
8 ⊕ S−

8 ,

where S±
8 are the eigenspaces of 
9 with eigenvalue ±1. Moreover, we have the fol-

lowing isomorphisms

P±
11

∼= P±
3 ⊗ P8,

S11 ∼= S3 ⊗ P8.

In order to classify all supersymmetric solutions, the first step is to pin down g3.

Lemma 1. If (g3, g8, A, f ) is a solution to 11D supergravity, then g3 has to be an
Einstein metric.

Proof. Plugging in the ansatz into (1.2), (1.3), the equations of motion reduce to

d(e−3A ∗8 d f ) = 0, (2.4)

(Ric8)ab − 3(∇2
8 A)ab − 3Aa Ab +

e−6A

2
fa fb − e−6A

6
|∇8 f |2(g8)ab = 0, (2.5)

(Ric3)αβ =
(
e2A(�8A + 3|∇8A|2) − e−4A

3
|∇8 f |2

)
(g3)αβ. (2.6)
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As A and f are independent of M3, (2.6) implies that there exists a constant λ such that

Ric3 = λg3

and

e2A(�8A + 3|∇8A|2) − e−4A

3
|∇8 f |2 = λ. (2.7)

Hence g3 must be Einstein.
From now on, we will always assume that g3 is Einstein with Einstein constant λ.

The next step is to understand supersymmetry. 	

Theorem 1. Suppose g3 is Einstein in the sense that Ric3 = λg3. Then the tuple
(g3, g8, A, f ) is supersymmetric if and only if

(a) λ = 0,
(b) d f = ±d(e3A),
(c) and the conformally changed metric ḡ8 = eAg8 admits a covariantly constant spinor

with respect to its Levi-Civita connection ∇̄8.

Proof. To help analyze supersymmetry, we first consider the auxiliary product metric
g′
11 = g3 + g8. Since S11 ∼= S3 ⊗P8 holds pointwise, we may identify the spinor bundle

S ′
11 associated to g′

11 as the tensor product of the spinor bundle S3 of g3 with the pinor
bundle P8 of g8. In addition, there is an isometry of vector bundles (T M11, g11) ∼=
(T M11, g′

11) given by

(X3,Y8) �→ (eAX3,Y8),

therefore we may further identify the spinor bundle S11 associated to g11 with S3 ⊗P8
as well. Let {eα}3α=1 be a local orthonormal frame of g3 and {ea}8a=1 a local orthonormal
frame of g8, then

{eP }11P=1 = {e−Aeα, ea}α=1,2,3, a=1,...,8

is a local orthonormal frame for g11. Write eα̃ = e−Aeα and let ε be a local section of
S3 and η a local section of P8, then the Clifford multiplication associated to g11 under
above identification is given by

�α̃(ε ⊗ η) = (γαε) ⊗ (
9η)

and

�a(ε ⊗ η) = ε ⊗ (
aη).

In addition, the Levi-Civita connection ∇ = ∇11 can also be identified as

∇α(ε ⊗ η) = ((∇3)αε) ⊗ η +
1

2
(γαε) ⊗ (∂a(eA)
a
9η), (2.8)

∇a(ε ⊗ η) = ε ⊗ (∇8)aη. (2.9)

These identities can be derived from the local formula

∇Q = ∂Q +
1

4
ωRS
Q �R�S .
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Using formulae in “Appendix”, we have

ω
β̃γ̃

α̃
= e−A(ω′)βγ

α , ω
aβ̃

α̃
= −ω

β̃a
α̃

= −δβ
α ∂a A, ωbc

a = (ω′)bca

and all other components of connection are zero. Therefore

∇α̃ = ∂α̃ +
1

4
(ω

β̃γ̃

α̃
�β̃�γ̃ + 2ωaβ̃

α̃
�a�β̃)

= ∂α̃ +
1

4
(e−A(ω′)βγ

α γβγγ ⊗ 
2
9 − 2δβ

α ∂a A γβ ⊗ 
a
9)

= e−A(∂α +
1

4
(ω′)βγ

α γβγγ ) − 1

2
γα ⊗ (∂a A
a
9)

= e−A
(

(∇3)α +
1

2
γα ⊗ ∂a(eA)
a
9

)
.

Consequently, we get (2.8). Similarly, (2.9) holds as well. 	

Moreover, we find, by calculation,

1

288
FPQRS(�

PQRS
α + 8�PQRδSα) = e−2A

6
γαγ4 ⊗ ∂b f 
b,

1

288
FPQRS(�

PQRS
a + 8�PQRδSa) = e−3A

24
γ4 ⊗ (∂b f (
b
a − 
a
b) − 4∂a f )
9,

where γ4 = γ1γ2γ3 is a central element in Cl(2, 1) square to 1.
As for a pinor ε on M3, we have γ4ε = ±ε. Without loss of generality, one may

assume γ4ε = ε, since this sign corresponds a choice of the pinor bundle P±
3 , which

gives isomorphic spinor bundle S3.
With all these preparation, we may compute the curvature tensor F of the twisted

connection D. It is straightforward to compute that

Fαβ(ε ⊗ η) = (γαβε) ⊗
(

λ +
e−4A

18

(
|∇8 f |2 − |∇8e

3A|2

− ∂b(e3A)∂c f (
b
c − 
c
b)
9

))
η.

Now suppose that (g3, g8, A, f ) is supersymmetric, therefore there exists a spinor ξ

such that Dξ = 0. Since S11 ∼= S3 ⊗ P8 and that S3 is 2-dimensional, we can find a
local frame ε1, ε2 of S3 and write

ξ = ε1 ⊗ η1 + ε2 ⊗ η2.

In general, η1 and η2 are combinations of sections of P8 with function (may have M3

dependence) coefficients. However at any fixed point, we can think of η1 and η2 as pinors
on M8. Since Dξ = 0, we know that

Fαβ(ξ) = γαβε1 ⊗
(

λ +
e−4A

18

(
|∇8 f |2 − |∇8e

3A|2

− ∂b(e3A)∂c f (
b
c − 
c
b)
9

))
η1
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+ γαβε2 ⊗
(

λ +
e−4A

18

(
|∇8 f |2 − |∇8e

3A|2

− ∂b(e3A)∂c f (
b
c − 
c
b)
9

))
η2

= 0

for any α, β. In particular, we may choose α and β properly such that γαβε1 and γαβε2
are linearly independent, therefore we conclude that

(
λ +

e−4A

18

(
|∇8 f |2 − |∇8e

3A|2 − ∂b(e3A)∂c f (
b
c − 
c
b)
9

))
η j = 0

for j = 1, 2.

