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Abstract

Matching methods are heavily used in the
social and health sciences due to their inter-
pretability. We aim to create the highest
possible quality of treatment-control matches
for categorical data in the potential outcomes
framework. The method proposed in this
work aims to match units on a weighted Ham-
ming distance, taking into account the relative
importance of the covariates; the algorithm
aims to match units on as many relevant vari-
ables as possible. To do this, the algorithm
creates a hierarchy of covariate combinations
on which to match (similar to downward clo-
sure), in the process solving an optimization
problem for each unit in order to construct
the optimal matches. The algorithm uses a
single dynamic program to solve all of the
units’ optimization problems simultaneously.
Notable advantages of our method over exist-
ing matching procedures are its high-quality
interpretable matches, versatility in handling
different data distributions that may have ir-
relevant variables, and ability to handle miss-
ing data by matching on as many available
covariates as possible.

1 INTRODUCTION

In observational causal inference where the scientist
does not control the randomization of individuals into
treatment, an ideal approach matches each treatment
unit to a control unit with identical covariates. How-
ever, in high dimensions, few such “identical twins”
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exist, since it becomes unlikely that any two units
have identical covariates in high dimensions. In that
case, how might we construct a match assignment that
would lead to accurate estimates of conditional average
treatment effects (CATEs)?

For categorical variables, we might choose a Ham-
ming distance to measure similarity between covariates.
Then, the goal is to find control units that are simi-
lar to the treatment units on as many covariates as
possible. However, the fact that not all covariates are
equally important has serious implications for CATE
estimation. Matching methods generally suffer in the
presence of many irrelevant covariates (covariates that
are not related to either treatment or outcome): the
irrelevant variables would dominate the Hamming dis-
tance calculation, so that the treatment units would
mainly be matched to the control units on the irrel-
evant variables. This means that matching methods
do not always pass an important sanity check in that
irrelevant variables should be irrelevant. To handle
this issue with irrelevant covariates, in this work we
choose to match units based on a weighted Hamming
distance, where the weights can be learned from ma-
chine learning on a hold-out training set. These weights
act like variable importance measures for defining the
Hamming distance.

The choice to optimize matches using Hamming dis-
tance leads to a serious computational challenge: how
does one compute optimal matches on Hamming dis-
tance? In this work, we define a matched group for
a given unit as the solution to a constrained discrete
optimization problem, which is to find the weighted
Hamming distance of each treatment unit to the near-
est control unit (and vice versa). There is one such
optimization problem for each unit, and we solve all of
these optimization problems efficiently with a single dy-
namic program. Our dynamic programming algorithm
has the same basic monotonicity property (downwards
closure) as that of the apriori algorithm (Agrawal and
Srikant, 1994) used in data mining for finding frequent
itemsets. However, frequency of itemsets is irrelevant
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here, instead the goal is to find a largest (weighted)
set of covariates that both a treatment and control
unit have in common. The algorithm, Dynamic Almost
Matching Exactly – DAME – is efficient, owing to the use
of bit-vector computations to match units in groups,
and does not require an integer programming solver.

A more general version of our formulation (Full Almost
Matching Exactly) adaptively chooses the features for
matching in a data-driven way. Instead of using a
fixed weighted Hamming distance, it uses the hold-out
training set to determine how useful a set of variables
is for prediction out of sample. For each treatment
unit, it finds a set of variables that (i) allows a match
to at least one control unit; (ii) together have the best
out-of-sample prediction ability among all subsets of
variables for which a match can be created (to at least
one control unit). Again, even though for each unit we
are searching for the best subset of variables, we can
solve all of these optimization problems at once with
our single dynamic program.

