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Abstract. LPMLN is a probabilistic extension of answer set programs with the weight
scheme adapted from Markov Logic. We study the concept of strong equivalence in
LPMLN, which is a useful mathematical tool for simplifying a part of an LPMLN

program without looking at the rest of it. We show that the verification of strong
equivalence in LPMLN can be reduced to equivalence checking in classical logic
via a reduct and choice rules as well as to equivalence under the soft logic of here
and there. The result allows us to leverage an answer set solver for LPMLN strong
equivalence checking. The study also suggests us a few reformulations of the LPMLN

semantics using choice rules, logic of here and there, and second-order logic.

1 Introduction

LPMLN is a probabilistic extension of answer set programs with the weight scheme adapted
from Markov Logic [1]. An LPMLN program defines the probability distribution over all
“soft” stable models, which do not necessarily satisfy all rules in the program, but the more
rules with the bigger weights they satisfy, the bigger their probabilities.

The language turns out to be highly expressive to embed several other probabilistic
logic languages, such as P-log [2], ProbLog [3], Markov Logic, and Causal Models [4],
as described in [5–7]. Inference engines for LPMLN, such as LPMLN2ASP, LPMLN2MLN
[8], and LPMLN-MODELS [9], have been developed based on the reduction of LPMLN to
answer set programs and Markov Logic. LPMLN is a basis of probabilistic action language
pBC+ [10], which is defined as a high-level notation of LPMLN to describe the probabilistic
transition systems.

As more results are built upon LPMLN, it becomes more important to consider the
equivalence between different LPMLN programs. As with answer set programs, LPMLN

programs F and G that have the same soft stable models with the same probability distribu-
tion are not necessarily equivalent in a stronger sense. When we add the same program H to
each of F and G, the resulting programs may have different soft stable models and different
probability distributions.

As in standard answer set programs, strong equivalence in LPMLN is important for
LPMLN programming to simplify a part of an LPMLN program without looking at the
rest of it and to verify the correctness of LPMLN for the representation. For instance, the
following rules appearing in any program

−(w1 + w2) : a ∨ b
w1 : a← b
w2 : b← a
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can be replaced by a simpler rule
w1 : a
w2 : b

without affecting the probability distribution over soft stable models.
However, because of the semantic differences, strong equivalence for answer set pro-

grams does not simply carry over to LPMLN. First, weights play a role. Even for the
same structure of rules, different assignments of weights make the programs no longer
strongly equivalent. Also, due to the fact that soft stable models do not have to satisfy all
rules, strongly equivalent answer set programs do not simply translate to strongly equiva-
lent LPMLN programs. For instance, {a ∨ b, ⊥ ← a, b} is strongly equivalent to {a ←
not b, b ← not a, ⊥ ← a, b}, but its LPMLN counterpart {α : a ∨ b, α : ⊥ ← a, b}
is not strongly equivalent to {α : a ← not b, α : b ← not a, α : ⊥ ← a, b}: if we add
{α : a ← b, α : b ← a} to each of them, {a, b} is a soft stable model of the former (by
disregarding the rule α : ⊥ ← a, b) but not of the latter (c.f. Example 1).

We extend the notion of strong equivalence to LPMLN, and show that the verification
of strong equivalence in LPMLN can be reduced to equivalence checking in classical logic
plus weight consideration. We also extend the logic of here and there to weighted rules,
which provides a monotonic basis of checking strong equivalence. The study of strong
equivalence suggests us a few reformulations of the LPMLN semantics using choice rules,
logic of here and there, and second-order logic, which present us useful insights into the
semantics.

The paper is organized as follows. After reviewing some preliminaries in Section 2, we
present the definition of strong equivalence and some characterization of strong equivalence
in terms of classical logic in Section 3. Then, we define soft logic of here and there and soft
equilibrium models, and show how soft logic of HT is related to strong equivalence in
Section 4. Then, we show another way to characterize strong equivalence in the style of
second-order logic in Section 5 and use it to design a way to check strong equivalence
using ASP solvers in Section 6.