Claim: ∂b(e3A)∂c f (
b
c −
c
b) = 0, or equivalently, there exists a function h such
that ∂b(e3A) = h ∂b f for any index b.

We establish the claim. As ξ = ε1 ⊗ η1 + ε2 ⊗ η2 �= 0, we may assume that η1 �= 0
and decompose η1 = η+1 +η−

1 as a sum of eigenvectors of
9. Without loss of generality,
we may assume that η+1 �= 0, hence, by making use of
b
c = 2δbc −
c
b, one obtain

∂b(e3A)∂c f 
c
b η+1 =
(

∂b(e3A)∂c f δbc − 9e4Aλ +
1

2
(|∇8e

3A|2 − |∇8 f |2)
)

η+1

Therefore, at any given point we may write

∂b(e3A)∂c f 
c
b η+1 = μη+1

for some number μ. By our assumption f is not a constant so we may choose a point
such that ∇8 f �= 0, hence by multiplying ∇8 f = ∂a f 
a from left on both sides, we
get

(
∂b(e3A) − μ∂b f

|∇8 f |2
)


b η+1 = 0.

Consequently

∂b(e3A) = μ

|∇8 f |2 ∂b f

for any b, the claim is proved, and

λ = e−4A

18
(|∇8 f |2 − |∇8e

3A|2). (2.10)

We can compute other components of F as well. For example, by making use of the
relation ∂b(e3A)∂c f (
b
c − 
c
b) = 0, one obtains

(F)αa(ε ⊗ η)

= γαε ⊗
(
e−5A

18
∂a f (∂

b(e3A) + ∂b f 
9)
bη

−(∇8)a

(
e−2A

6
(∂b(e3A)
9 − ∂b f )

)

bη

)
.
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By a similar argument, we see that

e−5A∂a f (∂
b(e3A)
b − ∂b f 
b
9)η j − 3(∇8)a

×
(
e−2A(∂b(e3A)
b
9 − ∂b f 
b)

)
· η j = 0 (2.11)

for j = 1, 2 and any a. We may assume that η+1 �= 0 as before. As we have shown that
∂b(e3A) = h ∂b f for some function h, the above equation can be rewritten as

(h − 1)(∇8)a(∂
b f 
b) η+1 = H ∂b f 
b η+1

for some smooth function H .

Claim: h ≡ 1.
If the claim is not true, then we can find an open set such that h − 1 �= 0 in that open

set. Thus in this open set, we have

(∇8)a(∇8 f ) = H

h − 1
∇8 f

for any a. By pairing with the vector field eb, we get

H

h − 1
fb = (∇2

8 f )ab = H

h − 1
fa .

As f is not a constant and the frame {ea}8a=1 is arbitrary, the above equation holds only
when H = 0, as h �= 1, we get (∇2

8 ) f = 0, hence |∇8 f |2 is a nonzero constant. Plugging
it back to (2.11), one obtain

(2h + 1)(h − 1)∂a A = h∂a(h − 1).

Notice that (2.10) now becomes e−4A(h − 1) is a constant proportional to λ. As h �= 1,
the only possibility is that A is a constant and h = 0. Plug in (2.11) we get ∂a f = 0,
contradiction!

So the claim is proved and we conclude that ∇8e3A = ∇8 f . If we work with η−
1

instead, then analogously we show that ∇8 f = −∇8e3A. As a result, we have shown
that supersymmetry implies that

d f = ±d(e3A),

which further dictates λ = 0 from (2.10).
As λ = 0, the Ricci-flatness in dimension 3 implies that g3 is flat, therefore we

may choose ε1 and ε2 covariantly constant under ∇3. In this way, one can show that
Dξ = D(ε1 ⊗ η1 + ε2 ⊗ η2) = 0 if and only if D(ε1 ⊗ η1) = D(ε2 ⊗ η2) = 0.
Therefore we may assume that ξ = ε ⊗ η is decomposable. Furthermore (2.13) implies
that 
9η = ±η, that is, η must be a section of one of the spinor bundles S±

8 instead of
a random section of the pinor bundle P8 = S+

8 ⊕ S−
8 .

Taking all these into account, we find that D(ε ⊗ η) = 0 if and only if

(∇8)aη +
1

8
(4∂a A + ∂b A(
a
b − 
b
a))η = 0 (2.12)
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for any a. Consider the conformally changed metric ḡ8 = eAg8, we can identify its
Levi-Civita connection ∇̄8 as1

(∇̄8)aη = (∇8)aη +
1

8
∂b A(
a
b − 
b
a)η.

So (2.12) can be rewritten as

(∇̄8)aη +
1

2
∂a A · η = 0

or equivalently

∇̄8(e
A/2η) = 0.

Thus, we have proved that a supersymmetric tuple (g3, g8, A, f ) implies that g3 is flat,
d f = ±d(e3A), and that the conformally changed metric ḡ8 = eAg8 admits covari-
antly constant spinors with respect to Levi-Civita connection. The other direction is
straightforward.

As a corollary, we have

Corollary 1. Suppose (g3, g8, A, f ) is supersymmetric. Then the conformally changed
metric ḡ8 = eAg8 is Ricci-flat. Moreover, let N11 be the number of independent spinors
satisfying (2.3) and let N±

8 be the dimension of the space of covariantly constant spinors
of the spinor bundle S±

8 associated to the metric ḡ8. Then

N11 = 2N+
8 if d f = d(e3A)

and

N11 = 2N−
8 if d f = −d(e3A).

From Theorem 1 we know that

d f = ±d(e3A) (2.13)

is a very natural condition, under which we have the following result:

Theorem 2. Assume (2.13). Then (g3, g8, A, f ) is a solution to equations of motion
(1.2), (1.3) if and only if

(a) g3 is flat,
(b) the conformally changed metric ḡ8 = eAg8 is Ricci-flat,
(c) and A satisfies the Laplace equation �8A = 0, or equivalently,

�ḡ8e
−3A = 0, (2.14)

where �8 and �ḡ8 are the Laplace operators defined respectively by the metrics g8
and ḡ8.

Proof. Under (2.13), (2.4) is equivalent to (2.14). Under (2.13) and (2.14), (2.7) is
equivalent to that g3 is flat. Moreover, (2.5) is equivalent to that ḡ8 is Ricci-flat under
(2.13) and (2.14). Formulae in “Appendix” are used to derive these equivalences.

