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Abstract

While statistics and machine learning offers numerous methods for ensuring gener-1

alization, these methods often fail in the presence of post selection—the common2

practice in which the choice of analysis depends on previous interactions with the3

same dataset. A recent line of work has introduced powerful, general purpose4

algorithms that ensure a property called post hoc generalization (Cummings et5

al., COLT’16), which says that no person when given the output of the algorithm6

should be able to find any statistic for which the data differs significantly from the7

population it came from.8

In this work we show several limitations on the power of algorithms satisfying post9

hoc generalization. First, we show a tight lower bound on the error of any algorithm10

that satisfies post hoc generalization and answers adaptively chosen statistical11

queries, showing a strong barrier to progress in post selection data analysis. Second,12

we show that post hoc generalization is not closed under composition, despite many13

examples of such algorithms exhibiting strong composition properties.14

1 Introduction15

Consider a dataset X consisting of n independent samples from some unknown population P . How16

can we ensure that the conclusions drawn from X generalize to the population P? Despite decades17

of research in statistics and machine learning on methods for ensuring generalization, there is an18

increased recognition that many scientific findings do not generalize, with some even declaring this19

to be a “statistical crisis in science” [12]. While there are many reasons a conclusion might fail to20

generalize, one that is receiving increasing attention is post-selection, in which the choice of method21

for analyzing the dataset depends on previous interactions with the same dataset. Post-selection can22

arise from many common practices, such as variable selection, exploratory data analysis, and dataset23

re-use. Unfortunately, post-selection invalidates traditional methods for ensuring generalization,24

which assume that the method is independent of the data.25

Numerous methods have been devised for statistical inference after post selection (e.g. [14, 16, 10,26

11, 20]). These are primarily special purpose procedures that apply to specific types of simple post27

selection that admit direct analysis. A more limited number of methods apply where the data is reused28

in one of a small number of prescribed ways (e.g. [2, 3]).29

A recent line of work initiated by Dwork et al. [7] posed the question: Can we design general-30

purpose algorithms for ensuring generalization in the presence of post-selection? These works31

(e.g. [7, 6, 17, 1]) identified properties of an algorithm that ensure generalization under post-selection,32

including differential privacy [8], information-theoretic measures, and compression. They also33

identified many powerful general-purpose algorithms satisfying these properties, leading to algorithms34

for post-selection data analysis with greater statistical power than all previously known approaches.35

Each of the aforementioned properties give incomparable generalization guarantees, and allow for36

qualitatively different types of algorithms. However, Cummings et al. [5] identified that the common37

thread in each of these approaches is to establish a notion of post hoc generalization (which they38
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originally called robust generalization), and initiated a general study of algorithms satisfying this39

notion. Informally, an algorithmM satisfies post hoc generalization if there is no way, given only the40

output ofM(X), to identify any statistical query [15] (that is, a bounded, linear, real-valued statistic41

on the population) such that the value of that query on the dataset is significantly different from its42

answer on the whole population.43

Definition 1.1 (Post Hoc Generalization [5]). An algorithmM : Xn → Y satisfies (ε, δ)-post hoc
generalization if for every distribution P over X and every algorithm A that outputs a bounded
function q : X → [−1, 1], if X ∼ P⊗n, y ∼M(X), and q ∼ A(y), then

P [|q(P)− q(X)| > ε] ≤ δ,
where we use the notation q(P) = E [q(X)] and q(X) = 1

n

∑
i q(Xi), and the probability is over44

the sampling of X and any randomness ofM,A.45

Post hoc generalization is easily satisfied whenever n is large enough to ensure uniform convergence46

for the class of statistical queries. However, uniform convergence is only satisfied in the unrealistic47

regime where n is much larger than |X |. Algorithms that satisfy post hoc generalization are interesting48

in the realistic regime where there will exist queries q for which q(P) and q(X) are far, but these49

queries cannot be found. The definition also extends seamlessly to richer types of statistics than50

statistical queries. However, restricting to statistical queries only strengthens our negative results.51