2 RELATED WORK

As mentioned earlier, exact matching is not possible in
high dimensions, as “identical twins” in treatment and
control samples are not likely to exist. Early on, this
led to techniques that reduce dimension using propen-
sity score matching (Rubin, 1973b,a, 1976; Cochran
and Rubin, 1973), which extend to penalized regres-
sion approaches (Schneeweiss et al., 2009; Rassen and
Schneeweiss, 2012; Belloni et al., 2014; Farrell, 2015).
Propensity score matching methods project the entire
dataset to one dimension and thus cannot be used
for estimating CATE (conditional average treatment
effect), since units within the matched groups often
differ on important covariates. In “optimal match-
ing,” (Rosenbaum, 2016), an optimization problem is
formed to choose matches according to a pre-defined
distance measure, though as discussed above, this dis-
tance measure can be dominated by irrelevant covari-
ates, leading to poor matched groups and biased esti-
mates. Coarsened exact matching (Iacus et al., 2012,
2011) has the same problem, since again, the distance
metric is pre-defined, rather than learned. Recent
integer-programming-based methods considers extreme
matches for all possible reasonable distance metrics, but
this is computationally expensive and relies on manual
effort to create the ranges (Morucci et al., 2018; Noor-
E-Alam and Rudin, 2015); in contrast we use machine
learning to create a single good match assignment.

In the framework of almost-exact matching (Wang et al.,
2017), each matched group contains units that are
close on covariates that are important for predicting
outcomes. For example, Coarsened Exact Matching

(Iacus et al., 2012, 2011) is almost-exact if one were to
use an oracle (should one ever become available) that
bins covariates according to importance for estimating
causal effects. DAME’s predecessor, the FLAME algo-
rithm (Wang et al., 2017) is an almost-exact matching
method that adapts the distance metric to the data
using machine learning. It starts by matching “identi-
cal twins,” and proceeds by eliminating less important
covariates one by one, attempting to match individu-
als on the largest set of covariates that produce valid
matched groups. FLAME can handle huge datasets,
even datasets that are too large to fit in memory, and
scales well with the number of covariates, but removing
covariates in exactly one order (rather than all possi-
ble orders as in DAME) means that many high-quality
matches will be missed.

DAME tends to match on more covariates than FLAME;
the distances between matched units are smaller in
DAME than in FLAME, thus its matches are distinctly
higher quality. This has implications for missing data,
where DAME can find matched groups that FLAME
cannot.

3 ALMOST MATCHING EXACTLY
(AME) FRAMEWORK

Consider a dataframe D = [X,Y,T ] where X ∈

{0,1, . . . , k}n×p, Y ∈ Rn, T ∈ {0,1}n respectively de-
note the categorical covariates for all units, the out-
come vector and the treatment indicator (1 for treated,
0 for control). The j-th covariate X of unit i is de-
noted xij ∈ {0,1, . . . , k}. Notation xi ∈ {0,1, . . . , k}

p

indicates covariates for the ith unit, and Ti ∈ {0,1} is
an indicator for whether or not unit i is treated.

Throughout we make SUTVA and ignorability assump-
tions (Rubin, 1980). The goal is to match treatment
and control units on as many relevant covariates as
possible. Relevance of covariate j is denoted by wj ≥ 0

and it is determined using a hold-out training set. wj ’s
can either be fixed beforehand or adjusted dynamically
inside the algorithm (see Full-AME in Section 5).

For now, assuming that we have a fixed nonnegative
weight wj for each covariate j, we would like to find
a match for each treatment unit t that matches at
least one control unit on as many relevant covariates
as possible. Thus we consider the following problem:

Almost Matching Exactly with Fixed Weights
(AME): For each treatment unit t,

θ
t∗
∈ argmaxθ∈{0,1}pθ

T
w such that

∃ ` with T` = 0 and x` ○ θ = xt ○ θ,

where ○ denotes Hadamard product. The solution to
the AME problem is an indicator of the optimal set of
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covariates for the matched group of treatment unit t.
The constraint says that the optimal matched group
contains at least one control unit. When the solution
of the AME problem is the same for multiple treatment
units, they form a single matched group. For treatment
unit t, the main matched group for t contains all
units ` so that xt ○ θ

t∗
= x` ○ θ

t∗. If any unit ` (either
control or treatment) within t’s main matched group
has its own different main matched group, then t’s
matched group is an auxiliary matched group for
`. In this case, ` could have been matched to other
units on more covariates than it was matched to t.
Estimation of CATE for a unit should always be done
on the main matched group for that unit.

The formulation of the AME and main matched group
is symmetric for control units. There are two straight-
forward (but inefficient) approaches to solving the AME
problem for all units.

AME Solution 1 (quadratic in n, linear in p):
Brute force pairwise comparison of treatment points to
control points. (Detailed in the appendix.)

