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Abstract

Distantly-labeled data can be used to scale up
training of statistical models, but it is typi-
cally noisy and that noise can vary with the
distant labeling technique. In this work, we
propose a two-stage procedure for handling
this type of data: denoise it with a learned
model, then train our final model on clean
and denoised distant data with standard super-
vised training. Our denoising approach con-
sists of two parts. First, a filtering function
discards examples from the distantly labeled
data that are wholly unusable. Second, a rela-
beling function repairs noisy labels for the re-
tained examples. Each of these components is
a model trained on synthetically-noised exam-
ples generated from a small manually-labeled
set. We investigate this approach on the ultra-
fine entity typing task of Choi et al. (2018).
Our baseline model is an extension of their
model with pre-trained ELMo representations,
which already achieves state-of-the-art perfor-
mance. Adding distant data that has been de-
noised with our learned models gives further
performance gains over this base model, out-
performing models trained on raw distant data
or heuristically-denoised distant data.

1 Introduction

With the rise of data-hungry neural network mod-
els, system designers have turned increasingly to
unlabeled and weakly-labeled data in order to
scale up model training. For information extrac-
tion tasks such as relation extraction and entity
typing, distant supervision (Mintz et al., 2009) is
a powerful approach for adding more data, using
a knowledge base (Del Corro et al., 2015; Ra-
binovich and Klein, 2017) or heuristics (Ratner
et al., 2016; Hancock et al., 2018) to automatically
label instances. One can treat this data just like any
other supervised data, but it is noisy; more effec-
tive approaches employ specialized probabilistic

models (Riedel et al., 2010; Ratner et al., 2018a),
capturing its interaction with other supervision
(Wang and Poon, 2018) or breaking down aspects
of a task on which it is reliable (Ratner et al.,
2018b). However, these approaches often require
sophisticated probabilistic inference for training of
the final model. Ideally, we want a technique that
handles distant data just like supervised data, so
we can treat our final model and its training proce-
dure as black boxes.

This paper tackles the problem of exploiting
weakly-labeled data in a structured setting with a
two-stage denoising approach. We can view a dis-
tant instance’s label as a noisy version of a true un-
derlying label. We therefore learn a model to turn
a noisy label into a more accurate label, then ap-
ply it to each distant example and add the resulting
denoised examples to the supervised training set.
Critically, the denoising model can condition on
both the example and its noisy label, allowing it to
fully leverage the noisy labels, the structure of the
label space, and easily learnable correspondences
between the instance and the label.

Concretely, we implement our approach for the
task of fine-grained entity typing, where a single
entity may be assigned many labels. We learn two
denoising functions: a relabeling function takes an
entity mention with a noisy set of types and returns
a cleaner set of types, closer to what manually la-
beled data has. A filtering function discards ex-
amples which are deemed too noisy to be useful.
These functions are learned by taking manually-
labeled training data, synthetically adding noise to
it, and learning to denoise, similar to a conditional
variant of a denoising autoencoder (Vincent et al.,
2008). Our denoising models embed both entities
and labels to make their predictions, mirroring the
structure of the final entity typing model itself.

We evaluate our model following Choi et al.
(2018). We chiefly focus on their ultra-fine en-



According to the review aggregator Rotten 
Tomatoes ,  89 % of critics gave [the film] 
positive reviews.
film, movie, show, art, entertainment, creation

[The film] is based on a hit London and New 
York play , which was based on a best-selling 
book.
film, movie, show, art, entertainment, creation

(a)

(b) Djokovic lost to [Rafael Nadal] on Monday, in a 
rain-delayed U.S. Open final.
player, tennis player, champion, achiever, 
winner, contestant, person, athlete

(d)

“A pretty good day all round,” said [Gascoyne , a 
British veteran of stints with the original Tyrrell 
team] in a roller-coaster F1 career.
region 

(c)

person  ✔

Figure 1: Examples selected from the Ultra-Fine Entity Typing dataset of Choi et al. (2018). (a) A manually-
annotated example. (b) The head word heuristic functioning correctly but missing types in (a). (c) Entity linking
providing the wrong types. (d) Entity linking providing correct but incomplete types.

tity typing scenario and use the same two distant
supervision sources as them, based on entity link-
ing and head words. On top of an adapted model
from Choi et al. (2018) incorporating ELMo (Pe-
ters et al., 2018), naı̈vely adding distant data ac-
tually hurts performance. However, when our
learned denoising model is applied to the data,
performance improves, and it improves more than
heuristic denoising approaches tailored to this
dataset. Our strongest denoising model gives a
gain of 3 F1 absolute over the ELMo baseline, and
a 4.4 F1 improvement over naive incorporation
of distant data. This establishes a new state-of-
the-art on the test set, outperforming concurrently
published work (Xiong et al., 2019) and matching
the performance of a BERT model (Devlin et al.,
2018) on this task. Finally, we show that denois-
ing helps even when the label set is projected onto
the OntoNotes label set (Hovy et al., 2006; Gillick
et al., 2014), outperforming the method of Choi
et al. (2018) in that setting as well.