Summarizing Theorems 1 and 2, we have proved 	

1 This formula is well-known, see for example [2, pp. 16–17], where we need to change the sign of ∂b A

as Baum et al. use the convention v · v = −q(v) for Clifford algebra.



820 T. Fei, B. Guo, D. H. Phong

Theorem 3. The tuple (g3, g8, A, f ) is a supersymmetric solution to 11D supergravity
equation if and only if

(a) g3 is flat;
(b) ḡ8 := eAg8 is a Ricci-flat metric admitting covariantly constant spinors (with respect

to Levi-Civita connection);
(c) e−3A is a harmonic function on (M8, ḡ8) with respect to the metric ḡ8;
(d) d f = ±d(e3A).

In [44] McKenzie Wang showed that a simply-connected irreducible Riemannian
manifold admits covariantly constant spinors if and only if it has Ricci-flat holonomy,
which in dimension 8 must be one of the groups SU(4), Sp(2) and Spin(7). Combin-
ing Wang’s theorem with Theorem 3, we have the following holonomy classification
result. For simplicity, we only state the irreducible and simply-connected case. For more
complicated cases, one can consult [33] and other references in literature.

Theorem 4. Let (g3, g8, A, f ) be a supersymmetric solution to 11D supergravity on
M11 = M3 × M8 with M8 simply-connected and ḡ8 = eAg8 irreducible. Then one of
the following cases must occur:

(a) N11 = 2: the metric ḡ8 has holonomy group Spin(7) and d f = d(e3A);
(b) N11 = 4: the metric ḡ8 has holonomy group SU(4) and d f = d(e3A);
(c) N11 = 6: the metric ḡ8 has holonomy group Sp(2) and d f = d(e3A).

We remark that the relation d f = −d(e3A) may hold in the case ḡ8 is reducible. For
example, when the solution has maximal number of supersymmetries, i.e., N11 = 16,
the Ricci-flat metric ḡ8 has to be flat and both cases of d f = ±d(e3A) can occur, as in
the Duff–Stelle case [19].

3. Examples from Ricci-flat Manifolds and Green’s Functions

Theorem 2 shows that solutions of 11D supergravity can be constructed from a Ricci-
flat manifold M̄8 equipped with a positive harmonic function e−3A. Because the case
of constant A would just lead back to the vacuum Einstein equation, we look for g8
being defined on a non-compact manifold, in which case we can just choose e−3A to be
a Green’s function on a complete manifold. Recall that for a Riemannian manifold M ,
taken to be eight-dimensional for our purposes, a Green’s function G(x, y) is a smooth
function on M × M away from the diagonal x = y, which is symmetric, harmonic in
each variable, positive, and with the following asymptotic

G(x, y) = d(x, y)−6(1 + o(1)) (3.1)

for d(x, y) small, where d(x, y) is the distance from x to y. Green’s functions have been
shown to exist by Cheng–Li [5] on compact manifolds, and by Li–Yau [30] on com-
plete Riemannian manifolds with non-negative Ricci curvature and faster than quadratic
volume growth, in the sense that

Vol(B(p, r)) ≥ θr2+ε (3.2)

for some θ > 0 and ε > 0. Here, B(p, r) the ball of radius r centered at p ∈ M .
Combining these results with Theorem 2, we obtain the following:
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Theorem 5. Let (M̄8, ḡ8) be a Ricci-flat Riemannian manifold which is either compact
or complete with faster than quadratic volume growth. Let p1, . . . , pn be any finite set
of points in M̄8, and m1, . . . ,mn a finite set of positive numbers. Set

G(x) =
n∑
j=1

m j G(x, p j ). (3.3)

Then the manifold M8 = M̄8\{p1, . . . , pn}, together with the function A defined by
e−3A = G, gives a solution to the 11D supergravity equations. Furthermore, the metric
g8 = e−Aḡ8 is complete on M8.

Proof. If (M8, ḡ8) is complete with faster than quadratic volume growth, we have
the following estimates for the volume of B(p, r),

θ r2+ε ≤ Vol(B(p, r)) ≤ ω8 r
8 (3.4)

where the upper bound is a consequence of the Bishop–Gromov volume comparison
theorem. By a result of Li and Yau [30], there exists a Green’s function G(x, y) on
(M̄8, ḡ8) satisfying

C−1
∫ ∞

d(x,y)2

1

Vol(B(x,
√
t))

dt ≤ G(x, y) ≤ C
∫ ∞

d(x,y)2

1

Vol(B(x,
√
t))

dt (3.5)

for some uniform constant C > 1. It follows that

C−1 1

d(x, y)6
≤ G(x, y) ≤ Cθ−1 1

d(x, y)ε
, for any x, y ∈ M̄8. (3.6)

Recall that e−A = G1/3 and g8 = G1/3ḡ8. The metric g8 is a well-defined Rieman-
nian metric on M8, the complement of the singular points p1, . . . , pn in M̄8. Near each
singular point pi

g8 ∼ 1

dḡ8(pi , x)
2 ḡ8.

Therefore, dg8(x, pi ) = +∞ for any x ∈ M8 and (M8, g8) is complete near each
singular point pi . Moreover, the metric g8 is asymptotically to the standard product
metric on R × S7 as dḡ8(pi , x) → 0.

Similarly, the completeness of (M8, g8) near infinity is a consequence of the estimates
(3.6) for the Green’s function. So (M8, g8) is a complete Riemannian manifold.

If M̄8 is compact, we may take e−3A = G. By similar estimates as above, we see
that g8 = e−Aḡ8 is complete near each singular point pi , and in this case, (M8, g8) is
also complete.

We survey someknown examples of compact or noncompactRicci-flat 8-dimensional
manifolds. By Theorems 2 and 3, we have complete solutions to the field equations (2.4),
(2.5) and (2.6) for such examples. They are all supersymmetric, except possibly for some
examples constructed from Riemann surfaces in Sect. 3.3. 	
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3.1. Compact examples. The following examples are included in Joyce’s book [29].

