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Abstract

While statistics and machine learning offers numerous methods for ensuring gener-
alization, these methods often fail in the presence of post selection—the common
practice in which the choice of analysis depends on previous interactions with the
same dataset. A recent line of work has introduced powerful, general purpose
algorithms that ensure a property called post hoc generalization (Cummings et
al., COLT’ 16), which says that no person when given the output of the algorithm
should be able to find any statistic for which the data differs significantly from the
population it came from.

In this work we show several limitations on the power of algorithms satisfying post
hoc generalization. First, we show a tight lower bound on the error of any algorithm
that satisfies post hoc generalization and answers adaptively chosen statistical
queries, showing a strong barrier to progress in post selection data analysis. Second,
we show that post hoc generalization is not closed under composition, despite many
examples of such algorithms exhibiting strong composition properties.

1 Introduction

Consider a dataset X consisting of n independent samples from some unknown population P. How
can we ensure that the conclusions drawn from X generalize to the population P? Despite decades
of research in statistics and machine learning on methods for ensuring generalization, there is an
increased recognition that many scientific findings do not generalize, with some even declaring this
to be a “statistical crisis in science” [12]. While there are many reasons a conclusion might fail to
generalize, one that is receiving increasing attention is post-selection, in which the choice of method
for analyzing the dataset depends on previous interactions with the same dataset. Post-selection can
arise from many common practices, such as variable selection, exploratory data analysis, and dataset
re-use. Unfortunately, post-selection invalidates traditional methods for ensuring generalization,
which assume that the method is independent of the data.

Numerous methods have been devised for statistical inference after post selection (e.g. [14, 16, 10,
11, 20]). These are primarily special purpose procedures that apply to specific types of simple post
selection that admit direct analysis. A more limited number of methods apply where the data is reused
in one of a small number of prescribed ways (e.g. [2, 3]).

A recent line of work initiated by Dwork et al. [7] posed the question: Can we design general-
purpose algorithms for ensuring generalization in the presence of post-selection? These works
(e.g. [7, 6, 17, 1]) identified properties of an algorithm that ensure generalization under post-selection,
including differential privacy [8], information-theoretic measures, and compression. They also
identified many powerful general-purpose algorithms satisfying these properties, leading to algorithms
for post-selection data analysis with greater statistical power than all previously known approaches.

Each of the aforementioned properties give incomparable generalization guarantees, and allow for
qualitatively different types of algorithms. However, Cummings et al. [5] identified that the common
thread in each of these approaches is to establish a notion of post hoc generalization (which they
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originally called robust generalization), and initiated a general study of algorithms satisfying this
notion. Informally, an algorithm M satisfies post hoc generalization if there is no way, given only the
output of M(X), to identify any statistical query [15] (that is, a bounded, linear, real-valued statistic
on the population) such that the value of that query on the dataset is significantly different from its
answer on the whole population.

Definition 1.1 (Post Hoc Generalization [5]). An algorithm M : X" — Y satisfies (g, 0)-post hoc
generalization if for every distribution P over X and every algorithm A that outputs a bounded
function g : X — [—1,1],if X ~ P®" y ~ M(X), and ¢ ~ A(y), then

Pllg(P) — a(X)| > e] <6,

where we use the notation ¢(P) = E [¢(X)] and ¢(X) = + >, ¢(X;), and the probability is over
the sampling of X and any randomness of M, A.

Post hoc generalization is easily satisfied whenever n is large enough to ensure uniform convergence
for the class of statistical queries. However, uniform convergence is only satisfied in the unrealistic
regime where n is much larger than | X'|. Algorithms that satisfy post hoc generalization are interesting
in the realistic regime where there will exist queries ¢ for which ¢(P) and ¢(X) are far, but these
queries cannot be found. The definition also extends seamlessly to richer types of statistics than
statistical queries. However, restricting to statistical queries only strengthens our negative results.