2 Preliminaries

2.1 Review: Language LPMLN

We first review the definition of a (deterministic) stable model for a propositional formula
[11]. For any propositional formula F and any set X of atoms, the reduct FX is obtained
from F by replacing every maximal subformula of F that is not satisfied by X with ⊥. Set
X is a stable model of F if X is a minimal model of the reduct FX .

We next review the definition of LPMLN from [5]. An LPMLN program is a finite set of
weighted formulas w : R where R is a propositional formula 1 and w is a real number (in
which case, the weighted rule is called soft) or α for denoting the infinite weight (in which
case, the weighted rule is called hard).

For any LPMLN program F and any set X of atoms, F denotes the set of usual (un-
weighted) formulas obtained from F by dropping the weights, and FX denotes the set of
w : R in F such that X |= R.

1 Same as in Markov Logic, we could allow schematic variables that range over the Herbrand Uni-
verse, and define the process of grounding accordingly. The result of this paper can be straightfor-
wardly extended to that case.
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Given an LPMLN program F, SM[F] denotes the set of soft stable models:

{X | X is a (standard) stable model of FX}.

By TW(F) (“Total Weight” of F) we denote the expression exp(
∑

w:R∈F
w). For any in-

terpretation X , the weight of an interpretation X , denoted WF(X), is defined as2

WF(X) =

{
TW(FX) if X ∈ SM[F];

0 otherwise,

and the probability of X , denoted PF(X), is defined as

PF(X) = lim
α→∞

WF(X)∑
Y ∈SM[F]

WF(Y )
.

Alternatively, the weight can be defined by counting the penalty of the interpretation
[8]. More precisely, the penalty based weight of an interpretation X is defined as the expo-
nentiated negative sum of the weights of the rules that are not satisfied by X (when X is a
stable model of FX ). Let

W pnt
F (X) =

{
(TW (F \ FX))−1 if X ∈ SM[F];

0 otherwise

and

P pnt
F (X) = lim

α→∞

W pnt
F (X)∑

Y ∈SM[F]

W pnt
F (Y )

.

The following theorem tells us that the LPMLN semantics can be reformulated using
the concept of a penalty-based weight.

Theorem 1 ?pty For any LPMLN program F and any interpretation X ,

WF(X) = TW(F)×W pnt
F (X),

PF(X) = P pnt
F (X).

2.2 Review: Logic of Here and There

Logic of here and there (Logic HT ) is proven to be useful for a monotonic basis for check-
ing strong equivalence [12] and equilibrium models [13] are defined as a special class of
minimal models in logic HT .

An HT interpretation is an ordered pair 〈Y,X〉 of sets of atoms such that Y ⊆ X ,
which describe “two worlds”: the atoms in Y are true “here” (h) and the atoms in X are
true “there (t).” The worlds are ordered by h < t.

For any HT interpretation 〈Y,X〉, any world w, and any propositional formula F , we
define when the triple 〈Y,X,w〉 satisfies F recursively, as follows:

2 We identify an interpretation with the set of atoms true in it.
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– for any atom F , 〈Y,X, h〉 |=
ht
F if F ∈ Y ; 〈Y,X, t〉 |=

ht
F if F ∈ X .

– 〈Y,X,w〉 6|=
ht
⊥.

– 〈Y,X,w〉 |=
ht
F ∧G if

〈Y,X,w〉 |=
ht
F and 〈Y,X,w〉 |=

ht
G.

– 〈Y,X,w〉 |=
ht
F ∨G if

〈Y,X,w〉 |=
ht
F or 〈Y,X,w〉 |=

ht
G.

– 〈Y,X,w〉 |=
ht
F → G if for every world such that w ≤ w′,

〈Y,X,w′〉 6|=
ht
F or 〈Y,X,w′〉 |=

ht
G.