2 Setup

We consider the task of predicting a structured tar-
get y associated with an input x. Suppose we
have high-quality labeled data of n (input, tar-
get) pairs D = {

(
x(1), y(1)

)
, . . . , (x(n), y(n))},

and noisily labeled data of n′ (input, target) pairs
D′ = {(x(1), y(1)noisy), . . . , (x

(n′), y
(n′)
noisy)}. For our

tasks, D is collected through manual annotation
and D′ is collected by distant supervision. We use
two models to denoise data from D′: a filtering
function f disposes of unusable data (e.g., misla-
beled examples) and a relabeling function g trans-
forms the noisy target labels ynoisy to look more
like true labels. This transformation improves the
noisy data so that we can use it to D without intro-
ducing damaging amounts of noise. In the second
stage, a classification model is trained on the aug-
mented data (D combined with denoised D′) and

predicts y given x in the inference phase.

2.1 Case Study: Ultra-Fine Entity Typing

The primary task we address here is the fine-
grained entity typing task of Choi et al. (2018). In-
stances in the corpus are assigned types from a vo-
cabulary of more than 10,000 types, which are di-
vided into three classes: 9 general types, 121 fine-
grained types, and 10, 201 ultra-fine types. This
dataset consists of 6K manually annotated exam-
ples and approximately 25M distantly-labeled ex-
amples. 5M examples are collected using entity
linking (EL) to link mentions to Wikipedia and
gather types from information on the linked pages.
20M examples (HEAD) are generated by extract-
ing nominal head words from raw text and treating
these as singular type labels.

Figure 1 shows examples from these datasets
which illustrate the challenges in automatic anno-
tation using distant supervision. The manually-
annotated example in (a) shows how numerous
the gold-standard labeled types are. By contrast,
the HEAD example (b) shows that simply treating
the head word as the type label, while correct in
this case, misses many valid types, including more
general types. The EL example (c) is incorrectly
annotated as region, whereas the correct coarse
type is actually person. This error is charac-
teristic of entity linking-based distant supervision
since identifying the correct link is a challenging
problem in and of itself (Milne and Witten, 2008):
in this case, Gascoyne is also the name of a re-
gion in Western Australia. The EL example in (d)
has reasonable types; however, human annotators
could choose more types (grayed out) to describe
the mention more precisely. The average number
of types annotated by humans is 5.4 per example
while the two distant supervision techniques com-
bined yields 1.5 types per example on average.

In summary, distant supervision can (1) produce



Djokovic lost to [Rafael Nadal] on Monday, ...

player

tennis_player

A person who participates in or is skilled at some game

An athlete who plays tennis

++

Rafael Nadal

Good

Bad
✕

tennis player
winner
athlete
baseball player
person

Yes

Yes
Yes
No
Yes

✕

Filter Relabel

Figure 2: Denoising models. The Filter model predicts whether the example should be kept at all; if it is kept,
the Relabel model attempts to automatically expand the label set. Φm is a mention encoder, which can be a
state-of-the-art entity typing model. Φt encodes noisy types from distant supervision.

completely incorrect types, and (2) systematically
miss certain types.

3 Denoising Model

To handle the noisy data, we propose to learn a
denoising model as shown in Figure 2. This de-
noising model consists of filtering and relabeling
functions to discard and relabel examples, respec-
tively; these rely on a shared mention encoder and
type encoder, which we describe in the following
sections. The filtering function is a binary clas-
sifier that takes these encoded representations and
predicts whether the example is good or bad. The
relabeling function predicts a new set of labels for
the given example.

We learn these functions in a supervised fash-
ion. Training data for each is created through syn-
thetic noising processes applied to the manually-
labeled data, as described in Sections 3.3 and 3.4.

For the entity typing task, each example (x, y)
takes the form ((s,m), t), where s is the sentence,
m is the mention span, and t is the set of types
(either clean or noisy).

3.1 Mention Encoder

This encoder is a function Φm(s,m) which maps
a sentence s and mention m to a real-valued vec-
tor vm. This allows the filtering and relabeling
function to recognize inconsistencies between the
given example and the provided types. Note that
these inputs s and m are the same as the inputs for
the supervised version of this task; we can there-
fore share an encoder architecture between our de-
noising model and our final typing model. We use

an encoder following Choi et al. (2018) with a few
key differences, which are described in Section 4.

