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Abstract

Uncertainty in the estimation of the causal ef-

fect in observational studies is often due to un-

measured confounding, i.e., the presence of un-

observed covariates linking treatments and out-

comes. Instrumental Variables (IV) are com-

monly used to reduce the effects of unmea-

sured confounding. Existing methods for IV

estimation either require strong parametric as-

sumptions, use arbitrary distance metrics, or do

not scale well to large datasets. We propose

a matching framework for IV in the presence

of observed categorical confounders that ad-

dresses these weaknesses. Our method first

matches units exactly, and then consecutively

drops variables to approximately match the re-

maining units on as many variables as possi-

ble. We show that our algorithm constructs

better matches than other existing methods on

simulated datasets, and we produce interesting

results in an application to political canvassing.

1 INTRODUCTION

The gold standard for inferring the causal effect of a treat-

ment (such as smoking, a tax policy, or a fertilizer) on

an outcome (such as blood pressure, stock prices, or crop

yield) is the randomized experiment: the analyst manu-

ally assigns the treatment to each of her units uniformly

at random. Unfortunately, this manipulation is impossi-

ble or unethical for some treatments of practical interest,

leading to the need for inferring causal relations from

observational studies. In many observational studies, it is

common for instrumental variables (IV) to be available.

These variables are (a) allocated randomly across units,
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(b) correlated with the treatment, and (c) affect the depen-

dent variable only through their effect on the treatment.

The fact that instrumental variables allow for consistent

estimation of causal effect with non-randomized treat-

ments is a hallmark of the causal inference literature, and

has led to the use of IV methods across many different

applied settings (e.g., Joskow, 1987; Gerber and Green,

2000; Acemoglu et al., 2001; Autor et al., 2013).

The most popular existing method that uses instrumental

variables to conduct causal inference is Two-Stage Least

Squares Regression (2SLS) (Angrist and Keueger, 1991;

Card, 1993; Wooldridge, 2010). The 2SLS methodology

makes strong parametric assumptions about the underly-

ing outcome model (linearity), which do not generalize

well to complex problems. Non-parametric approaches to

IV-based causal estimates generalize 2SLS to more com-

plex models (Newey and Powell, 2003; Frölich, 2007),

but lack interpretability; it is difficult to troubleshoot or

trust black box models. Matching methods that allow

for nonparametric inference on average treatment effects

without requiring functional estimation have recently been

introduced for the IV problem in Kang et al. (2016): the

full-matching algorithm presented in their work relaxes

some of the strong assumptions of 2SLS, however, it does

not scale well to massive datasets, and imposes a fixed

metric on covariates. It also does not take into account

that covariates have different levels of importance for

matching.

The approach for instrumental variable analysis presented

in this paper aims to handle the problems faced by exist-

ing methods: it is non-parametric, scalable, and preserves

the interpretability of having high-quality matched groups.

We create an Almost-Matching Exactly framework (Wang

et al., 2019; Dieng et al., 2019) for the purpose of instru-

mental variable analysis. Our methodology estimates the

causal effects in a non-parametric way and hence per-

forms better than 2SLS or other parametric models. It

improves over existing matching methods for instrumen-

tal variables when covariates are discrete, leveraging an



adaptive distance metric. This adaptive distance metric

is capable of systematically accounting for nuisance vari-

ables, discounting their importance for matching. The

algorithm scales easily to large datasets (millions of ob-

servations) and can be implemented within most common

database systems for optimal performance.

In what follows, first we introduce the problem of instru-

mental variable estimation for observational inference,

and describe the role of matching within it. Second,

we outline the Almost-Matching Exactly with Instrumen-

tal Variables (AME-IV) framework for creating matched

groups. Third, we describe estimators with good statisti-

cal properties that can be used on the matched data. Fi-

nally, we present results from applying our methodology

to both simulated and real-world data: we show that the

method performs well in most settings and outperforms

existing approaches in several scenarios.

2 RELATED WORK

Widely used results on definition and identification of

IVs are given in Imbens and Rubin (1997); Angrist et al.

(1996), and generalized in Brito and Pearl (2002); Chen

et al. (2016). Methods for discovery of IVs are developed

in Silva and Shimizu (2017).