Definition 1. We say that anHT interpretation 〈Y,X〉 satisfies F (symbolically, 〈Y,X〉 |=
ht

F ) if 〈Y,X, h〉 satisfies F . An HT model of F is an HT interpretation that satisfies F .

Equilibrium models are defined as a special class of minimal models in logic HT as
follows.

Definition 2. An HT interpretation 〈Y,X〉 is total if Y = X . A total HT interpretation
〈X,X〉 is an equilibrium model of a propositional formula F if

– 〈X,X〉 |=
ht
F , and

– for any proper subset Y of X , 〈Y,X〉 6|=
ht
F .

A natural deduction system for logic HT can be obtained from the natural deduction
system for classical logic by dropping the law of excluded middle F ∨ ¬F from the list of
deduction rules and by adding the axiom schema F ∨ (F → G)∨¬G. From the deduction
system, we can derive the weak law of excluded middle ¬F ∨ ¬¬F .

Theorem 1 from [12] shows that strong equivalence between two answer set programs
coincides with equivalence in the logic HT . The deduction rules above can be used for
checking strong equivalence.

3 Strong Equivalence in LPMLN

We define the notions of weak and strong equivalences, naturally extended from those for
the standard stable model semantics.

Definition 3. LPMLN programs F and G are called weakly equivalent to each other if

PF(X) = PG(X)

for all interpretations X .

Definition 4. LPMLN programs F and G are called strongly equivalent to each other if, for
any LPMLN program H,

PF∪H(X) = PG∪H(X)

for all interpretations X .

Note that strong equivalence implies weak equivalence, but not vice versa.
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Example 1. Consider two programs F and G 3

F 2 : a ∨ b G 1 : a← ¬b
1 :← a ∧ b 1 : b← ¬a

1 :← a ∧ b.

The programs are weakly equivalent, but not strongly equivalent. One can check their prob-
ability distributions over soft stabel models are identical. However, for

H = {1 : a← b, 1 : b← a},

set {a, b} is a soft stable model of F ∪ H but not of G ∪ H, so that PF∪H({a, b}) is e4/Z (Z
is a normalization factor) but PG∪H({a, b}) is 0.

We call an expression of the form ec1+c2α, where c1 is a real number accounting for
the weight of soft rules and c2 is an integer accounting for the weight of hard rules, a w-
expression. Then Definition 4 can be equivalently rewritten as follows: F and G are strongly
equivalent to each other if there is a w-expression c such that for any LPMLN program H,

WF∪H(X) = c×WG∪H(X) (1)

for all interpretations X . The w-expression c accounts for the fact that the weights are
“proportional” to each other, so the probability distribution remains the same.

In view of Theorem 1, it is also possible to use the penalty based weights, i.e., refer to
the equation

W pnt
F∪H(X) = c×W pnt

G∪H(X)

in place of (1).
Due to the weight scheme, every interpretation that has a non-zero weight is a soft stable

model. Thus Definition 4 implies that the LPMLN programs are “structurally equivalent”
to each other, which is defined as follows.

Definition 5. LPMLN programs F and G are structurally equivalent if, for any LPMLN

program H, programs F ∪ H and G ∪ H have the same set of soft stable models.

Strong equivalence implies structural equivalence, but not vice versa.

Proposition 1 If LPMLN programs F and G are strongly equivalent, then they are struc-
turally equivalent as well.

The fact that LPMLN programs F and G are structurally equivalent does not follow from
the fact that ASP programs F and G are strongly equivalent.

Example 1 Continued In Example 1, two ASP programs F and G are strongly equivalent
(in the sense of logic programs) but F and G are not structurally equivalent, and conse-
quently not strongly equivalent. If we add H = {1 : a ← b, 1 : b ← a} to each side,
X = {a, b} is a soft stable model of F ∪ H but not of G ∪ H.