3.2 Type Encoder

The second component of our model is a module
which produces a vector vt = Φt(t). This is an
encoder of an unordered bag of types. Our basic
type encoder uses trainable vectors as embeddings
for each type and combines these with summing.
That is, the noisy types t1, . . . , tm are embedded
into type vectors {t1, . . . , tm}. The final embed-
ding of the type set t =

∑
j tj .

Type Definition Encoder Using trainable type
embeddings exposes the denoising model to po-
tential data sparsity issues, as some types appear
only a few or zero times in the training data.
Therefore, we also assign each type a vector based
on its definition in WordNet (Miller, 1995). Even
low-frequent types are therefore assigned a plausi-
ble embedding.1

Let wj
i denote the ith word of the jth type’s

most common WordNet definition. Each wj
i is

embedded using GloVe (Pennington et al., 2014).
The resulting word embedding vectors wj

i are
fed into a bi-LSTM (Hochreiter and Schmidhu-
ber, 1997; Graves and Schmidhuber, 2005), and
a concatenation of the last hidden states in both
directions is used as the definition representation
wj . The final representation of the definitions is
the sum over these vectors for each type: w =

1We found this technique to be more effective than using
pretrained vectors from GloVe or ELMo. It gave small im-
provements on an intrinsic evaluation over not incorporating
it; results are omitted due to space constraints.



∑
k w

k.
Our final vt = [t;w], the concatenation of the

type and definition embedding vectors.

3.3 Filtering Function

The filtering function f is a binary classifier de-
signed to detect examples that are completely mis-
labeled. Formally, f is a function mapping a la-
beled example (s,m, t) to a binary indicator z of
whether this example should be discarded or not.

In the forward computation, the feature vectors
vm and vt are computed using the mention and
type encoders. The model prediction is defined as
P (error) = σ

(
u⊤Highway ([vm;vt])

)
, where σ

is a sigmoid function, u is a parameter vector, and
Highway(·) is a 1-layer highway network (Srivas-
tava et al., 2015). We can apply f to each distant
pair in our distant dataset D′ and discard any ex-
ample predicted to be erroneous (P (error) > 0.5).

Training data We do not know a priori which
examples in the distant data should be discarded,
and labeling these is expensive. We therefore con-
struct synthetic training data Derror for f based on
the manually labeled data D. For 30% of the ex-
amples in D, we replace the gold types for that
example with non-overlapping types taken from
another example. The intuition for this procedure
follows Figure 1: we want to learn to detect ex-
amples in the distant data like Gascoyne where
heuristics like entity resolution have misfired and
given a totally wrong label set.

Formally, for each selected example ((s,m), t),
we repeatedly draw another example ((s′,m′), t′)
from D until we find t′error that does not have any
common types with t. We then create a positive
training example ((s,m, t′error), z = 1). We create
a negative training example ((s,m, t), z = 0) us-
ing the remaining 70% of examples. f is trained
on Derror using binary cross-entropy loss.

3.4 Relabeling Function

The relabeling function g is designed to repair ex-
amples that make it through the filter but which
still have errors in their type sets, such as missing
types as shown in Figure 1b and 1d. g is a function
from a labeled example (s,m, t) to an improved
type set t̃ for the example.

Our model computes feature vectors vm and vt

by the same procedure as the filtering function f .
The decoder is a linear layer with parameters D ∈
R|V t|×(dm+dt). We compute e = σ (D [vm;vt]),

where σ is an element-wise sigmoid operation de-
signed to give binary probabilities for each type.

Once g is trained, we make a prediction t̃ for
each (s,m, t) ∈ D′ and replace t by t̃ to create
the denoised data D′

denoise = {(s,m, t̃), . . . }. For
the final prediction, we choose all types tℓ where
eℓ > 0.5, requiring at least two types to be present
or else we discard the example.
Training data We train the relabeling function
g on another synthetically-noised dataset Ddrop
generated from the manually-labeled data D. To
mimic the type distribution of the distantly-labeled
examples, we take each example (s,m, t) and ran-
domly drop each type with a fixed rate 0.7 inde-
pendent of other types to produce a new type set
t′. We perform this process for all examples in D
and create a noised training set Ddrop, where a sin-
gle training example is ((s,m, t′), t). g is trained
on D′

drop with a binary classification loss function
over types used in Choi et al. (2018), described in
the next section.