1. Compact real 8-manifolds with holonomy Spin(7). Let T 8 be a torus equipped with a
flat Spin(7)-structure (�0, g0), and a finite group � of automorphisms of T 8 preserving
(�0, g0). Then T 8/� is an orbifold with flat Spin(7)-structure (�0, g0). Let M̄8 be a
suitable resolution of T 8/� such that M̄8 is simply connected. Then M̄8 admits a torsion
free Spin(7)-structure (�̄, ḡ)with Hol(ḡ) = Spin(7). Thus, Ric(ḡ) = 0.More examples
of compact Spin(7) manifolds can be found in [6,39]

2. Compact real 8-manifolds with holonomy Sp(2). Here we briefly present two ex-
amples of Beauville [3]. We start with a compact complex surface X . Let X (m) be the
mth-symmetric product of X which is a complex orbifold with complex dimension 2m.
Take X [m] to be the Hilbert scheme of 0-dimensional subspaces (Z ,OZ ) of X of length
dimCOZ = m. Then X [m] is a compact complex manifold with dimCX [m] = 2m, and
the natural projection π : X [m] → X (m) is a crepant resolution. (1) If X is a K3-surface,
then X [2] admits a 61-dimensional family of metrics ḡ with holonomy Sp(2). (2) If X
is a compact complex torus T 4 which can be regarded as an abelian Lie group. So there
is a natural map σ : X (3) → X given by the summing the 3 points. Let K 2(X) be the
kernel of the map σ ◦π : X [3] → X , then K 2(X) is a a complex 4-dimensional manifold
admitting a 13-dimensional family of metrics ḡ with holonomy Sp(2).

3. Compact real 8-manifolds with holonomy SU(4). These are complex 4-dimensional
Calabi–Yau manifolds with trivial first Chern class. By Yau’s theorem [45] there is
a unique Ricci-flat Kähler metric in each Kähler class. Examples of Calabi–Yau 4-
manifolds include smooth hypersurfaces in CP5 with degree 6. Our construction is
closely related to the work of Becker–Becker [4] and Prins–Tsimpis [36].

3.2. Non-compact examples, complete with maximum volume growth. In this sectionwe
will present some examples of complete Ricci-flat metrics on noncompact 8-manifolds
with maximal volume growth.

1. Complete Kähler–Ricci-flat metrics on C4. Recently, Székelyhidi [38], Conlon-
Rochon [9] and Li [31] constructed nontrivial Ricci-flat Kähler metrics on C4 with
maximal volume growth. The desired Ricci-flat metrics ḡ are perturbations of (sin-
gular) Ricci-flat metrics on some metric cone to which (C4, ḡ) is asymptotic. More
precisely, let f be a polynomial on C4 and M1 ⊂ C5 be the graph of − f defined by
z + f (x1, . . . , x4) = 0. So M is biholomorphic to C4. Assume the cone f −1(0) ⊂ C4

has isolated singularity and the cone M0 = C × f −1(0) admits (singular) Ricci-flat
cone metric g0, then g0 can be perturbed to a complete Kähler–Ricci-flat metric g1
on M1, with tangent cone at infinity isometric to (M0, g0), in particular, (M1, g1) has
maximal volume growth and is non-trivial for generic choice of f . For example, if
f (x) = x21 + x22 + x23 + x24 , i.e. f −1(0) is the A1-singularity, M0 admits a Ricci-flat
cone metric given gSt by the product of Stenzel metric and standard metric on C. So C4

admits a nontrivial complete Ricci-flat Kähler metric which is asymptotic to (M0, gSt).

2. CompleteKähler–Ricci-flatmetrics onquasi-projectivemanifolds. This class ofRicci-
flat metrics was first constructed by Tian–Yau [40] and later refined by Conlon–Hein
[8]. If M̄ is a compact Kähler orbifold with dimC(M̄) = 4 and codimC(Sing(M̄)) ≥ 2.
Let D be a neat and almost ample sub-orbifold divisor in M̄ such that Sing(M̄) ⊂ D
and D ∈ | − βKM̄ | for some β ∈ (0, 1). If D admits a KE metric with positive scalar
curvature, then M = M̄\D admits a complete Ricci-flat metric with maximal volume
growth.
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3. Asymptotical conic Ricci-flat manifolds. Let M be a complex noncompact manifold
with a nontrivial holomorphic 4-form� and (M,�) is asymptotic to a Calabi–Yau cone
(C, g0,�0) with some positive rate. Then it is shown by Conlon–Hein [7] that there
exists a unique Ricci-flat metric ḡ in each Kähler class on M with suitable asymptotic
condition, such that ḡ is asymptotic to the cone metric g0 with some positive rate.
Therefore (M, ḡ) has maximal volume growth. Examples of this type include the ALE
Kähler complex dimension 4-manifolds studied by Joyce [29].

3.3. The case of Riemann surfaces. In this section, we look for solutions on M8 =
M6 × M2 with Riemannian metrics of the form

g8 = e2Bg6 + g2, B ∈ C∞(M2).

We also assume the 1-form d f and the function A depend only on M2. We rewrite the
equations (2.5) and (2.7) with λ = 0 as (we use i, j, . . . to denote the indices on M2

and μ, ν, . . . those on M6)

Ric(g2)i j − 6(∇2
g2B)i j − 6Bi B j − 3(∇2

g2 A)i j − 3Ai A j

+
e−6A

2
fi f j − e−6A

6
|∇ f |2g2(g2)i j = 0,

Ric(g6)μν − (�g2B + 6|∇B|2)e2Bg6,μν − 3g2(∇A,∇B)e2Bg6,μν

−e−6A

6
|∇ f |2g2e2Bg6,μν = 0, (3.7)

and

�g2 A + 6g2(∇A,∇B) + 3|∇A|2g2 − e−6A

3
|∇ f |2g2 = 0.

Since A, B and f depend only on M2, equation (3.7) implies g6 is an Einstein metric,
Ric(g6) = λ̂g6 for some λ̂ ∈ R, and (3.7) becomes

�g2B + 6|∇B|2 + 3g2(∇A,∇B) +
e−6A

6
|∇ f |2 = λ̂e−2B .

With the supersymmetry assumption (2.13), d f = ±d(e3A), the equations above are
reduced to

Ric(g2)i j − 6∇2
i j B − 6Bi B j − 3∇2

i j A +
3

2
Ai A j − 3

2
|∇A|2g2,i j = 0, (3.8)

�g2B + 6|∇B|2g2 + 3g2(∇A,∇B) +
3

2
|∇A|2g2 = λ̂e−2B, (3.9)

and

�g2 A + 6g2(∇A,∇B) = 0. (3.10)

If furthermore we assume (M6, g6) is Ricci-flat, i.e. λ̂ = 0, then one can check equations
(3.9) and (3.10) are equivalent to

�g2K + 6|∇K |2g2 = 0, or �g2e
6K = 0, (3.11)
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and

�g2e
−3A + 6g2(∇K ,∇e−3A) = 0, (3.12)

where we denote K = B + A
2 . And equation (3.8) becomes

Ric(g2)i j − 6(∇2
g2K )i j − 6Ki K j + 3Ki A j + 3K j Ai − 3

2
|∇A|2g2g2,i j = 0. (3.13)

With Eqs. (3.11), (3.12) and (3.13) at hand, we discuss some explicit solutions. Recall
that we fix a Ricci-flat manifold (M6, g6).