Since all existing general-purpose algorithms for post-selection data analysis are analyzed via post52

hoc generalization, it is crucial to understand what we can achieve with algorithms satisfying post hoc53

generalization. In this work we present several strong limitaitons on the power of such algorithms.54

Our results identify natural barriers to progress in this area, and highlight important challenges for55

future research on post-selection data analysis.56

1.1 Our Results57

Sample Complexity Bounds for Statistical Queries. Our first contribution is strong new lower58

bounds on any algorithm that satisfies post hoc generalization and answers a sequence of adaptively59

chosen statistical queries—the setting introduced in Dwork et al. [7] and further studied in [1, 13, 18].60

In this model, there is an underlying distribution P . We would like to design an algorithm M61

that holds a sample X ∼ P⊗n, takes statistical queries q, and returns accurate answers a such62

that a ≈ q(P). To model post-selection, we consider a data analyst A that issues a sequence63

of queries q1, . . . , qk where each query qj may depend on the answers a1, . . . , aj−1 given by the64

algorithm in response to previous queries. The simplest algorithmM would return the empirical65

mean qj(X) = 1
n

∑
i q
j(Xi) in response to each query, and one can show that this algorithm answers66

each query to within ±ε if n ≥ Õ(k/ε2) samples.67

Surprisingly, we can improve the sample complexity to n ≥ Õ(
√
k/ε2) by returning q(X) perturbed68

with carefully calibrated noise [7, 1]. The analysis of this approach uses post hoc generalization: the69

noise is chosen so that |a− q(X)| ≤ ε/2 and the noise ensures |q(P)− q(X)| ≤ ε/2 for every query70

the analyst asks. Our main result shows that the sample complexity n = Õ(
√
k/ε2) is essentially71

optimal for any algorithm that uses the framework of post hoc generalization. Our construction refine72

the techniques in [13, 18]—which yield a lower bound of n = Ω(
√
k) for ε = 1/3.73

Theorem 1.2 (Informal). If M takes a sample of size n, satisfies (ε, δ)-post hoc generalization,74

and for every distribution P over X = {±1}k+O(log(n/ε)) and every data analyst A who asks k75

statistical queries, P
[
∃j ∈ [k], |qj(P)− a| > ε

]
≤ δ then n = Ω(

√
k/ε2), where the probability is76

taken over X ∼ P⊗n and the coins ofM and A.77

Independently, Wang [21] proved a quantitatively similar bound to Theorem 1.2. However, their78

bound only applies to algorithmsM that receive only the empirical mean q(X) of each query. Their79

bound also applies for a slightly different (though closely related) class of statistics.80

The dimensionality of X required in our result is at least as large as k, which is somewhat necessary.81

Indeed, if the support of the distribution is {±1}d, then there is an algorithmM that takes a sample82

of size just Õ(
√
d log(k)/ε3) [7, 1], so the conclusion is simply false if d� k. Even when d� k,83

the aforementioned algorithms require running time at least 2d per query. [13, 18] also showed that84

any polynomial time algorithm that answers k queries to constant error requires n = Ω(
√
k). We85

improve this result to have the optimal dependence on ε.86
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Theorem 1.3 (Informal). Assume one-way functions exist and let c > 0 be any constant. IfM takes87

a sample of size n, has polynomial running time, satisfies (ε, δ)-post hoc generalization, and for88

every distribution P over X = {±1}kc+O(log(n/ε)) and every data analyst A who asks k statistical89

queries, P
[
∃j ∈ [k], |qj(P)− a| > ε

]
≤ δ, then n = Ω(

√
k/ε2), where the probability is taken90

over X ∼ P⊗n and the coins ofM and A.91

We prove the information-theoretic result (Theorem 1.2) in Section 2. Due to space restrictions, we92