One can think of g as a type of denoising
autoencoder (Vincent et al., 2008) whose recon-
structed types t̃ are conditioned on v as well as t.

4 Typing Model

In this section, we define the sentence and men-
tion encoder Φm, which is use both in the de-
noising model as well as in the final prediction
task. We extend previous attention-based models
for this task (Shimaoka et al., 2017; Choi et al.,
2018). At a high level, we have an instance en-
coder Φm that returns a vector vm ∈ RdΦ , then
multiply the output of this encoding by a matrix
and apply a sigmoid to get a binary prediction for
each type as a probability of that type applying.

Figure 3 outlines the overall architecture of
our typing model. The encoder Φm consists of
four vectors: a sentence representation s, a word-
level mention representation mword, a character-
level mention representation mchar, and a head-
word mention vector mhead. The first three of
these were employed by Choi et al. (2018). We
have modified the mention encoder with an addi-
tional bi-LSTM to better encode long mentions,
and additionally used the headword embedding di-
rectly in order to focus on the most critical word.
These pieces use pretrained contextualized word
embeddings (ELMo) (Peters et al., 2018) as input.

Pretrained Embeddings Tokens in the sentence
s are converted into contextualized word vectors
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location
group
engineer
person

Yes
No
Yes
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✕

[The board of directors] proposed to raise the dividend ... 

Attention

Attention

Char-CNN

Figure 3: Sentence and mention encoder used to predict
types. We compute attention over LSTM encodings of
the sentence and mention, as well as using character-
level and head-word representations to capture addi-
tional mention properties. These combine to form an
encoding which is used to predict types.

using ELMo; let s′i ∈ RdELMo denote the em-
bedding of the ith word. As suggested in Peters
et al. (2018), we learn task specific parameters
γtask ∈ R and stask ∈ R3 governing these embed-
dings. We do not fine-tune the parameters of the
ELMo LSTMs themselves.

Sentence Encoder Following Choi et al. (2018),
we concatenate the mth word vector sm in the
sentence with a corresponding location embed-
ding ℓm ∈ Rdloc . Each word is assigned one
of four location tokens, based on whether (1) the
word is in the left context, (2) the word is the
first word of the mention span, (3) the word is
in the mention span (but not first), and (4) the
word is in the right context. The input vectors
[s′; ℓ] are fed into a bi-LSTM encoder, with hid-
den dimension is dhid, followed by a span atten-
tion layer (Lee et al., 2017; Choi et al., 2018):
s = Attention(bi-LSTM([s′; l])), where s is the
final representation of the sentence s.

Mention Encoder To obtain a mention repre-
sentation, we use both word and character infor-
mation. For the word-level representation, the
mention’s contextualized word vectors m′ are fed
into a bi-LSTM with hidden dimension is dhid.
The concatenated hidden states of both directions
are summed by a span attention layer to form
the word-level mention representation: mword =
Attention(bi-LSTM(m′)).

Second, a character-level representation is com-
puted for the mention. Each character is embedded
and then a 1-D convolution (Collobert et al., 2011)
is applied over the characters of the mention. This

gives a character vector mchar.
Finally, we take the contextualized word vector

of the headword mhead as a third component of our
representation. This can be seen as a residual con-
nection (He et al., 2016) specific to the mention
head word. We find the headwords in the mention
spans by parsing those spans in isolation using the
spaCy dependency parser (Honnibal and Johnson,
2015). Empirically, we found this to be useful on
long spans, when the span attention would often
focus on incorrect tokens.

The final representation of the input x is a con-
catenation of the sentence, the word- & character-
level mention, and the mention headword repre-
sentations, v =

[
s;mword;mchar;mhead

]
∈ RdΦ .

Decoder We treat each label prediction as an in-
dependent binary classification problem. Thus, we
compute a score for each type in the type vocab-
ulary V t. Similar to the decoder of the relabeling
function g, we compute e = σ (Ev), where E ∈
R|V t|×dΦ and e ∈ R|V t|. For the final prediction,
we choose all types tℓ where eℓ > 0.5. If none of
eℓ is greater than 0.5, we choose tℓ = argmax e
(the single most probable type).

Loss Function We use the same loss function as
Choi et al. (2018) for training. This loss partitions
the labels in general, fine, and ultra-fine classes,
and only treats an instance as an example for types
of the class in question if it contains a label for that
class. More precisely:

L =Lgeneral1general(t) + Lfine1fine(t)

+ Lultra-fine1ultra-fine(t),
(1)

where L... is a loss function for a specific type
class: general, fine-grained, or ultra-fine, and
1...(t) is an indicator function that is active when
one of the types t is in the type class. Each L... is
a sum of binary cross-entropy losses over all types
in that category. That is, the typing problem is
viewed as independent classification for each type.