Since all existing general-purpose algorithms for post-selection data analysis are analyzed via post
hoc generalization, it is crucial to understand what we can achieve with algorithms satisfying post hoc
generalization. In this work we present several strong limitaitons on the power of such algorithms.
Our results identify natural barriers to progress in this area, and highlight important challenges for
future research on post-selection data analysis.

1.1 Our Results

Sample Complexity Bounds for Statistical Queries. Our first contribution is strong new lower
bounds on any algorithm that satisfies post hoc generalization and answers a sequence of adaptively
chosen statistical queries—the setting introduced in Dwork et al. [7] and further studied in [1, 13, 18].
In this model, there is an underlying distribution P. We would like to design an algorithm M
that holds a sample X ~ P®" takes statistical queries ¢, and returns accurate answers a such
that a =~ ¢(P). To model post-selection, we consider a data analyst A that issues a sequence
of queries ¢!, ..., ¢" where each query ¢’ may depend on the answers a',...,a’ ! given by the
algorithm in response to previous queries. The simplest algorithm M would return the empirical
mean ¢/ (X) = = 3. ¢7(X;) in response to each query, and one can show that this algorithm answers

each query to within +¢ if n > O(k/e?) samples.

Surprisingly, we can improve the sample complexity to n. > O(v/k/2) by returning ¢(X) perturbed
with carefully calibrated noise [7, 1]. The analysis of this approach uses post hoc generalization: the
noise is chosen so that |a — ¢(X)| < £/2 and the noise ensures |¢(P) — ¢(X)| < e/2 for every query
the analyst asks. Our main result shows that the sample complexity n = O(v/k/¢?) is essentially
optimal for any algorithm that uses the framework of post hoc generalization. Our construction refine

the techniques in [13, 18]—which yield a lower bound of n = Q(v/k) for e = 1/3.

Theorem 1.2 (Informal). If M takes a sample of size n, satisfies (&,0)-post hoc generalization,
and for every distribution P over X = {:tl}k+o(1°g("/5)) and every data analyst A who asks k
statistical queries, P [3j € [k], |¢7(P) — a| > ¢| < & then n = Q(V'k/e?), where the probability is
taken over X ~ P€™ and the coins of M and A.

Independently, Wang [21] proved a quantitatively similar bound to Theorem 1.2. However, their
bound only applies to algorithms M that receive only the empirical mean ¢(X) of each query. Their
bound also applies for a slightly different (though closely related) class of statistics.

The dimensionality of X’ required in our result is at least as large as k, which is somewhat necessary.
Indeed, if the support of the distribution is {1}9, then there is an algorithm M that takes a sample
of size just O(v/dlog(k)/e?) [7, 11, so the conclusion is simply false if d < k. Even when d < k,
the aforementioned algorithms require running time at least 2¢ per query. [13, 18] also showed that

any polynomial time algorithm that answers k queries to constant error requires n = Q(\/E) We
improve this result to have the optimal dependence on €.
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Theorem 1.3 (Informal). Assume one-way functions exist and let ¢ > 0 be any constant. If M takes
a sample of size n, has polynomial running time, satisfies (¢, §)-post hoc generalization, and for
every distribution P over X = {il}"'c“‘o(log("/e)) and every data analyst A who asks k statistical
queries, P [3j € [k], |¢/(P) — a| > €] < 6, then n = Q(Vk/e?), where the probability is taken
over X ~ P®" and the coins of M and A.

We prove the information-theoretic result (Theorem 1.2) in Section 2. Due to space restrictions, we
defer the computational result (Theorem 1.3) to the full version of this work.

Negative Results for Composition. One of the motivations for studying post hoc generalization is
to allow for exploratory data analysis and dataset re-use. In these settings, the same dataset may be
analyzed by many different algorithms, each satisfying post hoc generalization. Thus it is important
to understand whether the composition of these algorithms also satisfies post hoc generalization. We
show that this is not the case.