1. When K = const, we take e−3A to be a positive (possibly singular) harmonic
function on M2 (note that the choice of harmonic functions on M2 is independent of the
metric g2). The Eq. (3.13) implies that

Ric(g2)i j − 3

2
|∇A|2g2g2,i j = Ric(g2)i j − 1

2
�g2 Ag2,i j = 0.

If we define ḡ2 = eAg2, the equation above says that Ric(ḡ2) = 0 on the set of M2

where e3A is smooth. As remarked above,�ḡ2e
−3A = 0. This implies the product metric

ḡ8 = eAg8 = e2K g6 + eAg2 is Ricci-flat, which is just a special case of Theorem 2. This
solution can be made supersymmetric by taking M6 to be Calabi–Yau.

By the uniformization theorem, complete flat manifolds (M2, ḡ2) are either the Eu-
clidean plane C, cylinder S1 ×R or the compact torus T 2. Since such manifolds cannot
admit non-constant smooth positive harmonic functions, we cannot expect e−3A to be
smooth. SinceC is parabolic, i.e. it admits no positiveGreen function, for such examples,
we can take e−3A to be constant, which gives rise to trivial solutions.

To get nontrivial solutions, we choose M2 to be an open Riemann surface with
boundary ∂M2 �= ∅. For example we may take M2 to be the unit disk D ⊂ C or the
punctured unit disk D∗ ⊂ C\{0}. We pick ḡ2 = gC, the Euclidean metric on C, and
e−3A = Re(φ) − μ log |z|2 for any holomorphic function φ ∈ O(D) with positive real
part Re(φ) > 0 and anyμ ≥ 0. Then g2 = e−AgC defines a solution to (3.13). However,
the metric g2 is incomplete on D or D∗. In sum, the tuple (g11, F, A) given by

g11 = e2Ag3 + e2K−Ag6 + e−AgC, F = ±dvol3 ∧ d(e3A)

A = −1

3
log

(
Re(φ) − μ log |z|2), ∀ φ ∈ O(D), μ ≥ 0,

on M11 = M3 × M6 × M2 with (M3, g3) and (M6, g6) being Ricci-flat and M2 = D
or D∗, satisfy the equations of motion (2.4), (2.5) and (2.6). Replacing g6 by e2K g6, we
can also express g11 as

g11 = (
Re(φ) − μ log |z|2)− 2

3 g3 +
(
Re(φ) − μ log |z|2) 1

3 (g6 + gC). (3.14)

2. When K �= const, from (3.11), we know e6K is a positive harmonic function. Again
we take M2 = D or D∗. Let z = x1 + i x2 ∈ C be the standard coordinate on D or
D∗. Observe from (3.12) that if e−3A is proportional to K , (3.12) is also satisfied. By
adding a positive constant to K if necessary we may assume K > 0 and e−3A = K , i.e.
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A = − 1
3 log K . With this choice of (K , A), it suffices to findmetrics g2 to the Eq. (3.13),

which can be rewritten as

Ric(g2)i j − 6(∇2
g2K )i j − 6Ki K j − 2

Ki K j

K
− 1

6

|∇K |2g2
K 2 g2,i j = 0. (3.15)

This is a system of second order partial differential equations in g2, and we do not expect
to find general solutions to this equation for general choice of e6K . So we now focus on
some special cases depending on the positive harmonic function e6K .

• If e6K is linear in x1 and x2, e.g. e6K = x1 + 10. We look for the metrics conformal
to the Euclidean one, i.e. g2 = e2ϕgC for some ϕ ∈ C∞(M2), Eq. (3.15) becomes

−�gCϕ δi j − 6 ∂2i j K + 6 (ϕi K j + ϕ j Ki ) − 6〈∇K ,∇ϕ〉gCδi j

−6Ki K j − 2
Ki K j

K
− 1

6

|∇K |2gC
K 2 δi j = 0. (3.16)

By straightforward calculations, we can check that

ϕ = −5

2
K +

1

6
log K + C, for any constantC ∈ R,

satisfies Eq. (3.16). Hence g2 = e−5K K 1/3gC defines a solution to (3.15). Therefore the
tuple (g11, F, K ) given by

g11 = K−2/3g3 + K 1/3e2K g6 + K 1/3e−5K gC, F = ±dvol3 ∧ dK

satsifies the equations of motion (2.4), (2.5) and (2.6) on M11 = M3 × M6 × M2 with
M2 = D or D∗. For example, we may take K = 1

6 log (10 + x1), then

g11 = 62/3(
log (10 + x1)

)2/3 g3 +
(
(10 + x1) log (10 + x1)

)1/3
61/3

g6 +

(
log (10 + x1)

)1/3
61/3(10 + x1)5/6

gC

and

F = ±1

6(10 + x1)
dvol3 ∧ dx1

define an explicit solution, where we recall that x1 is one of the coordinates on D or D∗.
• If e6K is radial symmetric, i.e. it depends only on r = |z|. For example, we can

take e6K = −c log r2 +1 for any c > 0. Again A = − 1
3 log K and we try to find metrics

g2 of the form g2 = e2ϕgC for some ϕ ∈ C∞(D∗). One can check that

ϕ = 1

6
log K − log r − 5

2
K + C, for any constantC ∈ R

satisfies the Eq. (3.16). Therefore g2 = r−2e−5K+ 1
3 log K gC satisfies the Eq. (3.13) and

correspondingly, the tuple (g11, F) given by

g11 = K−2/3g3 + K 1/3e2K g6 + r−2K 1/3e−5K gC, F = ±dvol3 ∧ dK
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defines a solution to the equation of motion (2.4), (2.5) and (2.6) on M11 = M3 ×M6 ×
D∗. In particular, if we choose e6K = − log r2 + 1 on D∗, then (g11, F) are given by

g11 = 62/3(
log (1 − log r2)

)2/3 g3 +
(
log (1 − log r2)

)1/3
61/3

(1 − log r2)1/3g6

+ r−2

(
log (1 − log r2)

)1/3
61/3

(1 − log r2)−5/6gC

and

F = ±1

3r(1 − 2 log r)
dvol3 ∧ dr.