Note that this loss function already partially re-
pairs the noise in distant examples from missing
labels: for example, it means that examples from
HEAD do not count as negative examples for gen-
eral types when these are not present. However,
we show in the next section that this is not suffi-
cient for denoising.

Implementation Details The settings of hyper-
parameters in our model largely follows Choi et al.
(2018) and recommendations for using the pre-



trained ELMo-Small model.2 The word embed-
ding size dELMo is 1024. The type embedding size
and the type definition embedding size are set to
1024. For most of other model hyperparameters,
we use the same settings as Choi et al. (2018):
dloc = 50, dhid = 100, dchar = 100. The num-
ber of filters in the 1-d convolutional layer is 50.
Dropout is applied with p = 0.2 for the pretrained
embeddings, and p = 0.5 for the mention repre-
sentations. We limit sentences to 50 words and
mention spans to 20 words for computational rea-
sons. The character CNN input is limited to 25
characters; most mentions are short, so this still
captures subword information in most cases. The
batch size is set to 100. For all experiments, we
use the Adam optimizer (Kingma and Ba, 2014).
The initial learning rate is set to 2e-03. We imple-
ment all models3 using PyTorch. To use ELMo,
we consult the AllenNLP source code.

5 Experiments

Ultra-Fine Entity Typing We evaluate our ap-
proach on the ultra-fine entity typing dataset from
Choi et al. (2018). The 6K manually-annotated
English examples are equally split into the train-
ing, development, and test examples by the au-
thors of the dataset. We generate synthetically-
noised data, Derror and Ddrop, using the 2K training
set to train the filtering and relabeling functions, f
and h. We randomly select 1M EL and 1M HEAD
examples and use them as the noisy data D′. Our
augmented training data is a combination of the
manually-annotated data D and D′

denoised.

OntoNotes In addition, we investigate if denois-
ing leads to better performance on another dataset.
We use the English OntoNotes dataset (Gillick
et al., 2014), which is a widely used benchmark
for fine-grained entity typing systems. The orig-
inal training, development, and test splits contain
250K, 2K, and 9K examples respectively. Choi
et al. (2018) created an augmented training set
that has 3.4M examples. We also construct our
own augmented training sets with/without denois-
ing using our noisy data D′, using the same label
mapping from ultra-fine types to OntoNotes types
described in Choi et al. (2018).

2https://allennlp.org/elmo
3The code for experiments is available at https://

github.com/yasumasaonoe/DenoiseET

5.1 Ultra-Fine Typing Results

We first compare the performance of our approach
to several benchmark systems, then break down
the improvements in more detail. We use the
model architecture described in Section 4 and train
it on the different amounts of data: manually la-
beled only, naive augmentation (adding in the raw
distant data), and denoised augmentation. We
compare our model to Choi et al. (2018) as well
as to BERT (Devlin et al., 2018), which we fine-
tuned for this task. We adapt our task to BERT by
forming an input sequence ”[CLS] sentence
[SEP] mention [SEP]” and assign the seg-
ment embedding A to the sentence and B to the
mention span.4 Then, we take the output vector at
the position of the [CLS] token (i.e., the first to-
ken) as the feature vector v, analogous to the usage
for sentence pair classification tasks. The BERT
model is fine-tuned on the 2K manually annotated
examples. We use the pretrained BERT-Base, un-
cased model5 with a step size of 2e-05 and batch
size 32.

Results Table 1 compares the performance of
these systems on the development set. Our model
with no augmentation already matches the system
of Choi et al. (2018) with augmentation, and incor-
porating ELMo gives further gains on both preci-
sion and recall. On top of this model, adding the
distantly-annotated data lowers the performance;
the loss function-based approach of (Choi et al.,
2018) does not sufficiently mitigate the noise in
this data. However, denoising makes the distantly-
annotated data useful, improving recall by a sub-
stantial margin especially in the general class. A
possible reason for this is that the relabeling func-
tion tends to add more general types given finer
types. BERT performs similarly to ELMo with
denoised distant data. As can be seen in the per-
formance breakdown, BERT gains from improve-
ments in recall in the fine class.

Table 2 shows the performance of all settings
on the test set, with the same trend as the perfor-
mance on the development set. Our approach out-
performs the concurrently-published Xiong et al.
(2019); however, that work does not use ELMo.
Their improved model could be used for both de-

4We investigated several approaches, including taking the
head word piece from the last layer and using that for classi-
fication (more closely analogous to what Devlin et al. (2018)
did for NER), but found this one to work best.