Theorem 1.4. For every n € N there is a collection of £ = O(logn) algorithms My, ..., My that
take n samples from a distribution over X = {0, 1}0(10g ") such that (1) each of these algorithms are
(e, 6)-post hoc generalizing for every 6 > 0 and € = O(\/log(n/d)/n999), but (2) the composition
My, ..., My) is not (1.999,.999)-post hoc generalizing.

Theorem 1.4 states that there is a set of O(logn) algorithms that have almost optimal post hoc
generalization, but whose composition does not have any non-trivial post hoc generalization.

If we consider a relaxed notion of computational post hoc generalization, then we show that compo-
sition can fail even for just two algorithms. Informally, computational post hoc generalization means
that Definition 1.1 is satisfied when the algorithm .4 runs in polynomial time.

Theorem 1.5. Assume one-way functions exist. For every n € N there are two algorithms My, Mo
that take n samples from a distribution over X = {0,1}°0°8™) such that (1) both algorithms are

(¢, 0)-computationally post hoc generalizing for every 6 > n=°M) and ¢ = O(r/log(n/§)/n-999),
but (2) the composition (M, Ms) is not (1.999, .999)-computationally post hoc generalizing.

We prove the information-theoretic result (Theorem 1.4) in Section 3. Due to space restrictions, we
defer the computational result (Theorem 1.5) to the full version of this work.

2 Lower Bounds for Statistical Queries

2.1 Post Hoc Generalization for Adaptive Statistical Queries

We are interested in the ability of interactive algorithms satisfying post hoc generalization to answer a
sequence of statistical queries. Definition 1.1 applies to such algorithms via the following experiment.

Algorithm 1: AQy ,, x[M = A

A chooses a distribution P over X

X ~ P®" and X is given to M (but not to A)

Forj=1,...,k
A outputs a statistical query ¢’ (possibly depending on ¢!, al, ..., ¢t a’™1)
M(X) outputs a’

Definition 2.1. An algorithm M is (g, §)-post hoc generalizing for k adaptive queries over X given

n samples if for every adversary A, AQx,n,FEM=A] [Elj € [k |q.i(X) - qj(”P)‘ > g] <.

2.2 A Lower Bound for Natural Algorithms

We begin with an information-theoretic lower bound for a class of algorithms M that we call natural
algorithms. These are algorithms that can only evaluate the query on the sample points they are given.
That is, an algorithm M is natural if, when given a sample X = (X1, ..., X,,) and a statistical query
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q: X — [—1,1], the algorithm M returns an answer a that is a function only of (¢(X1), ..., q(X5)).
In particular, it cannot evaluate ¢ on data points of its choice. Many algorithms in the literature have
this property. Formally, we define natural algorithms via the game NAQx ,, x[M = A]. This game

is identical to AQx k[M = A] except that when A outputs ¢’ , M does not receive all of ¢7, but

instead receives only ¢% = (¢/(X1),...,¢ (X,)).

Theorem 2.2 (Lower Bound for Natural Algorithms). There is an adversary Anaq such that for
every natural algorithm M, and for universe size N = 8n/e, if

i J — A~ L
e Frte g [ € B 1) =@ (P)] >V [o? =@ (P)] > ¢] < s

then n = Q(Vk/e?)

The proof uses the analyst Anaq described in Algorithm 2. For notational convenience, Anaq
actually asks k& + 1 queries, but this does not affect the final result.

Algorithm 2: Ayaq

Parameters: sample size n, universe size N = 8?", number of queries k, target accuracy

Let P« Uy, A! < [N], and 7 < 9e/2klog(22) + 1

Forj € [k]
Sample p’ ~ Upg q
For i € [N]
. ) ) Y J
7~ J (4 q i¢A
i Sample ¢ ~ Ber(p’) and let ¢? (i) <+ { 0 e Al
Ask query ¢’ and receive answer a’
For i € [N] _
Let 2/ « truncse(a? —p’) - (¢l —p?) i1 ¢ A

0 i€ A
where truncs.(x) takes « € R and returns the nearest point in [—3e, 3¢] to .
Let ATH! {z € [N]: ‘Zzzl 2 > 7 - 1} (N.B. By construction, A7 C AJ*1)

7

For i € [N]
t Define z; < Z?Zl zland ¢f « %

Let ¢* : [N] — [—1, 1] be defined by ¢* (i) + ¢

In order to prove Theorem 2.2, it suffices to prove that either the answer a” to one of the initial queries
¢’ fails to be accurate (in which case M is not accurate, or that the final query ¢* gives significantly
different answers on X and P (in which case M is not robustly generalizing). Formally, we have the
following proposition.