AME Solution 2 (order n logn, exponential in
p): Brute force iteration over all 2p subsets of the p

covariates. (Detailed in the appendix.)

If n is in the millions, the first solution, or any simple
variation of it, is practically infeasible. A straightfor-
ward implementation of the second solution is also inef-
ficient. However, a monotonicity property (downward
closure) allows us to prune the search space so that the
second solution can be modified to be completely prac-
tical. The DAME algorithm does not enumerate all θ’s,
monotonicity reduces the number of θ’s it considers.

Proposition 3.1. (Monotonicity of θ∗ in AME solu-
tions) Fix treatment unit t. Consider feasible θ, mean-
ing ∃ ` with T` = 0 and x` ○ θ = xt ○ θ. Then,

• Any feasible θ
′ such that θ

′

< θ elementwise will
have θ

′T
w ≤ θ

T
w.

• Consequently, consider feasible vectors θ and θ
′. De-

fine θ̃ as the elementwise min(θ,θ′). Then θ̃
T
w <

θ
T
w, and θ̃

T
w < θ

′T
w.

These follow from the fact that the elements of θ are
binary and the elements of w are non-negative. The
first property means that if we have found a feasible
θ, we do not need to consider any θ

′ with fewer 1’s as
a possible solution of the AME for unit t. Thus, the
DAME algorithm starts from θ being all 1’s (consider all
covariates). It systematically drops one element of θ to
zero at a time, then two, then three, ordered according
to values of θT

w. The second property implies that
we must evaluate both θ and θ

′ as possible AME so-
lutions before evaluating θ̃. Conversely, a new subset

of variables defined by θ̃ cannot be considered unless
all of its supersets have been considered. These two
properties form the basis of the DAME algorithm.

The algorithm must be stopped early to avoid creating
low quality matches. A useful stopping criterion is if
the weighted sum of covariates θT

w used for matching
becomes too low (perhaps lower than a prespecified
percentage of the total sum of weights �w�1).

Note that matching does not produce estimates, it pro-
duces a partition of the covariate space, based on which
we can estimate CATEs. Within each main matched
group, we use the difference of the average outcome
of the treated units and the average outcome of the
control units as an estimate of the CATE value, given
the covariate values for that group. Smoothing the
CATE estimates could be useful after matching.

4 DYNAMIC ALMOST MATCHING
EXACTLY (DAME)

We call a covariate-set any set of covariates. We denote
by J the original set of all covariates from the input
dataset, where p = �J �. When we drop a set of covariates
s, it means we will match on J �s. For any covariate-set
s, we associate an indicator-vector θs ∈ {0, 1}

p defined
as follows:

θs,j = {j∉s} ∀ j ∈ {1, .., p} (1)

that is, the value is 1 if the covariate is not in s implying
that it is being used for matching.

Algorithm 1 gives the pseudocode of the DAME algorithm.
It uses the monotonicity property stated in Proposi-
tion 3.1 and ideas from the apriori algorithm for associ-
ation rule mining (Agrawal and Srikant, 1994). Instead
of looping over all possible 2p vectors to solve the
AME, it considers a covariate-set s for being dropped
only if satisfies the monotonicity property of Proposi-
tion 3.1. For example, if {1} has been considered for
being dropped to form matched groups, it would not
process {1,2,3} next because the monotonicity prop-
erty requires {1,2}, {1,3}, and {2,3} to have been
considered previously for being dropped.

The DAME algorithm uses the GroupedMR (Grouped
Matching with Replacement) subroutine given in Algo-
rithm 2 to form all valid main matched groups having
at least one treated and one control unit. GroupedMR
takes a given subset of covariates and finds all subsets of
treatment and control units that have identical values
of those covariates. We use an efficient implementation
of the group-by operation in the algorithm from Wang
et al. (2017) that uses bit-vectors. To keep track of
main matched groups, GroupedMR takes the entire set
of units D as well as the set of unmatched units from
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Algorithm 1: The DAME algorithm

Input : Data D, pre-computed weight vector w for
all covariates (from machine learning)