The following theorem shows a characterization of strong equivalence that does not
need to consider adding all possible LPMLN programs H. Similar to Proposition 2 from
[11], it shows that the verification of strong equivalence in LPMLN can be reduced to equiv-
alence checking in classical logic plus weight checking.

3 We identify F ← G with G→ F and← F with F → ⊥.
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Theorem 2 For any LPMLN programs F and G, program F is strongly equivalent to G if
and only if there is a w-expression c such that for every interpretation X ,

1. TW (FX) = c× TW (GX), and
2. (FX)X and (GX)X are classically equivalent.

Recall that TW (FX) is simply an exponentiated sum of the weights of the rules that
are true in X . Thus checking the first condition of Theorem 2 does not need to consider
whether X is a soft stable model or not. In view of Theorem 1, one could also equivalently
add up the weights of rules that are not true inX and exponentiate the sum, i.e., Condition 1
of Theorem 2 can be replaced with

1’. TW (F \ FX) = c× TW (G \ GX).

Example 2. Consider two programs

F 0 : ¬a G 2 : ¬a ∨ b
2 : b← a 1 : a ∨ ¬a
3 : a← ¬¬a

The programs are strongly equivalent to each other. The following table shows that Condi-
tions 1,2 of Theorem 2 are true in accordance with the theorem.

X TW (FX) TW (GX) (FX)X (GX)X

φ e5 e3 > >
{a} e3 e1 a a

{b} e5 e3 > >
{a, b} e5 e3 a ∧ b a ∧ b

Table 1. (FX)X and (GX)X

Note that TW (FX) = e2 × TW (GX). However, if we replace rule 3 : a← ¬¬a in
F with 3 : a← a to result in F′, then F′ and G are not strongly equivalent: for

H = {1 : a← b, 1 : b← a}

{a, b} is a soft stable model of G ∪ H with the weight e5, but it is not a soft stable model
F′ ∪H, so its weight is 0. In accordance with Theorem 2, (F′{a,b}){a,b} is not equivalent to
(G{a,b})

{a,b}. The former is equivalent to {b← a}, and the latter is equivalent to {a ∧ b}.
Even if the programs have the same soft stable models, the different weight assign-

ments may make them not strongly equivalent. For instance, replacing the first rule in G
by 3 : ¬a ∨ b to result in G′, we have TW (Fφ) = e1 × TW (G′φ) and TW (F{a}) =
e2 × TW (G′{a}), so there is no constant c such that TW (FX) = c× TW (G′X).

In answer set programming, choice rules are useful constructs. We consider a general
form of choice rules that is not limited to atoms. For any propositional formula F , by {F}ch
we denote the formula F ∨ ¬F . The following proposition tells us that choice rules can be
alternatively represented in LPMLN with the weight 0 rule.



Strong Equivalence for LPMLN Programs 7

Proposition 2 For any formula F , the weighted formula 0 : F is strongly equivalent to
w : {F}ch, where w is any real number or α.

The following fact can also be useful for simplification.

Proposition 3 Let H be an LPMLN program that is structurally equivalent to w : > or
w : ⊥ (w is a real number or α). For any LPMLN program F, program F ∪ H is strongly
equivalent to F.

For example, adding H = {w1 : a∧¬a, w2 : a← a} to F, one can easily see F and F∪H
are strongly equivalent.

Interestingly some facts about strong equivalence known in answer set programs do
not simply carry over to LPMLN strong equivalence. The fact that, for any propositional
formulas F ,G, and K,

(F → G)→ K

is strongly equivalent to
(G ∨ ¬F )→ K
K ∨ F ∨ ¬G

is a key lemma to prove that any propositional formulas can be turned into the logic program
syntax [14]. The result is significant because it allows stable models of general syntax of
formulas to be computed by converting into rule forms and computed by standard answer
set solvers, as done in system F2LP. However, it turns out that the transformation does not
work under LPMLN, i.e., there are some formulas F , G, K such that

w : (F → G)→ K (2)

is not strongly equivalent to
w1 : (G ∨ ¬F )→ K
w2 : K ∨ F ∨ ¬G (3)

regardless of weights w, w1, w2. For example, assuming F , G, K are atoms, and take
interpretation X = {F,G}.

