Theory and Research Methods 1343

NETWORKING THEORIES TO DESIGN A FULLY ONLINE ASSESSMENT OF
STUDENTS’ COVARIATIONAL REASONING

Heather Lynn Johnson Jeremiah Kalir Gary Olson
University of Colorado Denver University of Colorado Denver University of Colorado Denver
Heather.Johnson@ucdenver.edu Remi.Kalir@ucdenver.edu Gary.Olson@ucdenver.edu

Amber Gardner Amy Smith Xin Wang
University of Colorado Denver University of Colorado Denver RMC Research Center
Amber.Gardner@ucdenver.edu Amy.L2.Smith@ucdenver.edu Wang@rmcres.com

Networking theories of different grain sizes, we designed a fully online assessment of students’
covariational reasoning. With this assessment, we intend to produce a viable means of
measuring students’ mathematical reasoning using methods other than clinical, task-based
interviews. The assessment is fully online, and readily accessible across different types of
devices. We outline design aspects across and within the assessment items and provide three
theoretically based design principles underlying the design of the assessment. Through this
research, we contribute to the development of new theoretical approaches to investigate and
assess complexities of students’ mathematical reasoning.
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We address the problem: How can a fully online assessment be developed, in place of
clinical interviews, to make inferences into students’ covariational reasoning? Building from the
work of Norton, Tzur, and colleagues (Hodkowski, Hornbein, Gardner, Johnson, Jorgensen, &
Tzur, 2016; Johnson, Tzur, Hodkowski, Jorgensen, Wei, Wang, & Davis, in press; Norton &
Wilkins, 2009), we designed an assessment to measure undergraduate college algebra students’
covariational reasoning. We extend existing research in two ways. First, we developed a fully
online assessment, rather than a paper and pencil tool. Second, we designed our assessment to
measure covariational reasoning, rather than multiplicative or fractional reasoning.

We aimed to not only assess students’ covariational reasoning, but also to distinguish
gradations in students’ covariational reasoning (see also Johnson et al., in press). Building from
the work of Johnson and colleagues (Johnson, McClintock, Hornbein, Gardner, & Greiser,
2017), we networked, or interweaved, theories to design assessment items. Interweaving
Thompson’s theory of quantitative reasoning (Thompson, 1994; Thompson & Carlson, 2017)
and Marton’s variation theory (Kullberg, Kempe, & Marton, 2017; Marton, 2015), we designed
within and across assessment items. To distinguish gradations in students’ covariational
reasoning, we drew on Tzur’s method of fine grain assessment (Tzur, 2007). Using the fine grain
assessment method, we designed our assessment with the intent to investigate how students’
opportunities to conceive of variation in individual attributes might foster their covariational
reasoning. We outline design aspects within and across assessment items and provide three
theoretically based design principles underlying the design of the assessment.

Theoretical and Conceptual Framework
Networking Theories to Design Within and Across Assessment Items
To design within and across assessment items, we networked Thompson’s theory of
quantitative reasoning (e.g., Thompson, 1994; Thompson & Carlson, 2017) and Marton’s
variation theory (e.g., Kullberg et al., 2017; Marton, 2015). Marton and colleagues (Kullberg et
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al., 2017; Marton, 2015) identify two key aspects of variation theory: Discernment and variation.
For students to discern critical aspects of an object of learning, they need to experience variation
(difference). Specifically, learners should experience variation in critical aspects across a
background of invariance. Then learners should repeat experiences across different backgrounds.
In our set of assessment items, we designed for variation (difference) within assessment items (a
background of invariance), then across assessment items (different backgrounds).

To explain the object of learning—covariational reasoning—we appeal to Thompson’s
theory of quantitative reasoning (e.g., Thompson, 1994; Thompson & Carlson, 2017). In this
theory, Thompson draws on students’ conceptions of attributes to explain students’ mathematical
reasoning. In particular, some attribute is a quantity if an individual conceives of that attribute as
possible to measure. By covariational reasoning, we mean students’ conceptions of relationships
between attributes that are capable of varying and possible to measure. For example, consider a
toy car moving around a square track. A student engaging in covariational reasoning could
conceive of a relationship between the toy car’s total distance traveled and the toy car’s distance
from a center point on the track.

Across our assessment items, we included situations incorporating attributes having different
kinds of variation (change). To clarify, we distinguish this use of variation (change) from
Marton’s use of variation (difference). Across the items, we varied not only the direction of
change in attributes (e.g., increases or decreases); we also incorporated variation in
unidirectional change in attributes (e.g., “increasing” increases or “decreasing” decreases).