Output : {Dm
(h),MG(h)}h≥1 all matched units and all

the matched groups from all iterations h

Notation: h: iterations, D(h) (resp. Dm
(h)) =

unmatched (resp. matched) units at the end of
iteration h,MG(h) = matched groups at the end of
iteration h, Λ(h) = set of active covariate-sets at the
end of iteration h that are eligible to be dropped to
form matched groups, ∆(h) = set of covariate-sets at
the end of iteration h that have been processed (i.e.,
have been considered to be dropped and for
formulation of matched groups).
Initialize: D(0) =D,Dm

(0) = �,MG(0) = �,Λ(0) =

{{1}, ...,{p}},∆(0) = �, h = 1
while there is at least one treatment unit to match in
D(h−1) do

(find the ‘best’ covariate-set to drop from

the set of active covariate-sets)

Let s∗(h) ∈ argmaxs∈Λh−1
θ
T
s w (θs ∈ {0,1}

p denotes

the indicator-vector of s as in (1))
if early stopping condition is met then

Exit while loop

(Dm
(h),MG(h)) = GroupedMR(D,D(h−1),J � s

∗

(h))
(find matched units and main groups)

Z(h) = GenerateNewActiveSets(∆(h−1), s
∗

(h))

(generate new active covariate-sets)
Λ(h) = Λ(h−1) � {s

∗

(h)} (remove s
∗

(h) from the set

of active sets)
Λ(h) = Λ(h) ∪Z(h) (update the set of active

sets)
∆(h) =∆(h−1) ∪ {s

∗

(h)} (update the set of

already processed covariate-sets)
D(h) =D(h−1) �D

m
(h−1) (remove matches)

h = h + 1
return {Dm

(h),MG(h)}h≥1

the previous iteration D(h−1) as input along with the
covariate-set J � s∗(h) to match on in this iteration. In-
stead of matching only the unmatched units in D(h−1)
using the group-by procedure, it matches all units in D

to allow for matching with replacement as in the AME
objective. It keeps track of the main matched groups
for the unmatched units D(h−1).

DAME keeps track of two sets of covariate-sets: (1) The
set of processed sets ∆ contains the covariate-sets
whose main matched groups (if any exist) have already
been formed. That is, ∆ contains s if matches have
been constructed on J � s by calling the GroupedMR

procedure. (2) The set of active sets Λ contains
the covariate-sets s that are eligible to be dropped
according to Proposition 3.1. For any iteration h, Λ(h)∩

Algorithm 2: Procedure GroupedMR

Input :Data D, unmatched Data
Dum

⊆D = (X,Y,T ), subset of indexes of
covariates J s

⊆ {1, ..., p}
Output :Newly matched units Dm using covariates

indexed by J s where groups have at least
one treated and one control unit, and main
matched groups for Dm

Mraw = group-by (D,J s) (form groups on D by

exact matching on J
s)

M = prune(Mraw) (remove groups without at

least one treatment and one control unit)

Dm = Subset of Dum where the covariates

match with some group in M (find newly

matched units and their main matched groups)

return {Dm,M} (newly matched units and main

matched groups)

∆(h) = �, i.e., the sets are disjoint, where Λ(h),∆(h)
denote the states of Λ,∆ at the end of iteration h. Due
to the monotonicity property stated in Proposition 3.1,
if s ∈ Λ(h), then each proper subset r ⊂ s belonged to
Λ(h′) in an earlier iteration h′ < h. Once an active set
s ∈ Λ(h−1) is chosen as the optimal subset to drop (i.e.,
s is s∗(h) in iteration h), s is excluded from Λ(h) (it is

no longer active) and is included in ∆(h) as a processed
set. In that sense, the active sets are generated and
included in Λ(h) in a hierarchical manner similar to the
apriori algorithm. A set s is included in Λ(h) only if all
of its proper subsets of one less size r ⊂ s, �r� = �s� − 1,
have been processed.