5https://github.com/google-research/
bert

https://allennlp.org/elmo
https://github.com/yasumasaonoe/DenoiseET
https://github.com/yasumasaonoe/DenoiseET
https://github.com/google-research/bert
https://github.com/google-research/bert


Total General Fine Ultra-Fine

Model P R F1 P R F1 P R F1 P R F1

Ours + GloVe w/o augmentation 46.4 23.3 31.0 57.7 65.5 61.4 41.3 31.3 35.6 42.4 9.2 15.1
Ours + ELMo w/o augmentation 55.6 28.1 37.3 69.3 77.3 73.0 47.9 35.4 40.7 48.9 12.6 20.0
Ours + ELMo w augmentation 55.2 26.4 35.7 69.4 72.0 70.7 46.6 38.5 42.2 48.7 10.3 17.1
Ours + ELMo w augmentation 50.7 33.1 40.1 66.9 80.7 73.2 41.7 46.2 43.8 45.6 17.4 25.2

+ filter & relabel
BERT-Base, Uncased 51.6 32.8 40.1 67.4 80.6 73.4 41.6 54.7 47.3 46.3 15.6 23.4

Choi et al. (2018) w augmentation 48.1 23.2 31.3 60.3 61.6 61.0 40.4 38.4 39.4 42.8 8.8 14.6

Table 1: Macro-averaged P/R/F1 on the dev set for the entity typing task of Choi et al. (2018) comparing various
systems. ELMo gives a substantial improvement over baselines. Over an ELMo-equipped model, data augmen-
tation using the method of Choi et al. (2018) gives no benefit. However, our denoising technique allow us to
effectively incorporate distant data, matching the results of a BERT model on this task (Devlin et al., 2018).

noising as well as prediction in our setting, and we
believe this would stack with our approach.

Usage of Pretrained Representations Our
model with ELMo trained on denoised data
matches the performance of the BERT model. We
experimented with incorporating distant data (raw
and denoised) in BERT, but the fragility of BERT
made it hard to incorporate: training for longer
generally caused performance to go down after a
while, so the model cannot exploit large external
data as effectively. Devlin et al. (2018) prescribe
training with a small batch size and very specific
step sizes, and we found the model very sensitive
to these hyperparameters, with only 2e-05 giving
strong results. The ELMo paradigm of incorpo-
rating these as features is much more flexible and
modular in this setting. Finally, we note that our
approach could use BERT for denoising as well,
but this did not work better than our current ap-
proach. Adapting BERT to leverage distant data
effectively is left for future work.

5.1.1 Comparing Denoising Models
We now explicitly compare our denoising ap-
proach to several baselines. For each denoising
method, we create the denoised EL, HEAD, and
EL & HEAD dataset and investigate performance
on these datasets. Any denoised dataset is com-
bined with the 2K manually-annotated examples
and used to train the final model.

Heuristic Baselines These heuristics target the
same factors as our filtering and relabeling func-
tions in a non-learned way.
SYNONYMS AND HYPERNYMS For each type
observed in the distant data, we add its synonyms
and hypernyms using WordNet (Miller, 1995).
This is motivated by the data construction process
in Choi et al. (2018).

Model P R F1

Ours + GloVe w/o augmentation 47.6 23.3 31.3
Ours + ELMo w/o augmentation 55.8 27.7 37.0
Ours + ELMo w augmentation 55.5 26.3 35.7
Ours + ELMo w augmentation 51.5 33.0 40.2

+ filter & relabel
BERT-Base, Uncased 51.6 33.0 40.2

Choi et al. (2018) w augmentation 47.1 24.2 32.0
LABELGCN (Xiong et al., 2019) 50.3 29.2 36.9

Table 2: Macro-averaged P/R/F1 on the test set for the
entity typing task of Choi et al. (2018). Our denoising
approach gives substantial gains over naive augmenta-
tion and matches the performance of a BERT model.

COMMON TYPE PAIRS We use type pair statis-
tics in the manually labeled training data. For each
base type that we observe in a distant example,
we add any type which is seen more than 90%
of the time the base type occurs. For instance,
the type art is given at least 90% of the times
the film type is present, so we automatically add
art whenever film is observed.

OVERLAP We train a model on the manually-
labeled data only, then run it on the distantly-
labeled data. If there is an intersection between
the noisy types t and the predicted type t̂, we com-
bine them and use as the expanded type t̃. Inspired
by tri-training (Zhou and Li, 2005), this approach
adds “obvious” types but avoids doing so in cases
where the model has likely made an error.