The most popular method for IV estimation in the pres-

ence of observed confounders is two-stage least squares

(2SLS) (Card, 1993). 2SLS estimators are consistent

and efficient under linear single-variable structural equa-

tion models with a constant treatment effect (Wooldridge,

2010). One drawback of 2SLS is its sensitivity to mis-

specification of the model. Matching, on the other hand,

allows for correct inference without the need to specify

an outcome model.

Recent work on matching for IV estimation includes

matching methods that match directly on covariates,

rather than on summary statistics like propensity score

(Ichimura and Taber, 2001). These matching methods can

be very powerful nonparametric estimators; full matching

(Kang et al., 2013) is one such approach, but has a limita-

tion in that its distance metric between covariates is fixed,

whereas ours is learned. Wang et al. (2019) provides an

in-depth discussion of other matching methods including

near-far and full-matching, in the context of AME.

Other IV methods in the presence of measured covari-

ates include Bayesian methods (Imbens and Rubin, 1997),

semiparametric methods (Abadie, 2003; Tan, 2006; Og-

burn et al., 2015), nonparametric methods (Frölich, 2007)

and deep learning methods (Hartford et al., 2017), but

these methods do not enjoy the benefits of interpretability

that matching provides.

3 METHODOLOGY

We consider the problem of instrumental variable estima-

tion for a set of n units indexed by i = 1, . . . , n. Each

unit is randomly assigned to a binary instrument level.

Units respond to being assigned different levels of this

instrument by either taking up the treatment or not: we

denote with ti(1), ti(0) ∈ {0, 1} the treatment level taken

up by each unit after being exposed to value z ∈ {0, 1}
of the instrument. Subsequently, units respond to a treat-

ment/instrument regime by exhibiting different values

of the outcome variable of interest, which we denote by

yi(ti(1), 1), yi(ti(0), 0) ∈ R. Note that this response de-

pends both on the value of the instrument assigned (2nd

argument) and on the treatment value that units take up

in response to that instrument value (1st argument). All

quantities introduced so far are fixed for a given unit i

but not always observed. In practice, we have a random

variable Zi ∈ {0, 1} for each unit denoting the level of

instrument that it was assigned, and observed realizations

of Zi are denoted with zi. Whether a unit receives treat-

ment is now a random variable (Ti), and the outcome is

random (Yi), and they take the form:

Yi = yi(ti(1), 1)Zi + yi(ti(0), 0)(1− Zi)

Ti = ti(1)Zi + ti(0)(1− Zi).

Note that the only randomness in the observed variables

comes from the instrument, all other quantities are fixed.

We use yi and ti to denote observed realizations of Yi

and Ti respectively. We also observe a fixed vector of

p covariates for each unit, xi ∈ X , where X is a space

with p dimensions. In this paper we are interested in the

case in which X = {0, 1}p, corresponding to categorical

variables, where exact matching is well-defined.

Throughout we make the SUTVA assumption, that is (i)

outcome and treatment assignment for each individual are

unrelated to the instrument exposure of other individuals,

and (ii) the outcome for each individual is unrelated to the

treatment assignment of other individuals (Angrist et al.,

1996). However, ignorability of treatment assignment is

not required. We make use of the instrumental variable

to estimate the causal effect of treatment on outcome. In

order for a variable to be a valid instrument it must satisfy

the following standard assumptions (see, e.g., Imbens and

Angrist, 1994; Angrist et al., 1996; Imbens and Rubin,

2015):

(A1) Relevance: 1
n

∑n
i=1 ti(1) − ti(0) 6= 0, that is, the

variable does indeed have a non-zero causal effect on

treatment assignment, on average.

(A2) Exclusion: If z 6= z′ and ti(z) = ti(z
′) then

yi(ti(z), z) = yi(ti(z
′), z′) for each unit i. This assump-

tion states that unit i’s potential outcomes are only af-





value associated with matching on each covariate. The

constraint in our optimization problem definition guaran-

tees that the main matched group of each instrumented

unit i contains at least one non-instrumented unit. The

solution to this optimization problem is a binary indicator

of the optimal set of covariates that unit i can be matched

on. Note that, if all entries of θi∗ happen to be one, then

the units in unit i’s main matched group will be exact

matches for i.

We define i’s main matched group in terms of θi∗ as:

MG(θi∗,xi) = {k : θi∗ ◦ xk = θ
i∗ ◦ xi}.