defer the computational result (Theorem 1.3) to the full version of this work.93

Negative Results for Composition. One of the motivations for studying post hoc generalization is94

to allow for exploratory data analysis and dataset re-use. In these settings, the same dataset may be95

analyzed by many different algorithms, each satisfying post hoc generalization. Thus it is important96

to understand whether the composition of these algorithms also satisfies post hoc generalization. We97

show that this is not the case.98

Theorem 1.4. For every n ∈ N there is a collection of ` = O(log n) algorithmsM1, . . . ,M` that99

take n samples from a distribution over X = {0, 1}O(logn) such that (1) each of these algorithms are100

(ε, δ)-post hoc generalizing for every δ > 0 and ε = O(
√

log(n/δ)/n.999), but (2) the composition101

(M1, . . . ,M`) is not (1.999, .999)-post hoc generalizing.102

Theorem 1.4 states that there is a set of O(log n) algorithms that have almost optimal post hoc103

generalization, but whose composition does not have any non-trivial post hoc generalization.104

If we consider a relaxed notion of computational post hoc generalization, then we show that compo-105

sition can fail even for just two algorithms. Informally, computational post hoc generalization means106

that Definition 1.1 is satisfied when the algorithm A runs in polynomial time.107

Theorem 1.5. Assume one-way functions exist. For every n ∈ N there are two algorithmsM1,M2108

that take n samples from a distribution over X = {0, 1}O(logn) such that (1) both algorithms are109

(ε, δ)-computationally post hoc generalizing for every δ > n−O(1) and ε = O(
√

log(n/δ)/n.999),110

but (2) the composition (M1,M2) is not (1.999, .999)-computationally post hoc generalizing.111

We prove the information-theoretic result (Theorem 1.4) in Section 3. Due to space restrictions, we112

defer the computational result (Theorem 1.5) to the full version of this work.113

2 Lower Bounds for Statistical Queries114

2.1 Post Hoc Generalization for Adaptive Statistical Queries115

We are interested in the ability of interactive algorithms satisfying post hoc generalization to answer a116

sequence of statistical queries. Definition 1.1 applies to such algorithms via the following experiment.117

Algorithm 1: AQX ,n,k[M� A]

A chooses a distribution P over X
X ∼ P⊗n and X is given toM (but not to A)
For j = 1, . . . , k
A outputs a statistical query qj (possibly depending on q1, a1, . . . , qj−1, aj−1)
M(X) outputs aj

118

Definition 2.1. An algorithmM is (ε, δ)-post hoc generalizing for k adaptive queries over X given119

n samples if for every adversary A, P
AQX ,n,k[M�A]

[
∃j ∈ [k]

∣∣qj(X)− qj(P)
∣∣ > ε

]
≤ δ.120

2.2 A Lower Bound for Natural Algorithms121

We begin with an information-theoretic lower bound for a class of algorithmsM that we call natural122

algorithms. These are algorithms that can only evaluate the query on the sample points they are given.123

That is, an algorithmM is natural if, when given a sample X = (X1, . . . , Xn) and a statistical query124
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q : X → [−1, 1], the algorithmM returns an answer a that is a function only of (q(X1), . . . , q(Xn)).125

In particular, it cannot evaluate q on data points of its choice. Many algorithms in the literature have126

this property. Formally, we define natural algorithms via the game NAQX ,n,k[M� A]. This game127

is identical to AQX ,n,k[M� A] except that when A outputs qj ,M does not receive all of qj , but128

instead receives only qjX = (qj(X1), . . . , qj(Xn)).129

Theorem 2.2 (Lower Bound for Natural Algorithms). There is an adversary ANAQ such that for
every natural algorithmM, and for universe size N = 8n/ε, if

P
NAQ[N],n,k[M�ANAQ]

[
∃j ∈ [k]