Results Table 3 compares the results on the de-
velopment set. We report the performance on each
of the EL & HEAD, EL, and HEAD dataset. On
top of the baseline ORIGINAL, adding synonyms
and hypernyms by consulting external knowledge
does not improve the performance. Expanding
labels with the PAIR technique results in small
gains over ORIGINAL. OVERLAP is the most ef-



EL & HEAD EL HEAD

Type Denoising Method P R F1 P R F1 P R F1

RAW DATA 55.2 26.4 35.7 52.3 26.1 34.8 52.8 28.4 36.9
Heuristic Baselines SYNONYMS & HYPERNYMS 43.0 30.0 35.3 47.5 26.3 33.9 44.8 31.7 37.1

PAIR 50.2 29.0 36.8 49.6 27.0 35.0 50.6 31.2 38.6
OVERLAP 50.0 32.3 39.2 49.5 30.8 38.0 50.6 31.4 38.7

Proposed Approach FILTER 53.1 28.2 36.8 51.9 26.5 35.1 51.2 31.2 38.7
RELABEL 52.1 32.2 39.8 50.2 31.4 38.6 50.2 31.8 38.9
FILTER & RELABEL 50.7 33.1 40.1 52.7 30.5 38.7 50.7 32.1 39.3

Choi et al. (2018) 48.1 23.2 31.3 50.3 19.6 28.2 48.4 22.3 30.6

Table 3: Macro-averaged P/R/F1 on the dev set for the entity typing task of Choi et al. (2018) with various types of
augmentation added. The customized loss from Choi et al. (2018) actually causes a decrease in performance from
adding any of the datasets. Heuristics can improve incorporation of this data: a relabeling heuristic (Pair) helps on
HEAD and a filtering heuristic (Overlap) is helpful in both settings. However, our trainable filtering and relabeling
models outperform both of these techniques.

fective heuristic technique. This simple filtering
and expansion heuristic improves recall on EL.
FILTER, our model-based example selector, gives
similar improvements to PAIR and OVERLAP on
the HEAD setting, where filtering noisy data ap-
pears to be somewhat important.6 RELABEL and
OVERLAP both improve performance on both EL
and HEAD while other methods do poorly on EL.
Combining the two model-based denoising tech-
niques, FILTER & RELABEL outperforms all the
baselines.

5.2 OntoNotes Results

We compare our different augmentation schemes
for deriving data for the OntoNotes standard as
well. Table 4 lists the results on the OntoNotes test
set following the adaptation setting of Choi et al.
(2018). Even on this dataset, denoising signifi-
cantly improves over naive incorporation of dis-
tant data, showing that the denoising approach is
not just learning quirks of the ultra-fine dataset.
Our augmented set is constructed from 2M seed
examples while Choi et al. (2018) have a more
complex procedure for deriving augmented data
from 25M examples. Ours (total size of 2.1M) is
on par with their larger data (total size of 3.4M),
despite having 40% fewer examples. In this set-
ting, BERT still performs well but not as well as
our model with augmented training data.

One source of our improvements from data aug-
mentation comes from additional data that is able
to be used because some OntoNotes type can be
derived. This is due to denoising doing a better job

6One possible reason for this is identifying stray word
senses; film can refer to the physical photosensitive object,
among other things.

Model Acc. Ma-F1 Mi-F1

Ours + ELMo w/o augmentation 42.7 72.7 66.7
Ours + ELMo w augmentation 59.3 76.5 70.7
Ours + ELMo w augmentation 63.9 84.5 78.9

+ filter & relabel
Ours + ELMo w augmentation 64.9 84.5 79.2

by Choi et al. (2018)
BERT-Base, Uncased 51.8 76.6 69.1

Shimaoka et al. (2017) 51.7 70.9 64.9
AFET (Ren et al., 2016a) 55.1 71.1 64.7
PLE (Ren et al., 2016b) 57.2 71.5 66.1
Choi et al. (2018) 59.5 76.8 71.8
LABELGCN (Xiong et al., 2019) 59.6 77.8 72.2

Table 4: Test results on OntoNotes. Denoising helps
substantially even in this reduced setting. Using fewer
distant examples, we nearly match the performance us-
ing the data from Choi et al. (2018) (see text).

of providing correct general types. In the EL set-
ting, this yields 730k usable examples out of 1M
(vs 540K for no denoising), and in HEAD, 640K
out of 1M (vs. 73K).

5.3 Analysis of Denoised Labels

To understand what our denoising approach does
to the distant data, we analyze the behavior of our
filtering and relabeling functions. Table 5 reports
the average numbers of types added/deleted by the
relabeling function and the ratio of examples dis-
carded by the filtering function.