We now theoretically connect Assumption A3 with solv-

ing the AME-IV problem, and show how approximate

matches can lead to the assumption being approximately

satisfied within each matched group. This makes IV es-

timation possible even when it is not possible to exactly

match each unit. To do so, we introduce the notation

1[xi 6=xk] to denote a vector of length p where the jth

entry is one if xij = xkj and zero otherwise.

Lemma 3.1. For any unit i where zi = 1, with θ
i∗

as

defined in the AME-IV problem, then for any unit k with

zk 6= zi, if xk ◦ θi∗ = xi ◦ θ
i∗

, i.e., k ∈ MG(θi∗,xi), we

have:

k ∈ argmin
l=1,...,n
zl 6=zi

w
T
1[xi 6=xl]. (2)

In particular, if θ
i∗

has all entries equal to one and k ∈
MG(θi∗,xi) then w

T
1[xi 6=xk] = 0.

The detailed derivation of this lemma is in the supple-

ment. This statement clarifies that by solving the AME-IV

problem, we minimize the weighted hamming distance be-

tween each unit i and all other units with a different assign-

ment of the instrument that belong to i’s main matched

group. We now introduce a smoothness assumption under

which we can formally link the matched groups created

by AME-IV with the necessary conditions for causal esti-

mation using instrumental variables.

(A5) Smoothness: For any two xi,xk ∈ {0, 1}p, and

δ > 0, we have: w
T
1[xi 6=xk] ≤ δ =⇒ |p(Zi =

1|xi)− p(Zk = 1|xk)| ≤ ε(δ), where ε(δ) is an increas-

ing function of δ such that ε(0) = 0.

Note that this is a variant of a standard assumption made

in most matching frameworks (see, e.g., Rosenbaum,

2010). The following proposition follows immediately

from Lemma 3.1 applied to A5.

Proposition 3.1. If k ∈ MG(θi∗,xi) with zi 6= zk, and

A5 holds, then

|P (Zi = 1|xi)−P (Zk = 1|xk)|≤ε


min
l=1...n
zi 6=zl

w
T
1[xi 6=xl]


.

In particular, if θ
i∗

is one in all entries, then Pr(Zi =
1|xi) = Pr(Zk = 1|xk).

With this observation, we know that units matched to-

gether will have similar probabilities of being instru-

mented (in fact, as similar as possible, as finite data per-

mits). This will allow us to produce reliable estimates

of λ using our matched groups, provided that the data

actually contain matches of sufficiently high quality.

3.2 FULL AME-IV PROBLEM

In the full version of the AME-IV problem, the weights

are chosen so that the variables used for each matched

group have a useful quality: these variables together can

create a high-quality predictive model for the outcomes.

The weights become variable importance measures for

each of the variables.

In order to determine the importance of each variable

j, we use variable importance techniques to analyze ma-

chine learning models trained on a separate training set.

Specifically, the units 1, . . . , n are divided into a train-

ing and a holdout set, the first is used to create matched

groups and estimate causal quantities, and the second to

learn the importance of each of the variables for match

quality. Formally define the empirical predictive error on

the training set, for set of variables θ as:

P̂EF (θ) = min
f∈F

∑

a∈training

(f(θ ◦ xtr
a , ztra )− ytra )2,

where F is some class of prediction functions. The em-

pirical predictive error measures the usefulness of a set

of variables. (The set of variables being evaluated are the

ones highlighted by the indicator variables θ.)

We ensure that we always match using sets of variables θ

that together have a low error P̂EF . In fact, for each unit,

if we cannot match on all the variables, we will aim to

match on the set of variables for which the lowest possible

prediction error is attained. Because of this, all matched

groups are matched on a set of variables that together can

predict outcomes sufficiently well.

The Full-AME-IV problem can thus be stated as: for all

instrumented units i,

θ
i∗ ∈ argmin

θ∈{0,1}p

P̂EF (θ), such that:

∃ k with zk = 0 and xk ◦ θi∗ = xi ◦ θ
i∗,

When importance weights are a linear function of the

covariates, then solving the problem above is equivalent

to solving the general AME-IV problem. An analogous

result holds without IVs for the AME problem (Wang

et al., 2019).