∣∣qj(X)− qj(P)
∣∣ > ε

∨∣∣aj − qj(P)
∣∣ > ε

]
≤ 1

100

then n = Ω(
√
k/ε2)130

The proof uses the analyst ANAQ described in Algorithm 2. For notational convenience, ANAQ131

actually asks k + 1 queries, but this does not affect the final result.132

Algorithm 2: ANAQ

Parameters: sample size n, universe size N = 8n
ε , number of queries k, target accuracy ε

Let P ← U[N ], A1 ← [N ], and τ ← 9ε
√

2k log( 96
ε ) + 1

For j ∈ [k]
Sample pj ∼ U[0,1]

For i ∈ [N ]

Sample q̃ji ∼ Ber(pj) and let qj(i)←
{
q̃ji i /∈ Aj
0 i ∈ Aj

Ask query qj and receive answer aj
For i ∈ [N ]

Let zji ←
{
trunc3ε(a

j − pj) · (qji − pj) i /∈ Aj
0 i ∈ Aj

where trunc3ε(x) takes x ∈ R and returns the nearest point in [−3ε, 3ε] to x.
Let Aj+1 ←

{
i ∈ [N ] :

∣∣∣∑j
`=1 z

`
i

∣∣∣ > τ − 1
}

(N.B. By construction, Aj ⊆ Aj+1.)

For i ∈ [N ]

Define zi ←
∑k
j=1 z

j
i and q∗i ← zi

τ

Let q∗ : [N ]→ [−1, 1] be defined by q∗(i)← q∗i

In order to prove Theorem 2.2, it suffices to prove that either the answer aj to one of the initial queries133

qj fails to be accurate (in which caseM is not accurate, or that the final query q∗ gives significantly134

different answers on X and P (in which caseM is not robustly generalizing). Formally, we have the135

following proposition.136

Proposition 2.3. For an appropriate choice of k = Θ(ε4n2) and n, 1
ε sufficiently large, for any137

naturalM, with probability at least 2/3, either (1) ∃j ∈ [k] |aj − qj(P)| > ε, or (2) q∗(X) −138

q∗(P) > ε. where the probability is taken over the game NAQX ,n,k[M � ANAQ] and ANAQ is139

specified by Algorithm 2.140

We prove Proposition 2.3 using a series of claims. The first claim states that none of the values zi are141

ever too large in absolute value, which follows immediately from the definition of the set Aj and the142

fact that each term zji is bounded.143

Claim 2.4. For every i ∈ [N ], |zi| ≤ τ .144

The next claim states that, no matter how the mechanism answers, very few of the items not in the145

sample get “accused” of membership, that is, included in the set Aj .146

Claim 2.5 (Few Accusations). Pr(|Ak \X| ≤ εN/8) ≥ 1− e−Ω(εn).147
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Proof. Fix the biases p1, ..., pk as well as the all the information visibile to the mechanism (the query148

values {qji : i ∈ X, j ∈ [k]}, as well as the answers a1, ..., ak). We prove that the probability of F is149

high conditioned on any setting of these variables.150

The main observation is that, once we condition on the biases pj , the query values at {qji : i /∈ X, j ∈151

[k]} are independent with qji ∼ Ber(pj). This is true becauseM is a natural algorithm (so it sees152

only the query values for points in X) and, more subtly, because the analyst’s decisions about how153

to sample the pj’s, and which points in X to include in the sets Aj , are independent of the query154

values outside of X . By the principle of deferred decisions, we may thus think of the query values155

{qji : i /∈ X, j ∈ [k]} as selected after the interaction with the mechanism is complete.156

Fix i /∈ X . For every j ∈ [k] and i /∈ X , we have

E
[
zji

]
= E

[
trunc3ε(a

j − pj) · (qji − p
j)
]

= E
[
trunc3ε(a

j − pj)
]
· E
[
qji − p

j
]

= 0.