The procedure GenerateNewActiveSets gives an effi-
cient implementation of generation of new active sets
in each iteration of DAME, and takes the currently pro-
cessed sets ∆ = ∆(h−1) and a newly processed set
s = s∗(h) as input. Let �s� = k. In this procedure,

∆
k
⊆∆ ∪ {s} denotes the set of all processed covariate-

sets in ∆ of size k, and also includes s. Inclusion of s in
∆

k may lead to generation of a new active set r of size
k+1 only if all of r’s subsets of size k (one less) have been
previously processed. The new active sets triggered by
inclusion of s in ∆

k would be supersets r of s of size
k+1 if all subsets s′ ⊂ r of size �s′� = k belong to ∆

k. To
generate such candidate supersets r, we can append s

with all covariates appearing in some covariate-set in ∆

except those in s. However, this naive approach would
iterate over many superfluous candidates for active sets.
Instead, GenerateNewActiveSets safely prunes some
such candidates that cannot be valid active sets using
support of each covariate e in ∆

k, which is the number
of sets in ∆

k containing e. Indeed, for any covariate
that is not frequent enough in ∆

k, the monotonicity
property ensures that any covariate-set that contains
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that covariate cannot be active. The following proposi-
tion shows that this pruning step does not eliminate
any valid active set (proof is in the appendix):

Proposition 4.1. If for a superset r of a newly pro-
cessed set s where �s� = k and �r� = k + 1, all subsets s′

of r of size k have been processed (i.e. r is eligible to
be active after s is processed), then r is included in the
set Z returned by GenerateNewActiveSets.

The explicit verification step of whether all possi-
ble subsets of r of one less size belongs to ∆

k is
necessary, i.e., the above optimization only prunes
some candidate sets that are guaranteed not to be
active. For instance, consider s = {2,3}, k = 2, and
∆

2
= {{1,2},{1,3},{3,5},{5,6}} ∪ {{2,3}}. For the

superset r = {2,3,5} of s, all of 2,3,5 have support of
≥ 2 in ∆

2, but this r cannot become active yet, since
the subset {2,5} of r does not belong to ∆

2.

Finally, the following theorem states the correctness of
the DAME algorithm (proof is in the appendix).

Theorem 4.2. (Correctness) The DAME algorithm
solves the AME problem.

Once the problem is solved, the main matched groups
can be used to estimate treatment effects, by consid-
ering the difference in outcomes between treatment
and control units in each group, and possibly smooth-
ing the estimates from the matched groups to prevent
overfitting of treatment effect estimates.

5 Almost Matching Exactly with
Adaptive Weights

We now generalize the AME framework so the weights
are adjusted adaptively for each subset of variables.
The weights are chosen using machine learning on a
hold-out training set. Let us consider a trivial varia-
tion of the AME problem with fixed weights and then
generalize it to handle adaptive weights.

Almost Matching Exactly with Fixed Weights,
Revisited: We will use squared rewards w2

j this time.
For a given treatment unit u with covariates xu, com-
pute the following, which is the maximum sum of re-
wards {w2

j}j=1,..,p we can attain for a valid matched
group (that contains at least one control unit):

θ
u∗
∈ argmaxθ∈{0,1}pθ

T (w ○w) s.t.

∃` with T` = 0 and x` ○ θ = xu ○ θ. (2)

The solution to this is an indicator of the optimal set
of covariates to match unit u on. For treatment unit
u, again, the main matched group for u contains all
units ` so that xu ○θ

u∗
= x` ○θ

u∗. Now we provide the
(more general) adaptive version of AME.

Algorithm 3: Procedure GenerateNewActiveSets

1. Input : s a newly dropped set of size k,
∆ the set of previously processed sets

2. Initialize: Z = � (stores new active sets)

3. ∆k = {� ∈∆ � size(�) = k} ∪ {s} (compute all

subsets of ∆ of size k and also include s)

4. Γ = {↵ � ↵ ∈ � and � ∈∆k} (get all the

covariates contained in sets in ∆
k)

5. Se = support of covariate e in ∆
k

6. Ω = {↵ � ↵ ∈ Γ and S↵ ≥ k} � s (get the

covariates not in s that have enough support)

7. if {∀e ∈ s ∶ Se ≥ k} (if all covariates in s have

enough support in ∆
k) then

8. for all ↵ ∈ Ω (generate new active set) do
9. r = s ∪ {↵}
10. if all subsets s′ ⊂ r, �s′� = k, belong to ∆

k

then
11. add r to Z (add newly active set r to

Z)