In the standard Full-AME problem, there is no instrument,

and each matched group must contain both treatment and

control units, whereas in the Full-AME-IV case, the key

is to match units so that instrumented units are matched

with non-instrumented units regardless of treatment. In-

tuitively, this makes sense because treatment uptake is in

itself an outcome of instrumentation in the IV framework:

a group with very large or very small numbers of treated

or control units would imply that units with certain values

of x are either highly likely or highly unlikely to respond

to the instrument by taking up the treatment.

3.3 FLAME-IV: AN APPROXIMATE

ALGORITHM FOR THE FULL-AME-IV

PROBLEM

We extend ideas from the Fast Large-scale Almost Match-

ing Exactly (FLAME) algorithm introduced by Wang

et al. (2019) to approximately solve the AME-IV prob-

lem. Our algorithm – FLAME-IV – uses instrumental

variables to create matched groups that have at least one

instrumented and one non-instrumented unit within them.

The procedure starts with an exact matching that finds

all exact main matched groups. Then at each iteration

FLAME-IV iteratively chooses one covariate to drop, and

creates matched groups on the remaining covariates. To

decide which covariate to drop at each iteration, FLAME-

IV loops through the possibilities: it temporarily drops

one covariate and computes the match quality MQ after

dropping this covariate. Then FLAME-IV selects the

covariate for which MQ was maximized during this loop.

Match quality MQ is defined as a trade-off between pre-

diction error, P̂E (which is defined in Section 3.2) and a

balancing factor, which is defined as:

BF =
# matched non-instrumented

# available non-instrumented
+

# matched instrumented

# available instrumented

MQ is computed on the holdout training dataset. In prac-

tice, the balancing factor improves the quality of matches

by preventing FLAME-IV from leaving too many units

stranded without matched groups. That is, it could pre-

vent all treated units from being matched to the same few

control units when more balanced matched groups were

possible. More details about the FLAME-IV algorithm

are in the supplement.

It is recommended to early-stop the algorithm before the

MQ drops by 5% or more (Wang et al., 2019). This way, the

set of variables defining each matched group is sufficient

to predict outcomes well (on the training set). The details

about early-stopping are in the supplement.

4 ESTIMATION

Assuming that (A1) through (A5) and SUTVA hold, the

LATE, λ, can be estimated in a consistent way (Imbens

and Angrist, 1994; Angrist et al., 1996); in this sec-

tion we adapt common estimators for λ to our matching

framwork. Consider a collection of m matched groups,

MG1, . . . , MGm, each associated with a different value of

(θ,x). We estimate the average causal effect of the instru-

ment on the treatment, ITTt,` and on the outcome, ITTy,`,

within each matched group, `, and then take the ratio of

their weighted sums over all groups to estimate λ.

We start with the canonical estimator for ITTy,`:

ÎTTy,` =

∑
i∈MG`

yizi∑
i∈MG`

zi
−

∑
i∈MG`

yi(1− zi)∑
i∈MG`

(1− zi)
. (3)

Similarly, the estimator for the causal effect of the instru-

ment on the treatment, ITTt,j , can be written as:

ÎTTt,` =

∑
i∈MG`

tizi∑
i∈MG`

zi
−

∑
i∈MG`

ti(1− zi)∑
i∈MG`

(1− zi)
. (4)

From the form of λ in Equation (1) it is easy to see that,

if the estimators in (3) and (4) are unbiased for ITTy,`
and ITTt,` respectively (which is true, for instance, when

matches are made exactly for all units), then the ratio

of their weighted average across all matched groups is a

consistent estimator for λ:

λ̂ =

∑m
`=1 n`ÎTTy,`∑m
`=1 n`ÎTTt,`

, (5)

where n` denotes the number of units in matched group

`. A natural extension of this framework allows us to

estimate the LATE within matched group `, defined as:

λ` =
1

n`

∑

i∈MG`:
ti`(1)>ti`(0)

yi(1)− yi(0). (6)

This can be accomplished with the following estimator:

λ̂` =
ÎTTy,`

ÎTTt,`

. (7)

We quantify uncertainty around our estimates with asymp-

totic Confidence Intervals (CIs). To compute CIs for these

estimators we adapt the approach laid out in Imbens and

Rubin (2015). Details on variance estimators and compu-

tations are given in the supplement.

In the following section, we present simulations that em-

ploy these estimators in conjunction with the algorithms

presented in the previous section to estimate λ and λ`.