By linearity of expectation, we also have E [zi] = E
[∑k

j=1 z
j
i

]
= 0.157

Next, note that |zji | ≤ 3ε, since trunc3ε(aj − pj) ∈ [−3ε, 3ε] and qji − pj ∈ [0, 1]. The terms zji
are not independent, since if a partial sum

∑`
j=1 z

j
i ever exceeds τ , then subsequent values zji for

j > ` will be set to 0. However, we may consider a related sequence given by sums of the terms
z̃ji = trunc3ε(a

j−pj)·(q̃ji−pj) (the difference from zji is that we use values q̃ji Ber(p
j) regardless of

whether item i is in Aj). Once we have conditioned on the biases and mechanism’s outputs,
∑k
j=1 z̃i

is a sum of bounded independent random variables. By Hoeffding’s Inequality, the sum is bounded

O(ε
√
k log(1/ε) with high probability, for every i 6∈ X P

[∣∣∣∑k
j=1 z̃

j
i

∣∣∣ > ε
√

18k ln
(

96
ε

)]
≤ ε

48 .

By Etemadi’s Inequality, a related bound holds uniformly over all the intermediate sums:

∀i 6∈ X P

∃` ∈ [k] :

∣∣∣∣∣∣
∑̀
j=1

z̃`i

∣∣∣∣∣∣ > 3ε

√
18k ln

(
96

ε

)
︸ ︷︷ ︸

τ−1

 ≤ 3·P

∣∣∣∣∣∣
k∑
j=1

z̃ji

∣∣∣∣∣∣ > ε

√
18k ln

(
96

ε

) ≤ ε

16

Finally, notice that by construction, the real scores zji are all set to 0 when an item is added to Aj , so158

the sets Aj are nested (Aj ⊆ Aj+1), and a bound on partial sums of the z̃ji applies equally well to the159

partial sums of the zji . Thus, ∀i 6∈ X P
[
∃` ∈ [k] :

∣∣∣∑`
j=1 z

`
i

∣∣∣ > τ − 1
]
≤ ε

16160

Now, the scores zi are independent across players (again, because we have fixed the biases pj and161

the mechanism’s outputs). We can bound the probability that more than εN
4 elements i are “accused”162

over the course of the algorithm using Chernoff’s bound: P
[
|Ak \X| > ε

8N
]
≤ e−εN/64 ≤ e−Ω(n)163

The claim now follows by averaging over all of the choices we fixed.164

The next claim states that the sum of the scores over all i not in the sample is small.165

Claim 2.6. With probability at least 99
100 ,

∑
i∈[N ]\X zi = O(ε

√
Nk).166

Proof. Fix a choice of (p1, . . . , pk) ∈ [0, 1]k, the in-sample query values (q1
X , . . . , q

k
X) ∈ {0, 1}n×k,167

and the answers (a1, . . . , ak) ∈ [0, 1]k. Conditioned on these, the values zi for i /∈ X are independent168

and identically distributed. They have expectation 0 (see the proof of Claim 2.5) and are bounded by τ169

(by Claim 2.4). By Hoeffding’s inequality, with probability at least 99
100

∑
i∈[N ]\X zi = O(τ

√
N) =170

O(ε
√
Nk) as desired. The claim now follows by averaging over all of the choices we fixed.171

Claim 2.7. There exists c > 0 such that, for all sufficiently small ε and sufficiently large n, with172

probability at least 99
100 , either ∃j ∈ [k] : |aj − qj(P)| > ε (large error), or

∑
i∈[N ] zi ≥ ck (high173

scores in sample).174

The proof of Claim 2.7 relies on the following key lemma. The lemma has appeared in various175

forms [18, 9, 19]; the form we use is [4, Lemma 3.6] (rescaled from {−1,+1} to {0, 1}).176
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Lemma 2.8 (Fingerprinting Lemma). Let f : {0, 1}m → [0, 1] be arbitrary. Sample p ∼ U[0,1] and
sample x1, . . . , xm ∼ Ber(p) independently. Then

E

(f(x)− p) ·
∑
i∈[m]

(xi − p) +

∣∣∣∣∣∣f(x)− 1

m

∑
i∈[m]

xi

∣∣∣∣∣∣
 ≥ 1

12
.