Overall, the relabeling function tends to add
more and delete fewer number of types. The
HEAD examples have more general types added
than the EL examples since the noisy HEAD labels
are typically finer. Fine-grained types are added
to both EL and HEAD examples less frequently.
Ultra-fine examples are frequently added to both
datasets, with more added to EL; the noisy EL la-
bels are mostly extracted from Wikipedia defini-



General Fine Ultra-Fine

Data Add Del Add Del Add Del Filter (%)

EL 0.87 0.01 0.36 0.17 2.03 0.12 9.4
HEAD 1.18 0.00 0.51 0.01 1.15 0.16 10.0

Table 5: The average number of types added or deleted
by the relabeling function per example. The right-most
column shows that the rate of examples discarded by
the filtering function.

tions, so those labels often do not include ultra-
fine types. The filtering function discards similar
numbers of examples for the EL and HEAD data:
9.4% and 10% respectively.

Figure 4 shows examples of the original noisy
labels and the denoised labels produced by the
relabeling function. In example (a), taken from
the EL data, the original labels, {location,
city}, are correct, but human annotators might
choose more types for the mention span, Min-
neapolis. The relabeling function retains the
original types about the geography and adds
ultra-fine types about administrative units such
as {township, municipality}. In exam-
ple (b), from the HEAD data, the original label,
{dollar}, is not so expressive by itself since
it is a name of a currency. The labeling func-
tion adds coarse types, {object, currency},
as well as specific types such as {medium of
exchange, monetary unit}. In another
EL example (c), the relabeling function tries to add
coarse and fine types but struggles to assign mul-
tiple diverse ultra-fine types to the mention span
Michelangelo, possibly because some of these
types rarely cooccur (painter and poet).

6 Related Work

Past work on denoising data for entity typ-
ing has used multi-instance multi-label learning
(Yaghoobzadeh and Schütze, 2015, 2017; Murty
et al., 2018). One view of these approaches is that
they delete noisily-introduced labels, but they can-
not add them, or filter bad examples. Other work
focuses on learning type embeddings (Yogatama
et al., 2015; Ren et al., 2016a,b); our approach
goes beyond this in treating the label set in a struc-
tured way. The label set of Choi et al. (2018) is
distinct in not being explicitly hierarchical, mak-
ing past hierarchical approaches difficult to apply.

Denoising techniques for distant supervision
have been applied extensively to relation extrac-
tion. Here, multi-instance learning and probabilis-

... play their home games at Target Center in [Minneapolis].(a)

location, 
city

location, place, city, country, area, 
region, township, town, municipality

... Vittoria was influenced also by [Michelangelo] ...(c)

architect, sculptor, 
painter, poet 

person, artist, writer 

[The dollar] has been rising , pushing commodities lower ...

dollar 

(b)

object, currency, money, medium of exchange, 
dollar, monetary unit 

Figure 4: Examples of the noisy labels (left) and the
denoised labels (right) for mentions (bold). The col-
ors correspond to type classes: general (purple), fine-
grained (green), and ultra-fine (yellow).

tic graphical modeling approaches have been used
(Riedel et al., 2010; Hoffmann et al., 2011; Sur-
deanu et al., 2012; Takamatsu et al., 2012) as well
as deep models (Lin et al., 2016; Feng et al., 2017;
Luo et al., 2017; Lei et al., 2018; Han et al., 2018),
though these often focus on incorporating signals
from other sources as opposed to manually labeled
data.

7 Conclusion

In this work, we investigated the problem of de-
noising distant data for entity typing tasks. We
trained a filtering function that discards examples
from the distantly labeled data that are wholly un-
usable and a relabeling function that repairs noisy
labels for the retained examples. When distant
data is processed with our best denoising model,
our final trained model achieves state-of-the-art
performance on an ultra-fine entity typing task.

Acknowledgments

This work was partially supported by NSF
Grant IIS-1814522, NSF Grant SHF-1762299, a
Bloomberg Data Science Grant, and an equipment
grant from NVIDIA. The authors acknowledge
the Texas Advanced Computing Center (TACC)
at The University of Texas at Austin for provid-
ing HPC resources used to conduct this research.
Results presented in this paper were obtained us-
ing the Chameleon testbed supported by the Na-
tional Science Foundation. Thanks as well to the
anonymous reviewers for their thoughtful com-
ments, members of the UT TAUR lab and Pengx-
iang Cheng for helpful discussion, and Eunsol
Choi for providing the full datasets and useful re-
sources.



References
Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettle-

moyer. 2018. Ultra-Fine Entity Typing. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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