Proposition 2.3. For an appropriate choice of k = ©(¢*n?) and n, % sufficiently large, for any
natural M, with probability at least 2/3, either (1) 3j € [k] |a’ — ¢/(P)| > &, or (2) ¢*(X) —
q*(P) > e. where the probability is taken over the game NAQy ,, ,[M = Anaq) and Anaq is
specified by Algorithm 2.

We prove Proposition 2.3 using a series of claims. The first claim states that none of the values 2; are
ever too large in absolute value, which follows immediately from the definition of the set A7 and the

fact that each term zf is bounded.
Claim 2.4. For everyi € [N],

zi| <.

The next claim states that, no matter how the mechanism answers, very few of the items not in the
sample get “accused” of membership, that is, included in the set A7.

Claim 2.5 (Few Accusations). Pr(|A4; \ X| < eN/8) > 1 — e~ =),



148 Proof. Fix the biases p', ..., p* as well as the all the information visibile to the mechanism (the query

149 values {qf i € X, j € [k]}, as well as the answers a', ..., a¥). We prove that the probability of F' is
150 high conditioned on any setting of these variables.

151 The main observation is that, once we condition on the biases p’, the query values at {qf g X, j€

152 [k]} are independent with ¢/ ~ Ber(p?). This is true because M is a natural algorithm (so it sees
153 only the query values for points in X) and, more subtly, because the analyst’s decisions about how
154 to sample the p?’s, and which points in X to include in the sets A7, are independent of the query
155 values outside of X . By the principle of deferred decisions, we may thus think of the query values
156 {q] :i ¢ X,j € [k]} as selected after the interaction with the mechanism is complete.

Fixi ¢ X. Forevery j € [k] andi ¢ X, we have
E {zf] =F |:tTUTLCgE(G,j — pj) . (qf — p-j)} =E [trunc;:,s(aj —p])] -E [qf —pj] =0.

157 By linearity of expectation, we also have E [z;] = E [2521 zzJ } =0.

J
i
are not independent, since if a partial sum 2221 z] ever exceeds 7, then subsequent values z; for
J > £ will be set to 0. However, we may consider a related sequence given by sums of the terms

2 = truncs. (a? —p?)-(q) —p?) (the difference from 27 is that we use values §/ Ber(p/) regardless of

Next, note that |2/ | < 3¢, since truncs-(a’ — p’) € [~3¢,3¢] and ¢/ — p’ € [0,1]. The terms 2

whether item 4 is in A7). Once we have conditioned on the biases and mechanism’s outputs, Z?zl Z

is a sum of bounded independent random variables. By Hoeffding’s Inequality, the sum is bounded

O(e+/klog(1/<) with high probability, for every i ¢ X P Hzle #| >, /18kIn (%)} < £,

By Etemadi’s Inequality, a related bound holds uniformly over all the intermediate sums:

l k
/ 96 » / 96
Vig X P|3ek]: > 2|>3:/18kIn <€> <3P || z|>e/18kIn <E>
j=1 j=1
—

7—1

IN

£
16

158 Finally, notice that by construction, the real scores zf are all set to 0 when an item is added to A7, so
159 the sets A7 are nested (47 C A771), and a bound on partial sums of the z/ applies equally well to the