The performance of our methodology is shown to surpass

that of other existing approaches.



5 SIMULATIONS

We evaluate the performance of our method using sim-

ulated data. We compare our approach to several other

methods including two-stage least squares (Angrist and

Keueger, 1991; Card, 1993; Wooldridge, 2010), and two

other state-of-the-art nonparametric methods for instru-

mental variables, full matching (Kang et al., 2016) and

nearfar matching (Baiocchi et al., 2010). Full matching

and nearfar matching find units that differ on the instru-

ment while being close in covariate space according to

a predefined distance metric. Both algorithms rely on

a sample-rank Mahalanobis distance with an instrument

propensity score caliper. We implement FLAME-IV us-

ing bit-vector calculations. More details about the imple-

mentation are in the supplementary materials.

In the first set of experiments, we compare the perfor-

mance of the different methods on the estimation of local

average treatment effects. In Experiment 5.2 we demon-

strate the power of FLAME-IV for estimating individu-

alized local average treatment effects. Experiment 5.3

describes the scalability of the approach in terms of the

number of covariates and number of units.

Throughout, we generate instruments, covariates and con-

tinuous exposures based on the following structural equa-

tion model (Wooldridge, 2010):

T ?
i = k + πZi + ρTXi + ξi (8)

where Zi ∼ Bernoulli(0.5), and ξi ∼ N(0, 0.8). For

important covariates, Xij ∼ Bernoulli(0.5). For unim-

portant covariates, Xij ∼ Bernoulli(0.1) in the control

group, and Xij ∼ Bernoulli(0.9) in the treatment group.

We discretize the exposure values T ?
i by defining:

Ti = I[0.3<T?
i
≤0.6]

+ 2× I[0.6<T?
i
≤1.0] + 3× I[T?

i
>1.0].

5.1 ESTIMATION OF λ

In this experiment, outcomes are generated based on one

of two homogeneous treatment effect models: a linear

and a nonlinear model, respectively defined as:

Yi =

10∑

j=1

αjXij + 10Ti (9)

Yi =

10∑

j=1

αjXij + 10Ti +
∑

1≤j<γ≤5

XijXiγ . (10)

Under both generation models, the true treatment effect

is 10 for all individuals. There are 10 confounding co-

variates, 8 of which are important and 2 are unimportant.

The importance of the variables is exponentially decaying

with αj = 0.5j .

We measure performance using the absolute bias of the

median, i.e., the absolute value of the bias of the median

estimate of 500 simulations and median absolute devia-

tion, i.e., the median of the absolute deviations from the

true effect, for each simulation. We present simulation

results at varying levels of strength of the instrumental

variable. This is measured by a concentration parameter,

defined as the influence that the instrument has on treat-

ment take-up. This is represented by the concentration

parameter π in Eq. (8). Usually a concentration parameter

below 10 suggests that instruments are weak (Stock et al.,

2002).

We also assess the performance of our methods by vary-

ing the size of training and holdout data. We generate

two training and holdout datasets of different sizes: one

with 1000 instrumented units and 1000 non-instrumented

units, and one with 50 instrumented units and 50 non-

instrumented units. For each case, we run each experi-

ment 500 times for each of the algorithms.

Figures 2 and 3 show the results of this experiment. All

algorithms achieve better estimation accuracy when the in-

strument is stronger (i.e., more instrumented units take up

the treatment). Figure 2 shows results for the linear gener-

ation model, and Figure 3 shows results for the nonlinear

generation model. As both figures show, FLAME-IV with

and without early-stopping generally outperform all other

algorithms in terms of bias and deviation. This is likely

because our methodology does not rely on a parametric

outcome model and uses a discrete learned distance met-

ric. The only exceptions are the left-upper plot on Figure

2 and Figure 3, which represents the bias results on small

datasets (50 instrumented & 50 noninstrumented). 2SLS

has advantages here, because the amount of data is too

small for powerful nonparametric methods like FLAME-

IV to fit reliably. FLAME-IV’s matching estimates lead

to slightly larger bias than 2SLS. In the supplementary

materials, we report results of similar experiments but

with the additional inclusion of observed confounders of

instrument assignment. We see no degradation in the per-

formance. Result patterns with confounded instruments

mimic those in Figures 2 and 3.