The Fine Grain Assessment Method

To distinguish gradations in students’ covariational reasoning, we adapted Tzur’s (2007)
method of fine grain assessment. When using fine grain assessment methods, designers begin
with items that include no supports, then move to subsequent items including increasing amounts
of supports. Because items including no supports appear before items with supports, assessment
designers have the potential to investigate different levels, or gradations of students’ reasoning
(see also Hodkowski et al., 2016; Johnson et al., in press). In particular, we intend to use this
assessment to investigate how opportunities to conceive of variation in individual attributes
might foster students’ covariational reasoning.

The Covariational Reasoning Assessment

Table 1 provides a map of the covariation items. The covariational reasoning assessment
contains four assessment items. Each assessment item contains four question groups.
Assessment Items and Question Groups

Assessment items. Each assessment item incorporates a situation involving changing
attributes. We incorporated variation (difference) across the collection of assessment items. The
collection incorporates different kinds of attributes (e.g., height from the ground, total distance
traveled, diameter of the water surface of a fishbowl, and distance of a car from a center point).
Furthermore, the collection incorporates different kinds of variation (change): Variation in the
direction of change and variation in unidirectional change (e.g., an “increasing” increase).

Question groups. Each assessment item contains four question groups. Question group 1
serves as a member check, to assess if students comprehend the situation. Question group 2
serves as the first assessment of covariational reasoning: Reasoning without support. Question
group 3 provides support for students’ covariational reasoning. Question group 4 serves as a
second assessment of covariational reasoning: Reasoning with support. We designed our
question groups based on Tzur’s (2007) method of fine grain assessment. If students respond
correctly to Question group 2, they will move to a new assessment item. If students respond
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Table 1: Map of the covariation items in the covariational reasoning assessment
Assessment Question Group | Question Group | Question Group | Question Group
Item 1: Member 2: Reasoning 3: Supports for 4: Reasoning
Check without support Reasoning with Support
Ferris Wheel Play Video Play Video Video of Play Video
- Statement of Select a graph dynamic Select a graph
Attributes that represents points moving that represents
Do you a relationship along axes a relationship
understand the between the Describe how between the
Nat, Path, situation? attributes attribute 1 is attributes
Tree , *Yes A changing A
E *No ‘B Video of ‘B
e *If No, explain | || *C dynamic C
what makes D points moving D
Fish bowl this situation Explain why along axes Explain why
difficult to you chose the Describe how you chose the
understand graph you did attribute 2 is graph you did
— *If Yes, move *If Incorrect, changing
- to Q2 move to Q3
Toy Car oIf Correct,
o move to next
\ assessment
item

Design Principles

Assess for a Spectrum, Rather than a Switch
We use the analogy of a spectrum versus a switch to communicate our work to move beyond
binaries in assessing students’ covariational reasoning. Applying Tzur’s (2007) method of fine
grain assessment, we designed to distinguish gradations in students’ covariational reasoning. We
anticipate our gradations to be compatible with, yet perhaps not identical to, levels of
covariational reasoning put forward in the framework of Thompson and Carlson (2017).
“Practically” Apply Theories to Design Assessment Items
We aim to interweave and apply theories to do practical work of assessment design. With
Thompson’s theory of quantitative reasoning, we designed assessment items in which students
could have opportunities to conceive of attributes as possible to measure and capable of varying.
Therefore, we interrogated the types of attributes and variation (change) included in the
assessment. With Marton’s variation theory, we designed for variation (difference) within and
across assessment items. Within assessment items, we incorporated different types of graphs

(e.g., linear/nonlinear). Across assessment items, we incorporated different backgrounds (e.g., a
Ferris wheel, a toy car, etc.) and different types of variation (change) in attributes (e.g., variation
in direction of change and variation in unidirectional change).
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Leverage Technology to Promote Access and Opportunity

We leverage multiple technological affordances to promote greater student access and
opportunity. Students can access the covariation assessment via a computer, a tablet, or a mobile
phone. We created the animations following design factors for effective educational multimedia,
including multiple representation types, pacing, cueing, and user manipulation (Plass, Homer, &
Hayward, 2009). The assessment incorporates various multimedia, such as original video
animations, which provided multimodal representations of dynamic graph attributes.

Concluding Remarks
Networking theories, we interweave variation (change) and variation (difference) in
assessment design. We leverage technology to apply Tzur’s method of fine grain assessment.
Overall, we are working “practically” to network and apply theories to design accessible tools to
investigate and assess gradations in undergraduate students’ covariational reasoning.
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