160 partial sums of the z7. Thus, Vi ¢ X P {36 € [K] : ’Zf.:l 2 > 71— 1} <=

161 Now, the scores z* are independent across players (again, because we have fixed the biases p’ and

162 the mechanism’s outputs). We can bound the probability that more than % elements ¢ are “accused”
163 over the course of the algorithm using Chernoff’s bound: P [|AF \ X| > £N] < e=eN/64 < =)
164 The claim now follows by averaging over all of the choices we fixed. O

165 The next claim states that the sum of the scores over all ¢ not in the sample is small.

166 Claim 2.6. With probability at least 3, Dievpx Zi = O(eVNE).

167 Proof. Fix a choice of (p, ..., p*) € [0,1]*, the in-sample query values (g%, ..., ¢%) € {0,1}7<%,
168 and the answers (a', ..., a*) € [0, 1]%. Conditioned on these, the values z; fori ¢ X are independent

169 and identically distributed. They have expectation O (see the proof of Claim 2.5) and are bounded by 7
170 (by Claim 2.4). By Hoeffding’s inequality, with probability at least % Zie[ N\X Zi = O(tV/N) =
171 O(evV Nk) as desired. The claim now follows by averaging over all of the choices we fixed. O

172 Claim 2.7. There exists ¢ > 0 such that, for all sufficiently small € and sufficiently large n, with
173 probability at least %, either 3j € [k] : |a? — ¢/ (P)| > € (large error), or ZiE[N] z; > ck (high
174 scores in sample).

175 The proof of Claim 2.7 relies on the following key lemma. The lemma has appeared in various
176 forms [18, 9, 19]; the form we use is [4, Lemma 3.6] (rescaled from {—1,+41} to {0, 1}).
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Lemma 2.8 (Fingerprinting Lemma). Let f : {0,1}™ — [0, 1] be arbitrary. Sample p ~ Uyg 1] and
sample z1, . .., T, ~ Ber(p) independently. Then

i€[m] i€[m]

Proof of Claim 2.7. To make use of the fingerprinting lemma, we consider a variant of Algorithm 2

that does not truncate the quantity a’ — p? to the range 2¢ when computing the score zf for each
element 7. Specifically, we consider scores based on the quantities

G [@ =) (g - p) i AT, v
Z"‘{o if i € AT and T

We prove two main statements: first, that these untruncated scores are equal to the truncated ones
with high probability as long as the mechanism’s answers are accurate. Second, that the expected
sum of the untruncated scores is large. This gives us the desired final statement.

To relate the truncated and untruncated scores, consider the following three key events:

1. (“Few accusations™): Let F' the event that, at every round j, set of “accused” items outside
of the sample is small: |A; \ X| < eN/8. Since the A7 are nested, event F’ implies the
same condition for all j in [k].

2. (“Low population error”): Let G be the event that at every round j € [k], the mechanism’s
anwer satisfies |a? — p?| < 3e.

3. (“Representative queries”): Let H be the event that |¢7 (P) — p/| < ¢ for all rounds j € [k]—
that is, each query’s population average is close to the corresponding sampling bias p7.

Sub-Claim 29 anditioned on F NG N H, the truncated and untruncated scores are equal.
Specifically, |a’ — p?| < 3¢ forall j € [k].

Proof. We can bound the difference |a’ — p| via the triangle inequality:

o/ —p| <o) = (P)| + |/ (P) = ¢ (P)| + ¢ (P) =PI
The first term is the mechanism’s sample error (bounded when G occurs). The second is the distortion
of the sample mean introduced by setting the query values of i € A7 to 0. This distortion is at most
|A;]/N. When F occurs, A7 has size at most | X | + |47 \ X| < n +eN/8 = eN/4, so the second
term is at most /4. Finally, the last term is bounded by € when H occurs, by definition. The three
terms add to at most 3¢ when F', G, and H all occur. O

We can bound the probability of [ via a Chernoff bound: The probability of that a binomial random
variable deviates from its mean by e N is at most 2 exp(—£?N/3).