12. return Z

Example (follow line number correspondence)
1. s = {2,3}, k = 2,
∆ = {{1},{2},{3},{5},{1,2},{1,3},{1,5}}
2. Z = �
3. ∆2 = {{1,2},{1,3},{2,3},{1,5}}
4. Γ = {1,2,3,5}
5. S1 = 3,S2 = 2,S3 = 2,S5 = 1

6. Ω = {1,2,3} � {2,3} = {1}
7. T rue ∶ both 1 and 2 have support ≥ 2
8. ↵ = 1 (only one value)
9. r = {2,3} ∪ {1} = {1,2,3}
10. T rue (subsets of r of size 2 are {1, 2},{1, 3},{2, 3})
11. Z = {{1,2,3}}
12. return Z = {{1,2,3}}

Full Almost Matching Exactly (Full-AME): De-
note θ ∈ {0,1}p as an indicator vector for a subset of
covariates to match on. Define the matched group for
unit u with respect to covariates θ as the units that
match u exactly on the covariates θ:

MGθ(u) = {v ∶ xv ○ θ = xu ○ θ}.

The usefulness of a set of covariates θ is now determined
by how well they can be used together to make out-of-
sample predictions. Specifically, the prediction error
PE(✓) is defined with respect to a class of functions F
as: PEF(θ) = minf∈F E(f(X ○ θ, T ) − Y )2, where the
expectation is taken over X, T and Y . Its empirical
counterpart is defined with respect to a separate ran-
dom sample from the distribution, used as a training
set {xtr

i , T tr
i , ytri }i∈ training, specifically:

P̂EF(θ) =min
f∈F

�
i∈ training

(f(xtr
i ○ θ, T

tr
i ) − y

tr
i )

2.
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The training set is only used to calculate prediction
error, not for matching. Using this, the best prediction
error we could hope to achieve for a nontrivial matched
group containing treatment unit u uses the following
covariates for matching:

θ
∗

u ∈ argmin
✓

P̂EF(θ) s.t. ∃` ∈MGθ(u) where T` = 0

The main matched group for u is defined as
MGθ∗u(u). The goal of the Full-AME problem is to
find the main matched group MGθ∗u(u) for all units u.

The class of functions F can include nonlinear functions.
We can use variable importance measures for prediction
on P̂EF such as permutation importance (also called
model reliance) to determine the variable’s weight. If
F includes linear models, the weight wj for feature j

would be the absolute value of feature j’s coefficient.

The Full-AME problem reduces to the fixed-squared-
weights version under specific conditions, such as when
F is a single function f , which is linear with fixed linear
weights (w,wT ) and f(x○θ, T ) = (w○θ)T (x○θ)+wTT ,
where w is the ground-truth coefficient vector that
generates y, and P̂Eθ is determined by the sum of
w2

j weights for covariates determined by the feature-
selector vector θ. This reduction is discussed formally
by Wang et al. (2017).

In order to solve Full-AME, a step is needed in Algo-
rithm 1 at the top of the while loop that updates the
weights for each covariate-set we could choose at that
iteration. In particular, we let

s∗(h) ∈ arg min
s∈Λ(h−1)

P̂E(✓s),

where Λ(h−1) is the active set of covariates, and the
predictive error is computed over the training set with
respect to a pre-specified class of models, F . In the im-
plementation in this paper we consider linear functions
fit separately on the treated and the control units in
the training set using ridge regression (that is, we add
a ridge penalty to Eq (5)).

5.1 Early Stopping of DAME

It is important that DAME be stopped early when the
quality of matches produced falls. In dropping covari-
ates, its prediction error P̂EF should never increase
too far above its original value using all the covari-
ates. This ensures the quality of every matched group:
the covariates θ

∗

u for every matched group thus obey
P̂EF(θ

∗

u) <minθ P̂EF(θ)+ ✏, where the choice of ✏ (per-
haps 5%) determines stopping. As such the while loop
in Algorithm 1 should not only check whether there are
more units to match, but also whether the predictive
error has increased too much.

5.2 Hybrid FLAME-DAME

The DAME algorithm solves the Full-AME problem,
whereas FLAME (Wang et al., 2017) approximates
its solution. This is because FLAME uses backwards
feature selection, whereas DAME calculates the solution
without approximation. For problems with many fea-
tures, we can use FLAME to remove the less relevant
features, and then switch to DAME when we start to
remove some of the more influential features. This
hybrid algorithm scales substantially better, possibly
without any noticeable loss in the quality of matches.