Proof of Claim 2.7. To make use of the fingerprinting lemma, we consider a variant of Algorithm 2
that does not truncate the quantity aj − pj to the range ±2ε when computing the score zji for each
element i. Specifically, we consider scores based on the quantities

ẑji =

{
(aj − pj) · (qji − pj) if i /∈ Aj ,
0 if i ∈ Aj ;

and ẑi =

k∑
j=1

ẑji .

We prove two main statements: first, that these untruncated scores are equal to the truncated ones177

with high probability as long as the mechanism’s answers are accurate. Second, that the expected178

sum of the untruncated scores is large. This gives us the desired final statement.179

To relate the truncated and untruncated scores, consider the following three key events:180

1. (“Few accusations”): Let F the event that, at every round j, set of “accused” items outside181

of the sample is small: |Ak \ X| ≤ εN/8. Since the Aj are nested, event F implies the182

same condition for all j in [k].183

2. (“Low population error”): Let G be the event that at every round j ∈ [k], the mechanism’s184

anwer satisfies |aj − pj | ≤ 3ε.185

3. (“Representative queries”): LetH be the event that |q̃j(P)−pj | ≤ ε for all rounds j ∈ [k]—186

that is, each query’s population average is close to the corresponding sampling bias pj .187

Sub-Claim 2.9. Conditioned on F ∩ G ∩ H , the truncated and untruncated scores are equal.188

Specifically, |aj − pj | ≤ 3ε for all j ∈ [k].189

Proof. We can bound the difference |aj − pj | via the triangle inequality:

|aj − pj | ≤ |aj − qj(P)|+ |qj(P)− q̃j(P)|+ |q̃j(P)− pj | .
The first term is the mechanism’s sample error (bounded when G occurs). The second is the distortion190

of the sample mean introduced by setting the query values of i ∈ Aj to 0. This distortion is at most191

|Aj |/N . When F occurs, Aj has size at most |X|+ |Aj \X| ≤ n+ εN/8 = εN/4, so the second192

term is at most ε/4. Finally, the last term is bounded by ε when H occurs, by definition. The three193

terms add to at most 3ε when F , G, and H all occur.194

We can bound the probability of H via a Chernoff bound: The probability of that a binomial random195

variable deviates from its mean by εN is at most 2 exp(−ε2N/3).196

The technical core of the proof is the use of the fingerprinting lemma to analyze the difference197

D between the sum of untruncated scores and the summed population errors: D :=
∑N
i=1 z̃i −198 ∑k

j=1

∣∣aj − qj(P)
∣∣− kE [ |Aj |

N−|Aj |

]
199

Sub-Claim 2.10. E [D] = Ω(k)200

Proof. We show that for each round j, the expected sum of scores for that round
∑
i z̃
j
i is at least201

1/12− E
[
|aj − qj(P)| − |Aj |

N−|Aj |

]
. This is true even when we condition on all the random choices202

and communication in rounds 1 through j − 1. Adding up these expectations over all rounds gives203

the desired expectation bound for D.204

First, note that summing zji over all elements i ∈ [N ] is the same as summing over that round’s
unaccused elements i ∈ [N ] \Aj (since z̃ji = 0 for i ∈ Aj). Thus,

N∑
i=1

z̃ji =
∑

i∈[N ]\Aj

z̃ji = (aj − pj)
∑

i∈[N ]\Aj

(qji − p
j) .
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We can now apply the Fingerprinting Lemma, with m = N − |Aj |, p = pj , xi = q̃ji for i /∈ Aj , and
f ((xi)i/∈Aj ) = aj (note that f depends implicitly on Aj , but since we condition on the outcome of
previous rounds, we may take Aj as fixed for round j). We obtain