The technical core of the proof is the use of the fingerprinting lemma to analyze the difference

D between the sum of untruncated scores and the summed population errors: D := Zszl Zi —

Yioilel =@ (P)] — kE {%}
Sub-Claim 2.10. E [D] = (k)

Proof. We show that for each round j, the expected sum of scores for that round ), éf is at least
1/12—E {|aj — ¢ (P)| - %} . This is true even when we condition on all the random choices
and communication in rounds 1 through 5 — 1. Adding up these expectations over all rounds gives
the desired expectation bound for D.

First, note that summing zf over all elements ¢ € [N] is the same as summing over that round’s
unaccused elements i € [N]\ A7 (since z/ = 0 fori € A7). Thus,

N
D A= Y A=) X @-v).

=1 ie[N\AI i€[N]\AI
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We can now apply the Fingerprinting Lemma, with m = N — |A7|, p = p/, z; = ¢ fori ¢ A7, and
f ((%i)igai) = a’ (note that f depends implicitly on A;, but since we condition on the outcome of
previous rounds, we may take A7 as fixed for round 5). We obtain

N
E 227]212 @ — |AJ > d

¢ AI
Now the difference between W Ei¢ A qf and the actual population mean —; E -1 qz' is at

most N - (% — N71| 7] ) = NlA‘ AT Thus we can upper-bound the term inside the right-hand side

expectation above by |a’ — ¢’ (P)| + NlA‘ Ajl O

A direct corollary of Sub-Claim 2.10 is that there is a constant ¢’ > 0 such that, with probability at
least 199/200, D > k. Let’s call that event I.

Conditioned on ' N G'N H, we know that each Z; equals the real score z; (by the first sub-claim
above), that |a? — ¢7 (P)| < 3¢ for each 7, and that |A¥| < eN/8. If we also consider the intersection
with I, then we have D > ¢’k — 3ke — k 8/8/8 > k(' — 4e) (for sufficiently small ). By a union
bound, the probability of =(F N H N I) is at most 1/200 + exp(—Q(?n)) < 1/100 (for sufficiently

large n). Thus we get P {(ﬁG) or (vazl 2 > ck)} > %9 where ¢ = ¢/ — 4¢ is positive for

100
sufficiently small e. This completes the proof of Claim 2.7. O

To complete the proof of the proposition, suppose that |a’ — ¢’ (P)| < ¢ for every j, so that we can
assume ) .y z; = (k). Then, we can show that, when n is sufficiently large and & 2 e*n2, the
final query ¢* will violate robust generalization. A relatively straightforward calculation (omitted for
space) shows that for the query ¢* that we defined, ¢*(X) — ¢*(P) = ©(sVk). Now, we choose an
appropriate k = ©(e*n?) we will have that ¢*(X) — ¢*(P) > e. By this choice of , the first term
in the final line above will be at least 2. Also, we have N > n = @(\/E/gQ), so when k is larger
than some absolute constant, the O(1/v/N) term in the final line above is ©(c/vk) < e. Thus, by
Claims 2.6 and 2.7, either M fails to be accurate, so that 35 € [k] |a’ — ¢?(P)| > ¢, or we find a
query ¢* such that ¢*(X) — ¢*(P) > e.

2.3 Lower Bounds for All Algorithms via Random Masks

We prove Theorem 1.2 by constructing the following transformation from an adversary that defeats
all natural algorithms to an adversary that defeats all algorithms. The main idea of the reduction is to
use random masks to hide information about the evaluation of the queries at points outside of the
dataset, which effectively forces the algorithm to behave like a natural algorithm because, intuitively,
it does not know where to evaluate the query apart from on the dataset. The reduction is described in
Algorithm 3. Due to space restrictions, we omit its analysis due to space.

Algorithm 3: Aaq

Parameters: sample size n, universe size N = =, number of querles k, target accuracy e.
Oracle: an adversary Anaq for natural algorlthms with sample size n, universe size N, number of
queries k, target accuracy ¢.