4. The Duff–Stelle Ansatz

In their seminal paper [19], Duff and Stelle discovered the (multi-)membrane solution
to 11D supergravity by making following assumptions on the tuple (g3, g8, A, f ):

(a) g3 is flat;
(b) The Killing spinor ξ is a pure tensor product of a covariantly constant spinor ε on

M3 and a pinor η on M8;
(c) M8 is a radially symmetric open domain in R8, the metric (g8)i j = e2Bδi j is

conformally flat, where B is a smooth function on M8 and all the functions A, B
and f depend only on the radial variable r .

From the analysis in Sect. 2 we know that assumptions (a) and (b) above are necessary
for supersymmetric solutions. In this section, we first re-derive the Duff–Stelle solution
using the framework of Sect. 3. Thenwe show that, by keeping assumption (c) above only,
we can construct a 5-parameter family of solutions to equations of motion, extending
Duff–Stelle’s work. Due to the classification result (Theorem 3 in Sect. 2), the only
supersymmetric solution in this family is the Duff–Stelle solution.

4.1. Derivation of the Duff–Stelle membrane solution. Take (M̄8, ḡ8) to beR8 equipped
withEuclideanmetric inTheorem5and letM8 be the puncturedEuclidean spaceR8\{0}.
It is well-known that a Green’s function on R8 with source at origin is given by

G(x) = 1

r6
,

where r is the Euclidean distance to origin. By taking

e−3A = G(x) + M

for any nonnegative constant M , we get Duff–Stelle’s membrane solution described in
[19]. If we take e−3A to be a positive linear combination of Green’s functions at different
points and a positive constant, then we recover the multi-membrane solution.
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4.2. The 5-parameter family of radially symmetric solutions. In this subsection, we
solve for all solutions (g3, g8, A, f ) to equations of motion under Assumption (c). As
A, B and f depend only r , (1.2) and (1.3) are reduced to an ODE system:

f ′′ + f ′
(
7

r
+ 6B ′ − 3A′

)
= 0, (4.1)

3e2A
(
A′′ + A′

(
7

r
+ 6B ′

)
+ 3(A′)2

)
− e−4A( f ′)2 = 3λe2B, (4.2)

− 2B ′′ + 2B ′

r
+ 2(B ′)2 − A′′ + A′

r
+ 2A′B ′ − (A′)2 = −e−6A

6
( f ′)2, (4.3)

B ′′ + 13B ′

r
+ 6(B ′)2 + 3A′

r
+ 3A′B ′ = −e−6A

6
( f ′)2. (4.4)

The goal is to solve this complicated nonlinear ODE system.
First notice that (4.1) can be integrated to

f ′ = Mr−7e3A−6B

for some constant M . Plug it into other equations, we get

M2

3r14
e−12B = A′′ + A′

(
7

r
+ 6B ′

)
+ 3(A′)2 − λe2B−2A,

M2

3r14
e−12B = 4B ′′ − 4B ′

r
− 4(B ′)2 + 2A′′ − 2A′

r
− 4A′B ′ + 2(A′)2,

M2

3r14
e−12B = −2B ′′ − 26B ′

r
− 12(B ′)2 − 6A′

r
− 6A′B ′.

Let L = L(r) be a function such that

eB = eL · r−1,

hence

B ′ + 1

r
= L ′.

The original system can be rewritten as

M2

3r2
e−12L = A′′ + A′

(
1

r
+ 6L ′

)
+ 3(A′)2 − λ

r2
e2L−2A, (4.5)

M2

3r2
e−12L = 4L ′′ + 2A′′ + 4

r
L ′ + 2

r
A′ − 4(L ′)2 − 4A′L ′ + 2(A′)2 + 4

r2
, (4.6)

M2

3r2
e−12L = −2L ′′ − 2

r
L ′ − 12(L ′)2 − 6A′L ′ + 12

r2
. (4.7)

The above ODE system (4.5)–(4.7) has only two unknown functions A and L . There-
fore this system is overdetermined and a priori it may be inconsistent itself. Surprisingly,
we have the following theorem.



828 T. Fei, B. Guo, D. H. Phong

Theorem 6. The ODE system (4.5)–(4.7) is consistent. In fact, it is equivalent to a single
3rd order nonlinear ODE

d3v

dt3
+ 7

d2v

dt2
v + 14

(
dv

dt

)2

+ 2
dv

dt
(17v2 − 60) + 12(v2 − 4)(v2 − 6) = 0. (4.8)

As a consequence, we get a 5-parameter family of solutions to the equations of motion
(1.2) and (1.3) of 11D supergravity.

Proof. Write u = A′ + 2L ′ and T = L − A, we get

u′ + u

r
+ 3u2 − 12

r2
= λ

r2
e2T , (4.9)

4u′ + T ′′ + 4

r
u +

1

r
T ′ + 2u2 + uT ′ + 2(T ′)2 = 12

r2
(4.10)

by eliminating the left hand side of (4.5)–(4.7). Notice that the second equation can be
rearranged as

(e2T )′′ +
(
1

r
+ u

)
(e2T )′ + 4

(
2u′ + 2

r
u + u2 − 6

r2

)
e2T = 0.

Introduce v = ur and eliminate e2T , we get

v′′′r3 + v′′r2(7v + 3) + 14(v′r)2 + v′r(34v2 + 7v − 119) + 12(v2 − 4)(v2 − 6) = 0.

Let r = et , then we get the desired 3rd order ODE (4.8). 	

Assume we have a solution v of (4.8), then we know u and we can solve for e2T

from (4.9), hence also A′ and L ′. Therefore A and L are determined up to an additive
constant.

To check the consistency of the ODE system, one only needs to verify that the
functions A and L we get above satisfy any of the equations in the original ODE system.

We introduce

X =
(
dv

dt
+ 3v2 − 12

)2 (
2
dv

dt
− v2 + 4

)
+
1

3

(
d2v

dt2
+ 5

dv

dt
v − 3v3 + 12v

)2

.

By a lengthy calculation, we find that the consistency condition is that X satisfies

dX

dt
+ 4vX = 0,

which turns out to be a consequence of (4.8).
Therefore, solving the equations of motion (1.2) and (1.3) under our ansatz is equiv-

alent to solving the 3rd order ODE (4.8). As there are 3 parameters for v, one additive
parameter to determine A and L , and an extra parameter λ, we get a 5-parameter family
of solutions to the 11D supergravity.

In general we do not know how to write down all the solutions to (4.8), however,
there are some explicit special solutions we can find.