Matching-after-learning-to-stretch (MALTS) (Parikh
et al., 2018) has been combined with FLAME and DAME

to handle mixed real and categorical covariates.

5.3 Other Estimands

While CATEs are the most granular estimands, aggre-
gate estimands such as Average Treatment Effect (ATE)
and Average Treatment Effect on the Treated (ATT)
may be of interest. Since DAME matches with replace-
ment, standard techniques (e.g., frequency weights)
should be used (Stuart, 2010; Abadie et al., 2004).

6 SIMULATIONS

We present results under several data generating pro-
cesses. We show that DAME produces higher quality
matches than popular matching methods such as 1-
PSNNM (propensity score nearest neighbor matching)
and Mahalanobis distance nearest neighbor matching,
and better treatment effect estimates than black box
machine learning methods such as Causal Forest (which
is not a matching method, and is not interpretable).
The ‘MatchIt’ R-package (Ho et al., 2011) was used to
perform 1-PSNNM and Mahalanobis distance nearest
neighbor matching (‘Mahalanobis’). For Causal Forest,
we used the ‘grf’ R-package (Athey et al., 2019). DAME
also improves over FLAME (Wang et al., 2017) with
regards to the quality of matches. Other matching
methods (optmatch, cardinality match) do not scale to
large problems and thus needed to be omitted.

Throughout this section, the outcome is generated
with y = ∑i ↵ixi+T ∑i=1 �ixi+T ⋅U ∑i,�,�>i xix� where
T ∈ {0,1} is the binary treatment indicator. This gen-
eration process includes a baseline linear effect, linear
treatment effect, and quadratic (nonlinear) treatment
effect. We vary the distribution of covariates, coeffi-
cients (↵’s, �’s, U), and the fraction of treated units.
We report conditional average treatment effects on the
treated.
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6.1 Presence of Irrelevant Covariates

A basic sanity check for matching algorithms is how sen-
sitive they are to irrelevant covariates. To that end, we
run experiments with a majority of the covariates being
irrelevant to the outcome. For important covariates
1 ≤ i ≤ 5 let ↵i ∼ N(10s,1) with s ∼ Uniform{−1,1},
�i ∼ N(1.5, 0.15), xi ∼ Bernoulli(0.5). For unimportant
covariates 5 < i ≤ 15, xi ∼ Bernoulli(0.1) in the control
group and xi ∼ Bernoulli(0.9) in the treatment group
so there is little overlap between treatment and control
distributions. This simulation generates 15000 control
units, 15000 treatment units, 5 important covariates
and 10 irrelevant covariates. Results: In Figure 1,
DAME (even with early stopping) runs to the end and
matches on all units because the stopping criteria is
never met. In this figure, DAME finds all high-quality
matches even after important covariates are dropped.
In contrast, FLAME achieves the optimal result be-
fore dropping any important covariates and generates
some poor matches after dropping important covariates.
However, even FLAME’s worst case scenario is better
than the comparative methods, all of which perform
poorly in the presence of irrelevant covariates. Causal
Forest is especially ill suited for this case.

6.2 Exponentially Decaying Covariates

An advantage of DAME over FLAME is that it pro-
duces more high quality matches before resorting to
lower quality matches. To test this, we considered
covariates of decaying importance, letting the ↵ pa-

rameters decrease exponentially as ↵i = 64 × �12�
i
. We

evaluated performance when ≈ 30% and 50% of units
were matched. Results: As Figure 2 shows, DAME

matches on more covariates, yielding better estimates
than FLAME.

6.3 Imbalanced Data

Imbalance is common in observational studies: there
are often substantially more control than treatment
units. The data for this experiment has covariates with
decreasing importance. A fixed batch of 2000 treatment
and 40000 control units were generated. We sampled
from the controls to construct different imbalance ra-
tios: 40000 in the most imbalanced case (Ratio 1),
then 20000 (Ratio 2), and 10000 (Ratio 3). Results:
Table 1 reveals that FLAME and DAME outperform the
nearest neighbor matching methods. DAME is distinctly
better than FLAME. Additionally, DAME has an average
of 4 covariates not matched on, with ≈ 84% of units
matched on all but 2 covariates, whereas FLAME aver-
ages 7 covariates not matched on and only ≈ 25% units
matched on all but 2 covariates. Detailed results are
in the longer version (Liu et al., 2018).