(((F → G)→ K)X)X ⇔ ⊥
(({(G ∨ ¬F )→ K,K ∨ F ∨ ¬G})X)X ⇔ FX .

So condition 2 of Theorem 2 does not hold, and it follows that (2) is not strongly equivalent
to (3).

3.1 Reformulation of LPMLN Using Choice Rules

The second condition of Theorem 2 is equivalent to the fact that for any LPMLN program
H, programs F ∪ H and G ∪ H have the same soft stable models. Throughout the paper,
we show that the condition can be represented in several different ways. We start with the
following version that uses choice rules.

We extend the notion of choice rules to a set of formulas as follows: for a set Γ of
propositional formulas, {Γ}ch denotes the set of choice formulas {{F}ch | F ∈ Γ}.

Theorem on Soft Stable Models For any LPMLN program F and G, the following condi-
tions are equivalent.
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(a) F and G are structurally equivalent.
(b) For any set X of atoms, (FX)X and (GX)X are classically equivalent.
(c) For any set X of atoms, ({F}ch)X and ({G}ch)X are classically equivalent.

Thus, Theorem 2 remains valid if we replace Condition 2 in it with

2’. ({F}ch)X and ({G}ch)X are classically equivalent.

As a side remark, Theorem on Soft Stable Models also tells us an equivalent character-
ization of soft stable models, which in turn leads to a reformulation of LPMLN semantics.

Proposition 4 For any LPMLN program F, X is a soft stable model of F iff X is a soft
stable model of {F}ch.

4 Soft Logic of Here and There

We extend the logic of here and there and the concept of equilibrium models to LPMLN

programs as follows.

Definition 6. An HT interpretation 〈Y,X〉 is called a soft HT model of an LPMLN pro-
gram F if, for every rule w : R in FX , 〈Y,X〉 satisfies R. In other words, 〈Y,X〉 is a soft
HT model of F iff 〈Y,X〉 is an HT model of FX .

We extend the Theorem on Soft Stable Models to consider HT models as follows. We
omit repeating conditions (b), (c).

Theorem on Soft Stable Models For any LPMLN program F and G, the following condi-
tions are equivalent.

(a) F and G are structurally equivalent.
(d) F and G have the same set of soft HT models.
(e) For any set X of atoms, FX ↔ GX is provable in logic HT .
(f) ({F}ch)↔ ({G}ch) is provable in HT .

Again, one of the conditions (d), (e), (f) can replace Condition 2 of Theorem 2 without
affecting the correctness.

Example 2 Continued We consider soft HT models of F, G and F′ in Example 2.
From Table 2, we see that F and G have the same set of soft HT models.

Condition (f) allows us to prove the structural equivalence between two LPMLN pro-
grams by using deduction rules in HT .

Example 3. Consider LPMLN programs F and G:

F 2 : ¬a ∨ b G 2 : ¬¬a→ b

We check that {F}ch ↔ {G}ch is provable in logic HT . Recall that

{F}ch = (¬a ∨ b) ∨ ¬(¬a ∨ b)
{G}ch = (¬¬a→ b) ∨ ¬(¬¬a→ b)
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X F G F′

〈φ, φ〉 Yes Yes Yes
〈φ, {a}〉 No No Yes
〈{a}, {a}〉 Yes Yes Yes
〈φ, {b}〉 Yes Yes Yes
〈{b}, {b}〉 Yes Yes Yes
〈φ, {a, b}〉 No No Yes
〈{a}, {a, b}〉 No No No
〈{b}, {a, b}〉 No No Yes
〈{a, b}, {a, b}〉 Yes Yes Yes

Table 2. Soft HT models of F, G, and F′

Left-to-right: Assume (¬a ∨ b) ∨ ¬(¬a ∨ b).
Case 1: (¬a ∨ b). Then ¬¬a → b is intuitionistically derivable, so derivable in logic HT
as well.
Case 2: ¬(¬a∨ b). Then ¬(¬¬a→ b) is intuitionistically derivable (Glivenko’s Theorem).