Next, we compare 95% confidence intervals for each al-

gorithm. The results are reported in Table 1. FLAME-IV

performs well on the nonlinear generation model, lead-

ing to the narrowest 95% CI of all the methods. For the

linear generation model, the 95% CI for FLAME-IV is

narrower than the equivalent CIs for full matching and

nearfar matching, but wider than 2SLS. Again, this is

expected, and due to the correct parameterization of 2SLS

with the linear generation model. More details about the







Table 2: Effect of Door-to-Door Canvassing on Electoral Outcomes

Vote Share Voter Turnout

First round Second round First round Second round

Panel A: All Precincts

0.02280 0.01593 -0.00352 -0.00634

(0.00683) (0.00827) (0.00163) (0.00158,)

Panel B: Precincts by Income Levels

Low 0.02844 0.03903 -0.00666 -0.01505

(0.00429) (0.00562) (0.00228) (0.00254)

Medium 0.01772 0.02090 -0.00311 -0.00070

(0.00388) (0.00434) (0.00287) (0.00333)

High 0.02560 0.04313 -0.02717 -0.01367

(0.02780) (0.02752) (0.01217) (0.00538)

Panel C: Precincts by Gender Majority

Male 0.05619 -0.00442 0.00973 -0.00056

(0.00879) (0.00995) (0.00376) (0.00346)

Female 0.01640 0.00777 -0.00692 -0.00675

(0.00834) (0.00719) (0.00237) (0.00239)

Columns 2 and 3 correspond to causal effects on vote share for PS, whereas Columns 4 and 5 reports causal effects on
voter turnout. Panel A accounts for all the precincts and reports population causal effects. Panel B divides precincts
by median income level and reports causal effect for each subgroup. Panel C divides precincts by gender-majority and
reports associated causal effects. We use 15% of the data as holdout training data and use a 5% change in match quality
as an early stopping rule. Differences between our approach and the original paper’s approach in estimated variances are
mainly due to the strata used by the authors being marginally different from those produced with our methodology.

employ. Interestingly, our estimate of the effect of can-

vassing on vote share has a greater magnitude than the

original analysis, while our estimate for the effect of can-

vassing on voter turnout is nearly the same as the original

paper’s.

Our methodology also allows an improvement on the

original analysis by estimating effects of door-to-door

campaigns on the two outcomes for particular subgroups

of interest. LATE estimates for income and gender sub-

groups are reported in Panel B and Panel C of Table 2.

The income subgroups are defined by median income,

whereas gender subgroups are defined by share of female

population in each precinct. We find that canvassing was

more effective in increasing the vote share for PS, in the

first round of the election, in precincts where male popu-

lation is in the majority. We also find that canvassing had

negative effect on voter turnout in low income precincts,

but positive effect on voter share for PS. The combina-

tion of these results show that canvassing was successful

in convincing voters to switch their votes in favour of

François Hollande.

In the supplement we show two example matched groups

output by FLAME-IV. In this case the algorithm was suc-

cessful in separating localities with low support for PS

from localities in which support for PS was greater. These

examples highlight how the algorithm can produce mean-

ingful and interpretable groups, while reducing potential

for confounding by observed covariates.

In conclusion, the results of our analysis of the voter

turnout data clearly show that our method produces novel

and interesting results when applied to real-world scenar-

ios, independently of strong parametric assumptions, and

with a simple interpretable framework.

7 CONCLUSION

Matching methods can be extremely powerful: they are

both highly nonparametric and interpretable to users,

allowing them to trust and troubleshoot their models

more easily. Our approach to matching for instrumen-

tal variables accounts for the limitations faced by exist-

ing methods. We improve on 2SLS by using a highly

non-parametric powerful modeling approach. We retain

interpretability unlike traditional machine learning ap-

proaches by using matching. We improve on existing

matching methods by learning an interpretable distance

metric on a training set. Our methodology also provides

a systematic way to account for nuisance variables, and

to achieve consistently high quality matching outcomes.

The algorithm can be implemented easily within most

common database systems for optimal performance. It

scales well to large datasets. It achieves a balance be-

tween interpretability, scalability, trustworthiness, and

modeling power that is unsurpassed by any other method

for IV analysis. Code is publicly available at: https:

//github.com/almost-matching-exactly
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