1. For v satisfying

dv

dt
= −(v2 − 4),
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(4.8) is automatically satisfied. This corresponds to the case L ′ = 0, or equivalently
B ′ = −1/r . So L is a constant and (4.7) implies that M = ±6e6L . Furthermore, (4.5)
and (4.6) become

12

r2
= A′′ + A′

r
+ 3(A′)2 − λ

r2
e2L−2A,

4

r2
= A′′ + A′

r
+ (A′)2.

The general solution is given by

e2A = λe2L

32C

(1 − Cr4)2

r4
,

where C is a constant with the convention that

e2A = C1r
−4

for C = 0, in which case λ = 0, and

e2A = C1r
4

for C = ∞, in which case λ = 0. We can also write down the explicit expressions of B
and f ′. It turns out that these solutions are isometric to either Freund-Rubin solutions
or Ricci-flat solutions.

2. For v satisfying

dv

dt
= −(v2 − 6),

(4.8) is automatically satisfied. The corresponding solutions are given by

e2A = λC2

6

(r2
√
6)−1/3(1 − Cr2

√
6)2

(1 + 6Cr2
√
6 + C2r4

√
6)2/3

,

e2B = C2

r2

(
1 + 6Cr2

√
6 + C2r4

√
6

r2
√
6

)1/3

,

f ′ = ± (32C2λ3C3
2)

1/2r
√
6−1(1 − Cr2

√
6)3

3(1 + 6Cr2
√
6 + C2r4

√
6)2

.

Here we should use the convention that

e2A = λC2

6
r−2

√
6/3, e2B = C2r

−2−2
√
6/3, f ′ = 0,

when C = 0 and

e2A = C1r
2
√
6/3, e2B = 6C1

λ
r2

√
6/3−2, f ′ = 0,

when C = ∞. Here C1,C2,C are constants (with relation C1 = λC2C2/3/6). So we
get a 3-parameter family of explicit solutions to 11D supergravity with λ not necessarily
zero. The corresponding metrics g8 on M8 are incomplete.
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3. For v satisfying

dv

dt
= −3(v2 − 4),

(4.8) is also automatically satisfied. This corresponds to the case λ = 0 considered in
Duff–Stelle [19]. As we are working with field equations only, we get more general
solutions compared to Duff–Stelle’s result.

What is more interesting is that for the λ = 0 case, the ODE system (4.1)–(4.4) can
be solved explicitly and completely as follows.

We eliminate ( f ′)2 from (4.2) and (4.4) to get

(A′′ + 2B ′′) + 13

r
(A′ + 2B ′) + 3(A′ + 2B ′)2 = 0.

Write u = A′ + 2B ′ (this u is slightly different from the previous u), so we have

u′ + 13u

r
+ 3u2 = 0. (4.11)

(a). If we take u = 0 as in Duff–Stelle [19], then (4.3) reduces to

[(e3A)′]2 = ( f ′)2,

so

d f = ±d(e3A),

therefore (4.1), (4.2) and (4.4) all reduce to

B ′′ + 7B ′

r
+ 6(B ′)2 = 0, (4.12)

which implies that the scalar curvature of the metric g8 is nonnegative.
If B ′ = 0, we get the trivial solution with F=0 and M11 Ricci-flat. Another solution

is given by

B ′ = −1

r
,

hence

e2A = C1r
4, e2B = C2

r2
, f ′ = ±6C3/2

1 r5.

We see that g8 is a complete conformally flat metric on R8\{0} which is isometric to
C2(R × S7). The eleven dimensional manifold M11 is isometric to

(M3 × R) × S7(
√
C2),

where the metric on M3 × R is given by

g4 = C1e
4x/

√
C2g3 + (dx)2,
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where x is the coordinate on R and g3 is a flat Lorentzian metric on M3. The metric g4
is Einstein satisfying

(Ric4)i j = − 12

C2
(g4)i j .

In this case one can also check that

F = ± 6√
C2

dvol4,

therefore this solution is a special case of the Freund-Rubin solution.
In general, we can take

B ′ = M

r(r6 + M)

for some constant M to solve (4.12). We further get

e2A = C1

(
r6

r6 + M

)2/3

, e2B = C2

(
r6

r6 + M

)−1/3

, f ′ = ∓6MC3/2
1 r5

(r6 + M)2
.

For M > 0, the corresponding g8 is a complete metric on R8\{0}, which is exactly
the solution found in Duff–Stelle [19]. And for M < 0, the corresponding g8 is an
incomplete metric on R8\B( 6

√−M).

(b). We may also take u = −4/r to solve (4.11), in which case (4.3) reduces to

6(B ′)2 + 24B ′

r
+
48

r2
= e−6A

6
( f ′)2,

which implies that

f ′ = ∓ 6e3A
(
B ′ + 2

r

)
= ±(e3A)′.

Combining it with (4.4), we get

B ′′ + 6(B ′)2 + 19B ′

r
+
12

r2
= 0. (4.13)

Two special solutions of (4.13) are B ′ = − 1/r and B ′ = − 2/r , which correspond to
A′ = −2/r and A′ = 0 respectively.

In the first case, one can solve

e2A = C1r
−4, e2B = C2r

−2, f ′ = ±6C3/2
1

r7

to get a Freund–Rubin solution.
In the second case one can similarly solve

eA = C ′
1, eB = C ′

2r
−4, f ′ = 0

and again we get the Ricci-flat solution.
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The general solution to (4.13) is

B ′ = − r6 + 2M

r(r6 + M)
.

So we get

e2A = C1(r
6 + M)−2/3, e2B = C2r

−4(r6 + M)1/3, f ′ = ± 6C3/2
1 r5

(r6 + M)2
,

which is isomorphic to the Duff–Stelle solution. It is easy to verify that case (b) is related
to case (a) by the inversion r ↔ r−1.

(c). The general solution to (4.11) is

u = −4

r(1 − Cr12)

for some constant C , in which case B satisfies

B ′′ + 6(B ′)2 + 19 − 7Cr12

r(1 − Cr12)
B ′ + 4(3 − 11Cr12)

r2(1 − Cr12)2
= 0.

To solve this Riccati equation, we first write ρ = r12 and denote by Ḃ the expression

Ḃ = dB

dρ
= B ′

12r11
.

Therefore, the above equation can be rewritten as

B̈ + 6(Ḃ)2 +
5 − 3Cρ

2ρ(1 − Cρ)
Ḃ +

3 − 11Cρ

36ρ2(1 − Cρ)2
= 0.