Table 1: MSE for different imbalance ratios

Mean Squared Error (MSE)
Ratio 1 Ratio 2 Ratio 3

DAME 0.47 0.83 1.39
FLAME 0.52 0.88 1.55
Mahalanobis 26.04 48.65 64.80
1-PSNNM 246.08 304.06 278.87

6.4 Run Time Evaluation

We compare the run time of DAME with a brute force
solution (AME Solution 1 described in Section 3). All
experiments were run on an Ubuntu 16.04.01 system
with Intel Core i7 Processor (Cores: 8, Speed: 3.6
GHz), 8 GB RAM. Results: As shown in Figure 3,
FLAME provides the best run-time performance be-
cause it incrementally reduces the number of covariates,
rather than solving Full-AME. On the other hand, as
shown in the previous simulations, DAME produces high
quality matches that the other methods do not. It
solves the AME much faster than brute force. The
run time for DAME could be further optimized through
simple parallelization of the checking of active sets.

6.5 Missing Data

Missing data problems are complicated in match-
ing. Normally one would impute missing values, but
matches become less interpretable when matching on
imputed values. If we match only on the raw values,
DAME has an advantage over FLAME because it can
simply match on as many non-missing relevant covari-
ates as possible. When data are imputed, DAME still
maintains an advantage over FLAME, possibly because
it can match on more raw covariate values and fewer
imputed values. Details of the experiments are in the
longer version (Liu et al., 2018).

7 BREAKING THE CYCLE OF
DRUGS AND CRIME

Breaking The Cycle (BTC) (Harrell et al., 2006) is a so-
cial program conducted in several U.S. states designed
to reduce criminal involvement and substance abuse
among current offenders. We study the effect of par-
ticipating in the program on reducing non-drug future
arrest rates. The details of the data and our results
are in Appendix D. We compared CATE predictions of
DAME and FLAME to double check the performance of
a black box support vector machine (SVM) approach
that predicts positive, neutral, or negative treatment
effect for each individual. The result is that DAME

and the SVM approach agreed on most of the exactly
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Figure 1: Estimated CATT vs. True CATT (Conditional Average Treatment Effect on the Treated). DAME and FLAME

perfectly estimate the CATTs before dropping important covariates. DAME matches all units without dropping important

covariates, but FLAME needs to stop early in order to avoid poor matches. All other methods are sensitive to irrelevant

covariates and give poor estimates. The two numbers on each plot are the number of matched units and MSE.

Figure 2: DAME makes higher quality matches early on.
Rows correspond to stopping thresholds (top row 30%,
bottom row 50%). DAME matches on more covariates than
FLAME, yielding lower MSE from matched groups.

Figure 3: Run-time comparison between DAME FLAME,
and brute force. Left: varying number of units. Right:
varying number of covariates.

matched units. All of the units for which exact match-
ing predicted approximately zero treatment effect all
have a “neutral” treatment effect predicted label from
the SVM. Most other predictions were similar between
the two methods. There were only few disagreements
between the methods. Upon further investigation, we
found that the differences are due to the fact that DAME
is a matching method and not a modeling method;
the estimates could be smoothed afterwards if desired
to create a model. In particular, one of the two dis-
agreeing predictions between the SVM and DAME has a
positive treatment CATE prediction, but it was closer
in Hamming distance to units predicted to have nega-
tive treatment effects. With smoothing, its predicted
CATE may have also become negative.

8 CONCLUSIONS

DAME produces matches that are of high quality. Its
estimates of individualized treatment effects are as
good as the (black box) machine learning methods we
have tried. Other methods can match individuals to-
gether whose covariates look nothing alike, whereas the
matches from DAME are interpretable and meaningful,
because they are almost exact; units are matched on
covariates that together can be used to predict out-
comes accurately. Code is publicly available at: https:
//github.com/almost-matching-exactly/DAME .
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