E

[
N∑
i=1

z̃ji

]
≥ 1

12
− E

[∣∣∣∣∣aj − 1

N − |Aj |
·
∑
i/∈Aj

qji

∣∣∣∣∣
]

Now the difference between 1
N−|Aj |

∑
i/∈Aj q

j
i and the actual population mean 1

N

∑N
i=1 q

j
i is at205

most N · ( 1
N −

1
N−|Aj | ) = |Aj |

N−|Aj | . Thus we can upper-bound the term inside the right-hand side206

expectation above by |aj − qj(P)|+ |Aj |
N−|Aj | .207

A direct corollary of Sub-Claim 2.10 is that there is a constant c′ > 0 such that, with probability at208

least 199/200, D ≥ c′k. Let’s call that event I .209

Conditioned on F ∩ G ∩H , we know that each z̃i equals the real score zi (by the first sub-claim210

above), that |aj − qj(P)| ≤ 3ε for each j, and that |Ak| ≤ εN/8. If we also consider the intersection211

with I , then we have D ≥ c′k − 3kε− k ε/8
1−ε/8 ≥ k(c′ − 4ε) (for sufficiently small ε). By a union212

bound, the probability of ¬(F ∩H ∩ I) is at most 1/200 + exp(−Ω(ε2n)) ≤ 1/100 (for sufficiently213

large n). Thus we get P
[
(¬G) or

(∑N
i=1 zi ≥ ck

)]
≥ 99

100 , where c = c′ − 4ε is positive for214

sufficiently small ε. This completes the proof of Claim 2.7.215

To complete the proof of the proposition, suppose that |aj − qj(P)| ≤ ε for every j, so that we can216

assume
∑
i∈X zi = Ω(k). Then, we can show that, when n is sufficiently large and k & ε4n2, the217

final query q∗ will violate robust generalization. A relatively straightforward calculation (omitted for218

space) shows that for the query q∗ that we defined, q∗(X)− q∗(P) = Θ(ε
√
k). Now, we choose an219

appropriate k = Θ(ε4n2) we will have that q∗(X)− q∗(P) > ε. By this choice of k, the first term220

in the final line above will be at least 2ε. Also, we have N ≥ n = Θ(
√
k/ε2), so when k is larger221

than some absolute constant, the O(1/
√
N) term in the final line above is Θ(ε/ 4

√
k) ≤ ε. Thus, by222

Claims 2.6 and 2.7, eitherM fails to be accurate, so that ∃j ∈ [k] |aj − qj(P)| > ε, or we find a223

query q∗ such that q∗(X)− q∗(P) > ε.224

2.3 Lower Bounds for All Algorithms via Random Masks225

We prove Theorem 1.2 by constructing the following transformation from an adversary that defeats226

all natural algorithms to an adversary that defeats all algorithms. The main idea of the reduction is to227

use random masks to hide information about the evaluation of the queries at points outside of the228

dataset, which effectively forces the algorithm to behave like a natural algorithm because, intuitively,229

it does not know where to evaluate the query apart from on the dataset. The reduction is described in230

Algorithm 3. Due to space restrictions, we omit its analysis due to space.231

Algorithm 3: AAQ

Parameters: sample size n, universe size N = 8n
ε , number of queries k, target accuracy ε.

Oracle: an adversary ANAQ for natural algorithms with sample size n, universe size N , number of
queries k, target accuracy ε.