Let

W = 6Ḃ +
5 − 3Cρ

4ρ(1 − Cρ)
,

then W satisfies the Riccati equation

Ẇ +W 2 +
9 − 118Cρ + 9C2ρ2

48ρ2(1 − Cρ)2
= 0.

It is convenient to introduce the constant α = √
7/3 = 1.5275 . . . . By observation, one

of the solution to this equation (when C is positive) is given by

W0 = − 3
4Cρ + α

√
Cρ + 1

4

ρ(1 − Cρ)
,

and
∫

W0dρ = 1

4
( log ρ + 2 log (1 − Cρ)) + α log

(
1 +

√
Cρ

1 − √
Cρ

)
.
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Therefore, by general theory of Riccati equation, we know a general solution of above
equation is of the form

W = W0 +

1√
ρ(1−Cρ)

(
1−√

Cρ

1+
√
Cρ

)2α

− 1
2α

√
C

((
1−√

Cρ

1+
√
Cρ

)2α − 1

)
+ 2M

= − 3
4Cρ + α

√
Cρ + 1

4

ρ(1 − Cρ)
+

1√
ρ(1−Cρ)

(
1−√

Cρ

1+
√
Cρ

)2α

− 1
2α

√
C

((
1−√

Cρ

1+
√
Cρ

)2α − 1

)
+ 2M

.

It follows that

Ḃ = 1

6

⎛
⎜⎜⎝α

√
Cρ − 1

ρ(1 − Cρ)
+

1√
ρ(1−Cρ)

(
1−√

Cρ

1+
√
Cρ

)2α

− 1
2α

√
C

((
1−√

Cρ

1+
√
Cρ

)2α − 1

)
+ 2M

⎞
⎟⎟⎠ .

Therefore we get

e2B = C2

r4

(
1 +

√
Cr6

) 1
3 (α+1)

(
1 − √

Cr6
) 1

3 (α−1)

⎛
⎝M − 1

4α
√
C

⎛
⎝

(
1 − √

Cr6

1 +
√
Cr6

)2α

− 1

⎞
⎠

⎞
⎠

1/3

.

We can also solve that

e2A = C1

(
1 − √

Cr6

1 +
√
Cr6

)2α/3
⎛
⎝M − 1

4α
√
C

⎛
⎝

(
1 − √

Cr6

1 +
√
Cr6

)2α

− 1

⎞
⎠

⎞
⎠

−2/3

,

f ′ = ± 6C3/2
1

√
1 + 4Mα

√
Cr5(

M − 1
4α

√
C

((
1−√

Cr6

1+
√
Cr6

)2α − 1

))2

(
1 − √

Cr6
)2α−1

(
1 +

√
Cr6

)2α+1 .

When C < 0, one can similarly solve that

Ḃ = 1

6ρ(1 − Cρ)

(
α
√−Cρ cot

(
θ + 2α arctan

(√−Cρ
))

− 1
)

,

where θ is related to other constants by θ = 2αM
√−C .

It follows that

e2B = C2

(
1 − Cr12

r12
sin

(
θ + 2α arctan

(√−Cr6
))

2α
√−C

)1/3
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and

e2A = C1

(
sin

(
θ + 2α arctan

(√−Cr6
))

2α
√−C

)−2/3

,

f ′ = ∓56CC3/2
1 r5

(1 − Cr12) sin2
(
θ + 2α arctan

(√−Cr6
)) .

By Theorem 3 we know that the only supersymmetric solutions in this 5-parameter
family are 3(a) and 3(b), all isomorphic to the Duff–Stelle solution. Moreover, for any
solution other than Duff–Stelle, the metric (g8)i j = e2Bδi j is incomplete.

Duff–Stelle’s work was further generalized in [16,17]. Following lines in [17], for
any solution we find in this section, we may replace S7 in g8 = e2B(dr2 + r2gS7) by
any Einstein 7-manifold with the same Einstein constant as S7, to get other solutions to
11D supergravity.
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A (Multi-)Warped Product Metric

Let (Mi , gi ) be pseudo-Riemannian manifolds of dimension ni for i = 0, 1, 2, . . . , k.
A multi-warped product metric g on the product manifold M0 × M1 × · · · × Mk is of
the form

g = g0 + e f1g1 + · · · + e fk gk,

where f1, . . . , fk are smooth functions on M0. In this “Appendix”, we will compute the
curvature tensors of (multi-)warped product metrics in terms of the curvature tensors Ri
of (Mi , gi ). For simplicity of notation, we will use X j and Y j to denote vector fields
tangential toMj . These formulae can be found in literature (for instance [14]), we include
them for the convenience of readers.

Using the Koszul identity, one can find that

∇X0Y0 = (∇0)X0Y0,

∇X0Y j = ∇Y j X0 = 1

2
X0( f j )Y j ,

∇X j Y j = (∇ j )X j Y j − 1

2
(X j ,Y j )g j ∇0(e

f j ),

∇X j Yl = 0, j �= l.

It follows that

R(X0,Y0, Z0,W0) = R0(X0,Y0, Z0,W0),

R(X0,Y j , Z0,Wj ) = −e f j

(
1

2
(∇2

0 f j )(X0, Z0) +
1

4
X0( f j )Z0( f j )

)
(Y j ,Wj )g j ,
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R(X j ,Y j , Z j ,Wj ) = e f j R j (X j ,Y j , Z j ,Wj ) +
e2 f j

4
|∇0 f j |2

(
(Y j , Z j )g j (X j ,Wj )g j

−(X j , Z j )g j (Y j ,Wj )g j

)
,

R(X j ,Yl , Z j ,Wl) = −e f j+ fl

4
(X j , Z j )g j (Yl ,Wl)gl (∇0 f j ,∇0 fl), j �= l.

It follows that the Ricci curvature of the warped metric g is given by

Ric(X0,Y0) = Ric0(X0,Y0) −
k∑
j=1

n j

(
1

2
(∇2

0 f j )(X0,Y0) +
1

4
X0( f j )Y0( f j )

)
,

Ric(X j ,Y j ) = Ric j (X j ,Y j ) − e f j (X j ,Y j )g j

2

(
�0( f j ) +

1

2

k∑
l=1

nl(∇0 f j ,∇0 fl)

)
,

and all other components are zero.
Similarly, the scalar curvature can be computed as

S = S0 +
k∑
j=1

e− f j S j −
k∑
j=1

n j

(
�0( f j ) +

1

4
|∇0 f j |2

)
− 1

4

∣∣∣∣∣∣
l∑

j=1

n j∇0 f j

∣∣∣∣∣∣
2

.
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