Let X = {(i,y) }ic[N],ye{+1}*
For i € [N]
| Choose m; = (m},...,mF) ~ U({£1}*)

7

Let P be the uniform distribution over pairs (%, m;) for i € [N]
For j € [K]
Receive the query ¢’ : [N] — [£1] from Anaq
Form the query ¢/ (i,y) = y/ & m? @ ¢ (i) (NB: ¢’ (i,m;) = ¢’ (1))
Send the query ¢/ to M and receive the answer a’
Send the answer a’ to Anaq
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3 Post Hoc Generalization Does Not Compose

In this section we prove that post hoc generalization is not closed under composition.

Theorem 3.1. For every n € N and every o > 0 there is a collection of { = O(é logn) algorithms
My, ..., My : ({0,1}51°8™) — Y such that (1) for everyi = 1,...,0 and § > 0, M; satisfies
(e, 6)-post hoc generalization for e = O(\/log(n/d)/n't=<), but (2) the composition (M, ..., My)

is not (2 — %, 1-— ﬁ)—post hoc generalizing.

The result is based on an algorithm that we call Encrypermute. Before proving Theorem 3.1, we
introduce Encrypermute and establish the main property that it satisfies.

Algorithm 4: Encrypermute

Input: Parameter k, and a sample X = (21,22, ...,,) € ({0,1}%)" for d = 5logn.

If X contains n distinct elements
Let 7 be the permutation that sorts (x4, . .., ) and identify = with » € {0,1,...,k! — 1}
Let a € [0, 1] be the largest number such that & > n® and let ¢ + ak/20 (NB: 2% < k!)
Identify (241, .-, 2kse) € ({0,1}4)! with a number m € {0,1,... k! — 1}
Return ¢ = m + r mod k!

Else

| Return a random number ¢ € {0,1,... k! — 1}

The key facts about Encrypermute are as follows.

Claim 3.2. Let D be any distribution over ({0,1}%)". Let D ~ D, let X be a random permutation
of D, and let C' < Encrypermute(X). Then D and C' are independent.

Intuitively, the claim follows from the fact that r is uniformly random and depends only on the
permutation, so it is independent of D. Therefore m + r mod k! is random and independent of m.

Lemma 3.3. V6 > 0, Encrypermute satisfies (£, §)-post hoc generalization for ¢ = /21n(2/9) /n.

Intuitively the lemma follows from the fact that C' is independent of D. We omit the proof of both of
these claims due to space restrictions.

Proof of Theorem 3.1. Fix a € (0, 1), and let M denote the mechanism that takes a database of
size n and outputs the first n™ elements of its sample. As M outputs a sublinear portion of its input,
it satisfies post hoc generalization with strong parameters. Specifically, by [5, Lemma 3.5], M is

(e, 6)-post hoc generalizing for e = O (\/log(n/é)/nl—a).

Now consider composing M with O(L log n) copies of Encrypermute, with exponentially growing

choices for the parameter &, where for the ith copy we set k = (1 + %)i -n®. By Lemma 3.3, each
of these mechanisms satisfies post hoc generalization for e = O(4/log(1/d)/n), so this composition

satisfies the assumptions of the theorem.

Let P be the uniform distribution over {0, 1}¢, where d = 5logn, and let X ~ P%". By a standard
analysis, X contains n distinct elements with probability at least (1 — #) Assuming that this
is the case, we have that the first copy of Encrypermute outputs ¢ = m + r mod k!, where m
encodes the rows of X in positions n® +1,..., (1 + 55)n®, and where r is a deterministic function
of the first n® rows of X. Hence, when composed with M, these two mechanism reveal the first
(1+55)n® rows of X. By induction, the output of the composition of all the copies of Encrypermute
with M reveals all of X. Hence, from the output this composition, we can define the predicate
q:{0,1}¢ — {&1} that evaluates to 1 on every element of X, and to -1 otherwise. This predicate
satisfies ¢(X) = 1 but ¢(P) < —1+2n/2¢ = —1 4 2/n*. O
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