Right-to-left: Assume (¬¬a→ b) ∨ ¬(¬¬a→ b).
Case 1: ¬¬a → b. Then ¬a ∨ b can be derived from the weak law of excluded middle
¬a ∨ ¬¬a.
Case 2: ¬(¬¬a→ b). Then ¬(¬a∨ b) is intuitionistically derivable (Glivenko’s Theorem).

In view of the equivalence between Conditions (a) and (f) of Theorem on Soft Stable
Models, we conclude that F and G are structurally equivalent.

4.1 Soft Equilibrium Models

Definition 7. A soft HT interpretation is called total if Y = X . A total soft HT interpre-
tation 〈X,X〉 is a soft equilibrium model of an LPMLN program F if, for any proper subset
Y of X , 〈Y,X〉 is not a soft HT model of F.

In comparison with Definition 2, Definition 7 omits the condition that 〈X,X〉 satisfies
FX because this condition is trivially satisfied.

The following lemma tells us how soft HT models are related to the reducts in LPMLN.

Lemma 1. For any LPMLN program F and any sets Y,X of atoms such that Y ⊆ X , the
following conditions are equivalent:

(a) 〈Y,X〉 is a soft HT model of F.
(b) Y satisfies (FX)X .
(c) Y satisfies ({F}ch)X .

From the lemma, we conclude:

Proposition 5 A set X of atoms is a soft stable model of F iff 〈X,X〉 is a soft equilibrium
model of F.
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Example 2 Continued Table 1 shows that F and G have three soft stable models, which are
φ, {a}, {a, b}. And Table 2 shows that F and G have three equilibrium models, which are
〈φ, φ〉, 〈{a} {a}〉, 〈{a, b}, {a, b}〉. On the other hand, F′ has only one equilibrium model,
〈φ, φ〉, which provides another aspect to show F′ and G have different soft stable models.

The weight of the soft equilibrium models could be defined in the same way as in soft
stable models as in Section 2.1.

5 Strong Equivalence by Reduction to Classical Logic

We extend the theorem on stable models as follows. Let p be the propositional signature.
Let p′ be the set of atoms p′ where p ∈ p. For any formula F , ∆p′(F ) is defined recur-
sively:

– ∆p′(p) = p′ for any atomic formula p ∈ p;
– ∆p′(¬F ) = ¬F ;
– ∆p′(F ∧G) = ∆p′(F ) ∧∆p′(G);
– ∆p′(F ∨G) = ∆p′(F ) ∨∆p′(G);
– ∆p′(F → G) = (∆p′(F )→ ∆p′(G)) ∧ (F → G).

Lemma 1 is extended to ∆ as follows.

Lemma 1’ Let X,Y ⊆ p and Y ′ = {p′ ∈ p′ | p ∈ Y }. Each of the following conditions
is equivalent to each of Conditions (a),(b),(c) of Lemma 1.

(d) Y ′ ∪X satisfies ∆P′(FX).
(e) Y ′ ∪X satisfies ∆P′({F}ch).

Theorem on Soft Stable Models For any LPMLN programs F and G, the following
conditions are equivalent.

(a) For any LPMLN program H, programs F ∪ H and G ∪ H have the same soft stable
models.

(g) For any set X of atoms, {p′ → p | p ∈ p} entails ∆P′(FX)↔ ∆P′(GX) (in the sense
of classical logic).

(h) {p′ → p | p ∈ p} entails ∆P′({F}ch)↔ ∆P′({G}ch) (in the sense of classical logic).