Let X = {(i, y)}i∈[N ],y∈{±1}k

For i ∈ [N ]
Choose mi = (m1

i , . . . ,m
k
i ) ∼ U({±1}k)

Let P be the uniform distribution over pairs (i,mi) for i ∈ [N ]
For j ∈ [k]

Receive the query q̂j : [N ]→ [±1] from ANAQ

Form the query qj(i, y) = yj ⊕mj
i ⊕ q̂j(i) (NB: qj(i,mi) = q̂j(i))

Send the query qj toM and receive the answer aj
Send the answer aj to ANAQ
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3 Post Hoc Generalization Does Not Compose232

In this section we prove that post hoc generalization is not closed under composition.233

Theorem 3.1. For every n ∈ N and every α > 0 there is a collection of ` = O( 1
α log n) algorithms234

M1, . . . ,M` : ({0, 1}5 logn)n → Y such that (1) for every i = 1, . . . , ` and δ > 0,Mi satisfies235

(ε, δ)-post hoc generalization for ε = O(
√

log(n/δ)/n1−α), but (2) the composition (M1, . . . ,M`)236

is not
(
2− 2

n4 , 1− 1
2n3

)
-post hoc generalizing.237

The result is based on an algorithm that we call Encrypermute. Before proving Theorem 3.1, we238

introduce Encrypermute and establish the main property that it satisfies.239

Algorithm 4: Encrypermute
Input: Parameter k, and a sample X = (x1, x2, . . . , xn) ∈ ({0, 1}d)n for d = 5 log n.
If X contains n distinct elements

Let π be the permutation that sorts (x1, . . . , xk) and identify π with r ∈ {0, 1, . . . , k!− 1}
Let α ∈ [0, 1] be the largest number such that k ≥ nα and let t← αk/20 (NB: 2dt ≤ k!)
Identify (xk+1, . . . , xk+t) ∈ ({0, 1}d)t with a number m ∈ {0, 1, . . . , k!− 1}
Return c = m+ r mod k!

Else
Return a random number c ∈ {0, 1, . . . , k!− 1}

The key facts about Encrypermute are as follows.240

Claim 3.2. Let D be any distribution over ({0, 1}d)n. Let D ∼ D, let X be a random permutation241

of D, and let C ← Encrypermute(X). Then D and C are independent.242

Intuitively, the claim follows from the fact that r is uniformly random and depends only on the243

permutation, so it is independent of D. Therefore m+ r mod k! is random and independent of m.244

Lemma 3.3. ∀δ > 0, Encrypermute satisfies (ε, δ)-post hoc generalization for ε =
√

2 ln(2/δ)/n.245

Intuitively the lemma follows from the fact that C is independent of D. We omit the proof of both of246

these claims due to space restrictions.247

Proof of Theorem 3.1. Fix α ∈ (0, 1), and letM1 denote the mechanism that takes a database of248

size n and outputs the first nα elements of its sample. AsM1 outputs a sublinear portion of its input,249

it satisfies post hoc generalization with strong parameters. Specifically, by [5, Lemma 3.5],M1 is250

(ε, δ)-post hoc generalizing for ε = O
(√

log(n/δ)/n1−α
)

.251

Now consider composingM1 withO( 1
α log n) copies of Encrypermute, with exponentially growing252

choices for the parameter k, where for the ith copy we set k = (1 + α
20 )i · nα. By Lemma 3.3, each253

of these mechanisms satisfies post hoc generalization for ε = O(
√

log(1/δ)/n), so this composition254

satisfies the assumptions of the theorem.255

Let P be the uniform distribution over {0, 1}d, where d = 5 log n, and let X ∼ P⊗n. By a standard256

analysis, X contains n distinct elements with probability at least
(
1− 1

2n3

)
. Assuming that this257

is the case, we have that the first copy of Encrypermute outputs c = m + r mod k!, where m258

encodes the rows of X in positions nα + 1, . . . , (1 + α
20 )nα, and where r is a deterministic function259

of the first nα rows of X . Hence, when composed withM1, these two mechanism reveal the first260

(1+ α
20 )nα rows ofX . By induction, the output of the composition of all the copies of Encrypermute261

withM1 reveals all of X . Hence, from the output this composition, we can define the predicate262

q : {0, 1}d → {±1} that evaluates to 1 on every element of X , and to -1 otherwise. This predicate263

satisfies q(X) = 1 but q(P) ≤ −1 + 2n/2d = −1 + 2/n4.264
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