The equivalence between Condition (a) and (h) of Theorem on Soft Stable Models
tells us the structural equivalence checking reduces to satisfiability checking. It also in-
dicates the structural equivalence checking between LPMLN programs is no harder than
checking strong equivalence between standard logic programs. In conjunction with Condi-
tion 1 of Theorem 2, the complexity of LPMLN strong equivalence checking is no harder
than checking strong equivalence for standard logic programs.

Theorem 3 The problem of determining if two LPMLN programs are strongly equivalent
is co-NP-complete.
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5.1 Reformulation of LPMLN Using ∆

The following proposition relates ∆ to soft stable models.

Proposition 6 For any LPMLN program F, set X is a soft stable model of F iff there is no
strict subset Y of X such that Y ′ ∪X satisfies ∆p′({F}ch).

The definition of ∆ is similar to the definition of F ∗ used in the second-order logic
based definition of a stable model from [15]. This leads to the following reformulation of
LPMLN in terms of second-order logic.

Let p be a list of distinct atoms, p1, . . . , pn, and let u be a list of distinct propositional
variables u1, . . . , un. By u ≤ p we denote the conjunction of the formulas ∀x(ui(x) →
pi(x)) for all i = 1, . . . n, where x is a list of distinct object variables whose length is the
same as the arity of pi. Expression u < p stands for (u ≤ p) ∧ ¬(p ≤ u).

Proposition 7 For any LPMLN program F, a set X of atoms is a soft stable model of F iff
X satisfies

¬∃u(u < p) ∧∆u({F}ch).

6 Checking Strong Equivalence Using ASP Solver

Based on the Theorem on Soft Stable Models, we use the following variant of Theorem 2
to leverage an ASP solver for checking LPMLN strong equivalence.

Theorem 2′ For any LPMLN programs F and G, program F is strongly equivalent to G if
and only if there is a w-expression c1 + c2α such that for every interpretation X ,

1a.
∑

w:R ∈ F,w 6=α,
andX 6|=R

w = c1 +
∑

w:R ∈ G,w 6=α,
andX 6|=R

w;

1b. |{α : R ∈ F | X 6|= R}| = c2 × |{α : R ∈ G | X 6|= R}| ;
2. {p′ → p | p ∈ p} entails ∆({F}ch)↔ ∆({G}ch) (in the sense of classical logic).

In each of the following subsections, we show how to check the conditions using
CLINGO together with F2LP [16]. We need F2LP to turn propositional formulas under the
stable model semantics into the input language of CLINGO. We assume weights are given
in integers as required by the input language of CLINGO.

6.1 Checking Conditions 1a, 1b of Theorem 2′

In order to check Condition 1, we need to find a potential value for c. For that, we choose
X = ∅ and find the value of c. If the same c makes the equation true for all other interpre-
tations as well, the condition is true.

The checking is done by using the program P in the input language of F2LP, constructed
as follows. For any soft rule wi : Ri in F, where wi is an integer, P contains

f unsat s(wi, i)← not Ri
Ri ← not f unsat s(wi, i)

(4)
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and for any hard rule α : F in F, P contains

f unsat h(i)← not Ri
Ri ← not f unsat h(i).

(5)

Or if Ri is already in the form

Headi ← Bodyi

that in the input language of CLINGO, instead of (4), we can also use 4

f unsat s(wi, i)← Bodyi, not Headi
Headi ← not f unsat s(wi, i),Bodyi

and instead of (5),

f unsat h(1, i)← Bodyi, not Headi
Headi ← not f unsat h(1, i),Bodyi.

P contains similar rules for each weighted formula in G using g unsat s(· · · ) and g unsat h(· · · )
atoms, as well as

f pw s(S)← S = #sum{X,Y : f unsat s(X,Y ), Y = 1..if}
g pw s(S)← S = #sum{X,Y : g unsat s(X,Y ), Y = 1..ig}
f pw h(S)← S = #count{W : f unsat h(W ),W = 1..if}
g pw h(S)← S = #count{W : g unsat h(W ),W = 1..ig}.

(if is the total number of rules in F, and ig is the total number of rules in G), and further-
more,

¬p (6)

for each atom p in p to ensure that we consider X = ∅.
For example, for F and G in Example 2, P is

not a:- not f_unsat_s(0,1).
f_unsat_s(0,1):- not not a.
a :- not not a, not f_unsat_s(3, 2).
f_unsat_s(3,2):-not not a, not a.
b:- a, not f_unsat_s(2, 3).
f_unsat_s(2, 3):- a, not b.
not a | b :- not g_unsat_s(2, 1).
g_unsat_s(2, 1):- not not a, not b.
a :- not not a, not g_unsat_s(1,2).
g_unsat_s(1,2) :- not not a, not a.
f_pw_s(S) :- S = #sum{X, Y: f_unsat_s(X, Y), Y=1..3}.
g_pw_s(S) :- S = #sum{X, Y: g_unsat_s(X, Y), Y=1..2}.
not a.
not b.

4 In the case Headi is a disjunction l1; · · · ; ln, expression not Headi stands for not l1, · · · , not ln.
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P has a unique answer set, which tells us the potential parameters c1 and c2 for Condi-
tions 1a and 1b each. If the answer set contains {f pw s(x1), f pw h(x2), g pw s(y1), g pw h(y2)}
then let

c1 = x1 − y1 c2 = x2 − y2.

Below we show how to check Condition 1 given c1 and c2 computed as above. Let P∗

is the program obtained from P by removing rules (6) for all atom p ∈ p and adding the
following rules

← f pw s(X), g pw s(Y ), X = Y + c1
← f pw h(X), g pw h(X)), X = Y + c2.

Proposition 8 Conditions 1a, 1b of Theorem 2′ hold iff P∗ has no stable models.

6.2 Checking the second condition of Theorem 2′

We check the second condition of Theorem 2′ by checking that each of the following ASP
program is unsatisfiable. Let p be the set of all atoms occurring in F and G.
P∗∗1 is the following set of rules:

{{p}ch | p ∈ p} ∪ {{p′}ch | p ∈ p} ∪ {p′ → p | p ∈ p} ∪ ∆P′({F}ch) ∪ ¬∆P′({G}ch).

P∗∗2 is the following set of rules:

{{p}ch | p ∈ p} ∪ {{p′}ch | p ∈ p} ∪ {p′ → p | p ∈ p} ∪ ∆P′({G}ch) ∪ ¬∆P′({F}ch).

For example, for F in Example 2, P∗∗1 in the input language of F2LP is as follows.

{a; aa; b; bb}.
aa -> a.
bb -> b.

% \Delta({F}ˆ{ch})
not a | not not a.
(aa -> bb) & ( a-> b)| not ( a-> b).
(not not a->aa) & (not not a->a) | not (not not a->a).

% not \Delta({G}ˆ{ch})
not ((not a | bb | not (not a | b)) &
((aa| not a) | not (a | not a))).

Proposition 9 Condition 2 of Theorem 2′ is true iff neither P∗∗1 nor P∗∗2 has stable models.

The structural equivalence checking method is related to the strong equivalence check-
ing method using SAT solvers in [17]. [18] reports another system for automated equiva-
lence checking.
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7 Conclusion

In this paper, we defined the concept of strong equivalence for LPMLN programs and pro-
vide several equivalent characterizations. On the way, we have presented a few reformula-
tions of LPMLN that give us useful insight.

The strong equivalence checking in Section 6 restricts soft rules’ weights to integers
only. We expect that this restriction can be removed if we use an external function call in
CLINGO.

Building upon the results presented here, we plan to extend the work to approximate
strong equivalence, where the probability distributions may not necessarily be identical but
allowed to be slightly different with some error bound.
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